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Abstract

We present a single-particle Lennard-Jones (L-J) model for CO2 and N2. Sim-
plified L-J models for other small polyatomic molecules can be obtained fol-
lowing the methodology described herein. The phase-coexistence diagrams of
single-component systems computed using the proposed single-particle mod-
els for CO2 and N2 agree well with experimental data over a wide range
of temperatures. These diagrams are computed using the Markov Chain
Monte Carlo (MC) method based on the Gibbs-NV T ensemble. This good
agreement validates the proposed simplified models. That is, with prop-
erly selected parameters, the single-particle models have similar accuracy in
predicting gas-phase properties as more complex, state-of-the-art molecular
models. To further test these single-particle models, three binary mixtures
of CH4, CO2 and N2 are studied using a Gibbs-NPT ensemble. These re-
sults are compared against experimental data over a wide range of pressures.
The single-particle model has similar accuracy in the gas phase as traditional
models although its deviation in the liquid phase is greater. The simplified
model improves the computational efficiency significantly, particularly in the
case of high liquid density where the acceptance rate of the particle-swap trial
move increases. The MC method based on Gibbs-NV T ensemble is a viable
alternative to simulate phase-coexistence of fluid mixtures. We compare, at
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constant temperature and pressure, the Gibbs-NPT and Gibbs-NV T en-
sembles to analyze their performance differences and results consistency. As
theoretically predicted, the agreement between the simulations implies that
Gibbs-NV T can be used to validate Gibbs-NPT predictions when experi-
mental data is not available.

Keywords: single-particle model, molecular simulation, Markov Chain
Monte Carlo method, Gibbs ensemble, phase coexistence, fluid mixtures

1. Introduction

The properties of phase-coexistence are important for many industrial and
engineering applications such as the mixture separation through distillation
column [1], the transportation instability due to blockage by natural gas
hydrates [2] or sulfur deposition [3], CO2 sequestration [4], and enhanced
oil recovery [5]. To obtain these data through experimental observations
is time consuming and expensive. Thus, molecular simulations based on
the Monte Carlo method are auxiliary tools commonly used to understand
phase-coexistence properties.

The Markov Chain Monte Carlo method proposed by Metropolis et al. [6]
is successful in simulating problems at equilibrium state and here we refer
to it as the Monte Carlo (MC) method. It uses the importance sampling

idea to generate configurations ~X, which is a high-dimensional vector made
up of many molecular positions, according to the probability distribution
function f( ~X). The consecutive configurations constitute a Markov Chain.
The MC method estimates the expected values of the quantities of interest by
averaging over the sampled configurations. The use of Markov chain makes
the algorithm simple and universal but also leads to high correlation of the
consecutive samples, which significantly increase the stochastic error in the
MC results. Recently, the relationship of the stochastic error with the sample
size and sampling interval was analyzed [7].

In MC simulations, hundreds or thousands of molecules are distributed
inside a cubical box. Periodic boundary conditions are used to analytically
enlarge the computational domain as it studies the behavior of a bulk fluid
far away from the interface. For problems where the quantities of interest
(i.e., pressure, density, mole fraction of each component) depend on molecu-
lar position but are independent of the molecular velocity, the MC method
records and updates only molecular positions. The MC method based on the
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Gibbs-NV T ensemble was proposed in [8]. It uses two simulation boxes, one
for liquid phase and one for the gas phase. The temperature, T , the total
number of molecules in the two boxes, N , and the total volume of the two
boxes, V , are fixed. The algorithm allows molecules to swap from one phase
to the other and volume exchange between the two phases, by changing one
box’s volume and correspondingly modifying the other’s volume keeping the
total volume constant. The Gibbs-NV T ensemble MC method effectively
simulates phase-coexistence of single component systems but becomes incon-
venient in simulating multi-component systems as the pressure is an output
of the simulation rather than an input parameter. For the multi-component
systems, we use the Gibbs-NPT ensemble MC method [9] where the pres-
sure, p, of the two boxes is freely selected and fixed during the simulation.
The total volume is not conserved as the volume of each simulation box
is changed independently. Many successful applications of the MC method
based on Gibbs-NV T and Gibbs-NPT ensembles have been reported in the
literature [7, 10–18].

