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Abstract

Due to scaling effects, when dealing with vector-valued random fields,
the classical Karhunen-Loève expansion, which is optimal with respect to
the total mean square error, tends to favorize the components of the random
field that have the highest signal energy. When these random fields are to be
used in mechanical systems, this phenomenon can introduce undesired biases
for the results. This paper presents therefore an adaptation of the Karhunen-
Loève expansion that allows us to control these biases and to minimize them.
This original decomposition is first analyzed from a theoretical point of view,
and is then illustrated on a numerical example.
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1. Introduction

For the last decades, the use of simulation has spread to every scientific
and engineering fields, which has made possible the analysis of always more
complex and refined physical models. While engineers were used to treating
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static and unidimensional deterministic problems, they are currently more
and more asked to solve three-dimensional dynamical stochastic problems.
Nevertheless, in spite of the increasing computational power, the demand for
computational ressources keeps exceeding strongly the actual supply. In this
context, the use of innovative methodologies, such as reduction methods, still
have a big role to play to sidestep direct approaches, in order to accurately
estimate quantities of interest of complex systems.

The Karhunen-Loève (KL) expansion has therefore been used in many sci-
entific fields to efficiently reduce the statistical complexity of random fields
indexed over closed and bounded intervals, with continuous covariance func-
tions (see, for instance [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]).
This expansion can then be coupled to a polynomial chaos expansion to com-
pletely characterize the distribution of random fields [19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29]. Mathematically, the KL expansion corresponds to the
orthogonal projection theorem in separable Hilbert spaces, for which the
Hilbertian basis is constructed as the eigenfunctions of the covariance oper-
ator of the random field of interest. The importance of this expansion stems
from its optimality in the sense that, due to the orthogonal projection the-
orem in Hilbert spaces, it minimizes the total mean-squared error. In other
words, for any integer M and random fields X, it can be extraced from the
KL basis associated with X the M-dimension family that minimizes the to-
tal mean-squared error among all the M-dimension families that have been
extracted from a countable Hilbertian basis.

When considering vector-valued random fields, this error can be written
as a sum of weighted local errors, where the local errors and the weights
are respectively the normalized mean-squared errors and the signal ener-
gies associated with each component of X. Therefore, minimizing the total
mean-squared error amounts to minimizing in priority the local errors cor-
responding to the components of X that have the highest signal energies.
If the KL projection of the random field X is then used to propagate vari-
ability in mechanical systems, it has therefore to be kept in mind that the
particular components of lowest signal energy will not necessary be realistic
nor well characterized. If the quantities of interest of the studied system are
however very dependent on a precise description of these components, such
an optimal KL family may not be relevant and give biased results.

In this prospect, in addition to the classical mean-squared error, two
local-global projection errors are introduced in this work:
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• ε2β corresponds to another weighted sum of local errors, for which
weights are a priori or a posteriori chosen from sensitivity analysis;

• ε2∞ refers to the maximal value of the local errors associated with each
component of random field X.

Indeed, these errors illustrate two classical expectations. On the first
hand, error ε2β leads to projection families which are particularly adapted to
the components of X of highest chosen weight. If the importance of each
component of X for a given quantity of interest can be evaluated from a
sensibility analysis, these weights can thus be chosen in order to maximize the
relevance of the projection basis to analyze this chosen quantity of interest.
One the other hand, if no information is available about the importance of
each component of X , making these weights be equal corresponds to the
case where no component of X is favorized in the error to be minimized. In
such a case, there is however no reason for the minimization of this equally
weighted error to lead to a projection family for which each local error would
be the same. This motivates thus the introduction of error ε2∞, which forces
us to search projection families, for which the description precision would be
close for each component.

Based on an original scaled Karhunen-Loève expansion of X, the idea of
this work is therefore to propose a method to identify the optimal families
that respectively minimize errors ε2β and ε2∞.

In Section 2, the scaled Karhunen-Loève expansion is described. In par-
ticular, it will be shown how such a formalism allows the identification of
the two former optimal basis to be constructed. Section 3 illustrates the
possibilities of such an expansion on a practical application.

2. Scaled Karhunen-Loève expansion and optimal basis for vector-

valued random fields

In this section, the definition of the two local-global errors ε2β and ε2∞ is
first presented. The proposed scaled KL expansion for vector-valued random
fields is then introduced. It is finally shown in what extent such a decompo-
sition can lead to the minimization of these two errors.
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2.1. Local-global errors and optimal basis

2.1.1. Theoretical frame

Let (Θ, C, P ) be a probability space. Let H = L2(Θ,RQ) be the space of
all the second-order random vectors defined on (Θ, C, P ) with values in R

Q,
equipped with the inner product 〈·, ·〉, such that for all U and V in H,

〈U ,V 〉 =
∫

Θ

U(θ)TV (θ)dP (θ) = E
[
UTV

]
, (1)

where E [·] is the mathematical expectation. Let P(Ω) be the space of all
the second-order R

Q-valued random fields, indexed by the compact interval
Ω = [0, S], where S < +∞. Let H = L2(Ω,RQ) be the space of square
integrable functions on Ω, with values in R

Q, equipped with the inner product
(·, ·), such that for all u and v in H,

(u, v) =

∫

Ω

u(s)Tv(s)ds. (2)

Let X = {X(s), s ∈ Ω} be an element of P(Ω). Without loss of gener-
ality, it is supposed that the mean value of X is equal to zero:

E [X(s)] = 0, ∀ s ∈ Ω. (3)

The signal energy of X , which corresponds to its L2 norm, ‖X‖2, can
thus be written:

‖X‖2
def
=

√
E [(X,X)]. (4)

In the following, F (M) =
{
f i, 1 ≤ i ≤ M

}
refers to a set of M determin-

istic functions that has been extracted from any countable Hilbertian basis
of H = L2(Ω,RQ). The projection of random field X on F (M) is then writ-

ten X̂
(M)

