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We report on an improvement to the implementation of the Maximum Entropy Method (MEM).
It amounts to departing from the search space obtained through a singular value decomposition
(SVD) of the Kernel. Based on the shape of the SVD basis functions we argue that the MEM
spectrum for given Nτ data-points D(τ) and prior information m(ω) does not in general lie in
this Nτ dimensional singular subspace. Systematically extending the search basis will eventually
recover the full search space and the correct extremum. We illustrate this idea through a mock data
analysis inspired by actual lattice spectra, to show where our improvement becomes essential for
the success of the MEM. To remedy the shortcomings of Bryan’s SVD prescription we propose to
use the real Fourier basis, which consists of trigonometric functions. Not only does our approach
lead to more stable numerical behavior, as the SVD is not required for the determination of the
basis functions, but also the resolution of the MEM becomes independent from the position of the
reconstructed peaks.
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1. Introduction

Lattice QCD is a central pillar for the non-perturbative investigation of the strong force. One
important aspect is that its formulation in Euclidean time is amenable to Monte Carlo simulations
at arbitrary T , i.e. also close to a phase transition. Computational advances over the last decade
have furthermore made it possible to consistently probe the properties of e.g. the high temperature
state of matter, the quark-gluon plasma, with staggered dynamical quarks in the continuum limit
[1] and to deploy the even more costly fermion formulations, such as Wilson or domain wall [2].

One particular area, which directly benefits from the availability of non-perturbative infor-
mation about the QCD medium is the study of heavy quarkonia and its proposed melting [3] in
relativistic heavy ion collisions. In these studies the dynamics of a pair of a heavy quark and anti-
quark is formulated in an effective field-theory framework (for a brief overview see e.g. [4] and
references therein), which allows to make a close connection to the physics of the medium by re-
lating the non-relativistic static potential governing the dynamics of the heavy QQ̄ to the real-time
rectangular Wilson loop W�(r, t) =

〈
exp
[
− i
∫
� dxµAµ

]〉
.

Unfortunately, formulating lattice QCD in imaginary time deprives us from direct access to dy-
namical information such as real-time observables. Field theory however provides a handy concept
to relate imaginary and real-time quantities, through the use of spectral functions. These positive
definite quantities ρ(ω) are connected to the observables D(τ) via an integral transform

D(τ) =
∫

∞

−∞

K(τ,ω)ρ(ω)dω (1.1)

with analytically known Kernel K(τ,ω). Since all time dependence is explicitly located in the
function K(τ,ω) the analytic continuation τ → it is straight forward, once the values of ρ(ω) are
determined. (In the following we will focus on the exponentially damped Kernel K(τ,ω) = e−ωτ ).

In practice one obtains from simulations of lattice QCD a noisy estimate of the observable
D(τ) at a discrete number of Nτ datapoints Di. Extracting a function ρl at Nω � Nτ frequencies
from such a limited data-set via the inversion of

Di =
Nω

∑
l=1

Kil ρl ∆ωl (1.2)

is an ill-defined problem. How to give meaning to such a task is the central question elucidated
by the Maximum Entropy Method [5, 6, 7, 8]. This branch of Bayesian inference generalizes and
ameliorates the concept of χ2 fitting by emphasizing the use of so called prior information. I.e. one
introduces a function m(ω) which per definition is the correct spectral function in the absence of
measured data1.

From Bayes theorem we learn that the probability of a test spectral function to be the correct
spectral function

PMEM[ρ|D,m] =
P[D|ρ]P[ρ|m]

P[D|m]
(1.3)

1A complication exists in that since our prior information is usually derived from perturbation theory at high en-
ergies, there is essentially no information available on the low ω part of the spectrum, we are interested in. Thus we
already know that the prior function used is not the correct solution in the absence of data.
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for given Nτ measured data D(τi) = Di and Nω prior information m(ωl) = ml can essentially be
written as a product of the likelihood probability