In this paper, the phase-coexistences of binary mixtures of CH4+CO2,
CH4+N2 and CO2+N2 are simulated using a Gibbs-NPT ensemble method.
We study the variation with pressure of the mole fraction of each component
in the two phases. In order to improve the efficiency of the MC simulation,
we neglect the intramolecular structure and model CO2 and N2 by a single
particle as in the traditional model for CH4, originally proposed in [19]. The
Lennard-Jones parameters for CO2 and N2 are determined by matching the
experimental data in [20, 21] at a temperature far away from the critical
temperature and then used in the whole temperature range of interest. The
single-particle modeling idea is based on the fact that the reduced equations
of state of small molecules are similar to each other. The single-particle
model and the selected parameters for CO2 and N2 are verified first in the
simulations of phase-coexistence of single-component systems by comparison
with experimental data [20, 21] over a wide range of temperatures. This com-
parison shows that the single-particle model of CO2 with properly selected
parameters has similar accuracy in predicting the gas-phase properties as the
traditional three-particle model used in [22]. To further verify the predictive
capabilities of the single-particle model we simulate binary mixtures. As in
the single-component case, the MC results using the simplified model agrees
well with experimental data [23–25] over a wide range of pressures. We com-
pare the accuracy of the single-particle model against a three-particle model
used in [26] for CO2 in the case of the binary mixture of CH4+CO2. Again,
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the accuracy of the single-particle model is similar to that of the more com-
plex model in the gas phase. In addition, we present the comparison between
the Gibbs-NPT and Gibbs-NV T ensemble MC methods in simulating fluid
mixture at the same temperature and pressure. This comparison shows dif-
ference in performances between the two algorithms. While comparing the
average results of each ensemble method shows that they are consistent with
each other under appropriately selected conditions.

2. Basic algorithm of the Markov Chain Monte Carlo (MC) method

For problems of equilibrium state, the partition function of the statis-
tical mechanics provides the formula of f( ~X) and the probability density

distribution of the system’s configuration ~X is f( ~X)/
∫

Ω
f( ~X)d ~X. In phase-

coexistence problems where the quantities of interest depend only on the
molecular position, ~X is a high-dimensional vector containing the positions
of all molecules. The pressure, density, and mole fraction, which depend
explicitly on the molecular position, are expressed as the corresponding ex-
pected values defined by the following integral:

〈A〉 =

∫
Ω
f( ~X)A( ~X)d ~X∫

Ω
f( ~X)d ~X

(1)

where A( ~X) is the transient value of the quantity of interest at a particular

configuration ~X of the system. As the formula of f( ~X) is complicated, it
is almost impossible to get an analytical expression for 〈A〉. Traditional
quadrature schemes are not applicable due to the large number of nodes
required to cover the high dimensional space Ω where ~X is defined.

It is convenient to use the Markov Chain Mote Carlo (MC) method [6] to

generate consecutive configurations ~Xi according to f( ~X). The MC method

uses only f( ~X) rather than
∫

Ω
f( ~X)d ~X. The expected value 〈A〉 is estimated

by the average value
1

n

∑n
j=1A( ~Xj) over the n sampled configurations ~Xj.

The average value converges to the expected value as the sample size n grows
infinitely. The algorithm described in [27] of the Markov Chain Monte Carlo
method can be summarized as follows:

1. Initialization of the configuration ~X: set molecular positions almost
uniformly inside the simulation boxes;
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2. For each cycle:
(a) Apply trial move algorithm: the current ~X is randomly changed

to ~X ′ by trial moves. The probability density of the event ( ~X →
~X ′) in the trial move is denoted by α( ~X → ~X ′). To significantly
simplify the algorithm the following symmetric condition

α( ~X → ~X ′) = α( ~X ′ → ~X)

is required;
(b) Apply acceptance criterion: the new configuration ~X ′ is accepted

if Rf (random fraction uniformly distributed in [0, 1]) is less than

the acceptance probability acc( ~X → ~X ′) or rejected otherwise. If
rejected, the two consecutive configurations in the Markov Chain
are the same. The acceptance probability is equal to

min

[
1,
α( ~X ′ → ~X)f( ~X ′)

α( ~X → ~X ′)f( ~X)

]
.

This choice is based on the detailed balance condition for the equi-
librium state, namely

f( ~X)α( ~X → ~X ′)acc( ~X → ~X ′) = f( ~X ′)α( ~X ′ → ~X)acc( ~X ′ → ~X)

and the fact that
min[1, β]

min[1, β−1]
≡ β. We have that

acc( ~X → ~X ′) = min[1, f( ~X ′)/f( ~X)]

if the symmetric condition

α( ~X → ~X ′) = α( ~X ′ → ~X)

holds;
3. Sample the system for the quantities A( ~Xj) of interest after the transi-

tional period required to reach a state of statistical equilibrium is over.
Samples are collected every d cycles where d is the sampling interval
on the Markov chain. Due to the rejection of trial moves, consecutive
samples in the Markov chain are probably identical;

4. Stop once sufficient samples are gathered for analysis.

A detailed analysis leading to choices of n and d that minimize the compu-
tational requirements (memory usage and computational time) was presented
in [7].
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3. MC algorithm based on the Gibbs-NV T and Gibbs-NPT en-
sembles

3.1. Gibbs-NV T ensemble

As mentioned above, each molecule is modeled as a single particle and
we refer to them simply as particles. For the description with intramolecular
structure, the algorithms and formulas described here should be modified
accordingly [27]. A box is employed to represent gas phase and a second
one represents the liquid phase while different components can be found in
a single box. Two-component systems are discussed here and the notations
a, b are used to represent different components. The extension to cases with
three or more components is straightforward. For the Gibbs-NV T ensemble
Monte Carlo method [8] introduced in [27], we have:

f
(
~S1, ~S2, V1, V2, N1,a, N1,b, N2,a, N2,b

)
∝ V

N1,a+N1,b

1 V
N2,a+N2,b

2 exp [−β (U1 + U2)]

N1,a!N1,b!N2,a!N2,b!