. The total normalized mean-squared errors associated with F (M)

is denoted as ε2(F (M)) and can thus be written as a sum of weighted local

normalized mean-squared errors,

ε2q(F (M)) =

∥∥∥Xq − X̂
(M)
q

∥∥∥
2

2

‖Xq‖22
, 1 ≤ q ≤ Q, (5)

associated with each component Xq of random field X:
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ε2(F (M)) =

Q∑

q=1

{
‖Xq‖22
‖X‖22

}
ε2q(F (M)). (6)

2.1.2. Optimality of the KL expansion

The matrix-valued covariance function, [RXX ], of centered random field
X is introduced as:

[RXX(s, s
′)] = E [X(s)⊗X(s′)] , ∀ (s, s′) ∈ Ω2. (7)

It is assumed that [RXX ] is square integrable on Ω× Ω, that is to say

‖[RXX ]‖2M
def
=

∫

Ω

∫

Ω

‖[RXX(s, s
′)]‖2F dsds′ < +∞, (8)

with ‖·‖F the Frobenius norm of matrices. The KL basis, K =
{
ki, 1 ≤ i

}
,

associated with X, can be constructed as a countable Hilbertian basis of
H, which is constituted of the eigenfunctions of covariance matrix-valued
function [RXX ], such that:

∫

Ω

[RXX(s, s′)]ki(s′)ds′ = λik
i(s), s ∈ Ω, 1 ≤ i, (9)

(
ki,kj

)
= δij , λ1 ≥ λ2 ≥ · · · → 0,

∑

i≥1

λ2
i < +∞, (10)

where δij is the Kronecker symbol, equal to 1 if i = j and to 0 otherwise
(Issues concerning the solving of the integral eigenvalue problem, defined by
Eq. (9), which is usually called Fredholm problem, can be found in [30, 31,
32]). Due to the orthogonal projection theorem in Hilbert space, it can thus
be shown that for all M ≥ 1, projection family K(M) =

{
ki, 1 ≤ i ≤ M

}
is

optimal in the sense that, for all family F (M):

ε2(K(M)) ≤ ε2(F (M)). (11)

Let X̃(M) be the projection of X on K(M). Family K(M) being orthonor-
mal, it comes:

X̃(M) =

M∑

i=1

√
λik

iξi, (12)
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where ξ = (ξ1, · · · , ξM) is a centered random vector, for which components
are uncorrelated and with variance equal to 1. In particular, if X is a Gaus-
sian random field, the components of ξ are normally distributed and statis-
tically independent.

2.1.3. Local-global errors

From Eq. (6), minimizing ε2 amounts therefore to minimizing in pri-
ority the local errors corresponding to the components of X that have the

highest weights
‖Xq‖22
‖X‖22

. In other words, for given values of p, q and M , if

‖Xp‖2 ≫ ‖Xq‖2, the minimization of ε2 can lead to the identification of a
M-dimension truncated Karhunen-Loève family associated with X, K(M),
such that ε2p(K(M)) ≪ ε2q(K(M)). Consequently, if Xp and Xq are indepen-
dent, a two steps approach, based on the definition of two different families
(one for Xp and the components of X that depend on Xp, one for the other
components of X that do not depend on Xp) would be more relevant. On
the contrary, if Xp and Xq are indeed dependent, more elements have to be
added in K(M) to make ε2q decrease, or another choice for the error function
to be minimized has to be considered.

In this prospect, two local-global projection errors are introduced in this
work, ε2β and ε2∞, such that for any β in ]0,+∞[Q:

ε2β =

Q∑

q=1

β2
qε

2
q, (13)

ε2∞ = max
1≤q≤Q

{
ε2q
}
. (14)

As presented in Section 1, if the reduction of the statistical complexity
of random field X is carried out as a first step in a propagation of variabil-
ity in mechanical systems, minimizing these two errors instead of error ε2

should allow us to improve the relevance of the projection basis, whether the
importance of each component of X for a given quantity of interest can be
evaluated from a sensibility analysis or not.

2.2. Scaled KL expansion

Let O be an element of S(Q)(1) =
{
O ∈ ]0, 1[Q,

∑Q
q=1O

2
q = 1

}
. This

allows us to define the scaled random field, Y (O), such that:
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Y (O) = [Diag(O)]X, (15)

[Diag(O)] =




O1 0 · · · 0

0 O2
. . .

...
...

. . .
. . . 0

0 · · · 0 OQ


 . (16)

The autocorrelation function, [RY Y (O)], of Y (O) is thus equal to:

[RY Y (O)] = [Diag(O)] [RXX ] [Diag(O)] . (17)

The family K(M)(O) =
{
ki(O), 1 ≤ i

}
is thus denoted as the Karhunen-

Loève family associated with random field Y (O), such that:

Y (O) =

+∞∑

i=1

ki(O)
√
λi(O)ξi(O), (18)

λi(O) =
〈(
Y (O),ki(O)

)
,
(
Y (O),ki(O)

)〉
, ξi(O) =

(
Y (O),ki(O)

)
√

λi(O)
.

(19)
where it is reminded that, by construction, familly K(M)(O) is orthonormal
in H, and projection coefficients {ξi(O), i ≥ 1} are uncorrelated:

(
ki(O),kj(O)

)
= E [ξi(O)ξj(O)] = δij , 1 ≤ i, j. (20)

Since Oq 6= 0 for all 1 ≤ q ≤ Q, matrix [Diag(O)] is invertible. Therefore,
the projection of random field X on family K(M)(O), that is denoted as

X̂
(M)

(O), is given by:

X̂
(M)

(O) =

M∑

i=1

[Diag(O)]−1
ki(O)

√
λi(O)ξi(O), 1 ≤ M (21)

The elements of K(M)(O) are once again ordered such that the variance
of the projection random variables are sorted in a decreasing order:

λ1(O) ≥ λ2(O) ≥ · · · → 0. (22)
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According to Eqs. (5) and (6), for all 1 ≤ M , we finally have:

ε2q(K(M)(O)) = 1−
O−2

q

‖Xq‖22

M∑

i=1

λi(O)

∫

Ω

{
ki
q(O, s)

}2
ds, 1 ≤ q ≤ Q, (23)

ε2(K(M)(O)) = 1− 1

‖X‖22

Q∑

q=1

O−2
q

M∑

i=1

λi(O)

∫

Ω

{
ki
q(O, s)

}2
ds. (24)

It can be verified that if O = 1√
Q
(1, · · · , 1), the scaled KL expansion

coincides with the classical and direct KL expansion associated with X ,
defined in Section 2.1.2.

