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Abstract

We investigate a model for traffic flow based on the Lighthill–Whitham–Richards model
that consists of a hyperbolic conservation law with a discontinuous, piecewise-linear flux.
A mollifier is used to smooth out the discontinuity in the flux function over a small
distance ε � 1 and then the analytical solution to the corresponding Riemann problem
is derived in the limit as ε → 0. For certain initial data, the Riemann problem can
give rise to zero waves that propagate with infinite speed but have zero strength. We
propose a Godunov-type numerical scheme that avoids the otherwise severely restrictive
CFL constraint that would arise from waves with infinite speed by exchanging informa-
tion between local Riemann problems and thereby incorporating the effects of zero waves
directly into the Riemann solver. Numerical simulations are provided to illustrate the be-
haviour of zero waves and their impact on the solution. The effectiveness of our approach
is demonstrated through a careful convergence study and comparisons to computations
using a third-order WENO scheme.
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1. Introduction1

In the 1950’s, Lighthill and Whitham [30] and Richards [36] independently proposed2

the first macroscopic traffic flow model, now commonly known as the LWR model. Al-3

though this model has proven successful in capturing some aspects of traffic behaviour,4

its limitations are well-documented and many more sophisticated models have been pro-5

posed to capture the complex dynamics and patterns observed in actual vehicular traffic6

[22]. Despite this progress, the LWR model remains an important and widely-used model7

because of its combination of simplicity and explanatory power.8
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The LWR model consists of a single scalar nonlinear conservation law in one dimension9

ρt + f(ρ)x = 0, (1)

where ρ(x, t) is the traffic density (cars/m),

f(ρ) = ρ v(ρ)

is the traffic flow rate or flux (cars/sec), and v(ρ) is the local velocity (m/sec). The most10

commonly used flux function is11

f(ρ) = umax ρ

(
1− ρ

ρmax

)
, (2)

which was obtained by Greenshields [20] in the 1930’s by fitting experimental measure-12

ments of vehicle velocity and traffic density. Here, umax is the maximum free-flow speed,13

while ρmax is the maximum density corresponding to bumper-to-bumper traffic where14

speed drops to zero. The LWR model belongs to a more general class of kinematic wave15

traffic models that couple the conservation law Eq. (1) with a variety of different flux16

functions.17

Extensive studies of the empirical correlation between flow rate and density have18

been performed in the traffic flow literature. This correlation is commonly referred to19

as the fundamental diagram and is represented graphically by a plot of flux f versus20

density ρ such as that shown in Fig. 1. A striking feature of many experimental results21

is the presence of an apparent discontinuity that separates the free flow (low density)22

and congested (high density) states, something that has been discussed by many authors,23

including [7, 14, 15, 23]. In particular, Koshi et al. [24] characterize flux data such as24

that shown in Fig. 1 as having a reverse lambda shape in which the discontinuity appears25

at some peak value of the flux.26

This behavior is also referred to as the two-capacity or dual-mode phenomenon [3, 4]27

and has led to the development of a diverse range of mathematical models. Zhang and28

Kim [41] incorporated the capacity drop into a microscopic car-following model that29

generates fundamental diagrams with the characteristic reverse-lambda shape. Wong30

and Wong [38] performed simulations using a multi-class LWR model from which they31

also observed a discontinuous flux-density relationship. Colombo [8] and Goatin [17]32

developed a macroscopic model that couples an LWR equation for density in the free33

flow state, along with a 2×2 system of conservation laws for density and momentum in34

the congested state; the phase transition between these two states is a free boundary35

that is governed by the Rankine-Hugoniot conditions. Lu et al. [31] incorporated a36

discontinuous (piecewise quadratic) flux directly into an LWR model, and then solved37

the corresponding Riemann problem analytically by constructing the convex hull for a38

regularized continuous flux function that consists of two quadratic pieces joined over a39

narrow region by a linear connecting piece.40

There remains some disagreement in the literature regarding the existence of dis-41

continuities in the traffic flux, with some researchers (e.g., Hall [21]) arguing that the42

apparent gaps are due simply to missing data and can be accounted for by providing43

additional information about traffic behaviour at specific locations. Indeed, Persaud and44

Hall [35] and Wu [39] contend that the discontinuous fundamental diagram should be45

viewed instead as the 2D projection of a higher dimensional smooth surface.46
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We will nonetheless make the assumption in this paper that the fundamental diagram47

is discontinuous. Our aim here is not to argue the validity of this assumption in the48

context of traffic flow, since that point has already been discussed extensively by [31,49

38, 41], among others. Instead our objective is to study the effect that such a flux50

discontinuity has on the analytical solution of a 1D hyperbolic conservation law, as well51

as to develop an accurate and efficient numerical algorithm to simulate such problems.52

A related class of conservation laws, in which the flux f(ρ, x) is a discontinuous func-53

tion of the spatial variable x, has been thoroughly studied in recent years (see [5, 6] and54

the references therein). Considerably less attention has been paid to the situation where55

the flux function has a discontinuity in ρ. Gimse [16] solved the Riemann problem for a56

piecewise linear flux function with a single jump discontinuity in ρ by generalizing the57

method of convex hull construction [28, Ch. 16]. In particular, Gimse identified the exis-58

tence of zero shocks, which are discontinuities in the solution that carry no information59

and have infinite speed of propagation. We note that more recently, Armbruster et al. [1]60

observed zero rarefaction waves with infinite speed of propagation in their study of supply61

chains with finite buffers (although they did not refer to them using this terminology).62

Gimse’s results were improved on by Dias and Figueira [11], who used a mollifier63

function ηε to smooth out discontinuities in the flux function over an interval of width64

0 < ε � 1 before constructing the convex hull using standard techniques. Solutions to65

the mollified problem were proven to converge to solutions of the original problem in the66

limit as ε → 0 [11]. Dias and Figueira’s framework has also been applied to problems67

involving fluid phase transitions [10, 13] and viscoelasticity [12].68

In this paper, we apply Dias and Figueira’s mollification approach to solving a conser-69

vation law with a piecewise linear flux function f(ρ) in which there is a single discontinuity70

at ρ = ρm (see Fig. 1). The model equations and their relevance in the context of traffic71

flow are discussed in Section 2. We introduce a mollified flux function fε(ρ) in Section72

3 and verify its convexity, which then permits us to derive the analytical solution to the73

Riemann problem using the method of convex hull construction.74

In Section 4, we consider the special case where either of the two constant initial75

states in the Riemann problem equals ρm, the density at the discontinuity point. This76

is precisely the case when a rarefaction wave of strength O(ε) and speed O(1/ε) arises,77

which approaches a zero rarefaction in the limit of vanishing ε. There are two issues that78

need to be addressed regarding these zero waves. First, we consider the convergence of the79

mollified solution to that of the original problem, since Dias and Figueira’s convergence80

results [11] do not consider (nor easily extend to) the case when the left or right initial81

states in the Riemann problem are identical to ρm. Secondly, we discuss the physical82

relevance of an infinite speed of propagation in the context of traffic flow.83

The remainder of the paper is focused on constructing a Riemann solver that forms84

the basis for a high resolution finite volume scheme of Godunov type. Because zero waves85

travel at infinite speed, the usual CFL restriction suggests that choosing a stable time step86

might not be possible. Some authors have avoided this difficulty by using an implicit time87

discretization [33], but this approach introduces added expense and complication in the88

numerical algorithm. Another approach employed in [1] is to replace the discontinuous89

flux by a regularized (continuous) function which joins the discontinuous pieces by a linear90

connection over an interval of width ε� 1, after which standard numerical schemes may91

be applied; however, this approach requires a small ε to achieve reasonable accuracy92

resulting in a severe time step restriction.93
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Figure 1: In (a), the discontinuous “reverse lambda” flux function Eq. (4) is overlaid with empirical
data extracted from [21, Fig. 7] (reproduced with permission of Elsevier B.V.), along with the quadratic
Greenshields flux (2). The mollified flux from Eq. (7) is depicted in (b).