(2)

where N1,a is the particle number of the component a inside the cubic box

1, V1 is the volume occupied by box 1, ~S1 is a high dimensional vector that
contains the positions ~si of all particles inside box 1 normalized by the box
size (V1)1/3 (note: the subscript i is the particle index and the total particle
number inside box 1 is N1,a + N1,b), β = 1/(kBT ), kB is the Boltzmann

constant, T is the temperature, and U1 = U1(~S1, V1) is the total potential
energy in box 1 estimated by the summation of pair-wise potential energies
uij contributed by particles i and j contained in the same box. Similar
notation applies to the other box and other component in Eq. (2). The total
volume Vtotal = V1 + V2, total particle numbers N1,a +N2,a and N1,b +N2,b of
each component, and temperature T are fixed in the Gibbs-NV T ensemble.
The size L = V 1/3 of the simulation box is very small and the total particle
number N1,a +N2,a +N1,b +N2,b is usually only about one thousand due to
limitations of computational resources. Thus, periodic boundary conditions
are used to analytically enlarge the simulation domain. So, the contribution
to the total potential energy U by particle’s periodic images is taken into
consideration. Taking the box 1 as an example, the following general form is
used to express its energy summation under periodic boundary condition [27]:

U1(~S1, V1) =
1

2

∑
i,j,~n

′
u(|~rij + ~nL1|) (3)
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where i and j take values from 1 to (N1,a + N1,b) and the factor 1/2 is used
to correct for double counting of the pair-wise contributions, ~rij = L1~sij =
(V1)1/3(~si − ~sj) and ~n is a vector of three integers from (−∞,∞) through
which we can represent the contribution by the infinite particle images. For
example, if ~n = (0, 0, 1), |~rij + ~nL1| = |~rij + (0, 0, L1)| which is the distance
between particle i and one image of particle j. In the simulation, the values
of ~si instead of ~ri are recorded and so the normalized particle coordinates ~si
are unchanged in the trial move of volume change. The prime over the sum
notation means that i = j should be excluded when ~n = (0, 0, 0), namely we
consider the potential energy between particle i and its infinite images but
particle i with itself does not contribute to the potential energy. If i 6= j,
we consider the contribution by particles i and j with ~n = (0, 0, 0) as well
as the contribution by particle i and the infinite images of particle j with
~n 6= (0, 0, 0). Similarly, the transient pressure p1 of box 1 at a particular

configuration ~S1 is [27]:

p1 =
(N1,a +N1,b)kBT

V1

+
1

3V1

1

2

∑
i,j,~n

′
(
−du
dr
r

)
(4)

where r = rij = |~rij + ~nL1|. In the case of Lennard-Jones fluid:

uij = uL-J(rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(5)

We specify the values of ε and σ for each component of a and b. If particle
i and j belong to different components, Lorentz-Berthelot’s mixing rules are
used to compute the cross parameters

εab = (εaaεbb)
1/2

and

σab =
(σaa + σbb)

2
.

As introduced in [27], a cutoff distance rc, which is smaller than half of
the corresponding box size, is employed to simplify the sum operation by
limiting the number of terms with r < rc that need to be calculated explic-
itly. Here, we use rc ≡ 0.45L, which implies that boxes with different sizes
have different rc. The value of rc changes after the accepted trial moves of
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volume change as L = V 1/3. So, the contributions by any particle i and its
infinite images are neglected as the minimal value of their distances is L and
larger than rc. To simplify discussion, we refer to particle j and its infinitely
many images as the particle set of j. To compute the summation with i 6= j
including the potential energy between particle i and the particle set of j, we
first calculate the normalized distance between particles i and j in each coor-
dinate axis and then get the minimal normalized distance in each coordinate
direction while taking the infinite images of particle j into consideration. For
example, we first compute the normalized distance ∆sx in the x direction by
the normalized coordinates ~si and ~sj. The periodic length of the normalized
coordinate at all axes is 1. Thus, ∆sx − floor(∆sx) is positive and belongs
to [0, 1), where the function floor(∆sx) returns the maximum integer which
is smaller or equal to ∆sx. Then, the minimal normalized distance ∆sx,min

in the x direction is ∆sx − floor(∆sx) if it is smaller than 0.5 or equal to
1− [∆sx−floor(∆sx)] otherwise. The minimal normalized distances ∆sy,min

and ∆sz,min in the y and z directions are computed in the same way. Now,
the minimal normalized distance between particle i and the particle set of
j is ∆smin = (∆s2

x,min + ∆s2
y,min + ∆s2

z,min)1/2. For any particular i and j
(i 6= j as i = j is neglected due to truncation) combined with all possible ~n
in the summation, we only need to check a single pair-wise interaction with
the distance equal to ∆smin contribute to the summations in Eqs. (3)-(4) and
neglect other infinitely many terms due to the truncation with rc < 0.5L.
Namely the normalized cutoff distance sc is smaller than 0.5. According to
the above analysis, the number of terms with r < rc in the summations is
finite and its contribution can be computed explicitly.