2.3. Properties of the scaled KL expansion

This section aims at emphasizing the main properties of the scaled KL
expansion, on which the minimization of local-global errors ε2β and ε2∞ will

be based. First, the continuity of the applications O 7→ ε2β(K(M)(O)) and

O 7→ ε2∞(K(M)(O)) on S(Q)(1) will be shown. Then, the mechanisms induced
by the scaled KL expansion and its optimality are presented.

Lemma 1. Random field Y (O) and its realizations are continuous with re-

spect to O and the L2 norm on S(Q)(1).

� Proof: Let O and O∗ be two elements of S(Q)(1).

1. We have:

‖Y (O)− Y (O∗)‖22 =
Q∑

q=1

(
Oq − O∗

q

)2 ‖Xq‖22 ,

≤ CY ‖O −O∗‖2
RQ ,

(25)

where ‖·‖
RQ is the Euclidian norm on R

Q and CY = max1≤q≤Q ‖Xq‖22 is
a positive constant that is independent of O and O∗. The application
O 7→ Y (O) is therefore continuous on S(Q)(1) with respect to the L2

norm.
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2. In the same manner, let X(θ) be a realization of X, such that, by con-
struction, Y (O, θ) = [Diag(O)]X(θ) and Y (O∗, θ) = [Diag(O∗)]X(θ)
are the corresponding realizations of Y (O) and Y (O∗) respectively.
Therefore:

‖Y (O, θ)− Y (O∗, θ)‖2L2

def
= (Y (O, θ)− Y (O∗, θ),Y (O, θ)− Y (O∗, θ))

≤ ‖O −O∗‖2
RQ

[
max
1≤q≤Q

{(Xq(θ), Xq(θ))}
]
.

(26)

As max1≤q≤Q {(Xq(θ), Xq(θ))} is a positive constant that is indepen-
dent of O and O∗, the application O 7→ Y (O, θ) is continuous on
S(Q)(1) with respect to the norm ‖·‖L2

.

�

Equation (18) and Lemma 1 yield that for any values of the set of random
variables {ξi(O), 1 ≤ i}, whose mean values are equal to zero and variances
are equal to one, the application O 7→ ∑

1≤i

√
λi(O)ki(O)ξi(O) is continuous

on S(Q)(1) with respect to the L2 norm. This motivates the introduction of
the following hypothesis, that will be required for the next propositions to
be valid.

Hypothesis 1. For all 1 ≤ i, the applications O 7→
√

λi(O)ki(O) are sup-

posed to be continuous on S(Q)(1) with respect to the norm ‖·‖L2
.

Proposition 1. Under Hypothesis 1, the applications O 7→ ε2q(K(M)(O)) are

continuous with respect to the Euclidian norm on S(Q)(1), for all 1 ≤ q ≤ Q.

� Proof: If Hypothesis 1 is verified, due to the continuity properties of
the product, of the sum, and of the integral over a closed interval, it can be
deduced that for all 1 ≤ M ,

O 7→
M∑

i=1

λi(O)

∫

Ω

{
ki
q(O, s)

}2
ds, 1 ≤ q ≤ Q, (27)

are continuous with respect to the Euclidian norm on S(Q)(1). According
to Eq. (23), this leads us to the continuity on S(Q)(1) of the applications
O 7→ ε2q(K(M)(O)), for all 1 ≤ q ≤ Q. �
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Corrolary 1. Under Hypothesis 1, the applications O 7→ ε2β(K(M)(O)) and

O 7→ ε2∞(K(M)(O)) are continuous with respect to the Euclidian norm on

S(Q)(1).

� Proof: By construction of errors ε2β and ε2∞, defined by Eqs. (13) and
(14), this corrolary is a direct consequence of Proposition 1. �

Proposition 2. Under Hypothesis 1, for all 1 ≤ M , application O 7→
ε2∞

(
K(M)(O)

)
admits a minimal value, O(M)

∞ , in S(Q)(1).

� Proof: Under Hypothesis 1, Corrolary 1 yields that application O 7→
ε2∞

(
K(M)(O)

)
is continuous with respect to the Euclidian norm on S(Q)(1)

for all 1 ≤ M . It admits therefore a minimal value in any closed subset
Ŝ(ǫ) = {O ∈ [ǫ, 1− ǫ]Q,

∑Q
q=1O

2
q = 1}, for all 0 < ǫ < 1.

Then, for 1 ≤ q ≤ Q, if Oq tends to zero, it can be noticed that
ε2q

(
K(M)(O)

)
tends to its maximal value as the weight of Xq in the global

minimization is almost zero. This leads us to the fact that it exists 0 < ǫ∗ < 1
sufficiently small, such that for all O and O∗ in Ŝ(ǫ∗) and S(Q)(1)\Ŝ(ǫ∗) re-
spectively, ε2∞ (O) ≤ ε2∞ (O∗). In other words, it exists ǫ∗ in ] 0, 1 [ and O(M)

∞
in S(Q)(1) such that:

O(M)
∞ = arg min

O∈Ŝ(ǫ∗)

{
ε2∞ (O)

}
= arg min

O∈S(Q)(1)

{
ε2∞ (O)

}
. (28)

�

The importance of such a vector O(M)
∞ for the minimization of error ε2∞

will be discussed in Section 2.5. Although the perturbation of [RXX ], defined
by Eq. (17), is quadratic with respect to vector O, there is no theoretical
result in the pertubation theory field that could guarantee the validity of
Hypothesis 1 in the general case. From a discrete point of view, applications
O 7→

√
λi(O)ki(O) can however always be considered as continuous, as for

any discontinuous application A, it exists a continuous application A∗, such
that the projections of A and A∗ on the same discretized space are the same.
Hence, in the following, it is supposed that we are within the framework of
Hypothesis 1.

