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Abstract10

Infiltration of water in dry porous media is subject to a powerful gravity-driven instability. Although the

phenomenon of unstable infiltration is well known, its description using continuum mathematical models has

posed a significant challenge for several decades. The classical model of water flow in the unsaturated flow,

the Richards equation, is unable to reproduce the instability. Here, we present a computational study of a

model of unsaturated flow in porous media that extends the Richards equation and is capable of predicting

the instability and captures the key features of gravity fingering quantitatively. The extended model is

based on a phase-field formulation and is fourth-order in space. The new model poses a set of challenges for

numerical discretizations, such as resolution of evolving interfaces, stiffness in space and time, treatment of

singularly perturbed equations, and discretization of higher-order spatial partial-differential operators. We

develop a numerical algorithm based on Isogeometric Analysis, a generalization of the finite element method

that permits the use of globally-smooth basis functions, leading to a simple and efficient discretization of

higher-order spatial operators in variational form. We illustrate the accuracy, efficiency and robustness of our

method with several examples in two and three dimensions in both homogeneous and strongly heterogeneous

media. We simulate, for the first time, unstable gravity-driven infiltration in three dimensions, and confirm

that the new theory reproduces the fundamental features of water infiltration into a porous medium. Our

results are consistent with classical experimental observations that demonstrate a transition from stable to

unstable fronts depending on the infiltration flux.
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1. Introduction

Infiltration of water in soil is an essential component of the hydrologic cycle. Rainfall water that infiltrates

the soil recharges groundwater resources and sustains the vegetation and soil biota. The dynamics of water

in the unsaturated zone is therefore a key to understand the interplay between climate, soil moisture and15

vegetation in water-stressed ecosystems [68]. Infiltration has been modeled using a variety of approaches,

depending on the scale and scope of the investigation. These range from zero-dimensional “bucket” models to

the classical Richards equation: a partial differential equation that describes the evolution of water content

in space and time through and extension of the Darcy-Buckingham flux model to unsaturated media [8].
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Gravity-driven wetting fronts are often unstable, leading to a phenomenon known as “gravity fingering”:

water infiltrates the soil through preferential flow paths rather than as compact wetting front [40, 41, 42,

48, 78]. These paths appear as columnar channels, through which water penetrates into the soil much

faster than predicted by the Richards equation. Fingering is a powerful hydrodynamic instability, ubiquitous

in both homogeneous and heterogeneous dry soils, and may be the prevalent infiltration form in arid and5

semi-arid environments. Remarkably, the fingering instability is not predicted by the classical theory [33].

Richards’ equation is a scalar conservation law expressing conservation of mass, which takes the form of a

second order, nonlinear advection-diffusion equation. It has been shown that Richards’ equation is stable

in homogeneous soil against both infinitesimal and finite perturbations [37, 63]. Models of unsaturated

flow capable of describing unstable flows require the introduction of higher-order effects, either resorting10

to hysteresis and dynamic effects in the capillary pressure function [33, 63], or through the introduction of

an effective macroscopic surface tension in the mathematical description of unsaturated flow [24, 25]. Here

we focus on this latter approach. Mathematically, we adopt a phase field formulation, where a square-

gradient term in the energy appears naturally, and leads to a fourth-order term in the mass conservation

equation [17]. Previous work in two dimensions has shown that the model predicts gravity fingering, and the15

results of the linear stability analysis agree well with laboratory experiments in terms of finger width and

finger velocity [24, 25].

Here we present a computational study of unstable infiltration, based on a fourth-order phase-field model

of unsaturated flow. The numerical simulation of conservation laws with fourth-order terms is challeng-

ing. Classical examples of such models are the Cahn-Hilliard phase-field model of phase separation [17], the20

Kuramoto-Sivashinsky equation [56, 72] and the long-wave thin film equation [52]. Most numerical method-

ologies for the approximation of partial-differential equations have been developed for equations involving

second (or lower)-order operators, yet fourth-order equations are receiving increased attention, primarily due

to the fast development of phase-field models [1, 15, 16, 17, 18] of fracture mechanics [11, 79, 67], multiphase

flow [54, 55, 62, 76] and tumor growth [9, 23, 61, 64, 80]. The development of accurate, robust, and efficient25

algorithms for these problems has become a necessity.

Computational phase-field modeling has been traditionally dominated by collocation methods, such as

finite differences [36, 74, 25] or pseudo-spectral algorithms [57, 60, 81, 28], by finite volume schemes [27],

and by mixed finite element methods [3, 10, 31, 35]. Since our model equation involves fourth-order partial

derivatives, conforming finite element formulations require C1 continuity of the basis functions across ele-30

ment boundaries. The design of simple, efficient and geometrically flexible finite elements possessing global

C1 continuity has been a prime objective of the finite element community for several decades [73]. Although

significant progress has been made, most existing procedures require the introduction of additional global

degrees of freedom and entail theoretical and computational difficulties. In fact, most finite element compu-

tations of fourth-order equations are performed using a mixed method, which doubles the number of global35

unknowns and may require a theoretical study of the space stability of the discretization. Here, we employ

a numerical formulation based on Isogeometric Analysis, a technology that has been recently introduced

in the field of computational mechanics [20, 51]. Isogeometric Analysis may be thought of as a class of

isoparametric finite element analysis in which the basis functions in the parameter space are Non-Uniform
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Rational B-Splines (NURBS) [65, 69]. NURBS are a superset of piecewise polynomials, which ensures that

Isogeometric Analysis is a generalization of finite element analysis. For the purpose of this work, the most

important advantage of Isogeometric Analysis is that, in contrast with classical finite element methods, it

permits building globally C1 continuous basis functions in a simple and efficient way. Additional advantages

of Isogeometric Analysis over the finite element method that are relevant to the infiltration problem are, for5

example, enhanced spectral accuracy (i.e., approximability of the method for discrete eigenvalue problems)

[14, 22, 50], and superior robustness (i.e., balance between accuracy and dissipation properties of the method

for stiff nonlinear dynamic problems) [2, 4, 32, 34, 45, 46, 59]. Our methodology also presents advantages

over other numerical methods often used for fourth-order equations. For example, our method is very flexible

with respect to the geometry of the domain, in contrast with spectral methods which are difficult to apply10

to complex geometries. Another frequently used method, the finite volume method, does have geometrical

flexibility but studies of theoretical nature regarding convergence and/or stability are usually more intricate

than those of finite element procedures based on the weak form of the problem.

In summary, our manuscript presents the first three-dimensional simulations of unstable gravity-driven

infiltration. Until now, it was unclear whether three-dimensional unstable infiltration could be captured with15

a continuum mathematical theory. Our simulations elucidate important aspects of the physics of the problem,

which had so far remained elusive to continuum modeling. For example, the hydrodynamic instability

develops a columnar pattern in three dimensions; and the instability is suppressed for high infiltration rates.