The neglected contributions with r > rc to the summations are estimated
by tail corrections. These tail corrections for the energy and pressure sum-
mations of box 1 are:

U tail
1 =

b∑
k1=a

N1,k1

b∑
k2=a

8πN1,k2

3V1

εk1k2σ
3
k1k2

[
1

3

(
σk1k2
rc,1

)9

−
(
σk1k2
rc,1

)3
]

(6)

and

ptail
1 =

b∑
k1=a

b∑
k2=a

16πN1,k1N1,k2

3V 2
1

εk1k2 σ
3
k1k2

[
2

3

(
σk1k2
rc,1

)9

−
(
σk1k2
rc,1

)3
]

(7)

The total energy and pressure are estimated by the sums of the explicit
summations with r < rc and the tail corrections for r > rc. Note that if
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the components a and b have the same values of ε and σ, the tail corrections
degenerate to

U tail
1 =

8π(N1,a +N1,b)
2

3V1

ε σ3

[
1

3

(
σ

rc,1

)9

−
(
σ

rc,1

)3
]

(8)

and

ptail
1 =

16π(N1,a +N1,b)
2

3V 2
1

ε σ3

[
2

3

(
σ

rc,1

)9

−
(
σ

rc,1

)3
]

(9)

which are consistent with the results of the single-component system [27].

As the configuration ~X of the probability distribution function of Eq. (2)
contains three types of independent variables which are particle coordinates,
box volumes, and particle numbers, three kinds of trial moves are necessary:
particle displacement, volume change, and particle swap. These satisfy the
ergodicity condition which requires that it is possible to visit any ~X ′ ∈ Ω
from the current ~X in a finite number of trial moves. After getting the total
energy U of each box and f( ~X), the acceptance probability of each trial
move can be computed. The three types of trial moves are selected with
predetermined probabilities, which can be adjusted during the translational
period before reaching the thermal equilibrium state. The three trial move
algorithms used here satisfy the symmetric condition

α( ~X → ~X ′) = α( ~X ′ → ~X)

and so the acceptance probabilities are determined simply by

acc( ~X → ~X ′) = min

[
1,
f( ~X ′)

f( ~X)

]
.

In the trial move of the particle displacement, we select one box denoted
by m from boxes 1 and 2 with equal probability and then select a particle
denoted by i among all particles inside the box m with equal probability.
The new normalized coordinate ~s′i of the particle i is computed by

~s′i = ~si + (Rf1 − 0.5)∆x

where Rf1 is a random fraction distributed uniformly inside [0, 1] and ∆x is
the step size of the trial move of particle displacement. We denote the new
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total energy of the box m by U ′m. This trial move satisfies the symmetric
condition α(~si → ~s′i) = α(~s′i → ~si) as (Rf1 − 0.5) is distributed uniformly
inside [-0.5, 0.5] and so we have:

acc(~si → ~s′i) = min{1, exp[−β(U ′m − Um)]} (10)

We change ~si to ~s′i if Rf2 is less than acc(~si → ~s′i) where Rf2 is another
uniformly distributed random fraction. After every accepted translational
trial moves, the particle i is placed back into the box m by periodic shifting
if its new normalized position ~s′i is outside the box m, namely at least one of
its components is outside [0, 1].

In the trial move of volume change, a new variable

χ = ln(V1/V2) = ln[V1/(Vtotal − V1)]

is introduced [27] as the total volume Vtotal = V1 + V2 is constant in the
Gibbs-NV T ensemble with

f( ~X)dV1 = f( ~X)V1
(Vtotal − V1)

Vtotal

dχ = g( ~X)dχ

where g( ~X) = f( ~X)V1(Vtotal − V1)/Vtotal. Thus, we compute a new χ′ by

χ′ = χ+ (Rf3 − 0.5)∆V

where ∆V is the step size of this trial move. Although the value range of χ′

is (−∞,∞), the value of V ′1 is always located inside the reasonable range of
(0, Vtotal) since

V ′1 = Vtotal
exp(χ′)

[1 + exp(χ′)]
,

and correspondingly, V ′2 = Vtotal − V ′1 . As the trial move (χ → χ′) satisfies
the symmetric condition, the acceptance probability of χ′ is computed by
min[1, g( ~X ′)/g( ~X)]:

acc(χ→ χ′) =

min

{
1,

(
V ′1
V1

)N1,a+N1,b+1(
V ′2
V2

)N2,a+N2,b+1

exp [−β (U ′1 + U ′2 − U1 − U2)]

}
(11)
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We change V1 and V2 to V ′1 and Vtotal−V ′1 , respectively, if Rf4 < acc(χ→ χ′).
~S1 and ~S2 are unchanged in this move.