The next Lemma and Proposition aim now at emphasizing how the scaled
KL expansion could be used to favorize or defavorize on purpose the charac-
terization of a particular component of X.
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Lemma 2. For all O in S(Q)(1) and for all F (M) in H
M , we have:

Q∑

q=1

O2
q ‖Xq‖22 ε2q

(
K(M)(O)

)
≤

Q∑

q=1

O2
q ‖Xq‖22 ε2q(F (M)). (29)

� Proof: The proof of this lemma is detailed in AppendixA. �

In other words, Lemma 2 underlines that for all O in S(Q)(1), family
K(M)(O) is M-optimal for X regarding error

∑Q
q=1O

2
q ‖Xq‖22 ε2q. For 1 ≤

p 6= q ≤ Q, imposing O2
p ‖Xp‖22 > O2

q ‖Xq‖22 tends therefore to favorize the
characterization of Xp rather than the one of Xq. This can be seen from the
following proposition:

Proposition 3. For any O = (O1, · · · , Oq) in S(Q)(1) and for all κ such that

0 < κ <
{∑Q−1

q=1 O2
q

}−1/2

, the vector O∗ =
(
κO1, · · · , κOQ−1,

√
1− κ2

∑Q−1
q=1 O2

q

)

is in S(Q)(1). For κ = 1, we have O = O∗ and κ can be smaller or larger

than 1. We then have:

{
ε2Q

(
K(M)(O∗)

)
− ε2Q

(
K(M)(O)

)}{
κ2 − 1

}
≥ 0. (30)

� Proof:

1. If O = (O1, · · · , OQ) is in S(Q)(1), then
∑Q

q=1O
2
q = 1. Hence, if 0 < κ <

{∑Q−1
q=1 O2

q

}−1/2

,
∑Q

q=1

(
O∗

q

)2
= 1, which shows that O∗ is in S(Q)(1).

2. Moreover, Lemma 2 yields:

{ ∑Q
q=1O

2
q ‖Xq‖22 ε2q

(
K(M)(O)

)
≤

∑Q
q=1O

2
q ‖Xq‖22 ε2q

(
K(M)(O∗)

)
,∑Q

q=1

(
O∗

q

)2 ‖Xq‖22 ε2q
(
K(M)(O∗)

)
≤

∑Q
q=1

(
O∗

q

)2 ‖Xq‖22 ε2q
(
K(M)(O)

)
,

(31)
which can, for all ca and cb in R

+, be written in a more compact form
as:

Q∑

q=1

‖Xq‖22
{
ε2q

(
K(M)(O∗)

)
− ε2q

(
K(M)(O)

)}{
caO

2
q − cb

(
O∗

q

)2} ≥ 0.

(32)
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Choosing cb = 1 and ca = κ2 yields:

{
ε2Q

(
K(M)(O∗)

)
− ε2Q

(
K(M)(O)

)}{
κ2 − 1

}
≥ 0. (33)

�

Hence, if κ ≥ 1, that is to say if the weights of all components of X, but
the one of XQ, have been increased in the choice of O∗, the projection of
XQ on K(M)(O∗) will be less precise than its projection on K(M)(O) because
ε2Q

(
K(M)(O∗)

)
≥ ε2Q

(
K(M)(O)

)
. On the contrary, if κ ≤ 1, the weight of XQ

in the scaled KL expansion defined in Section 2.2 is increased by comparison
to the other components of X, such that the projection of XQ on K(M)(O∗)
will be better than its projection on K(M)(O) because ε2Q

(
K(M)(O∗)

)
≤

ε2Q
(
K(M)(O)

)
.

By playing on the values of the components of O, the scaled KL expansion
thus appears to be able to favorize or defavorize on purpose the character-
ization of a particular component of X. The goal of the next sections is
therefore to define a method to minimize errors ε2β and ε2∞, based on this
scaled KL expansion.

2.4. Minimization of a weighted sum of local errors

The minimization of error ε2β, defined by Eq. (13), is a direct consequence

of Lemma 2. Indeed, for all β in S(Q)(1), it can directly be seen that the
choice

Oβ
q =

βq

‖Xq‖2
, 1 ≤ q ≤ Q, (34)

leads us to the minimization of error ε2β, such that:

K(M)(Oβ) = arg min
F(M)∈HM

{
ε2β(F (M))

}
, 1 ≤ M. (35)

Hence, just by considering the KL expansion of Y (O) = [Diag(O)]X
rather than X, it is possible to construct projection families that could fa-
vorize particular components of X, from a priori or a posteriori choices for
β.
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2.5. Minimization of the maximal value of the local errors

The optimal families F (M)
∞ , which minimize error ε2∞, that is to say such

that:

F (M)
∞ = arg min

F(M)∈HM

{
ε2∞(F (M))

}
= arg min

F(M)∈HM

{
max
1≤q≤Q

ε2q(F (M))

}
, (36)

have been introduced to minimize the local errors associated with each com-
ponent of X. These projection families stem however from a Min-Max opti-
mization on the very large space H

M , such that their direct numerical iden-
tification can be very difficult. As the dimension of S(Q)(1) is comparatively
very small, the idea presented in this section is thus to use the former scaled
KL expansion, defined in Section 2.2, to approximate F (M)

∞ as the solution
of an optimization problem with respect to O in S(Q)(1), rather than an
optimization problem with respect to F (M) in H

M . For all 1 ≤ M , we thus
define K(M)(O(M)

∞ ) as the scaled KL basis associated with the vector O(M)
∞ ,

such that:

O(M)
∞ = arg min

O∈S(Q)(1)

{
ε2∞ (O)

}
, (37)

for which existence stems from Proposition 2.
Whereas vector Oβ, defined by Eq. (34), is independent of M , it has to

be reminded that vector O(M)
∞ depends on M in the general case.