We also analyze, for the first time, the impact of heterogeneous permeability on the infiltration patterns. We

propose a computational method that is especially well-suited for simulating this problem, the reasons being20

that: (1) our method permits generating globally C1 continuous basis functions which are essential to solve

a fourth-order partial differential equation in primal variational form; and (2) our method exhibits improved

spectral accuracy, a property that plays a critical role in the solution of nonlinear dynamic problems like the

one studied here.

The outline of the paper is as follows: In section 2 we present the governing equations of our model of25

water infiltration in soil. In section 3, we present the numerical algorithms used to approximate the solution

of the infiltration equation. In section 4 we present several numerical examples in two and three dimensions.

Finally, we draw conclusions in section 5.

2. Governing equations

Unsaturated flow is traditionally modeled at the continuum scale through a balance equation for the mass

of the infiltrating fluid, as follows
∂ (ρφS)

∂t
+∇ · q = 0, (1)

where ρ is the fluid density, φ the porosity of the medium, and S is the fluid saturation, that is the volumetric

fraction of pore space occupied by the fluid. The mass flux, q, is modeled through an extension of Darcy’s

law to partially saturated media

q = −ρk(x)

µ
kr(S)∇Φ, (2)
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where k is the permeability of the porous medium, µ is the dynamic viscosity of the fluid, kr is the saturation-

dependent relative permeability, and Φ is the flow potential. In the classical theory of unsaturated flow

(Richards’ equation [66]), the potential Φ is a function of fluid saturation alone. In contrast, we interpret

the flow potential as the variational derivative of a phenomenological free energy functional, E , as Φ =
δE
δS

.

We propose to use [24]

E = −ρgzS + Ψ(S) +
1

2
Γ
∣∣∇S∣∣2, (3)

where g is the acceleration due to gravity, z is depth (coordinate in the direction of gravity), and Ψ is a

suction potential energy that scales with surface tension and medium permeability as Ψ = − γ√
k

ΨD(S) [58].

The dimensionless function ΨD(S) is a convex nonlinear function of fluid saturation that achieves a local

minimum within the interval [0,1]. In particular, we consider a two-parameter family of functions of the

form [25]

ΨD(S) =
λ

λ− 1
S1−1/λ

[
1− eκ(S−1)

]
, (4)

which is an extension of traditional Brooks-Corey capillary pressure functions [8] to ensure that S ∈ [0, 1].

The local minimum is reached for a value of the saturation that tends to one as κ tends to infinity. In the

free energy (3), the square-gradient term is introduced to model an effective macroscopic surface tension [24].

This gradient energy seems to be essential to capture unstable, gravity-driven wetting fronts in unsaturated

flow [24, 25]. Taking the variational derivative of (3) with respect to saturation yields the flow potential Φ,

as

Φ =
δE
δS

=
∂E
∂S
−∇ ·

(
∂E
∂∇S

)
= −ρgz +

dΨ

dS
− Γ∇2S, (5)

where
dΨ

dS
= − γ√

k

dΨD

dS
= − γ√

k
J(S), (6)

and we have introduced the notation
dΨD

dS
≡ J(S). Based on the flow potential (5), the mass flux (2) is

given by

q = −ρk(x)

µ
kr(S)

(
−ρgz − γ√

k
J(S)− Γ∇2S

)
. (7)

Finally, assuming an incompressible fluid, our model equation expressing conservation of mass reads

φ
∂S

∂t
+∇ ·

[
ρg

µ
k(x)kr(S)∇

(
z +

γ

ρg
√
k
J(S) +

Γ

ρg
∇2S

)]
= 0. (8)

Note that the classical Richards model is recovered by setting Γ = 0 in the above equation. The above model

is valid as long as the medium remains unsaturated (S strictly less than 1), and under the assumption that

the mobility and compressibility of air are much larger than those of water.

2.1. Scalings and dimensionless model equation

Let us start by considering a homogeneous porous medium, where the porosity φ and the permeability k

are constant throughout the domain, k. We define the saturated hydraulic conductivity as

Ksat =
ρgk

µ
, (9)
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which has units of velocity [LT−1]. Defining the characteristic time as

tc =
φL

Ksat
, (10)

we may write the dimensionless counterpart of our model (8), as

∂S

∂t
+∇ ·

[
kr(S)∇

(
zD +N−1

Gr J(S) +NΓ∇2S
)]

= 0, (11)

where we have abused notation and used x and t to denote dimensionless space and time. Two dimensionless

groups arise: a gravity number, NGr,

NGr =
ρgL

γ/
√
k
, (12)

and a group associated with the higher-order term, or macroscopic surface tension, NΓ,

NΓ =
Γ

ρgL3
. (13)

In [24], we argue that the macroscopic surface tension arises from phenomena that are already represented

in the basic model parameters. Thus, we relate the characteristic length scale of this phenomenon to the

length scales already present in the problem. In particular, we propose that the relevant length scale is the

capillary rise. Under this choice, since Γ/ρg has units of length cube, we take Γ ∼ h3
cap, where the Leverett

scaling [58] suggests

hcap ∼
γ

ρg
√
k
. (14)

This implies the relationship

NΓ ∼ N−3
Gr , (15)

and the dimensionless model equation reads

∂S

∂t
+∇ ·

[
kr(S)∇

(
z +N−1

Gr J(S) +N−3
Gr ∇2S

)]
= 0. (16)

In heterogeneous media we define the space-dependent permeability field as k(x) = k̃kD(x), where k̃ is

the average permeability and the dimensionless permeability field kD(x) incorporates the spatial variability.

Therefore, the nondimensional model equation is

∂S

∂t
+∇ ·

[
kD(x)kr(S)∇

(
z +N−1

Gr J(S) +N−3
Gr ∇2S

)]
= 0. (17)

The above expression assumes that heterogeneity affects the mobility, but not the capillary pressure.

2.2. Strong form of the mathematical problem

Let the problem be defined on a domain Ω, which is an open subset of R3. The boundary of Ω, assumed

sufficiently smooth, is called ∂Ω. We assume that ∂Ω is composed of two complementary parts ∂Ω =

∂ΩD ∪ ∂ΩN . The unit outward normal to ∂Ω is denoted n. We denote a generic point of Ω by x. In strong

and dimensionless form, the problem can be stated as: find the water saturation S : Ω× [0, T ] 7→ [0, 1] such
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that

∂S

∂t
+∇ ·

(
kD(x)kr(S)∇

(
z +N−1

Gr J(S) +N−3
Gr ∇2S

))
= 0 in Ω× (0, T ), (18.1)

S(x, t) = Sin(x, t) on ∂ΩD × [0, T ], (18.2)

∇
(
z +N−1

Gr J(S) +N−3
Gr ∇2S

)
· n = 0 on ∂ΩN × [0, T ], (18.3)

∇S · n = 0 on ∂Ω× [0, T ], (18.4)