In the trial move of particle swap, we select one box denoted by m from
boxes 1 and 2 with equal probability to remove a particle i of component k.
Simultaneously, this particle i is inserted in the other box and placed at a
random location. The component k of particle i is selected from components
a and b with equal probability here. Generally speaking [9], the component
k is selected from all components with predetermined probabilities, which
can be adjusted during the transitional period before reaching the thermal
equilibrium state. If the particle number Nm,k of component k inside box m is

zero, the trial move is rejected immediately and the current configuration ~X
is repeated in the Markov Chain. Otherwise, we select a particle denoted by
i among those particles of component k inside box m with equal probability.
Taking m = 1 for instance, we remove particle i of component k from box
1, which changes N1,k to N1,k − 1 and U1 to U ′1. Correspondingly, we create
a particle with its coordinate ~si selected randomly and uniformly in box 2,
which changes N2,k to N2,k + 1 and U2 to U ′2. This trial move satisfies the
symmetric condition and so the acceptance probability is:

acc(N1,k → N1,k − 1)

= min

{
1,

V2N1,k

V1(N2,k + 1)
exp [−β (U ′1 + U ′2 − U1 − U2)]

}
(12)

The formula for m = 2 is similar to Eq. (12). This trial move is accepted if
Rf5 < acc(N1,k → N1,k − 1).

The step sizes ∆x and ∆V are adjusted during the transitional period to
achieve the prescribed acceptance ratios (0.5 for example) of the correspond-
ing trial moves and fixed later to constantly satisfy the symmetric condition
of trial moves required by the sampling process. The step size of particle
swap is fixed at one, namely swapping one particle each time. This makes
the acceptance ratio of particle swap fixed and usually very low if the den-
sity of the liquid phase is very high. The low acceptance ratio increases
the correlation degree of consecutive samples and the statistical variance of
the MC results. The single-particle models used here effectively increase the
acceptance ratio of particle swap trial move.

The normalized quantities, including the normalized number density ρ∗ =
Nσ3/V , volume V ∗ = V/σ3, pressure p∗ = pσ3/ε, temperature T ∗ = TkB/ε,
and energy u∗ = u/ε, are used in simulations to reduce the numerical error.
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The normalization parameters ε and σ can be freely selected. A convenient
selection is to set them equal to the parameters of one component of the
mixture.

3.2. Gibbs-NPT ensemble

In the Gibbs-NPT ensemble [9], the total particle numbers N1,a+N2,a and
N1,b+N2,b of each component are fixed while the total volume Vtotal = V1 +V2

is modified during the trial move of volume change. The phase-coexistence
pressure pfix is specified in advance for the two boxes. We denote by pfix

the specified constant used in the following formulas to distinguish it from
the value computed by Eq. (4) which is still valid. The computed aver-
age pressure by Eq. (4) should converge to the specified value pfix. The
original derivation of the Gibbs-NPT ensemble given in [9] is based on the
precondition of phase-coexistence that the temperature, pressure, and chem-
ical potential of each component are the same for the two phases. As in the
Gibbs-NV T ensemble, three kinds of trial moves are used in the Gibbs-NPT
ensemble: particle displacement, volume change, and particle swap. The al-
gorithms of particle displacement and particle swap are the same as in the
Gibbs-NV T ensemble described above.

For the trial move of volume change, we select one box denoted by m
from boxes 1 and 2 with equal probability to change its volume while the
volume of the other box remains unchanged. Since Vm is the only variable
in this trial move, the results of the isothermal-isobaric ensemble is used to
obtain the following distribution function:

f(Vm) ∝ V
Nm,a+Nm,b
m exp[−β(pfixVm + Um)] (13)

A new variable η = lnVm is introduced [27]. Then,

f(Vm)dVm = f(Vm)Vmdη = q(Vm)dη

where q(Vm) = f(Vm)Vm. We compute a new η′ as

η′ = η + (Rf6 − 0.5)∆V.

Although the value range of η′ is (−∞,∞), the value of V ′m is always located
inside the reasonable range of (0,∞) as V ′m = exp(η′). As the trial move
(η → η′) satisfies the symmetric condition, the acceptance probability of η′
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is computed by min[1, q(V ′m)/q(Vm)]:

acc(η → η′)

= min

{
1,

(
V ′m
Vm

)Nm,a+Nm,b+1

exp [−βpfix (V ′m − Vm)− β (U ′m − Um)]

}
(14)