We use an alternate approach that eliminates the severe CFL constraint by incorpo-94

rating the effect of zero waves directly into the local Riemann solver. In the process, we95

find it necessary to construct solutions to a subsidiary problem that we refer to as the96

double Riemann problem, which introduces an additional intermediate state correspond-97

ing to the discontinuity value ρ = ρm. A similar approach was used by Gimse [16] who98

constructed a first-order variant of Godunov’s method, although he omitted to perform99

any computations using his proposed method. We improve upon Gimse’s work in three100

ways: first, we solve the double Riemann problem within Dias and Figueira’s mollifica-101

tion framework; second, we implement a high resolution variant of Godunov’s scheme to102

increase the spatial accuracy; and third, we provide extensive numerical computations103

and a careful convergence study to demonstrate the effectiveness of our approach.104

2. Mathematical Model105

We are concerned in this paper with the scalar conservation law106

ρt + f(ρ)x = 0, (3)

having a discontinuous flux function107

f(ρ) =

{
gf (ρ), if 0 6 ρ < ρm,
gc(ρ), if ρm 6 ρ 6 1,

(4)

that is depicted in Fig. 1(a). The vehicle density ρ(x, t) is normalized so that 0 6 ρ 6 1,
and ρm is the point of discontinuity in the flux f(ρ). We restrict the flux to be a piecewise
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linear function in which the free flow branch has

gf (ρ) = ρ,

and the congested flow branch has

gc(ρ) = γ(1− ρ).

Experimental data suggests that gf (ρm) > gc(ρm), and so we impose the constraint108

0 < γ <
ρm

1− ρm
. (5)

We utilize the mollifier approach of Dias and Figueira [11] in order to approximate109

the original equation (3) by110

∂ρε
∂t

+
∂fε(ρε)

∂x
= 0, (6)

where the mollified flux (pictured in Fig. 1(b)) is111

fε(ρε) = ρε + (γ − (γ + 1)ρε)

∫ ρε

ρm−ε
ηε(s− ρm) ds, (7)

with 0 < ε � 1. The mollifier function is given by ηε(s) = 1
ε η(s/ε), where η(s) is a112

canonical mollifier that satisfies the following conditions:113

(i) η > 0;114

(ii) η ∈ C∞(R) and is compactly supported on [−1, 1];115

(iii) η(−s) = η(s) for all s ∈ R; and116

(iv)
∫∞
−∞ η(s) ds = 1.117

The results in Dias and Figueira [11] guarantee that any mollifier satisfying the above118

criteria converges to the same unique solution in the limit ε → 0. We use the following119

mollifier120

η(s) =

{
C exp

(
1

s2−1

)
, if |s| < 1,

0, if |s| > 1,
(8)

where C ≈ 2.2522836 . . . is a constant determined numerically so that condition (iv)121

holds; this choice is made for reasons of analytical convenience since the derivative η′ can122

be written in terms of η.123

Because the mollified flux function is smooth, the conservation law (6) may now124

be solved using standard techniques. We note that in the context of traffic flow, a125

potential problem arises when applying the usual Olĕınik entropy condition [34] as the126

selection principle to enforce uniqueness. Although Olĕınik’s entropy condition does127

yield the physically-correct weak solution in the context of fluid flow applications, it128

does not always do so for kinematic wave models of traffic flow (see LeVeque [27], for129

example). In particular, applying Olĕınik’s entropy condition can lead to a solution that130

is not anisotropic [9], corresponding to the non-physical situation where drivers react to131

vehicles both in front and behind.132
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Zhang [40] suggests two additional criteria on the flux function to guarantee anisotropic
flows in kinematic wave traffic models. First, the characteristic velocity should be smaller
than the vehicle speed v(ρ) = f(ρ)/ρ. That is, we require

f(ρ)

ρ
≥ f ′(ρ), ∀ 0 ≤ ρ ≤ 1.

Secondly, all elementary waves must travel more slowly than the vehicles carrying them,
or

min

(
f(ρl)

ρl
,
f(ρr)

ρr

)
≥ f(ρr)− f(ρl)

ρr − ρl
,

for all 0 ≤ ρl, ρr ≤ 1. As shown in [37], our flux function (4) satisfies both of these133

conditions and therefore it is reasonable to apply the Olĕınik entropy condition as the134

selection criterion for our traffic flow model.135

3. Exact Solution of the Riemann Problem with Mollified Flux136

We next construct and analyze the solution ρε(x, t) of the mollified Riemann problem,
which consists of the conservation law (6) along with flux (7) and piecewise constant
initial conditions

ρε(x, 0) =

{
ρl, if x < 0,
ρr, if x > 0.

This problem can be solved using the method of convex hull construction [28, Ch. 16]
which requires knowledge of the inflection points of the mollified flux fε(ρε). Using
Eq. (8), the first and second derivatives of the flux are

f ′ε(ρε) = 1 + [γ − (γ + 1)ρε] ηε(ρε − ρm)− (γ + 1)

∫ ρε

ρm−ε
ηε(s− ρm) ds, (9)

f ′′ε (ρε) = κ(ρε)

( γ

γ + 1
− ρε

)
(ρm − ρε)− ε2

[(
ρε − ρm

ε

)2

− 1

]2 , (10)

where

κ(ρε) =
2ηε(ρε − ρm)

ε2(γ + 1)[(ρε−ρmε )2 − 1]2
.