S(x, 0) = S0(x) in Ω. (18.5)

where t denotes the time, [0, T ] is the time interval, and Sin : ∂ΩD×[0, T ] 7→ R, S0 : Ω 7→ R are given functions

that define, respectively, the boundary and initial conditions. The rest of the notation is as follows: z is the

spatial direction (i.e., a cartesian component of x) that points downwards, in the direction of gravity, NGr is

a positive dimensionless number that sets the intrinsic length scale of the problem, and kD : Ω 7→ R+ is the

dimensionless permeability field. The nonlinear functions of saturation kr : [0, 1] 7→ R+ and J : [0, 1] 7→ R

represent the relative permeability and dimensionless capillary pressure functions, respectively. Here, we

follow [25] and employ

kr(S) = Sm, (19.1)

J(S) = S−1/λ

[
1− e−κ(1−S)

(
1 + κ

λ

λ− 1
S

)]
. (19.2)

In equations (19.1)–(19.2) m, λ and κ are positive constants that define the soil properties. Equation (19.1) is

widely utilized for homogeneous sands, and the parameter m normally ranges from 4 to 10 depending on the

soil characteristics. Equation (19.2) is an extension of the Brooks-Corey capillary pressure function [13], in

which κ is a compressibility parameter that may be thought of as a large penalty constant that energetically

penalizes the fully saturated state. In this paper, we take κ = 50, and λ = 4. These are physically relevant5

values, that lead to quantitative agreement with laboratory experiments [25].

3. Numerical formulation

Here we describe our numerical formulation for the infiltration theory presented in the previous section.

From the point of view of space discretization, the numerical simulation of equation (18.1) is challenging

for two reasons. First, the equation develops sharp internal layers that travel through the computational10

domain. Those layers have complex topology, typically exhibiting a small undershoot and a large overshoot

within the characteristic length of the layer, which, in turn, is very small compared to the macroscopic scale

of the problem. The second reason why the numerical discretization of this equation is challenging is the

presence of higher-order partial-differential operators. Here, we employ a numerical formulation based on

Isogeometric Analysis, a technology recently introduced in the field of computational mechanics that permits15

generating conforming discretizations for higher-order operators in a straightforward manner [20, 51].

3.1. Continuous problem in variational form

We begin by considering a weak form of equation (18.1). Let S and W denote the trial solution and

weighting functions spaces, respectively. The computational domain is the box Ω = (0, L)3 parameterized
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by cartesian coordinates (x, y, z), where z points downwards in the direction of gravity. In the direction of

gravity we impose a given water flux on the top of the domain (∂ΩD), and outflow boundary conditions on

the bottom of the domain (∂ΩN ). On the lateral boundaries of the box we will impose periodic boundary

conditions in the x and y directions (note that this represents a slight variation with respect to the boundary

value problem posed in (18), but still defines a well-posed problem). On ∂ΩD, we impose S = Sin and

∇S ·n = 0, which is asymptotically equivalent to imposing a flux ratio (dimensionless infiltration rate), Rs,

given by Rs = kr(Sin). These restrictions are imposed strongly on the finite element spaces. On ∂ΩN , we

impose outflow boundary conditions, given by (18.3) and (18.4). The first condition, (18.3), is naturally

imposed by the variational formulation, while the second, (18.4), is strongly enforced on the finite element

spaces. Thus, the functional spaces S and W can be defined as follows,

S =
{
S ∈ H2 |S = Sin on ∂ΩD, ∇S · n = 0 on ∂ΩD ∪ ∂ΩN , S periodic in x and y directions

}
(20)

W =
{
W ∈ H2 |W = 0 on ∂ΩD, ∇W · n = 0 on ∂ΩD ∪ ∂ΩN , W periodic in x and y directions

}
(21)

where H2 is the Sobolev space of square integrable functions with square integrable first and second deriva-

tives. Therefore, the variational formulation can be stated as follows: find S ∈ S such that ∀W ∈ W ,

B(W,S) = 0, (22)

where

B(W,S) =

∫
Ω

W
∂S

∂t
dΩ−

∫
Ω

∇W ·kD(x)kr(S)∇(z+N−1
Gr J(S))dΩ+

∫
Ω

∇·(kD(x)kr(S)∇W )N−3
Gr ∇2SdΩ (23)

Note that S and W need to be subsets of H2, otherwise we would be unable to make sense out of the

last integral in (23).

3.2. The semidiscrete formulation5

For the space discretization of (22) we define finite-dimensional trial and weighting function spaces,

denoted by S h and W h, respectively. We employ a conforming discretization, which implies that the

conditions S h ⊂ S and W h ⊂ W are satisfied. We use the Galerkin method, so a member of S h is

constructed by taking a member of W h and adding a sufficiently smooth function that verifies the essential

boundary conditions. The variational problem over the finite-dimensional spaces may be stated as follows:

find Sh ∈ S h such that ∀Wh ∈ W h

B(Wh, Sh) = 0, (24)

where Wh is defined as

Wh =

nb∑
A=1

WANA. (25)

The NA’s are the basis functions, and nb is the dimension of the discrete space. Note that the condition

W h ⊂ W mandates our discrete space to be at least H2-conforming [12]. In what follows, we show how to

construct H2-conforming NURBS discrete spaces.
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3.3. Discrete space

In the spirit of the finite element method, the basis functions are generated on a parametric space, and

then mapped onto the physical space using a geometrical mapping. For the geometries considered in this

work, NURBS reduce to B-Splines. Thus, we show how to generate a B-Spline basis on the parametric space.

We start our presentation with a one-dimensional B-Spline basis, which is a set of n piecewise polynomial

functions of order p denoted by {Bi,p}i=1,...,n. These functions are generated from a knot vector, which is

a set of non-decreasing coordinates in parametric space called knots. Let us introduce the following knot

vector

Kξ = {ξ1, ξ2, . . . , ξn+p+1}. (26)

Without loss of generality, it may be assumed that ξ1 = 0 and ξn+p+1 = 1, and the basis functions are

defined on the interval [0, 1], which we associate to the parametric space. Given p and Kξ, we define the

zeroth-order B-Spline functions {Bi,0}i=1,...,n as

Bi,0(ξ) =

 1 if ξi ≤ ξ ≤ ξi+1,

0 otherwise.
(27)

The p-th order B-Splines basis functions are defined recursively using the relation

Bi,q(ξ) =
ξ − ξi

ξi+p − ξi
Bi,q−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,q−1(ξ); i = 1, . . . , n; q = 1, . . . , p. (28)

The functions {Bi,p}i=1,...,n are C∞ everywhere except at the knots. At a non-repeated knot, the functions

have p− 1 continuous derivatives. If a knot is repeated k times the number of continuous derivatives at that

point is p− 1− k.