We change Vm to V ′m if Rf7 is less than acc(η → η′).
The two boxes have almost the same uniform initial state. As the volume

of each box is changed independently in the Gibbs-NPT ensemble, both
boxes are prone to remain in the liquid phase which usually has a lower
energy U than the expected gas phase. In this case, it takes a very long
computation time for the two boxes to split into different phases which is
the final steady state. In order to avoid such sluggish transitional period,
we suggest discarding the trial move of volume change during the initial
period (for example, the first 10% of the predetermined transitional period)
such that the two boxes split quickly into two different phases via the trial
move of particle swap. After this initial separation period, three trial moves
are selected according to their predetermined probabilities. In addition, the
ratio of total particle numbers of the components should be selected such
that the mole fraction (N1,a + N2,a)/(N1,a + N2,a + N1,b + N2,b) is between
xa and ya, which are the steady state mole fractions of component a in the
liquid and gas phases, respectively. This requirement also applies to the
simulation based on the Gibbs-NV T ensemble for multicomponent systems.
For single-component systems, where the Gibbs-NPT ensemble is invalid, the
simulation based on the Gibbs-NV T ensemble requires the initial density ρ
to lie between the densities of the gas and liquid phases at the equilibrium
state.

4. Parameter determination for the single-particle model

Usually, CH4 is modeled as a single particle with εCH4/kB = 147 K and
σCH4 = 3.723× 10−10 m [28] while N2 is modeled by two atoms and CO2 by
three atoms with fixed bond lengths and bending angle. Following [19], we
model N2 and CO2 by single particles to improve the efficiency of the MC
simulation and the parameters of ε and σ are selected appropriately to match
the existing experimental data. In [19], the parameters used in the single-
particle model were determined according to the mean field approximation
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to match the experimental data. As will be explained in this section, we
advocate a simpler procedure which is easily extensible for other molecules.

The use of single-particle model implies that the equation of state for the
normalized quantities

ρ∗ = Nσ3/V, p∗ = pσ3/ε, T ∗ = TkB/ε

is unique for CH4, N2 and CO2 although their parameters of ε and σ are
different. Using a single-particle model for small molecules like N2 and CO2

is justified by the fact that their reduced quantities ρr = ρ/ρc, pr = p/pc,
Tr = T/Tc roughly satisfy the same reduced equation of state where ρc,
pc, Tc are the critical values of each component. For example, the reduced
Peng-Robinson (P-R) equation of state is:

pr =
3.2533ρrTr

1− 0.25307ρr
− 4.839ρ2

rα(Tr)

1 + 0.50614ρr − 0.064044ρ2
r

α(Tr) =
[
1 +

(
0.37464 + 1.54226ω − 0.26992ω2

) (
1−

√
Tr

)]2
(15)

where the acentric factor ω is determined by the critical values [29]. If we
neglect the difference due to ω between different components, the reduced
P-R equation of state is unique.

When the molecule is modeled by a single particle, the normalized ρ∗, p∗,
T ∗ satisfy a unique phase diagram and the related L-J parameters ε and σ are
used to convert the normalized quantities to values with appropriate physical
units. Fig. 1 left gives the unique phase diagram of the normalized quantities
with comparison by the MC results in [27]. Fig. 1 right shows the converted
results of methane using εCH4/kB = 147 K and σCH4 = 3.723 × 10−10 m
compared by the experimental data [30].

4.1. Parameter selection for CO2

For CO2, we select εCO2 and σCO2 appropriately such that the converted
results agree with the experimental data [20]. We choose the normalized nu-
merical results at T ∗ = 1 (much lower than the critical T ∗c ≈ 1.35 as in Fig. 1
left) for converting data since the MC results deviate from experimental data
near the critical point. At T ∗ = 1, the normalized gas and liquid densities are
ρ∗g = 0.029482 and ρ∗l = 0.70111, respectively, the normalized pressures are
p∗g = 0.024923 and p∗l = 0.024896 (not exactly the same as p∗g due to stochas-
tic noise). The density ratio is ρ∗l /ρ

∗
g = 23.781. While, the experimental
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(a) Normalized diagram by MC method (b) Diagram of methane

Figure 1: Transformation of the normalized MC result.

data [20] shows that the density ratio ρl,exp/ρg,exp is 1054.84/43.662 = 24.159
at T = 248 K and 1045.97/46.644 = 22.425 at T = 250 K. We assume that
the variation of density ratio with temperature satisfies a linear interpolation
and then the density ratio of experimental data at T = 248.4 K is equal to
23.781 of the MC simulation at T ∗ = 1. This implies that we should select
εCO2/kB = T/T ∗ = 248.4 K such that T ∗ = 1 is converted to T = 248.4 K
with the density ratio being closely matched. We use the density of the gas
phase to determine another parameter σCO2 since the stochastic noise in the
liquid phase is much larger than that in the gas phase. The experimental mass
density of the gas phase is 43.662 kg/m3 at T = 248 K and 46.644 kg/m3 at
250 K. So, the mass density is 44.258 kg/m3 at T = 248.4 K by interpolation
and the corresponding number density is 6.02× 1023× 44.258× 1000/44 m−3