Since the mollifier has compact support, we know that there can be no inflection points137

outside the smoothing region of width 2ε; that is, f ′′ε (ρε) ≡ 0 when |ρε − ρm| > ε. Also,138

since κ(ρε) > 0, the convexity of fε is determined solely by the sign of the quantity139

P (ρε) =

(
γ

γ + 1
− ρε

)
(ρm − ρε)− ε2

[(
ρε − ρm

ε

)2

− 1

]2
, (11)

which we analyze next.140

Since Eq. (11) is a quartic polynomial in ρε, analytic expressions are available for the141

roots; however, these are too complicated for our purposes. Instead, we take advantage142

of the scaling properties of the polynomial to simplify P and rewrite Eq. (11) as143

P (y) = − 1

ε2
y4 + 3y2 +My − ε2, (12)
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where y = ρε − ρm ∈ [−ε, ε] and M = ρm − γ/(γ + 1). Clearly |y| = |ρε − ρm| < ε, and144

so it is natural to suppose that y = O(ελ) with λ ≥ 1, after which the various terms in145

Eq. (12) have the scalings indicated below:146

P (y) = − 1

ε2
y4︸ ︷︷ ︸

O(ε4λ−2)

+ 3y2︸︷︷︸
O(ε2λ)

+ My︸︷︷︸
O(ελ)

− ε2︸︷︷︸
O(ε2)

. (13)

Since M is a constant that is independent of ε, we can take M = O(1) as ε → 0.
Guided by the scalings in Eq. (13), the dominant terms in P (y) are the last two terms
having orders O(ελ) and O(ε2). When ε is sufficiently small, we may therefore neglect
the remaining terms and determine the convexity of fε based on the sign of the simpler
linear polynomial

P1(y) = My − ε2,

which has a single root at y = ε2/M corresponding to ρε = ρm + ε2/M . For values of
y close enough to ε2/M , higher order terms in the polynomial P (y) become significant
and could potentially introduce additional roots; however, by continuing this method of
dominant balance, we find that P (y) maintains the single root at higher orders as well,
which we demonstrate numerically using the plots of P summarized in Fig. 2. Based on
this argument and the observation that inequality (5) requires M > 0, we can conclude
that

f ′′ε (ρε) > 0 when ρε ∈ [ρm, 1],

and f ′′ε (ρε) 6 0 when ρε ∈ [0, ρm].

Therefore, the mollified flux function has a single inflection point at ρε = ρm +O(ε2) as147

ε→ 0, where the slope f ′ε(ρm)→ −∞. Since the flux derivative f ′(ρ) corresponds to the148

elementary wave speed in the Riemann problem, this same point ρm is also the source149

of the infinite speed of propagation which will be analyzed in more detail in Section 4.150

Using this information, we can now construct the convex hull of the flux function151

fε(ρε) which is then used to solve the Riemann problem. There are three non-trivial152

cases to consider, depending on the left and right initial states, ρl and ρr. Two of these153

cases (which we call A and B) lead to the emergence of a new constant intermediate154

state with density ρm. This “plateau” is a characteristic feature of solutions to our LWR155

model with discontinuous flux.156

157

Case A: ρr < ρm < ρl.158

Here we construct the smallest convex hull of the set {(ρε, y) : ρr < ρε < ρl and y 6
fε(ρε)}, which as shown in Fig. 3(a) must consist of three pieces. The first piece corre-
sponds to a contact line that follows fε(ρε) on the left up to the point ρ∗ ∈ (ρm − ε, ρm)
for which the shock and characteristic speeds are equal; that is,

s =
fε(ρl)− fε(ρ∗)

ρl − ρ∗
= f ′ε(ρ∗).

The third piece of the convex hull corresponds to a shock that connects the states ρ∗ and159

ρl. The middle piece, in between the contact line and shock, gives rise to a rarefaction160

wave that follows the curved portion of the flux in the neighbourhood of ρm. Based on161
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Figure 2: Plots of the function P (εz) and its roots for different ε when γ = 0.5 and ρm = 0.5.

this convex hull, we can then construct the solution profile shown in Fig. 3(b). Since the162

rarefaction wave consists of density values bounded between ρm−ε and ρm+ε, this wave163

flattens out and degenerates to a constant intermediate state ρm in the limit as ε→ 0.164

To summarize, in the limit as ε → 0 the solution to the Riemann problem when165

ρr < ρm < ρl is166

ρ(x, t) =

 ρl, if x < st,
ρm, if st 6 x 6 t,
ρr, if x > t,

(14)

consisting of a 1-shock moving to the left with speed167

s =
f(ρl)− gf (ρm)

ρl − ρm
< 0, (15)

and a 2-contact moving to the right with speed 1.168

169

Case B: γ/(γ + 1) < ρl < ρm < ρr.170

In contrast with the previous case, we now have ρl < ρr and so the convex hull
{(ρε, y) : ρl < ρε < ρr and y > fε(ρε)} lies above the flux-density curve as shown in
Fig. 4(a). The first piece of the convex hull corresponds to a shock wave connecting the
states ρl and ρ∗ ∈ (ρm − ε, ρm), while the third piece follows the portion of the flux
function in the region [ρ∗, ρr]. As before, the state ρ∗ is chosen so that the shock and
characteristic speeds are equal:

s =
fε(ρ∗)− fε(ρl)

ρ∗ − ρl
= f ′ε(ρ∗).
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0 ρr ρ∗ ρl 1
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f ε
(ρ
ε)

2ε

Contact
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Shock

Convex Hull

(a)
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x/t = f ′ε(ρε)
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1

2ε
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Rarefaction

Contact

Solution Profile

(b)

Figure 3: The convex hull construction for Case A. (a) The thin (blue) line is the mollified flux function
fε(ρε) and the thick (black) line is the convex hull. The shaded oval region highlights the rarefaction
wave. (b) The solution ρε(x/t) is shown as a thick (black) line, along with the corresponding flux
derivative f ′(ρ) as a thin (blue) line. Parameter values are ρl = 0.9, ρr = 0.2, ρm = 0.5, ε = 0.1 and
γ = 0.5.

The resulting solution profile in the limit as ε→ 0 is pictured in Fig. 4(b):171

ρ(x, t) =

 ρl, if x < st,
ρm, if st 6 x 6 −γt,
ρr, if x > −γt,

(16)

which consists of a 1-shock moving to the left with speed172

s =
gc(ρm)− f(ρl)

ρm − ρl
< 0, (17)

and a 2-contact moving to the left with speed −γ.173

174

Case C: ρl < ρm < ρr and γ/(γ + 1) > ρl.175

The solution structure in this case is significantly simpler than the previous two in that176

there is only a single shock connecting the states ρr and ρl, and hence no intermediate177

state. The convex hull is depicted in Fig. 5(a) and the corresponding solution profile in178

Fig. 5(b). As ε→ 0, the solution reduces to179

ρε(x, t) =

{
ρl, if x < st,
ρr, if x > st,

(18)

which corresponds to a shock with speed180

s =
f(ρr)− f(ρl)

ρr − ρl
, (19)
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Figure 4: The convex hull construction for Case B. (a) The thin (blue) line is the mollified flux function
fε(ρε) and the thick (black) line is the convex hull. The shaded oval region highlights the rarefaction
wave. (b) The solution ρε(x/t) is shown as a thick (black) line, along with the corresponding flux
derivative f ′(ρ) as a thin (blue) line. Parameter values are ρl = 0.4, ρr = 0.9, ε = 0.1, γ = 0.5,
ρm = 0.5.