To generate a three-dimensional B-Spline basis, we need three polynomial orders pα, α = 1, 2, 3 and three

knot vectors Kγ , γ = ξ1, ξ2, ξ3 of lengths nα + pα + 1, respectively. Three-dimensional B-Spline functions

are defined by taking tensor products of their one-dimensional counterparts as follows:

Bi(ξ
1, ξ2, ξ3) = ⊗3

γ=1Biγ ,pγ (ξγ), (29)

where i = {i1, i2, i3}. We denote Ξ the parametric space, which may be assumed to be Ξ = [0, 1]3. Using the

functions (29) we can generate a volumetric object V = F (ξ) by way of the geometrical map F such that

F (ξ) =
∑
i∈I
CiBi(ξ) ∀ξ ∈ Ξ, (30)

where Ci ∈ R3 are the control points and I =
{
i = {i1, i2, i3} ∈ N3, ik = 1, . . . , nk + pk + 1

}
.5

B-Spline functions in physical space are defined as the push forward of the functions Bi, i ∈ I. The

discrete space that we use for our numerical method is the space spanned by those functions, namely

Vh = span{Bi ◦ F−1, i ∈ I}. (31)

Note that we invoke the isoparametric concept, because the geometrical mapping F is defined in terms of

B-Spline functions.
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3.4. Time discretization

Time integration of the proposed infiltration equation is demanding because of the nonlinear fourth-order

term in equation (18.1). Probably, the most common approach for equations of this type is the use of first-

order accurate semi-implicit schemes. These methods are widely used for fourth-order partial differential

equations in which the fourth-order term is linear. In that case, the higher-order term is treated implicitly,

while the nonlinear lower-order terms are treated explicitly. This scheme renders a linearly implicit algorithm

which avoids the use of a nonlinear solver, and permits taking somewhat larger time steps than a fully explicit

method. This idea has been used extensively [47]. When the fourth-order term is nonlinear, this procedure

needs to be modified to obtain a linearly implicit method. Zhu et al. [82] proposed a linearly implicit first-

order accurate algorithm that permits taking somewhat larger time steps than Euler’s method. However,

as shown in [44], first-order accurate algorithms normally lead to excessive numerical dissipation that may

even suppress an instability built into the physics of the equations. For these reasons, we favor the use of

fully-implicit second-order accurate algorithms. In this work, we employ the generalized-α [19, 53] method,

which is a second-order accurate A-stable method with optimal high-frequency dissipation. In what follows,

we present our implementation of the generalized-α method. Let us divide the time interval [0, T ] into N

subintervals In = [tn, tn+1), n = 1, . . . , N with 0 < t0 < t1 < · · · < tN = T . We define the time step size at

stage n as ∆tn = tn+1 − tn. Let us define the global vector of degrees of freedom

Sn = {Sn,B}B=1,...,nb . (32)

The vector Sn contains the coordinates on S h of the trial function Shn, which is the time discrete counterpart

of Sh(·, tn). The generalized-α method also involves another global vector Ṡn which allocates the coordinates

of the discrete approximation to ∂Sh

∂t (·, tn). These two global vectors are treated independently, but they are

related to each other through the linear relationship

Sn+1 = Sn + ∆tnṠn + γ∆tn(Ṡn+1 − Ṡn), (33)

where γ is a parameter of the algorithm. Let us define the following residual vector

R = {RA}A=1,...,nb where RA = B(NA, S
h). (34)

This residual vector is at each time step equated to zero, collocating the saturation and saturation time

derivative at times tn+αf and tn+αm , respectively. Thus, the fundamental equations of the algorithm are

R(Sn+αf , Ṡn+αm) = 0, (35)

Sn+αf = Sn + αf (Sn+1 − Sn), (36)

Ṡn+αm = Ṡn + αm(Ṡn+1 − Ṡn), (37)

Sn+1 = Sn + ∆tnṠn + γ∆tn(Ṡn+1 − Ṡn), (38)

where αf and αm are real-valued parameters that control the accuracy and stability of the algorithm. One

can prove that, for a linear problem, unconditional stability is achieved if

αm ≥ αf ≥ 1/2, (39)
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and second-order time accuracy is attained if

γ =
1

2
+ αm − αf . (40)

The parameters αm and αf may be parameterized in terms of %∞, the spectral radius of the amplification

matrix for an infinite time step, as follows,

αm =
1

2

(
3− %∞
1 + %∞

)
; αf =

1

1 + %∞
. (41)

Taking %∞ ∈ [0, 1] in (41), αm and αf satisfy automatically the A-stability condition (39), and we only

need to set γ according to (40) to define a second-order accurate method. It is known that %∞ controls

high-frequency dissipation, so we can have control over this property of the algorithm. For example, if we

take %∞ = 1, the method becomes the midpoint rule, which is known to preserve all frequencies for a linear

problem. If we take %∞ = 0, the algorithm applied to a linear problem annihilates the highest frequency5

in one step. We found that %∞ = 0.5 provides a good balance between accuracy and dissipation in the

simulations. Such value of the %∞ parameter is commonly used in other applications of the generalized-α

algorithm (see, e.g., [6]).

We implement the generalized-α algorithm as follows: given Sn and Ṡn, we employ the following predic-

tions for Sn+1 and Ṡn+1

S
(0)
n+1 = S(0)

n , (42)

Ṡ
(0)

n+1 =
γ − 1

γ
Ṡn. (43)

Note that S
(0)
n+1 is just the zeroth-order approximation for the saturation and Ṡ

(0)

n+1 is the consistent prediction

for Ṡn+1 that follows from equation (38). We employ these predictions to start a Newton-based iterative10

process to solve the nonlinear system of algebraic equations (35). Thus, for i = 0 to i = imax, given S
(i)
n+1

and Ṡ
(i)

n+1, we compute S
(i+1)
n+1 and Ṡ

(i+1)

n+1 as follows:

(1) We use the i-th iterates S
(i)
n+1 and Ṡ

(i)

n+1 to assemble the residual vector

R(i) = R(S
(i)
n+αf

, Ṡ
(i)

n+αm), (44)

and the tangent matrix K(i) = {K(i)
AB}A,B=1,...,nb . Since S and Ṡ are indeed related through equation

(38), we may use increments of S or Ṡ to advance Newton’s algorithm. In this work, we use increments

of Ṡ, which leads to the tangent matrix

K
(i)
AB =

∂R
(i)
A

∂Ṡ
(i)
n+1,B

. (45)

An explicit expression for K
(i)
AB may be obtained using the chain rule and the relation (38) into equation

(45). This leads to

Ki
AB =

∂R
(i)
A

∂S
(i)
n+αf ,B

∂S
(i)
n+αf ,B

∂Ṡ
(i)

n+1,B

+
∂R

(i)
A

∂Ṡ
(i)

n+αm,B

∂Ṡ
(i)

n+αm,B

∂Ṡ
(i)

n+1,B

= αfγ∆tn
∂S

(i)
n+αf ,B

∂Ṡ
(i)

n+1,B

+ αm
∂Ṡ

(i)

n+αm,B

∂Ṡ
(i)

n+1,B

. (46)
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(2) Solve the linear system

K(i)∆Ṡ
(i)

n+1 = −R(i) (47)

to a given tolerance using the GMRES algortihm [70].