This section aims first at quantifying the distance between K(M)(O(M)
∞ )

and F (M)
∞ . In the two dimensional case (Q = 2), it will be shown in particular

that K(M)(O(M)
∞ ) = F (M)

∞ . At last, based on Proposition 3, an algorithm to
numerically solve Eq. (37) is presented.

2.5.1. Quantification of the error introduced by the approximated identifica-

tion problem

Lemma 3. For all M ≥ 1 and for all O in S(Q)(1), the relevance of K(M)(O)
to minimize error ε2∞ can be assessed as:

0 ≤ ε2∞(K(M)(O))− ε2∞(F (M)
∞ ) ≤ UB(O), (38)
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where:

UB(O)
def
=

∑Q
q=1O

2
q ‖Xq‖22 δ2q (K(M)(O))
∑Q

q=1O
2
q ‖Xq‖22

, (39)

0 ≤ δ2q (K(M)(O))
def
= ε2∞(K(M)(O))− ε2q

(
K(M)(O)

)
, 1 ≤ q ≤ Q. (40)

� Proof: The first inequality ε2∞(K(M)(O)) ≥ ε2∞(F (M)
∞ ) is a direct conse-

quence of the optimality of F (M)
∞ . Let O be an element in S(Q)(1). From

Lemma 2, it can therefore be deduced that:

Q∑

q=1

O2
q ‖Xq‖22 ε2q

(
K(M)(O)

)
≤

Q∑

q=1

O2
q ‖Xq‖22 ε2q(F (M)

∞ )

≤ ε2∞(F (M)
∞ )

{
Q∑

q=1

O2
q ‖Xq‖22

}
,

(41)

such that, by definition of
{
δ21(K(M)(O)), · · · , δ2Q(K(M)(O))

}
:

{
ε2∞(K(M)(O))− ε2∞(F (M)

∞ )
}
{

Q∑

q=1

O2
q ‖Xq‖22

}
≤

Q∑

q=1

O2
q ‖Xq‖22 δ2q (K(M)(O)),

(42)
which proves the second part of the inequality. �

This Lemma emphasizes that the closer the local errors are, the more
relevant projection family K(M)(O) is. In particular, quantity UB(O(M)

∞ )
defines an upper bound for the error introduced by the consideration of the
approximated problem defined by Eq. (37). Lemma 3 leads us moreover to
the following proposition:

Proposition 4. If the following equalities are verified:

ε21(K(M)(O(M)
∞ )) = · · · = ε2Q(K(M)(O(M)

∞ )), (43)

then the family K(M)(O(M)
∞ ) minimizes ε2∞.
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� Proof: By construction, if ε21(K(M)(O(M)
∞ )) = · · · = ε2Q(K(M)(O(M)

∞ )), then

δ21(K(M)(O(M)
∞ )) = · · · = δ2Q(K(M)(O(M)

∞ )) = 0. Hence, from Lemma 3, we get

ε2∞(K(M)(O(M)
∞ )) = ε2∞(F (M)

∞ ), such that K(M)(O(M)
∞ ) = F (M)

∞ . �

2.5.2. Identification of the optimal scaling vector

By construction, it can directly be seen that, for all α in R, K(M)(O) =
K(M)(αO). Hence, if the conditions of Proposition 4 are fulfilled, that is to
say if ε21(K(M)(O(M)

∞ )) = · · · = ε2Q(K(M)(O(M)
∞ )), the scaling vector O(M)

∞ is
solution of the following problem:

K(M)(O) = K(M)
(
[Diag(O)]ǫ2(K(M)(O))

)
, (44)

where the matrix [Diag(O)] is defined by Eq. (16), and where:

ǫ2(K(M)(O)) =
(
ε21(K(M)(O)), · · · , ε2q

(
K(M)(O)

))
. (45)

This motivates the following iterative algorithm for the identification of
scaling vector O(M)

∞ . For given parameters τ and γ:




Initialize O =

(
1

‖X1‖2
, · · · , 1

‖XQ‖
2

)

Normalize O

for i = 1 : Nmax

Compute K(M)(O)
if UB(O) > τ :
Oq = Oq ·

(
ε2q

(
K(M)(O)

))γ
, 1 ≤ q ≤ Q

Normalize O

else

Break loop for

end if

end for

O(M)
∞ = O.

(46)

Parameter τ corresponds to the chosen precision of the numerical con-
vergence, whereas γ controls the speed of the convergence, and has to be
adapted to avoid numerical instabilities. For our applications, γ will be cho-
sen equal to 1/2. In such an algorithm, at each iteration (n+ 1), the weight

of Xq in the KL expansion,
(
O

(n+1)
q

)2

‖Xq‖22, is updated with respect to the

local error ε2q(K(M)(O(n))) of the former step. Hence, the weights of the less
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well characterized components of X, for which local errors ε2q(K(M)(O(n)))
are the highest at iteration n, will be increased the most at the new iteration
(n+ 1). In the general case, no convergence property for this algorithm has
been proved yet, but under the following conditions:

lim
O2

q→1
ε2q

(
K(M)(O)

)
≤ min

1≤p 6=q≤Q

{
lim
O2

q→1
ε2p(K(M)(O))

}
, 1 ≤ q ≤ Q, (47)

it is assumed that the algorithm defined by Eq. (46) gives very promising
results for the minimization of function O 7→ ε2∞(K(M)(O)) in a very few
number of iterations. In other words, in cases where the weight of Xq in the
scaled KL expansion is much higher than the weights of the other components
{Xp, 1 ≤ p 6= q ≤ Q}, if Xq still remains badly characterized, then there is
no reason for such an algorithm to converge to a satisfying result. In practice,
these conditions are not very restrictive, and are most of the time verified
for correlated vector-valued random fields.