= 6.055× 1026 m−3. As ρ∗ = Nσ3/V where N/V is the number density, we
obtain σCO2 = 3.652× 10−10 m which converts the MC result ρ∗g = 0.029482
at T ∗ = 1 to the experimental data ρg,exp = 44.258 kg/m3 at T = 248.4
K. Thus, the parameters εCO2 and σCO2 are determined. To further justify
this selection, we compute the MC simulation pressure of the gas phase:
pg = p∗gεCO2/σ

3
CO2

= 0.024923×248.4×1.380622×10−23/(3.652×10−10)3 Pa
= 1.755 × 106 Pa where we used the constant kB = 1.380622 × 10−23 J/K.
The experimental pressure is 1.6746× 106 Pa at T = 248 K and 1.785× 106

Pa at 250 K and so it is 1.6967 × 106 Pa at T = 248.4 K by interpolation,
which is close to the pressure 1.755 × 106 Pa calculated by the MC method
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with εCO2/kB = 248.4 K and σCO2 = 3.652× 10−10 m.
After setting the values of εCO2 and σCO2 , we perform MC simulations

based on the Gibbs-NV T ensemble at any physical temperature of interest.
The MC results at some particular temperatures between 216.592 K of the
triple point and 304.1282 K of the critical point are listed in Table 1 and
compared with the experimental data [20] and the MC results in the liter-
ature [22], in which CO2 is modeled by three atoms with fixed bond length
and each atom has charge. In the elementary physical model (EPM) [22],
the bending angle could be fixed or flexible but the results are very close
and deviate from the experimental data when T is close to Tc. Although the
EPM2 obtained by rescaling the parameters of the EPM is proposed in [22]
to improve the accuracy, the temperature used in the EPM2 is inconsistent
with the experimental value. For example, the MC results by the EPM2 at
228 K, 258 K, 298 K agree well with the experimental data at 221 K, 250 K,
289 K, respectively. We choose the MC results by the EPM with fixed bend-
ing angle for the comparison of accuracy with the single-particle model used
here, since the simulation temperature for EPM can be accurately imposed.
Table 1 contains the pressure of gas phase of our simulation and the liquid
pressure is neglected due to the large stochastic errors it contains.

Table 1: Comparisons of the phase-coexistence diagrams of CO2 between
MC results and experimental data

T (K)
Experimental data [20] MC results in [22] MC results by single-particle model

p (MPa) ρg (kg/m3) ρl (kg/m3) p (MPa) ρg (kg/m3) ρl (kg/m3) p (MPa) ρg (kg/m3) ρl (kg/m3)
228 0.82703 21.595 1136.34 0.76 19.3 1106 0.98264 25.4535 1116.52
238 1.1961 31.052 1097.05 0.95 23.7 1064 1.2938 32.8728 1086.55
248 1.6746 43.662 1054.84 1.49 37.5 1036 1.7573 44.3757 1054.83
258 2.2806 60.438 1008.71 1.98 49.4 996.9 2.2322 56.0803 1019.97
268 3.0334 82.965 957.04 2.62 66.8 957.3 2.8277 71.3246 983.056
278 3.9542 114.07 897.02 3.44 89.6 909.6 3.5732 91.4352 941.542
288 5.0688 159.87 822.50 4.50 123.2 850.6 4.3436 112.850 896.738
298 6.4121 240.90 712.77 5.60 164.0 776.0 5.4119 149.593 848.864

We use the results in Table 1 to compute the relative errors for comparison
of accuracy. The relative pressure error is defined as (psim− pexp)/pexp where
psim and pexp are the values of MC simulation and experiment, respectively. A
similar definition is used for the relative density error. The comparison of the
absolute values of the relative errors between the MC results in the literature
(three-particle model) and current MC results (single-particle model) are
given in Fig. 2.
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Figure 2: Comparisons of the phase-coexistence diagrams of CO2 and the
errors of different molecular models.

As shown in Fig. 2, the absolute values of relative errors of the pressure
and gas density by the single-particle model used here are smaller than those
of the three-particle model in the temperature range from 238 K to 278
K. This is the range where the three-particle model agrees well with the
experimental data. The absolute value of relative error of the liquid density
by the single-particle model is smaller than that of the three-particle model in
the temperature range from 228 K to 258 K. Both models deviate significantly
from experimental data when T is close to Tc ≈ 304 K.