P[D|ρ] = e−L = exp
[
− 1

2

Nτ

∑
i, j=1

(Di−Dρ

i )C
−1
i j (D j−Dρ

j )
]
, (1.4)

with Ci j denoting the covariance matrix and the prior probability

P[ρ|m] = eαS = exp
[
α

Nω

∑
l=1

(
ρl−ml−ρllog[

ρl

ml
]
)]

. (1.5)

The parameter α introduced in eq.(1.5) is selfconsistently determined and does not enter the final
result [6, 7]. The task to perform is to find the global extremum of eq.(1.3),

δ

δρ
PMEM[ρ|D,m]

∣∣∣∣
ρ=ρMEM

= 0 (1.6)

which is in general very costly, since it involves an Nω dimensional search space. Note that it has
been proven in [8] that the solution of eq.(1.6) is unique if it exists. This statement does neither
depend on a particular parametrization of the test spectral function ρ(ω) nor on the number of
available data-points. Indeed in the extreme case of zero data-points the solution spectrum of the
MEM would be the prior function.

In maximizing PMEM[ρ|D,m] the likelihood and the prior term compete. Pure χ2 fitting is
under-determined, so an infinite number of solutions exist, which all reproduce the measured data
within the errorbars. The prior then selects from within these solutions the one that is closest to
m(ω) while still respecting the constraints from the data. In essence one regularizes the χ2 fitting,
with parts of the spectrum being determined by the data, parts of it being fixed by the prior. Thus
to find out which part of the spectrum is actually encoded in the lattice QCD correlator, we need to
redo the MEM with several distinct prior function to observe which part of ρMEM(ω) is invariant
under a change of m(ω).

To carry out the maximization procedure in eq.(1.6), the state of the art implementation of the
MEM relies on the singular value decomposition prescription introduced by Bryan [5]. (For an
alternative implementation without the use of the SVD see [9]) In the following we will argue that
the global extremum of eq.(1.3) does not in general lie in his Nτ dimensional singular search space
but one needs to systematically approach the full Nω dimensional space.

2. Extended Search Space

Let us quickly revisit Bryan’s argument by inserting eq.(1.4) and eq.(1.5) into eq.(1.6) and
making explicit the positive definiteness of the spectrum by using ρl = mlexp[al], which together
with the SVD of Kt =UΣV t yields

−α~a = Kt
~dL

dDρ
=UΣV t

~dL

dDρ
. (2.1)

Since Σ is a Nω×Nω diagonal matrix with only Nτ entries different from zero, Bryan concluded that
eq.(2.1) restricts the values of ~a to the space spanned by the first Nτ columns of U . We check the
validity of this claim by numerically investigating the behavior of the corresponding basis functions
U i(ωl) =Uil (i = 1, . . . ,Nτ ) of Bryan’s search space.

3



Improved Maximum Entropy Method with an Extended Search Space A. Rothkopf

-0.3
-0.2
-0.1

 0
 0.1
 0.2
 0.3
 0.4
 0.5

-10 -5  0  5  10  15  20

U
i (ω

)

ω

 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000

Figure 1: (left) The first twelve basis functions from the exponential Kernel e−ωτ using Nω = 1500 to
discretize the interval ω ∈ [−10,20], while τ ∈ (0,6.1] is discretized in Nτ = 12 steps. Note that at posi-
tive frequencies above ω = 5 no structure remains, so that reconstruction of peaks becomes very difficult.
(right) The first 50 columns of the matrix U as comparison, where the oscillations are visible over the whole
frequency range.