0 ρl ρm ρr 1
ρε

f ε
(ρ
ε)

2ε

Shock

Convex Hull

(a)

s 0 1
x/t = f ′ε(ρε)

0

ρl

ρm

ρr

1

2εShock

Solution Profile

(b)

Figure 5: The convex hull construction for Case C. (a) The thin (blue) line is the mollified flux function
fε(ρε) and the thick (black) line is the convex hull. The shaded oval region highlights the rarefaction
wave. (b) The solution ρε(x/t) is shown as a thick (black) line, along with the corresponding flux
derivative f ′(ρ) as a thin (blue) line. Parameter values are ρl = 0.2, ρr = 0.9, ρm = 0.5, ε = 0.1 and
γ = 0.5.
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Figure 6: Four possible cases for the initial conditions of the double Riemann problem (20).

which can be either positive or negative depending on the sign of the numerator.181

Note that as ρl or ρr approaches the discontinuity ρm, the Riemann solution becomes182

sensitive to the choice of initial data. This sensitivity is not unique to our problem, but is183

also observed in other analytical solutions for problems with discontinuous flux, such as184

in [13, 16, 31]. In the context of traffic flow, this sensitivity occurs in the neighbourhood185

of the transition point between free-flow and congested traffic, the exact location of which186

is expected to be highly sensitive to the state of individual drivers comprising the flow.187

Therefore, the sensitivity in our model is consistent with actual traffic.188

4. Analysis of Zero Waves189

In this section, we consider the two special situations that were not addressed in190

Section 3, namely where either ρl = ρm or ρr = ρm. In both cases, the mollified problem191

gives rise to a wave having speed O(1/ε) and strength O(ε), which we refer to as a zero192

rarefaction wave because of its similarity to the zero shocks identified by Gimse [16].193

Since the speed of these waves becomes infinite as ε→ 0, information can be exchanged194

instantaneously between neighbouring Riemann problems in any Godunov-type method.195

We demonstrate in this section how these effects can be incorporated into the local196

Riemann solver.197

Motivated by the need to consider interactions between Riemann problems arising198

from two pairs of piecewise constant states, we consider a double Riemann problem con-199

sisting of two “usual” Riemann problems: one on the left with (ρl, ρr) = (Cl, ρm), and a200

second on the right with (ρl, ρr) = (ρm, Cr). As a result, the mollified conservation law201

(6) is supplemented with the following piecewise constant initial data pictured in Fig. 6202

ρε(x, 0) =

 Cl, if x < x1,
ρm, if x1 6 x 6 x2,
Cr, if x > x2,

(20)

where we have used the notation Cl and Cr for the left/right states to emphasize the203

fact that we are solving a double Riemann problem.204

Since the solution can contain waves whose speed becomes unbounded, it follows205

that we cannot solve the double Riemann problem with intermediate state ρm by simply206
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splitting the solution into two local Riemann problems and applying standard techniques.207

Instead, the origin and dynamics of zero waves need to be considered when constructing208

the solution. The double Riemann problem with a mollified flux consists of up to three209

separate waves. Two of the waves – which we call the 1- and 2- wave using the standard210

terminology – correspond respectively to the left-most (x1) and right-most (x2) waves211

arising from the initial discontinuities in the double Riemann problem. We will see later212

that the 1-wave is a shock and the 2-wave is a contact line. The third wave corresponds213

to a left-moving rarefaction wave having strength O(ε) and speed O(1/ε) that originates214

from the x2 interface and is located between the other two waves. As ε → 0, the215

rarefaction wave approaches a zero wave that mediates an instantaneous interaction216

between the 1- and 2-waves.217

4.1. Origin of Zero Waves218

Since the local Riemann problem arising at the 2-wave (i.e., the contact line at the x2219

interface) is the source of the zero rarefaction wave, we begin by focusing our attention220

on the right half of the double Riemann problem. The formation of a zero wave at the221

discontinuity in the initial data located at x2 can be divided into two cases, corresponding222

to whether Cr < ρm or Cr > ρm. The specifics of the interaction between the 1-shock223

and the zero wave will be treated separately Section 4.2.224

225

Zero rarefaction with Cr < ρm and Cl = ρm.226

We first consider the mollified Riemann problem with Cl = ρl = ρm and Cr = ρr <227

ρm. The convex hull and solution profile shown in Fig. 7 exhibit a right-moving contact228

line (the 2-wave) having speed s = 1 and a rarefaction wave of strength O(ε) travelling to229

the left with speed O(1/ε). For a simple isolated Riemann problem, the solution would230

reduce to a lone contact line as ε → 0 and the zero rarefaction would have no impact.231

However, when the zero wave is allowed to interact with the solution of another neigh-232

bouring Riemann problem – such as when multiple Riemann problems are solved on a233

sequence of grid cells in a Godunov-type numerical scheme – the local Riemann problems234

cannot be taken in isolation.235

236

Zero rarefaction with Cr > ρm and Cl = ρm.237

Next we consider the mollified Riemann problem with Cl = ρl = ρm and Cr = ρr >238

ρm. The convex hull and solution are depicted in Fig. 8, and the solution again consists239

of a contact line and zero rarefaction wave. The main difference from the previous case240

is that the contact line travels to the left with speed −γ instead of to the right.241

Note that since the location of the inflection point of fε(ρε) approaches ρm as ε→ 0,242

an additional zero shock of strength O(ε2) and speed O(1/ε) is generated. For the sake243

of clarity, we have not included this wave in Fig. 8 since it is of higher order than the244

O(ε) zero rarefaction and so has negligible impact on the solution in the limit as ε→ 0.245

4.2. Interaction Between 1-Shock and Zero Rarefaction Wave246

When solving the double Riemann problem, we need to determine how the zero rar-247

efaction wave produced at x2 interacts with the 1-wave, which we will see shortly must248

be a shock. The details of the interaction can be studied using the method of charac-249

teristics for the four cases shown in Fig. 6. Since the zero wave has speed O(1/ε), we250

12



0 ρr ρl = ρm 1
ρε

f ε
(ρ
ε)

2ε

Contact

Rarefaction

Convex Hull

f ′ε(ρm) −γ 0 1

x/t = f ′ε(ρε)

0

ρr

ρl = ρm

1

2ε
Rarefaction

Contact

Solution Profile

Figure 7: The convex hull (left, shaded) and solution profile (right) for the generation of the zero
rarefaction wave when ρl = ρm and ρr < ρm.
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Figure 8: The convex hull (left, shaded) and solution profile (right) for the generation of the zero
rarefaction wave when ρl = ρm and ρr > ρm.
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must examine the shock-zero rarefaction interaction on two different time scales of length251

O(ε) and O(1). Since λ1 = O(1) as ε → 0 in each case, the problem can be simplified252

significantly by neglecting the shock dynamics on the O(ε) time scale. We will then show253

that the 1-wave approaches a constant speed as ε→ 0 when t = O(1).254

255

Case 1: Cr, Cl < ρm.256

We first consider solutions to the mollified conservation law (6) having initial con-257

ditions (20) that satisfy Cr, Cl < ρm as shown in Fig. 6(a). The solution in this case258

consists of three waves: a shock, a zero rarefaction wave, and a contact line. The initial259

discontinuity at x2 generates a contact line (the 2-wave) that travels at speed λ2 = 1,260

along with a zero rarefaction wave. A 1-shock originates from location x1 and travels261

along the trajectory x = S(t), where S(t) has yet to be determined. Suppose that the262

zero rarefaction wave intersects the 1-wave at time t∗; then the speed of the 1-wave263

satisfies the Rankine-Hugoniot condition264

dS(t)

dt
= λ1(t) =

fε(Cl)− fε(ρm)