(3) Update the solution as

Ṡ
(i+1)

n+1 = Ṡ
(i)

n+1 + ∆Ṡ
(i)

n+1, (48)

S
(i+1)
n+1 = S

(i)
n+1 + γ∆tn∆Ṡ

(i)

n+1. (49)

Steps (1)-(3) complete a nonlinear iteration. This process needs to be repeated until the value of the

residual has been reduced to a given tolerance ε of its initial value in a given time step. We used the value

ε = 10−5 in all our numerical simulations.

3.5. Time step adaptivity5

Homogeneous soils give rise to fingers that infiltrate with an approximately constant velocity, and, thus,

taking a fixed time step throughout the simulation is an adequate strategy. Highly heterogeneous soils lead

to significant variations in finger velocities, which affects the time integration of the semidiscrete equations.

We found that for highly heterogeneous soils it is important to use adaptive time stepping. There are several

options to dynamically adapt the time step in the generalized-α method, but we follow the strategy proposed

in [43]. This method is based on the fact that the generalized-α algorithm becomes the backward Euler

method when αm = αf = γ = 1. Thus, we compute every time step twice; first, we use the backward Euler

method, and then we use generalized-α with %∞ = 0.5. We use the obtained results to compute the L2 norm

of the normalized difference of both saturation fields, which we call e. This quantity may be thought as an

error estimate for the backward Euler method. The value of e is compared with a threshold error, τ = 10−3.

If e is greater than τ or Newton’s method did not converge for any of the time integration schemes, we repeat

the time step using ∆̃tn = s∆tn, where s = 0.9 and n is the current time step. If e is lower than τ , we

advance to the next time step and update the time-step size using the formula

∆tn+1 = s

√
τ

e
∆tn. (50)

4. Numerical examples

Here, we study unstable infiltration, that is, the process in which water infiltrates a previously dry porous

medium through preferential vertical paths (we refer to these preferential paths as “fingers”). We call stable

infiltration the process in which water infiltrates the medium as a flat horizontal front. The infiltration of

water may be stable or unstable depending upon several factors, such as, for example, the infiltration rate10

or the soil characteristics. Stability, in this context, refers to whether the infiltration is stable or unstable in

terms of the control parameters, primarily the infiltration rate.

Our simulations explore several aspects of the spatial and temporal discretization of partial differential

equations with higher-order terms, in the context of pattern formation during gravity-driven infiltration. In

section 4.1, we analyze the convergence of the finger patterns under h-refinement, focusing on the challenge of15
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accurate discretization of these models. In the sections that follow (4.2–4.4), we explain the dynamics of the

governing equations and provide insights into the physics of the problem. In section 4.2, we present a series

of two-dimensional simulations with increasing infiltration fluxes, illustrating the onset and suppression of

the fingering instability, as well as the length scale of the finger patterns. An essential feature of flow through

real field soils is the presence of spatial heterogeneity in the permeability field; in section 4.3, we study the5

implications of heterogeneous and anisotropic conductivity fields, and frame the discussion in the context of

the relative dominance of instability and soil structure with respect to flow. Finally, in section 4.4, we present

three-dimensional simulations of gravity fingering. These are the first 3D simulations of this phenomenon to

date.

For all the numerical examples we impose inflow boundary conditions (equations (18.2) and (18.4)) on10

∂ΩD (top of the domain), outflow boundary conditions (equations (18.3) and (18.4)) on ∂ΩN , and periodicity

on the lateral boundaries.

4.1. Accuracy study

Our model equation is strongly nonlinear, and planar wetting fronts are unstable for a wide range of

physical parameters and infiltration rates. Therefore, it is difficult to rigorously quantify the convergence of15

the spatial and temporal discretization. In this section, we qualitatively assess the convergence and efficiency

of the proposed discretization. We solve a typical infiltration example and observe how the saturation field

converges under grid refinement (Figure 1). The flow is initialized assuming a perturbed flat wetting front near

the top of the domain with saturation Sin. The initial saturation of the soil, S0 = 0.01 is imposed elsewhere

in the domain. The transition between the two values of the saturation (Sin and S0) is not discontinuous,20

but is modeled with a hyperbolic tangent function. We set the exponent of the relative permeability curve

to m = 4 and evolve the saturation field using a series of grids with increasing levels of spatial refinement.

All the grids are uniform, and we consider resolutions of 2562, 5122, and 10242 C1 quadratic elements. The

solution is advanced in time using a constant time step ∆t = 0.25.

Figure 1 shows the numerical approximation of the saturation field at time t = 147.5, computed using25

the three grids. At the scale of the plot, we do not observe significant differences between the results on

different meshes, but the discrepancies become more apparent when we represent horizontal and vertical

cutlines of the saturation field. The cutlines are taken at the locations indicated in Figures 1(a)–1(c), and

are depicted in Figures 1(d)–1(e). The saturation overshoot at the finger tips is significantly underestimated

on the coarser meshes (Figure 1). This fact has physical significance because the wetting front stability is30

strongly correlated with the presence of saturation overshoot [24, 29, 33, 38]. In fact, it has been shown

from a linear stability analysis of the continuum theory that the strength of the instability, measured by the

growth factor of the most unstable mode, is directly related to the magnitude of the saturation overshoot [25].

Figure 1(e) shows the typical profile of a gravity-driven finger. The profile exhibits a rather large overshoot,

and a very small undershoot (see the inset in Figure 1(e)) across the interface layer. These small features of35

the solution play a role in the dynamics of the flow, and need to be resolved by the computational mesh to

ensure accuracy of the numerical solution. As future work, we envision the use of local refinement procedures

that retain the conforming nature of the discretization. The use of T-Splines [5] or hierarchical B-Splines
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[71] seem to be promising possibilities.

This example illustrates the complexity of the numerical simulations of the phase-field infiltration theory.

Fully resolving the wetting front requires using fine spatial meshes, especially for high values of the relative

permeability exponent m (for homogeneous sandy soils, m may be as high as 10 [25, 29]). By taking different

values for m, we explore the effect of this constitutive parameter on the physics of the problem and on the5

numerics. Higher values of m lead to a stronger fingering instability, which require a finer computational

mesh. In the next examples, especially on those performed in three-dimensional domains, we are unable to

fully resolve the wetting front, just as we are unable to solve all the relevant length scales in a turbulent fluid

flow. However, we feel that our simulations reproduce the fundamental features of unstable fluid flow into a

porous medium. In fact, one of the noteworthy features of our computational method is its ability to solve10

the equations for high values of m using relatively coarse meshes.