In particular, under Hypothesis 1, when dealing with two dimensional

cases (Q = 2, O =
(
O1,

√
1− O2

1

)
), Propositions 1 and 3 yield that errors

functions O1 7→ ε21(O1) and O1 7→ ε22(O1) are continuous and respectively
decreases and increases with respect to O1 in ]0, 1[. Therefore, if condi-
tions defined by Eq. (47) are fulfilled, it exists O(M)

∞ in S(Q)(1) such that
ε21(O

(M)
∞ ) = ε22(O

(M)
∞ ). Therefore, according to Proposition 4, optimal ba-

sis F (M)
∞ could be in these cases exactly identified from the solving of the

optimization problem that is defined by Eq. (37).

3. Application

Most of the results emphasized in Section 2 are illustrated in this section
on a practical example. This section is divided in three parts: first, a particu-
lar R4-valued random field is generated from its Karhunen-Loève expansion;
then the influence of scaling vector O on the local errors is emphasized; at
last, it is shown in what extent the scaled KL expansion allows us to identify
optimal families F (M)

∞ and F (M)
β for several values of β in S(Q)(1) and any

values of M ≥ 1.
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3.1. Generation of a vector-valued random field

In this application, the dimension of random field X, Q, is chosen equal
to 4, and Ω = [0, 1]. A particular matrix-valued covariance function, [RXX ],
is then postulated, for which some projections are represented in Figures 1
and 2. Random field X, which is still supposed to be centered, can thus be
written as:

X =
+∞∑

i=1

√
Λik

iξi, (48)

where, for all i ≥ 1, couples (Λi,k
i) are solution of the Fredholm problem

associated with [RXX ]:

∫

Ω

[RXX(s, s′)]ki(s′)ds′ = Λik
i(s), ∀ s ∈ Ω, (49)

and coefficients {ξi, i ≥ 1} are uncorrelated random variables. For the sake
of simplicity, these coefficients are moreover considered independent and nor-
mally distributed, which amounts to supposing that X is Gaussian. In par-
ticular, [RXX ] has been chosen such that ‖X1‖2 > ‖X2‖2 > ‖X3‖2 > ‖X4‖2.
Further details about the generation of [RXX ] can be seen in AppendixB. As
an illustration, a particular realization, X(θ), of X is represented in Figure
3. From Eq. (23), it is reminded that for any value of O in S(Q)(1), for all
1 ≤ q ≤ Q, and for all M ≥ 1, errors ε2q(K(M)(O)) can directly be computed
by the scaled KL expansion.

3.2. Influence of the scaling vector on the local errors

According to Section 2, by introducing vector O = (O1, O2, O3, O4), we
should be able to balance the values of local errors ε2q, for 1 ≤ q ≤ 4. In
particular, it has been shown in Section 2.3 that for O = 1√

3+κ2 (1, 1, 1, κ)

and for all 1 ≤ M , ε24(K(M)(O)) decreases with respect to κ on ]0,+∞[.
Hence, if κ tends to zero, ε24(K(M)(O)) is bound to converge to its maximal
value, as the weight of X4 in the minimization of

∑4
q=1O

2
q ‖Xq‖22 ε2q becomes

negligible. On the contrary, if κ tends to infinity, ε24(K(M)(O)) will tend to its
minimal value, as the minimization of

∑4
q=1O

2
q ‖Xq‖22 ε2q will completely be

driven by ε24. This phenomenon can be seen in Figure 4, where the evolution
of local errors ε2q

(
K(M)(O)

)
with respect to κ is represented.
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[0, 1]× [0, 1].
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Figure 4: Comparison of local errors ε2q
(
K(M)(O)

)
, when O =

1√
3+κ2 (1, 1, 1, κ), with respect to κ, for M = 50.

In the same manner, the results concerning the two dimensions case can
be illustrated from this four dimensions case, by imposing:

O =
1√

O2
1 + 2.10−10 +O2

4

(
O1, 10

−5, 10−5, O4

)
. (50)

Indeed, in such a case, the weights of X2 and X3 will always be negligi-
ble. In Figure 5, it can therefore be seen that when ratio O4/O1 increases,
ε24(K(M)(O)) decreases from its maximal value to its minimal value, whereas
ε21(K(M)(O)) increases from its minimal value to its maximal value. As





limO2
4/O

2
1→0 ε

2
1(K(M)(O)) < min2≤q≤4

{
limO2

4/O
2
1→0 ε

2
q(K(M)(O))

}
,

limO2
4/O

2
1→+∞ ε24(K(M)(O)) < min1≤q≤3

{
limO2

4/O
2
1→0 ε

2
q(K(M)(O))

}
,

(51)
it exists a value for O4/O1 in ]0,+∞[ such that ε21 and ε24 are equal. This
value allows us therefore to identify a projection family which is M-optimal
for X with respect to the error maxp∈{1,4}

{
ε2q
}
.
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3.3. Identification of the optimal basis

In Section 2, for all β in S(Q)(1), optimal projection families F (M)
β and

F (M)
∞ have been introduced as the solutions of the two following optimization

problems:

F (M)
β = arg min

F(M)∈HM

{
ε2β(F (M))

}
, (52)

F (M)
∞

= arg min
F(M)∈HM

{
ε2
∞
(F (M))

}
. (53)

In particular, for all M ≥ 1, the choice

β = (‖X1‖2 , ‖X2‖2 , ‖X3‖2 , ‖X4‖2) (54)

leads to the identification of the classical Karhunen-Loève family, which is
called F (M)

L2
, for X. The corresponding local errors, ε2q(F

(M)
L2

) can then be

compared. For M = 50, it can be seen in Figure 4 that ε21(F
(50)
L2

) = 3.9%,

ε22(F
(50)
L2

) = 6.3%, ε23(F
(50)
L2

) = 14% and ε24(F
(50)
L2

) = 64%. Due to the fact
that ‖X1‖2 > ‖X2‖2 > ‖X3‖2 > ‖X4‖2, it can thus be verified that the
direct Karhunen-Loève expansion favorizes the description of component X1,
whereas component X4 is not precisely characterized.