In Fig.1 we show the basis functions of the Kernel K(ω,τ) = e−ωτ , where we have chosen to
discretize eq.(1.1) over a finite interval ω ∈ [ωmin =−10,ωmax = 20]. The functions U i(ωl) exhibit
a common feature, i.e. they posses an oscillating part, which starts from ωmin and extends up to
a certain ωosz. Beyond this frequency the functions rapidly damp to zero. Hence in the example
shown, with the choice ωmin =−10, the first Nτ = 12 basis function do not allow the reconstruction
of peak structures in the region ω > ωosz ' 0. The conceptual problem of Bryan’s SVD basis lies
in the fact that the choice of ωmin is completely arbitrary. As long as the resolution of the frequency
interval stays the same ∆ω = ωmax−ωmin

Nω
, extending the frequency range to smaller and smaller ωmin

is admissible. Decreasing ωmin does not change the length of the oscillatory part it just shifts
the basis functions to smaller and smaller frequencies. At some point, the MEM in the singular
subspace cannot reproduce the measured datasets, since it does not have any peak structures left at
positive frequencies, while in the full search space the data can be reconstructed without problem.

In other words, no matter how many datapoints have been measured it is always possible to find
a ωmin so that e.g. the positive frequency range cannot be resolved. We conclude that the success
of Bryan’s MEM prescription depends on the arbitrary choice of ωmin. The proof for existence and
uniqueness of the MEM solution on the other hand does not require a certain parametrization of
the spectral function and thus is valid for the full Nω dimensional space. This tells us that the SVD
space artificially restricts the optimization without guaranteeing the presence of the correct global
extremum.

Thus as a first step we propose to systematically enlarge Bryan’s search space [10] to approach
the full RNω , which has to contain the correct solution. To this end we parametrize the spectral
function with Next > Nτ parameters b j

ρl = mlexp
[ Next

∑
j=1

Ul j b j

]
. (2.2)

As a rule of thumb we can stop increasing Next once the value of PMEM[ρ|D,m] stops to grow after
adding another basis vector.

To illustrate how the extension of the search space can improve the MEM reconstruction,
we present a mock data analysis, inspired by the spectra encountered in [11]. A discrete mock
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Figure 2: (left) Reconstruction of the mock spectral function (gray dashed) using Bryan’s prescription on
Nτ = 12 datapoints. Note that even the lowest lying peak is washed out and higher lying structures are not
captured at all. (right) Based on the same data, the MEM in the extended search space Next = 50 succeeds
in reconstructing the lowest lying peak. Wiggling behavior at larger ω is an artifact of the chosen prior and
can be identified as such by variation of m(ω)

spectrum is calculated from an analytic expression containing the sum of four Gaussian peaks as
shown through the gray dashed lines in Fig.2 (One exponentially small peak is present at negative
frequencies ω =−2.6). From it, a set of Nτ = 12 data-points is generated via eq.(1.2), which after
being perturbed by Gaussian noise with σ j = 0.01 jDideal

j , j ∈ [1, · · · ,Nτ ] is fed to the MEM code
as input. For the prior we choose the function m(ω) = 1

ω−ωm
, so that m(ωmin) = 0.01.

On the left of Fig.2 we show that according to Bryan’s SVD basis the spectrum is not well
reproduced. The position and width of even the lowest lying peak is not captured adequately,
structure at higher ω is completely absent. Unsurprisingly the probability of this solution is very
small (Q = log[PMEM[ρ|D,m]]'−104). In contrast, after extending the basis to Next = 50, we are
able to reconstruct from the same Nτ = 12 dataset the lowest lying peak to a much better degree
(Q = −5.5) with both position and width being closer to the mock spectrum. This result is a
direct counterexample to the claim that the global extremum of PMEM[ρ|D,m] will always lie in the
singular subspace.

At higher frequencies a lot of wiggly structures appear on the right of Fig.2, which are an
artifact of the choice of prior function. These can be identified as such by repeating the MEM
reconstruction with different prior functions m(ω) and observing that only the lowest lying peak
remains invariant.