4.2. Onset and suppression of the instability: finger length scales

One of the important factors in the numerical simulation of unstable infiltration is that the finger length

scales depend strongly on the imposed infiltration flux, rather than just on model parameters and constitutive

relations (see Figure 2, where the only differences between the images are the infiltration rates and the15

computational times). For the calculations in this section, the computational domain is Ω = (0, 2)2, and we

take NGr = 50, κ = 50, and λ = 4 in equation (19.2). For the relative permeability we set m = 7. The

hydraulic conductivity is mildly heterogeneous, with isotropic, multi-Gaussian statistics with an exponential

semivariogram model, and correlation lengths lx = ly = 4h, where h = 1/256 is the mesh size. The

permeability field is generated using the method proposed in [39]. The initial condition is the same as in20

section 4.1. We specified different infiltration fluxes by varying the imposed saturation at the upper boundary.

For low infiltration rates, the water infiltrates the soil through multiple thin fingers, with low saturation.

The separation between fingers is typically larger than the characteristic finger size. As the infiltration

flux increases, the fingers become thicker, and the separation between fingers decreases, being similar to

the finger size. For high infiltration rates of the order of the saturated conductivity, Sin ≈ 1, the wetting25

front is stable, and water imbibes the soil compactly, as a quasi-1D process. The stability diagram emerging

from our simulations is consistent with experimental observations [42], because stable infiltration (i.e., a flat

wetting front) is predicted for high infiltration rates, while unstable infiltration (i.e., a fingered wetting front)

is encountered for intermediate infiltration rates. From a computational perspective, the demands on the

accuracy and robustness of the discretization change with the flow pattern. For low infiltration rates, the30

characteristic length scale of the flow features is smaller, but the fronts are somewhat smoother. On the

other hand, for high infiltration fluxes the flow is quasi-1D, but the wetting front is extremely sharp.

4.3. Effect of heterogeneous permeability: robustness of the numerical scheme

In this section we analyze the impact of the medium heterogeneity on the robustness of the discretization.

Field soils may exhibit strong heterogeneity or structure, that is, a conductivity field with strong spatial35

variations. These variations exhibit characteristic correlations in space. For simplicity, here we consider

heterogeneity in the saturated hydraulic conductivity only, therefore neglecting the influence of heterogeneity
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on the capillary terms. We also assume that the nonlinear structure of the relative permeability does not

vary in space, kr(S) = S5. We construct hydraulic conductivity fields with multi-Gaussian statistics with an

exponential semivariogram model, generated from a lognormal distribution of permeabilities defined by the

variance, σ2
ln k, and correlation lengths in x and y directions, denoted by lx and ly, respectively. For more

details about the permeability fields the reader is referred to [39]. The basic setup for these calculations is5

the same as in the previous examples. In this case we take Sin = 0.2 and S0 = 0.01.

We control the strength of the heterogeneity by the variance of the log-permeability field. We model

layered soil structures by introducing anisotropy in the correlation lengths, i.e., by setting lx 6= ly. Numer-

ically, we analyze the interaction between the heterogeneity variance and correlation lengths and the finger

dynamics.10

4.3.1. Isotropic permeability fields

For isotropically-correlated permeability fields we focus on the interaction between the characteristic finger

size and the correlation length, lx = ly ≡ l, of the heterogeneity. We consider two values of the variance of

the dimensionless log-conductivity, σ2
ln k = 1 (Figure 3) , and σ2

ln k = 4 (Figure 4). In both cases, we study

permeability fields with increasing correlation lengths l = h, l = 4h, and l = 8h, where h is the mesh size.15

Note that for σ2
ln k = 4 the saturated conductivity varies over roughly five orders of magnitude. Qualitatively,

heterogeneity induces meandering of the fingers, which also exhibit a non-homogeneous distribution of water

content within the fingers. When the correlation length of the permeability field is much smaller than the

typical finger size, the heterogeneity induces a slight meandering of the fingers, without significantly changing

the overall flow pattern. As the correlation length approaches the finger size, the meandering is exacerbated,20

inducing recombination and merging of the fingers. For correlation lengths that are larger than the finger size,

the dynamics of the fingers recover their strong vertical nature, but the finger separation changes drastically.

We also employ these simulations to study the effect of heterogeneity on the infiltration time scales. We

analyze the time evolution of the time step selected by our adaptive algorithm (Figure 5). The time intervals

in the plots range from time zero to the time at which the fingers reach the bottom of the domain. Figure25

5(a) shows that when the correlation length of the permeability field is much smaller than the typical finger

size, changing the variance of the heterogeneity does not modify significantly the infiltration time scales. The

average finger velocity is very similar for σ2
ln k = 1 and σ2

ln k = 4, just as the average time step employed by

our algorithm. As the correlation length approaches the finger size, the situation changes significantly. The

infiltration is much faster for σ2
ln k = 4 than for σ2

ln k = 1. The reason is that for this correlation length, the30

fingers can deviate from their natural vertical pattern to find high-permeability paths. This phenomenon

leads to a much more effective infiltration for σ2
ln k = 4. We also note that the average time step taken by

our adaptive algorithm is about an order of magnitude smaller for σ2
ln k = 4, suggesting faster dynamics, and

indicating that our adaptive strategy adequately captures the relevant infiltration time scales. The variance

of the permeability field makes an even more significant difference for larger correlation lengths. We observe35

in Figure 5(c) that for σ2
ln k = 4, the infiltration is about one order of magnitude faster than for σ2

ln k = 1.

The time steps are consistent with these times scales.

Finally, we note that higher variances of the permeability field lead to a wider range of relevant time
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scales for the infiltration dynamics. Our adaptive time stepping algorithm captures this phenomenon. For all

correlation lengths, the ratio of the maximum to the minimum time step increased by a factor of approximately

4 when we raised the variance from σ2
ln k = 1 to σ2

ln k = 4.

4.3.2. Anisotropic permeability fields

Structural layering and anisotropically-correlated permeability are often found in natural soils. By con-5

trolling the ratio between the correlation lengths lx and ly, we simulate the effects of layering in the soil

structure. Figure 6 corresponds to σ2
ln k = 1, while Figure 7 corresponds to σ2

ln k = 4. Strongly anisotropic

permeability fields have a significant impact on the saturation fields, although the overall pattern of pref-

erential flow due to fingering remains. In that sense, our simulations demonstrate the pervasiveness of the

fingering instability in infiltration. As expected, the impact of soil structure is more pronounced when the10

anisotropy is aligned vertically, although horizontal stratification is much more common in nature.

4.4. Verification of the three-dimensional code

Since we report herein the first three-dimensional simulations of unstable gravity-driven infiltration, we

would like to address the verification of our three-dimensional code. Exact solutions to the infiltration theory

(17) are not available, so we will utilize our three-dimensional code to produce one-dimensional traveling

wave solutions to the model. The traveling wave solutions can be obtained to high precision using an overkill

solution produced by a rational pseudospectral method with adaptively transformed Chebyshev nodes [75, 28].