As explained in Section 2, other values for β have to be considered in
order to improve the characterization of X4. For instance, the choice β =
(0.5, 0.5, 0.5, 0.5) corresponds to the minimization of the mean value of the

local errors, ε2µ = 1
4

∑4
q=1 ε

2
q. Let F (M)

µ be the corresponding optimal family.

Any other value for β can nevertheless be chosen. For instance, let F (M)
β be

the M-optimal family corresponding to the case β = (0.1, 2, 1, 0.5) /2.2935.
At last, family K(M)(O(M)

∞ ) is introduced as the numerical solution of the
algorithm defined by Eq. (46), with τ = 10−3 and γ = 1/2.

In this prospect, Figures 6 and 7 allow us to numerically illustrate that
projection families F (M)

β , F (M)
µ , F (M)

L2
and K(M)(O(M)

∞ ) can be identified from
the scaled KL expansion, such that for any M ≥ 1:

• ε2β(F
(M)
β ) ≤ min

{
ε2β(F

(M)
L2

), ε2β(K(M)(O(M)
∞ )), ε2β(F

(M)
µ )

}
,

• ε2µ(F
(M)
µ ) ≤ min

{
ε2µ(F

(M)
L2

), ε2µ(K(M)(O(M)
∞ )), ε2µ(F

(M)
β )

}
,

• ε2∞(K(M)(O(M)
∞ )) ≤ min

{
ε2∞(F (M)

L2
), ε2∞(F (M)

β ), ε2∞(F (M)
µ )

}
,
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• ε2(F (M)
L2

) ≤ min
{
ε2(F (M)

β ), ε2(K(M)(O(M)
∞ )), ε2(F (M)

µ )
}

.

In particular, for M = 100:





ε21(F
(100)
L2

) = 1.7%

ε22(F
(100)
L2

) = 3.0%

ε23(F
(100)
L2

) = 5.8%

ε24(F
(100)
L2

) = 17%

,





ε21(K(100)(O(M)
∞ )) = 3.0%

ε22(K(100)(O(M)
∞ )) = 3.0%

ε23(K(100)(O(M)
∞ )) = 3.0%

ε24(K(100)(O(M)
∞ )) = 3.0%

, (55)





ε2(F (100)
L2

) = 2.3%

ε2(K(100)(O(M)
∞ )) = 3.0%

ε2∞(F (100)
L2

) = 17%

ε2∞(K(100)(O(M)
∞ )) = 3.0%

. (56)

Whereas family F (100)
L2

can defavorize the description of a particular com-

ponent of X to minimize ε2, family K(100)(O(M)
∞ ) tries to equilibrate the

precision of the description of each component. To do so, the local error of
some components can increase to make the other decrease. Indeed, in this ex-
ample, ε21(F

(100)
L2

) < ε21(K(100)(O(M)
∞ )) whereas ε24(F

(100)
L2

) > ε24(K(100)(O(M)
∞ )).

From Eq. (38), it can moreover be seen that in this case:

∣∣∣ε2∞(F (100)
∞ )− ε2∞(K(100)(O(M)

∞ ))
∣∣∣ ≤ τ = 0.1%. (57)

4. Conclusions

In spite of the increasing computational power that has encouraged the
development of computational models with always more degrees of freedom,
reduction methods, such as the Karhunen-Loève expansion, still have a big
role to play to make the solving of these problems faster and robuster. When
dealing with R

Q-valued random fields X = (X1, · · · , XQ), it has however
been shown in this work that the direct truncated KL expansion, which min-
imizes the total mean-squared error, tends to better characterize the compo-
nents of X that have the highest signal energy. In this context, a particular
adaptation of the KL expansion has been introduced in this paper. Based
on a scaling transformation of X, this original decomposition allows defining
projection basis that can favorize or defavorize on purpose the character-
ization of a particular component of X. This expansion appears to be also
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Figure 6: Evolution of errors ε2β and ε2 with respect to the dimen-
sion of the projection family, M .
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very relevant to identify projection basis that minimize the maximal value of
the local errors of X. Finally, when interested in studying complex systems
that are excited by vector-valued random fields (one can think about the in-
teractions between trains and track irregularities, buildings and earthquakes,
harbors and swell, etc.), the method proposed opens new opportunities to
adapt the projection basis with respect to the quantities of interest of the
systems.
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AppendixA. Proof of Lemma 2

Using the notations of Section 2,
{
ki(O), i ≥ 1

}
defines a spatially or-

thonormal basis of P(Ω). Autocorrelation function [RY Y (O)] can therefore
be projected on this basis, such that, by construction of the Karhunen-Loève
basis:

[RY Y (O)] =
∑

i≥1

λi(O)ki(O)⊗ ki(O). (A.1)

Let B =
{
bi, 1 ≤ i

}
be another countable basis of Hilbertian space P(Ω),

and F (M) =
{
bi, 1 ≤ i ≤ M

}
be a M-dimension subset of B. For all i ≥ 1,

f i can then be projected on
{
ki(O), i ≥ 1

}
:

f i =
∑

j≥1

Pijk
j(O), Pij =

(
f i,kj(O)

)
. (A.2)

Without loss of generality, familly F can be supposed to be spatially
orthonormal, as it can be orthonormalized a posteriori without modifying
the corresponding projection error. From Eqs. (20), this yields:

1 =
(
f i, f i

)
=

∑

j≥1

∑

ℓ≥1

PijPiℓ

(
kj(O),kℓ(O)