Cl − ρm
, for t 6 t∗ ' O(ε). (21)

The time evolution of the solution for t < t∗ is illustrated in Fig. 9(b), and the corre-265

sponding plot of characteristics in the x, t–plane is shown in Fig. 10. The characteristics266

that intersect with the 1-wave for t < t∗ have speed equal to 1 to the left of the 1-wave,267

and speed O(1/ε) to the right.268

At time t∗, the zero rarefaction wave starts to interact with the shock x = S(t) which269

decreases the density ρε to the right of the 1-wave as illustrated in Fig. 9(c). As a result,270

the shock wave attenuates leading to an increase in the shock speed λ1. Since the zero271

wave contains ρε values lying within the interval [ρm − ε, ρm], we can determine the272

portion of the shock–zero wave interaction that occurs on the ε time scale by finding the273

range of ρε for which f ′ε(ρε) = O(1/ε). Equation (9) implies that274

f ′ε(ρε) = O

(
1

ε
η

(
ρε − ρm

ε

))
, (22)

so that we only need to determine the range of ρε where275

η

(
ρε − ρm

ε

)
= O(1). (23)

Using the formula for the mollifier (8), it is easy to verify that (23) holds when276

ρε = ρm + αεε, lim
ε→0

(
α2
ε − 1

)
6= 0 and αε ∈ (−1, 1). (24)

It is only as ρε approaches the boundary of the ε-region and limε→0

(
α2
ε − 1

)
= 0, that277

f ′ε(ρε) = o(1/ε). Therefore, the values of ρε within the zero rarefaction wave that satisfy278

(24) will interact with the 1-shock on the ε time scale.279

Because λ1(t) = O(1), we can ignore the influence of the shock over the ε time scale280

when ε → 0. Therefore, we only need to determine the interaction between the shock281

and the zero rarefaction on the O(1) time scale. By finding the range of ρε within the282

zero wave where f ′ε(ρε) = O(1), we can show that the shock speed λ1 approaches a283
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Figure 9: Time evolution of the double Riemann solution in Case 1 when Cr, Cl < ρm. A similar picture
holds in Case 4 when Cr, Cl > ρm, except that the wave directions are reversed.
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Figure 10: Characteristic lines and elementary waves in the x, t–plane for various cases for the double
Riemann solution. The thick lines (black) represent shocks while thin lines (blue and green) represent
characteristics.
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constant as ε → 0. By using the relationship (22), we know that there exists a φ such284

that f ′ε(ρε) = O(1) for all285

ρε = ρm − ε+ φ(ε), (25)

where φ(ε) = o(ε) and φ(ε) > 0. Next, by bounding the integral∫ ρm−ε+φ(ε)

ρm−ε
ηε(s− ρm) ds 6 [ρm − ε+ φ(ε)− (ρm − ε)]ηε(ρm − ε+ φ(ε)− ρm),

= φ(ε)ηε(−ε+ φ(ε)),

= O(φ(ε)),

we know from Eq. (7) that
fε(ρε) = ρε +O(φ(ε)),

for the range of ρε defined by Eqs. (25). Therefore, as ε → 0, we have that fε(ρε) →286

gf (ρm) and the shock speed λ1 → 1. This results in a solution of the form287

ρ(x, t) =

 Cl, if x < x1 + λ1t,
ρm, if x1 + λ1t 6 x 6 x2 + λ2t,
Cr, if x > x2 + λ2t,

(26)

where λ1 = λ2 = 1. Therefore, at longer times the solution takes the form of a “square288

wave” propagating to the right at constant speed as pictured in Fig. 9(d).289

290

Case 2: Cl < ρm < Cr.291

Next, we consider the double Riemann problem when Cr > ρm and Cl < ρm which292

generates a zero rarefaction wave and contact line at x2, and a shock at x1. Before the293

1-shock and zero rarefaction wave interact at time t∗ = O(ε), the shock speed λ1 satisfies294

the Rankine-Hugoniot condition (21). For t > t∗, the shock and zero rarefaction interact,295

thereby causing the value of ρε to the right of the 1-wave to increase. Using a similar296

argument as in Case 1, we can deduce that when t = O(1),297

λ1 =
gc(ρm)− f(Cl)

ρm − Cl
and λ2 = −γ, (27)

as ε → 0. Note that these wave speeds are consistent with the Riemann problem in298

Eq. (17). The time evolution of the solution is illustrated in Fig. 11.299

There are actually two distinct sub-cases that need to be considered here, correspond-300

ing to whether Cl > γ/(γ + 1) (which we call Case 2a) or Cl < γ/(γ + 1) (Case 2b).301

In Case 2a, the two elementary waves (1–shock and 2–contact) do not interact, while in302

Case 2b we have λ1 > λ2 and so the elementary waves collide to form a single shock that303

has speed given by Eq. (19). This distinction is illustrated in the characteristic plots in304

Fig. 10.305

306

Case 3: Cr < ρm < Cl.307

We next consider the situation when Cr < ρm < Cl, where a zero rarefaction wave308

and contact line are produced at x2 and a shock wave is generated at x1. Before the309

1-shock and zero rarefaction wave interact at time t∗ = O(ε), the shock speed λ1 satisfies310
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Figure 11: Time evolution of the double Riemann solution in Case 2a when Cr > ρm and γ/(γ + 1) 6
Cl < ρm.
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Figure 12: Time evolution of the double Riemann solution in Case 3 when Cr < ρm < Cl.

the Rankine-Hugoniot condition (21) as illustrated in Figs. 12(a) and (b). Once the zero311

wave collides with the shock, the shock speed λ1 increases according to the Rankine-312

Hugoniot condition since the value of ρε to the right of the 1-wave decreases (shown in313

Fig. 12(c)). By ignoring interactions on the O(ε) time scale, we find that314

λ1 =
gf (ρm)− f(Cl)

ρm − Cl
, and λ2 = 1, (28)

for t = O(1) as ε → 0. Notice that the wave speeds λ1 and λ2 are identical to those for315

the Riemann problem considered in Case C from Section 3.316

317

Case 4: Cr, Cl > ρm.318

The final remaining case corresponds to Cr, Cl > ρm and leads to a solution satisfying319
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Eq. (26) with320

λ1 =
gc(ρm)− f(Cl)

ρm − Cl
and λ2 = −γ. (29)

The speed of the 1-shock is determined simply by the Rankine-Hugoniot condition where321

f(ρm) is evaluated on the congested flow branch. This should be compared to the 1-wave322

in Case 3 where the shock speed is determined by Eq. (28) in which f(ρm) is evaluated323

on the free flow branch. No plots of the solution have been provided for Case 4 since324

the structure is essentially the same as in Case 1 except that all waves propagate in the325

opposite direction.326

5. Finite Volume Scheme of Godunov Type327

In this section, we construct a finite volume scheme of Godunov type for our discon-328

tinuous flux problem based on ideas originally developed by Godunov [18] for solving the329