To obtain the traveling waves, we seek solutions of the form

S(x, y, z, t) = u(ζ) = u(z − ct) (51)

where c is the wave velocity. We pose the problem on an infinite domain, and require the solution to remain

bounded at infinity and satisfy

u(+∞) = u+, u(−∞) = u− (52)

Under these conditions, and assuming kD(x) = 1, the traveling wave velocity c is given by

c =
kr(u

−)− kr(u+)

u− − u+
(53)

Assuming that the derivatives of u vanish at infinity, the traveling wave solutions verify

−cu′ + d

dζ

(
kr(u) +N−1

Gr kr(u)J ′(u)u′ +N−3
Gr kr(u)u′′′

)
= 0 (54)

Integrating over the domain (−∞,+∞), and imposing the conditions at infinity, we obtain the boundary

value problem

−c(u− u−) + kr(u)− kr(u−) +N−1
Gr kr(u)J ′(u)u′ +N−3

Gr kr(u)u′′′ = 0

u(−∞) = u−, u(+∞) = u+, u′(−∞) = 0 (55)

Note that the traveling wave solutions may be thought of as stationary solutions on a moving frame of

reference. We solve the problem (55) using a rational pseudospectral method on a sufficiently large domain,

taking u+ = 0.425 and u− = 0.01. Then, we compare the solution to (55) with one-dimensional transient15
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solutions of the infiltration theory produced by our three-dimensional code. We observe that, for long times

and a sufficiently fine mesh, the transient solutions evolve to traveling waves that match the solutions to the

boundary value problem (55). This may be observed in Figure 8, where the solutions using both methods are

indiscernible at the scale of the plot. The transient three-dimensional solution has been computed on a mesh

composed of 1× 1× 1024 C1-quadratic elements, and time-advanced over 80000 times steps of constant size5

∆t = 6.25 · 10−4. This shows significant robustness of our method and reliability for long-time calculations.

Typically, the most challenging aspect of the resolution of traveling waves is capturing correctly the small

undershoot of the solution located downstream of the wetting front (see the inset in Figure 8). We observe

that even this small-scale feature of the solution is in agreement for both computations, which provides

evidence for our three-dimensional code being correct.10

We also note that the adaptive rational pseudospectral algorithm, which adaptively selects the inter-

polation points, and has been shown to vastly outperform standard Chebyshev collocation methods and

higher-order finite differences [28], required a minimum step size of hmin ≈ 0.005151. This mesh renders a

solutions with a relative error of at least 5 · 10−4. The algorithm presented in this paper utlizes a uniform

mesh with a mesh size of approximately 5.69hmin, and renders a solution indiscernible at the scale of Figure 8,15

which suggests that our algorithm successfully combines quasi-spectral accuracy with generality, geometrical

flexibility, and strong mathematical framework provided by the variational structure of the algorithm.

4.5. Three-dimensional simulations

Here we present the first three-dimensional simulations of fingering during infiltration (Figure 9). We

analyze the influence of the infiltration rate flux on the stability of the wetting front. In that sense, these

simulations are the 3D counterpart of those presented in section 4.1. Experimental observations have shown

that the wetting front instability is a fully three-dimensional phenomenon, leading to a pattern of columnar

preferential flow paths during gravity-driven imbibition into dry media [40]. Our simulations are consistent

with the experiments in that the wetting front is stable for low and high infiltration rates, while it is

unstable for intermediate infiltration rates. We compute our solutions in the domain Ω = (0, 2)3, with

a computational mesh composed of 1283 C1 uniform quadratic elements. We set the gravity number to

NGr = 14. In reference [26], the stability of the wetting front is analyzed utilizing a one-dimensional linear

stability analysis that considers both modal and nonmodal effects [77]. This analysis elucidates the role of the

initial water saturation and flux ratio in the stability of the system. In this section, we study the stability of

the wetting front by way of large-scale numerical simulations. Our simulations confirm the results predicted

in [26], which showed a transition from stable to unstable wetting fronts when the infiltration rate varies from

low to intermediate values, but also demonstrate that the instability is again suppressed for large values of

the flux ratio. This result is coherent with the physics of the problem and with laboratory experiments [40].

For this study we take

kr(S) =
1

2

[
S3 (1 + tanh(10S − 3)) + S7 (1− tanh(10S − 3))

]
, (56)

which is a smooth blending of the functions S3 and S7. This choice of the relative permeability is physically

motivated [25], and allows us to work with rather coarse meshes. The main conclusion of this study would20
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remain the same taking standard power-law relationships. For all the numerical examples that we present

in this section the initial condition is defined by a perturbed flat wetting front at a distance of 0.1 from the

top boundary. The saturation takes the value Sin on the top of the domain and S0 = 0.01 elsewhere. We

present twelve simulations corresponding to twelve values of Sin, as shown in Figure 9. Each snapshot shows

isosurfaces of water saturation when the wetting front reaches the bottom of the domain. We do not present5

the results at the same times because we are interested in the stability of the wetting front which is best

observed when the water front reaches the bottom of the domain. Figure 9 clearly shows two transitions in

the stability of the wetting front: First, the wetting front becomes unstable when we increase the flux ratio

(i.e., Sin), as shown in the first row of the figure. Second, the wetting front shifts from unstable to stable

when we increase further the flux ratio, as shown in the last row of the figure. The second and third rows10

show that the morphology of the fingers depends on the infiltration rate. Thin fingers are typical for low flux

ratios, while higher infiltration rates lead to thicker fingers.

Additional insight may be obtained by examining slices of the solution across horizontal and vertical

planes (Figure 10). The snapshots in Figure 10 illustrate typical distributions of fingers during an infiltration

event, and may be employed for qualitative comparison with experiments [e.g. 40]. Finally, we present in15

Figure 11 the time evolution of the free-energy functional defined in Equation (3). The free-energy functional

is time-decreasing for the exact solution of the infiltration theory. Figure 11 shows that, for the space-time

computational mesh considered in this example, our algorithm preserves this property of the theory.

5. Conclusions

The development of theories of multiphase flow through porous media capable of reproducing hydrody-20

namic instabilities like gravity fingering during infiltration seems to require the introduction of higher-order

terms in the mathematical description. Numerically, the presence of higher-order terms in conservation laws

poses important challenges in both the spatial and temporal discretization of the equations. In this paper,

we have presented a numerical algorithm for a phase-field theory of unsaturated porous media flow. The

numerical simulation of the proposed governing equation requires fundamentally-new algorithms compared25

to those employed for the discretization of the classical Richards equation. In particular, a numerical method

for the new theory should be able to handle evolving sharp interfaces, higher-order spatial derivatives, and

stiffness in space and time. We propose an algorithm based on Isogeometric Analysis, a recently proposed

computational technique. Isogeometric Analysis is ideally-suited for the discretization of the new theory

because it enjoys excellent approximation capabilities, higher-order robustness, and globally smooth basis30

functions that permit a simple and efficient discretization of higher-order spatial derivatives. This numerical

framework allows us to simulate a wide range of flow scenarios, including highly heterogeneous media and, for

the first time, three-dimensional simulations of unstable infiltration. We have shown simulations of fingering

during infiltration for different infiltration fluxes, degrees of soil heterogeneity and soil structure (anisotropy

in the correlation length). Our three-dimensional examples constitute the first computations showing un-35

stable water infiltration into a porous medium, and confirm that the new infiltration theory reproduces the

fundamental features of the phenomenon.
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[34] J.A. Evans, Y. Bazilevs, I. Babuška, T.J.R. Hughes, n-widths, sup infs, and optimality ratios for the10

k-version of the isogeometric finite element method, Computer Methods in Applied Mechanics and Engi-

neering, 198 (2009) 1726–1741.