)
=

∑

j≥1

P 2
ij . (A.3)

Let Ỹ
(M)

be the projection of random field Y = [Diag(O)]X on F (M):
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Ỹ
(M)

=
M∑

i=1

f iCi, Ci =
(
Y , f i

)
. (A.4)

Random field X̃
(M)

is thus introduced as:

X̃
(M)

= [Diag(O)]−1Ỹ
(M)

. (A.5)

From Eqs. (A.1) and (A.4), we get, for all M ≥ i ≥ 1:

E
[
C2

i

]
=

∫

Ω2

(
f i(s)

)T
[RY Y (O, s, s′)]f i(s′)dsds′ =

∑

j≥1

λj(O)P 2
ij. (A.6)

Therefore, from Eqs (A.3) and (A.6):

M∑

i=1

(λi(O)−E
[
C2

i

]
) =

M∑

i=1

λi(O)
∑

j≥1

P 2
ij −

M∑

i=1

∑

j≥1

λj(O)P 2
ij

=
M∑

i=1

∑

j≥1

P 2
ij (λi(O)− λj(O))

=
M∑

i=1

∑

j≥M+1

P 2
ij (λi(O)− λj(O))

≥ (λM(O)− λM+1(O))

M∑

i=1

∑

j≥M+1

P 2
ij ≥ 0,

(A.7)

as by construction, for all j ≥ i, λj(O) ≤ λi(O). Moreover, it can be noticed
that, by definition of matrix [Diag(O)], for 1 ≤ q ≤ Q:

E
[(

Xq − X̂(M)
q , Xq − X̂(M)

q

)]
= E

[(
O−1

q

(
Yq − Ŷ (M)

q

)
, O−1

q

(
Yq − Ŷ (M)

q

))]

= O−2
q

∑

M+1≤i

λi(O)
(
ki
q(O), ki

q(O)
)

(A.8)
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where it is reminded that Ŷ
(M)

is the projection of Y = [Diag(O)]X on

K(M)(O) and X̂
(M)

= [Diag(O)]−1Ŷ
(M)

. In the same manner:

E
[(

Xq − X̃(M)
q , Xq − X̃(M)

q

)]
= E

[(
O−1

q

(
Yq − Ỹ (M)

q

)
, O−1

q

(
Yq − Ỹ (M)

q

))]

= O−2
q

∑

M+1≤i

E
[
C2

i

] (
f i
q, f

i
q

)

(A.9)

It can finally be deduced from Eqs. (A.7), (A.8) and (A.9) that:

Q∑

q=1

O2
q ‖Xq‖22 ε2q

(
K(M)(O)

)
−

Q∑

q=1

O2
q ‖Xq‖22 ε2q(F (M))

=

Q∑

q=1

O2
q

[
E
[(

Xq − X̂(M)
q , Xq − X̂(M)

q

)]
− E

[(
Xq − X̃(M)

q , Xq − X̃(M)
q

)]]

=
∑

M+1≤i

[
λi(O)

Q∑

q=1

(
ki
q(O), ki

q(O)
)
− E

[
C2

i

] Q∑

q=1

(
f i
q, f

i
q

)
]

=
∑

M+1≤i

[
λi(O)−E

[
C2

i

]]

=
M∑

i=1

[
E
[
C2

i

]
− λi(O)

]

≤ 0.

(A.10)

This result being true for all family F (M) in H
M , family K(M)(O) is thus

M-optimal for X regarding error
∑Q

q=1O
2
q ‖Xq‖22 ε2q.

AppendixB. Generation of the matrix-valued autocorrelation ma-

trix

For 1 ≤ p, q ≤ 4, matrix-valued autocorrelation function [RXX ] is chosen
such that:
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[RXX(s, s′)]pq =
cpcq (1 + δpq)

2

200∑

k=1

√
λ
(p)
k λ

(q)
k d

(p)
k (s)d

(q)
k (s′), ∀(s, s′) ∈ [0, 1]2,

(B.1)
where for all 1 ≤ k ≤ 200:

∫ 1

0

hp(s, s
′)d

(p)
k (s)ds = λ

(p)
k d

(p)
k (s′), (B.2)

hp(s, s
′) = exp (−|s− s′|/ℓp) cos(ωp|s− s′|) cos(Tps), (B.3)

λ
(p)
k ≥ λ

(p)
k+1 > 0, (B.4)

(
d
(p)
k , d

(q)
k

)
= δpq. (B.5)

The numerical values of vectors c = (c1, · · · , c4), ω = (ω1, · · · , ω4), ℓ =
(ℓ1, · · · , ℓ4), T = (T1, · · · , T4) are gathered in Figure B.1. Several comments
can be made about this formalism.

• Application (s, s′) 7→ hq(s, s
′) is not necessary positive-definite regard-

ing the chosen numerical parameters, but only its 200 highest strictly

positive eigenvalues,
{
λ
(q)
k , 1 ≤ k ≤ 200

}
, are considered.

• Couples
{
λ
(q)
k , d

(q)
k

}
are solutions of the Fredholm problem associated

with hq, but are not solutions of the Fredholm problem associated with
[RXX ].

• Coefficient c2q can be related to the signal energy of Xq, such that if

cp > cq, ‖Xp‖22 > ‖Xq‖22.

• Coefficient 2π/ωq can be considered as a pseudo-wavelength for the
mean-squared stationnary part of [RXX ]pq.

• Coefficient ℓq can be seen as the auto-correlation length of Xq.

• Coefficient Tq is introduced as a perturbation for [RXX ]pq, such that
the smaller Tq is, the less mean-squared stationnary [RXX ]pq is.
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q cq ωqS/(2π) ℓq/S TqS/(2π)
1 1 20% 20% 5
2 0.5 30% 25% 7
3 0.25 20% 35% 8
4 0.1 30% 40% 10

Table B.1: Numerical values used in the definition of autocorrelation matrix
[RXX ].
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