Euler equations of gas dynamics. In Godunov’s method, the spatial domain is divided330

into cells [xj−1/2, xj+1/2] of constant width, ∆x = xj+1/2 − xj−1/2, and the solution is331

assumed to be piecewise constant on each grid cell. Cell-averaged solution values Qnj332

(located at cell centers) are updated using the exact solution from local Riemann prob-333

lems evaluated at interfaces between adjacent cells. In each time step, the following334

three-stage algorithm, referred to as the Reconstruct–Evolve–Average or REA algorithm335

in [28], is used to update the Qnj :336

• Reconstruct a piecewise constant function ρ̃(x, tn) = Qnj for all x ∈ [xj+1/2, xj−1/2]337

from the cell average Qnj at time tn.338

• Evolve the conservation law exactly using initial data ρ̃(x, tn), thereby obtaining339

ρ̃(x, tn+1) at time tn+1 = tn + ∆t.340

• Average the solution ρ̃(x, tn+1) to obtain new cell average values

Qn+1
j =

1

∆x

∫ xj+1/2

xj−1/2

ρ̃(x, tn+1) dx.

For problems with smooth flux, the evolution step can be performed by solving a local341

Riemann problem at each cell interface having left state ρl = Qnj and right state ρr =342

Qnj+1. As long as the time step is chosen small enough, the elementary waves produced343

at each interface do not interact (remembering that waves travel at finite speed in the344

smooth case) and hence the evolution step yields an appropriate approximation of the345

solution. However, as we have already shown, when the flux is discontinuous the presence346

of zero waves travelling at infinite speed gives rise to long-range interactions between347

local Riemann problems. Consequently, we make use of solutions to the double Riemann348

solution derived in the previous section that incorporate the effects of zero waves. We349

note that the resulting algorithm has some similarities to the method of Gimse [16].350

We next provide details of our implementation using LeVeque’s high resolution wave351

propagation formulation [28], in which the Riemann solver returns a set of wave strengths352

Wp
j+1/2 and speeds spj+1/2 generated at each interface between states Qj and Qj+1 (in353
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what follows, we will omit the superscript n when it is clear that time index n is assumed).354

The evolution step of the algorithm above can then be written as355

Qn+1
j = Qnj −

∆t

∆x

[∑
p

(
spj−1/2

)+
Wp
j−1/2 +

∑
p

(
spj+1/2

)−
Wp
j+1/2

]
, (30)

where (s)+ = max(s, 0) and (s)− = min(s, 0). When the flux is smooth, the wave356

speed sj+1/2 depends only on the states Qj and Qj+1, whereas for a discontinuous flux357

function this is no longer the case. When Qj , Qj+1 6= ρm, the Riemann solver yields the358

“standard” elementary waves whose strength and speed are given in Section 3. Because359

our flux is strictly non-convex, we also observe compound waves which are described360

within Cases 1 and 2 in Section 3.361

Our Riemann problem solution diverges from the standard one when either Qj = ρm362

or Qj+1 = ρm, in which case we construct the solution to a local double Riemann363

problem that requires the appropriate 1- or 2-wave given in Section 4. Note that the364

double Riemann solution should be viewed as two separate local Riemann problems that365

each produce one elementary wave: the left Riemann problem corresponds to the 1-wave366

and the right Riemann problem corresponds to the 2-wave.367

For example, if Qj = ρm, then we construct the double Riemann problem with368

Qj = ρm and Qj+1 = Cr, thereby obtaining the strength and wave speed corresponding369

to the 2-wave in Section 4. Combining together all four cases in Section 4.2, the speed370

can be written as371

s1j+1/2 =

{
1 , Qj+1 < ρm
−γ , Qj+1 > ρm

, (31)

which we note is independent of Cl.372

Alternatively, if Qj+1 = ρm then we construct the double Riemann problem with373

Qj = Cl, Qj+1 = ρm and unknown QI = Cr, thereby obtaining the strength and wave374

speed for the 1-wave in Section 4. In contrast with the case Qj = ρm just considered,375

the 1-wave’s speed depends on values of Cl, ρm, and Cr. Therefore, when determining376

the speed of the wave at the interface between Qj = Cl and Qj+1 = ρm, we must look377

ahead to find the value QI = Cr corresponding to the first value of Qj not equal to ρm;378

that is,379

I = min { k | j + 1 < k 6 N and Qk 6= ρm} . (32)

In summary, when Qnj+1 = ρm, the wave speed reduces to380

s1j+1/2 =


gf (ρm)− f(Qj)

ρm −Qj
, QI < ρm

gc(ρm)− f(Qj)

ρm −Qj
, QI > ρm

(33)

which is visualized in Fig. 13.381

Note that we have not yet discussed the two simple cases when Qj , Qj+1 < ρm and382

Qj , Qj+1 > ρm, both of which reduce to the linear advection equation and can be trivially383

solved. A summary of wave strengths and speeds for all cases is presented in Table 1.384

A slight modification to the local Riemann solver is required to deal with the fact385

that algebraic operations are actually performed in floating-point arithmetic. It is highly386
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Figure 13: The four possible cases that can arise when calculating the shock speed in Eq. (33).

Table 1: Wave speed and strength for the 1- and 2-waves in all possible cases.

Case s1j+1/2 W1
j+1/2 s2j+1/2 W2

j+1/2

Qj = Qj+1 = ρm 0 0 0 0

Qj = ρm and Qj 6= Qj+1 Eq. (31) Qj+1 −Qj 0 0

Qj+1 = ρm and Qj 6= Qj+1 Eq. (33) Qj+1 −Qj 0 0

ρm < Qj and ρm < Qj+1 −γ Qj+1 −Qj 0 0

ρm > Qj and ρm > Qj+1 1 Qj+1 −Qj 0 0

Qj < ρm < Qj+1 and
γ

γ + 1
> Qj

f(Qj+1)− f(Qj)
Qj+1 −Qj

Qj+1 −Qj 0 0

γ

γ + 1
< Qj < ρm < Qj+1 −γ Qj+1 − ρm gc(ρm)− f(Qj)

ρm −Qj
ρm −Qj

Qj+1 < ρm < Qj
f(Qj)− gf (ρm)

Qj − ρm
ρm −Qj 1 Qj+1 − ρm
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unlikely that the numerical value of Qj ever exactly equals ρm, and yet we find that it is387

necessary to employ the solution of the double Riemann problem when Qj is close to ρm.388

Therefore, we need to relax the requirement slightly for the zero-wave cases by replacing389

the condition Qj = ρm with390

|Qj − ρm| 6 δ, (34)

where δ is a small parameter that is typically assigned values on the order of 10−5. The391

choice of δ is a balance between accuracy and efficiency in that taking a larger δ value392

gives rise to significant deviations in the height of the ρm plateau regions, and hence also393

errors in mass conservation. Taking δ values much smaller than 10−5 does not improve the394

solution significantly but does require a smaller time step for stability. This modification395

influences the accuracy of the simulations and also creates an artificial upper bound on396

the maximum wave speed, not including zero waves. For example, consider the shock397

solution in Eq. (17), where as ρl approaches ρm the shock speed becomes unbounded.398