[35] X. Feng, A. Prohl, Analysis of a fully discrete finite element method for phase field model and approxi-

mation of its sharp interface limits, Mathematics of Computation 73 (2003) 541–547.

[36] D. Furihata, A stable and conservative finite difference scheme for the Cahn-Hilliard equation, Numer.15

Math. 87 (2001) 675–699.
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Figure 1: Convergence under grid refinement. We compute the saturation field at time t = 147.5 using grids of 2562 (a), 5122

(b), and 10242 (c) C1 quadratic elements. The solution is advanced in time with a small, constant time step, ∆t = 0.25. The

constitutive parameters are given by κ = 50, λ = 4, m = 4. The flow is defined by NGr = 20, S0 = 0.01, and Sin = 0.2. The

straight lines depicted in the plots (a)-(c) indicate the locations of the cutlines represented in (d) and (e). We observe that the

saturation overshoot at the finger tips is underestimated on coarse meshes.
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(a) Sin = 0.2 (b) Sin = 0.3

(c) Sin = 0.4 (d) Sin = 0.5

(e) Sin = 0.6 (f) Sin = 0.7

(g) Sin = 0.8 (h) Sin = 0.9

Figure 2: Flow patterns for various infiltration rates. The simulation set-up is in all cases identical, except for the imposed

infiltration rate, which is controlled by varying the imposed saturation at the upper boundary, Sin. Low infiltration rates lead

to multiple thin fingers with low saturation. Infiltration rates near the saturated conductivity induce a transition to a stable,

compact front.
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(a) Logarithm of permeability (b) Water saturation

Figure 3: Effect of heterogeneous permeability (I). Natural logarithm of the hydraulic conductivity (left) and water saturation

(right). The permeability field was generated as a multivariate lognormal distribution with variance σ2
ln k = 1, and isotropic

correlation length lx = ly = l. The first, second, and third rows correspond, respectively, to a permeability field with correlation

length l = h, l = 4h, and l = 8h, where h is the mesh size. The simulations were carried out on a uniform mesh of 2562 elements.

Heterogeneity in the permeability induces meandering of the fingers, and affects the finger separation. Interestingly, there is a

clear interaction between the correlation length of the permeability field and the typical finger length scale, which affects the

intensity of flow focusing.
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(a) Logarithm of permeability (b) Water saturation

Figure 4: Effect of heterogeneous permeability (II). Same as Figure 3, but in this case the heterogeneity is stronger, with variance

σ2
ln k = 4.
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Figure 5: Time evolution of the time step size predicted by our adaptive algorithm for the simulations presented in Figures

3–4. The snapshot (a) corresponds to l = h, (b) to l = 4h and (c) to l = 8h, where h is the mesh size. The plots indicate that

the higher the variance of the permeability, the wider the range of relevant infiltration time scales. The plots also reveal that,

for large correlation lengths (l = 4h and l = 8h), heterogeneity accelerates the infiltration process, while for small correlation

lengths (l = h), heterogeneity does not have a significant impact on the average infiltration velocity.

28



(a) Logarithm of permeability (b) Water saturation

Figure 6: Effect of anisotropy and soil structure (I). In these simulations, we model the impact of layering on the fingering

instability. The permeability field was generated as a lognormal distribution with variance σ2
ln k = 1, and anisotropic correlation

length, that is lx 6= ly . The first two rows correspond to lx = h, ly = h and lx = h, ly = 8h, where h is the mesh size (vertical

and horizontal layering, respectively, with small correlation length). The third and fourth rows correspond to permeability fields

with larger correlation length, lx = 4h, ly = 16h and lx = 16h, ly = 4h, respectively. The simulations were carried out on a

uniform mesh of 2562 elements.
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(a) Logarithm of permeability (b) Water saturation

Figure 7: Effect of anisotropy and soil structure (II). Same as Figure 6, but with a larger variance, σ2
ln k = 4.
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Figure 8: Traveling wave solutions to the infiltration theory computed as one-dimensional steady solutions on a moving frame

of reference (blue, solid line) and as three-dimensional transient solutions of the infiltration theory (red, dashed line). The

traveling wave solution has been computed using a rational pseudospectral method with adaptively transformed Chebyshev

nodes, while the transient solution has been calculated using our three-dimensional code and the algorithms presented in this

paper. The solutions are indistinguishable at the scale of the plot. The inset shows that both methods capture correctly the

small undershoot located downstream of the wetting front.
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(a) Sin = 0.085 (b) Sin = 0.125 (c) Sin = 0.145

(d) Sin = 0.165 (e) Sin = 0.185 (f) Sin = 0.245

(g) Sin = 0.265 (h) Sin = 0.285 (i) Sin = 0.305

(j) Sin = 0.325 (k) Sin = 0.345 (l) Sin = 0.365

Figure 9: Three-dimensional simulations of water infiltration into a porous medium. The plots show isosurfaces of water

saturation computed on a mesh of 1283 quadratic elements. The flow is initialized with a perturbed flat wetting front at a

distance 0.1 of the top of the domain. The wetting front moves downwards due to the action of gravity and capillarity, developing

the so-called fingering instability for certain values of the infiltration ratio, which in our simulations is determined by the value

of Sin. Each subfigure corresponds to a different value of Sin, as indicated in the labels that accompany the subplots.
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(a) Sin = 0.085 (b) Sin = 0.125 (c) Sin = 0.145

(d) Sin = 0.165 (e) Sin = 0.185 (f) Sin = 0.245

(g) Sin = 0.265 (h) Sin = 0.285 (i) Sin = 0.305

(j) Sin = 0.325 (k) Sin = 0.345 (l) Sin = 0.365

Figure 10: Three-dimensional simulations of water infiltration into a porous medium. The plots show slices of the solution

across horizontal and vertical planes. The computational mesh comprises 1283 quadratic elements. The flow is initialized with a

perturbed flat wetting front at a distance 0.1 of the top of the domain. The wetting front moves downwards due to the action of

gravity and capillarity, developing the fingering instability for certain values of the infiltration ratio, which in our simulations is

determined by the value of Sin. Each subfigure corresponds to a different value of Sin, as indicated in the labels that accompany

the subplots.
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Figure 11: Time evolution of the free-energy functional E for a three-dimensional computation of gravity-driven infiltration.

The plot shows that the free energy is time-decreasing, and thus, the algorithm respects the fundamental stability property of

the theory for the space-time computational mesh employed in this calculation.
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