3. Fourier Basis

We have seen that the MEM solution, i.e. the global maximum of the functional PMEM[ρ|D,m]

does not in general lie in the singular subspace obtained from the first Nτ columns of the SVD
matrix U . We use this freedom to propose a completely different basis for the search space, which
cures the central disadvantage of Bryan’s SVD basis functions. Our choice decouples the success
of the reconstruction from the the position of the spectral features relative to ωmin

Based on the real Fourier basis,we can parametrize the spectral function in closed form

ρl = mlexp
[
b1 +

Next/2

∑
j=1

b2 jsin[(ωl−ωmin) j]+
Next/2

∑
j=1

b2 j+1cos[(ωl−ωmin) j]
]
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Figure 3: (left) Nτ = 12 mock data coming from a single delta peak positioned at increasing frequency
ω0. We choose to perturb the data with Gaussian noise, such that a constant relative error ensues. (right)
Reconstructed peak width versus peak position. The SVD basis yields acceptable results while the peak
lies within the region, where oscillations exist in the basis functions. Once in the damping region ω > 5
the resolution of the reconstructed width deteriorates. (Note that here ω ∈ [−5,20] so that the SVD basis
functions oscillate until ωosc ' 5, different from the ones in Fig.1) In contrast, the Fourier basis provides a
position independent resolution, which even slightly improves due to the better absolute errors in the data at
larger ω0.

First note that since we have an analytic formula available in this case, there is no need to perform
the SVD to determine the basis functions. Especially for large numbers of Next > 50 this translates
into a numerically more robust determination of the spectrum, since for the SVD to accurately
reproduce the highly oscillating parts of the basis functions a very large numerical precision is
usually required.

The main feature of this parametrization is that the choice of ωmin becomes irrelevant to the
success of the reconstruction. To illustrate this point we perform several mock data analyses based
on single delta peaks placed at different frequencies ω0. The data obtained from these spectra
(see Fig.3 left) shows a simple exponential falloff and is perturbed by Gaussian noise with a σi =

0.0001Dideal
i before being fed to the MEM as input.

As expected from the finite number of datapoints and the finite error present, the single delta
peak is not fully resolved (i.e. Γ/∆ω > 1), no matter where it is positioned at positive frequencies.
Fig. 3 shows the reconstructed width versus the peak position, which allows us to observe that the
MEM resolution deteriorates in the SVD basis for peaks at the higher frequency positions. If the
peaks lie within the oscillating region of the SVD basis functions their reconstruction only suffers
mildly from the peak position, but once we position the peak in the purely damped regime, the
artificially induced width in the reconstruction increases strongly.

The Fourier basis behaves much more favorably, as it does not show any decrease in resolution
with change in the peak position. Note that the width of the reconstruction even becomes slightly
smaller for peaks at high frequencies, since there the absolute error in the mock data is very small.
Hence we have found a remedy to the central problem connected with Bryan’s basis, i.e. the Fourier
basis allows us to reconstruct peak structures independently from the choice of ωmin.
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4. Summary and concluding remarks

We have shown by an inspection of the basis functions used in Bryan’s approach that in general
the MEM solution does not lie in the Nτ dimensional search space obtained by an SVD of the
transpose kernel. Since the uniqueness of a possible solution in the full Nω dimensional space
was proven on general grounds in [8], we proposed as a first step to systematically enlarge Bryan’s
search space by including more and more columns of the SVD matrix U . The reconstructed spectra,
presented in Fig.2, which were based on mock data inspired by QCD correlators found in [11],
represent an example of where our improvement becomes crucial for the success of the MEM.

In order to improve the MEM further, we introduced the Fourier basis to parametrize the
spectral function based on trigonometric functions. The availability of an analytic expression in
this case renders the SVD superfluous. Hence the numerical results are more stable, as the SVD
requires a large numerical precision to correctly determine the highly oscillating features of its
basis functions. Deploying the Fourier basis to reconstruct single delta peak mock-spectra, we find
that the resolution of the result does not depend on the peak position, in contrast to the SVD basis,
which shows a deteriorating resolution for peaks at increasing frequencies.

The source code of the MEM program used to carry out all of the mock data analyses pre-
sented here can be found on-line at www.scicode.org/ExtMEM together with a short manual and
instructions for compilation.
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