By enforcing (34), the parameter δ determines how close ρl can be to ρm before the399

algorithm switches to the double Riemann solution.400

The time step ∆t is chosen adaptively to enforce stability of our explicit update
scheme, using a restriction based on the wave speeds from all local Riemann problems.
In particular, we take

∆t = CFL ·min
j,p

(
∆x

|spj+1/2|

)
,

where 0 < CFL < 1 is a constant chosen to be around 0.9 in practice. As long as the401

parameter δ is not taken too small, this condition is sufficient to guarantee stability.402

Because the effects of the zero waves have been incorporated directly into the Riemann403

problem, they have no direct influence on the stability restriction.404

The Riemann solver described above forms the basis for the first-order Godunov405

scheme. We have also implemented a high resolution variant using wave limiters which406

limit the waves Wp
j+1/2 in a manner similar to the limiting of fluxes in flux-based finite407

volume schemes. The details of this modification are described in [28].408

6. Numerical Results409

We now apply the method described in the previous section to a number of test410

problems. For the high resolution scheme, we employ the superbee limiter function. In411

all cases, we use the discontinuous, piecewise linear flux function (3)–(4) with parameters412

ρm = 0.5 and γ = 0.5 that is pictured in Fig. 14.413

6.1. Riemann Initial Data414

As a first illustration of our numerical method, we use three sets of Riemann initial415

data:416

A. ρl = 0.9 and ρr = 0.2,417

B. ρl = 0.4 and ρr = 0.9,418

C. ρl = 0.3 and ρr = 0.98,419
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Figure 14: Plots of the discontinuous flux function used in our high resolution simulations (with ρm = 0.5,
γ = 0.5), the regularized flux for WENO calculations in Section 6.2, and the continuous flux used in
Section 6.3.

for which the exact solution can be determined using the methods in Sections 3 and420

4. These initial data labeled A, B and C correspond to the three “Cases” with the421

same labels in Section 3 and pictured in Figs. 3, 4 and 5 respectively. We note that the422

numerical values for the left and right states in Case C differ slightly from the initial423

data used in Fig. 5 in order to generate larger wave speeds.424

In Fig. 15 (left), we compare the results from the first order Godunov method and425

the high resolution scheme with wave limiters. In each case, we perform a convergence426

study of error in the discrete L1 norm for grid resolutions ranging from ∆x = 0.05 to427

0.0025. Convergence rates estimated using a linear least squares fit are summarized in428

Table 2. As expected, the numerical scheme converges to the exact solution for all three429

test problems. Godunov’s method captures the correct speed for both the shock and430

contact discontinuities, although there is a more noticeable smearing of the contact line431

which is typical for this type of problem. The L1 convergence rates are consistent with432

the order
√

∆x spatial error estimate established analytically for discontinuous solutions433

of hyperbolic conservation laws having a smooth flux [26, 32]. The convergence rates434

in the L2 norm are also provided for comparison purposes and are significantly smaller435

than the corresponding L1 rates, as expected.436

6.2. Smooth Initial Data, With WENO Comparison437

For the next series of simulations, we use the smooth initial data438

ρ(x, 0) = exp

(
− x2

2σ2

)
, (35)
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Figure 15: Left: Computed solutions for the Riemann initial data at t = 0.2 where δ = 10−7, ∆x = 0.01,
CFL = 0.95, ρm = 0.5, and γ = 0.5. Right: Convergence study in the L1 norm.
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Table 2: Convergence rates for the three Riemann problems pictured in Fig. 15.

Godunov High Resolution

ρl ρr L1 L2 L1 L2

0.9 0.2 0.643 0.367 1.022 0.569

0.4 0.9 0.488 0.232 0.832 0.375

0.3 0.98 0.754 0.373 1.053 0.627

0.1 0.4 0.487 0.145 0.700 0.238

where σ = 0.1 and the domain is the interval [−1, 1] with periodic boundary conditions.439

This corresponds in the traffic flow context to a single platoon of cars travelling on a ring440

road, where the initial density peak has a maximum value of 1 and decreases smoothly441

to zero on either side. Fig. 16 depicts the time evolution of the solution computed using442

our high resolution Godunov scheme. Initially, the platoon begins to spread out and a443

horizontal plateau appears on the right side at a value of ρ = ρm. This plateau value444

corresponds to the “optimal” traffic density that is the maximum value of ρ for which cars445

can still propagate at the free-flow speed. The plateau lengthens as a shock propagates446

to the left into the upper half of the density profile, reducing the width of the peak.447

At the same time, the cars in the dense region spread out to the right as the plateau448

also extends in the same direction, while the left edge of the platoon remains essentially449

stationary until the dense peak is entirely gone. When the peak finally disappears (near450

time t = 0.18), the remaining platoon of cars propagates to the right with constant speed451

and unchanged shape. Note that the traffic density evolves such that the area under the452

solution curve remains approximately constant, since the total number of cars must be453

conserved.454

For comparison purposes, we have also performed simulations using the WENO455

scheme in CentPack [2], which employs a third-order CWENO reconstruction in space456

[25, 29] and a third-order SSP Runge-Kutta time integrator [19]. Because this algo-457

rithm requires the flux function to be continuous (although not smooth), we have used458

a regularized version of the flux that is piecewise linear and continuous, replacing the459

discontinuity by a steep line segment connecting the two linear pieces over a narrow460

interval of width 2εw (instead of using the function fε in (7) because that would require461

an integral to be evaluated for every flux function evaluation). The regularized flux is462

shown in Fig. 14.463

From Fig. 16, we observe that the WENO simulation requires a substantially smaller464

time step and grid spacing in order to obtain results that are comparable to our method.465

In particular, the WENO scheme requires a time step of ∆t = O(10−6) and a spatial466

resolution of ∆x = O(10−4) when εw = 10−3; this can be compared with our high467

resolution Godunov scheme for which we used a time step of ∆t = O(10−4) when ∆x =468

O(10−3) and δ = 10−5. This performance difference is magnified further as εw decreases469

due to the ill-conditioning of the regularized-flux problem.470

In Fig. 17, we magnify the region containing the density peak at time t = 0.1 to more471
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Figure 16: Time evolution of the solution with smooth initial conditions using a high resolution scheme
(δ = 10−5, ∆x = 0.005, CFL = 0.9) and a third-order WENO scheme [2] (∆x = 0.0004, εw = 10−3,
CFL = 0.9) where ρm = 0.5 and γ = 0.5.

easily visualize the difference between the two sets of results for different values of εw472

and δ. From these plots we observe that the two solutions approach one another as both473

εw and δ are reduced, which provides further evidence that our high resolution Godunov474

scheme computes the correct solution. Note that the WENO scheme does yield a slightly475

sharper resolution of the shock than our method, but on the other hand it significantly476

underestimates the height of the plateau region when εw is too large.477

Next, we estimate the error in our high resolution Godunov scheme by comparing478

the computed solutions on a sequence of successively finer grids with ∆xp = ∆x0/3
p for479

p = 0, 1, . . . , P , with P = 6 levels of refinement. The finest grid solution with ∆x = ∆xP480

is treated as the “exact” solution for the purposes of this convergence study. The errors481

at t = 0.05 shown in Fig. 18(a) exhibit convergence rates of approximately 1.125 in the L1482

norm and 0.632 in the L2 norm which are consistent with the results from Section 6.1. We483

note that even though the initial data are smooth, our high resolution Godunov scheme484

does not obtain second order accuracy because of the shock that appears immediately485

on the right side of the plateau.486

Because convergence rates provide only a rough measure of solution error, we can
gain additional insight into the accuracy of the method by measuring conservation error,
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Figure 17: (a) WENO simulation for different εw for problem pictured in Fig. 16 where ∆x = 0.0004
and ∆t = O(10−6)). (b) High resolution simulation for different δ for problem pictured in Fig. 16 where
∆x = 0.005 and ∆t = O(10−4)).
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Figure 18: (a) Convergence study for the problem with smooth initial data at t = 0.05 using ∆x0 = 0.2
and P = 6 levels of refinement (refer to Fig. 16). (b) Percentage of the initial vehicles lost during the
simulation using different δ values.

28



which is expressed in terms of the variation V in the total number of vehicles via

Er =
V n − V 0

V 0
where V n = ∆x

N∑
j=1

Qnj .

Since we are using periodic boundary conditions and have no external sources or sinks,487

V n should remain approximately constant for all n. Indeed, Fig. 18(b) shows that the488

numerical scheme accumulates only a small conservation error over time, and that the489

rate of vehicles lost can be controlled by reducing δ.490

6.3. Smooth Initial Data, With Continuous Flux Comparison491

In this final set of simulations, we compare solutions of the conservation law (3) with492

the discontinuous piecewise linear flux (4) and the continuous piecewise linear flux493

fc(ρ) =

{
ρ, if 0 6 ρ < ρm,
ρm

1− ρm
(1− ρ), if ρm 6 ρ 6 1. (36)

Both fluxes are illustrated in Fig. 14.494

We begin by emphasizing that these two seemingly very different flux functions can495

still give rise to similar solutions to the Riemann problem with suitably chosen piece-496

wise constant initial data. For Cases A and C from Section 3, the convex hulls and497

the corresponding solutions are identical for the two fluxes. However, the convex hulls498

are different in Case B, where the discontinuous flux gives rise to the compound wave499

illustrated in Fig. 4 while the continuous flux generates a single shock (analogous to the500

solution in Fig. 5). Furthermore, the continuous flux (36) does not give rise to any zero501

waves; instead, when either ρl = ρm or ρr = ρm, a single contact line is produced that502

satisfies the Rankine-Hugoniot condition.503

A clear illustration of the difference between these two fluxes is provided by comparing504

simulations on the periodic domain x ∈ [−1, 1] for smooth initial data505

ρ(x, 0) =
1

2
exp

(
− x2

2σ2

)
+

2

5
, (37)

where σ = 0.1. This corresponds to the situation where there is a Gaussian-shaped506

congestion in the middle of free-flow traffic on a ring road.507

Fig. 19 depicts the time evolution of the solution computed using a high resolution508

Godunov scheme for the continuous and discontinuous fluxes. Note that the numeri-509

cal solution for the discontinuous flux requires application of the look-ahead procedure510

discussed in Section 5 while the continuous flux requires only the calculation of interac-511

tions between adjacent cells. Initially, the congested region begins to spread out and a512

horizontal plateau appears on the right side at a value of ρ = ρm. On the left edge of513

this plateau, a shock appears for the discontinuous flux in comparison with a gradual514

continuous variation in density for the continuous flux.515

The solutions are more drastically different when comparing the dynamics on the left516

edge of the congested region. For the discontinuous flux, a compound wave forms to the517

left of the peak, resulting in the formation of a second horizontal plateau at the maximum518

congested flow speed ρ = ρm. Therefore, drivers on the far left will enter into a optimal519
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Figure 19: Time evolution of the solution with smooth initial conditions using a high resolution scheme
(δ = 10−5, ∆x = 0.005, CFL = 0.9) for both the smooth and discontinuous flux.

congested flow before being hit by the left-moving congestion wave. The continuous flux,520

on the other hand, produces only a single left-moving congestion wave.521

We conclude therefore that if the fundamental diagram is discontinuous, we expect to522

observe compound congestion waves. The leading congestion wave acts to push vehicles523

into some form of optimal congested flow, possibly a synchronized traffic state. This wave524

is followed up by a slower congestion wave. Note that we only expect these compound525

congestion waves when the upstream free flow traffic has sufficiently high density. For526

example, in Fig. 16, we observed only a single congestion shock because the traffic density527

to the left is too small to sustain this compound congestion wave.528

7. Conclusions529

In this paper, we derived analytical solutions to the Riemann problem for a hyperbolic530

conservation law with a piecewise linear flux function having a discontinuity at the point531

ρ = ρm. In the case when the left and right states in the Riemann initial data lie on532

either side of the discontinuity, the solution consists of a compound wave made up of a533

shock and contact line connected by a constant intermediate state at ρm. In the special534

case when either the left or right state equals ρm, the Riemann problem gives rise to a535
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zero rarefaction wave that propagates with infinite speed. Even though the strength of536

this wave is zero, it nonetheless has a significant impact on the solution structure as it537

interacts with other elementary waves.538

Our analytical results were validated using a high resolution Godunov-type scheme,539

based on our exact Riemann solver and implemented using the wave propagation for-540

malism of LeVeque [28]. This approach builds the effect of zero waves directly into the541

algorithm in a way that avoids the overly stringent CFL time step constraint that might542

otherwise derive from the infinite speed of propagation of zero waves. We demonstrate543

the accuracy and efficiency of our method using several test problems, and include com-544

parisons with higher-order WENO simulations.545

We conclude with a brief discussion of several possible avenues for future research.546

First, a detailed convergence analysis of the algorithm would help to identify non-smooth547

error components that arise from the discontinuity in the flux, as well as the look-ahead548

procedure required to determine shock speeds in the case when ρm = ρl or ρr. Sec-549

ond, we would like to consider other nonlinear forms of the piecewise discontinuous flux550

function since the linearity assumption in this paper simplifies our analytical solutions551

considerably in that elementary waves arising from local Riemann problems consist of552

shocks and contact lines only. For example, it would be interesting to perform a detailed553

comparison with the results of Lu et al. [31] who considered a discontinuous, piecewise554

quadratic flux. Thirdly, we mention some preliminary computations of traffic flow using555

a cellular automaton model [37] that give rise to an apparent discontinuity in the funda-556

mental diagram. This connection between cellular automaton models (that only specify557

rules governing individual driver behaviour) and kinematic wave models (in which the558

two-capacity effect is incorporated explicitly via the flux function) merits further study.559

Finally, the situation where the flux is a discontinuous function of the spatial variable560

has been analyzed much more extensively (see the journal issue introduced by the article561

[6], and references therein). We would like to draw deeper connections between this work562

and the problem where the discontinuity appears in the density.563
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