4.2. Parameter selection for N2

For N2, we select εN2 and σN2 based on the experimental data [21]. We
use the normalized numerical results at T ∗ = 1 again and so ρ∗g = 0.029482,
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ρ∗l = 0.70111, ρ∗l /ρ
∗
g = 23.781, p∗g = 0.024923. The density ratio ρl,exp/ρg,exp

of the experimental data is 25.276 at T = 98 K and 23.342 at T = 99 K.
Thus, the experimental density ratio determined using linear interpolation at
T = 98.77 K is equal to 23.781 of the MC simulation at T ∗ = 1. This implies
that we should select εN2/kB = T/T ∗ = 98.77 K such that T ∗ = 1 is converted
to T = 98.77 K where the density ratio is matched. The experimental density
is given in the unit of mol/dm3 and the gas density is 1.0466 mol/dm3 =
29.3048 kg/m3 at T = 98.77 K by interpolation and so, the corresponding
number density is 6.02 × 1023 × 1.0466 × 1000 m−3 = 6.3 × 1026 m−3. We
select σN2 = 3.604 × 10−10 m which converts the MC result ρ∗g = 0.029482
at T ∗ = 1 to the experimental data ρg,exp = 29.3048 kg/m3 at T = 98.77 K.
According to this selection, the gas pressure in MC simulation is

pg = p∗gεN2/σ
3
N2

= 0.024923× 98.77× 1.380622× 10−23/(3.604× 10−10)3Pa,

thus, pg = 0.726× 106Pa. The experimental pressure is 0.67565× 106 Pa at
T = 98 K and 0.72566× 106 Pa at 99 K. Therefore, it is 0.71416× 106 Pa at
98.77 K by interpolation, which is very close to the pressure 0.726× 106 Pa
of the MC simulation with εN2/kB = 98.77 K and σN2 = 3.604× 10−10 m.

We use the values of εN2 and σN2 in the MC simulations at different tem-
peratures between 63.1526 K at the triple point and 126.19 K at the critical
point of N2. The comparisons of our MC results by the single-particle model
with the experimental data [21] are listed in Table 2 which contains only the
pressure of gas phase of our simulations. The corresponding absolute values
of the relative errors are plotted in Fig. 3, from which we can see that the
agreement of the MC results by the single-particle model with experimental
data is better for N2 than CO2.

Another interesting verification of the parameters selected here is to com-
pare the ratios of the temperatures at the triple and critical points respec-
tively with the ratio of ε which is used for the normalization of temperature.
The critical temperature of methane is Tc,CH4 = 190.9 K and the temperature
at its triple point is Tt,CH4 = 90.68 K. We have

Tt,N2/Tt,CH4 = 63.1526/90.68 = 0.696,

Tc,N2/Tc,CH4 = 126.19/190.9 = 0.661

and both of them agree well with the ratio of

εN2/εCH4 = 98.77/147 = 0.672.
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Table 2: Comparisons of the phase-coexistence diagrams of N2 between MC
results and experimental data

T (K)
Experimental data [21] MC results by single-particle model

p (MPa) ρg (mol/dm3) ρl (mol/dm3) p (MPa) ρg (mol/dm3) ρl (mol/dm3)
65 0.01740 0.03259 30.685 0.018585 0.03472 30.537
70 0.03854 0.06768 29.933 0.042382 0.07434 29.772
75 0.07604 0.12638 29.153 0.081565 0.1351 29.003
80 0.13687 0.21737 28.341 0.15119 0.2396 28.218
85 0.22886 0.35069 27.492 0.23808 0.3627 27.384
90 0.36046 0.53828 26.595 0.37179 0.5500 26.497
95 0.54052 0.79504 25.640 0.54693 0.7923 25.611
100 0.77827 1.1409 24.608 0.78229 1.1238 24.648
105 1.08331 1.6049 23.471 1.0660 1.5324 23.581
110 1.46581 2.2339 22.184 1.4359 2.0940 22.425
115 1.93704 3.1162 20.658 1.8832 2.8450 21.148
120 2.51058 4.4653 18.682 2.3947 3.8254 19.580

For CO2, we have

Tc,CO2/Tc,CH4 = 304.1282/190.9 = 1.593

which agrees well with the ratio of

εCO2/εCH4 = 248.4/147 = 1.69

but
Tt,CO2/Tt,CH4 = 216.592/90.68 = 2.388

which is due to that the isothermal line at T = Tt of the reduced gas-liquid
coexistence area of CO2 is higher than that of CH4.

5. Simulations of phase-coexistence of binary mixtures

We use the same notation p in the following tables to represent the pres-
sure used in experiments and the parameter pfix used in MC simulations. The
computed pressure by Eq. (4) in MC simulations is given in the next section
when comparing the Gibbs-NV T and Gibbs-NPT MC simulations.
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Figure 3: Phase-coexistence diagram of N2 and the error by the single-particle
model when compared with the experimental data [21].

5.1. Gibbs-NPT ensemble MC simulation of CH4+CO2 mixture

First, we simulate the mixture of CH4+CO2 by the Gibbs-NPT MC
method using the single-particle model for CO2. The temperature is fixed at
230 K and the variations of the mole fractions of CO2 in the two phases with
the pressure are listed in Table 3 for comparison with experimental data [24]
and the MC results using a three-particle model for CO2 [26]. Fig. 4 plots
the data presented in Table 3. As we can see, the MC results using the
single-particle model of CO2 agree well with the experimental data in the
gas phase but have larger deviation in the liquid phase (namely in xCO2)
than using a three-particle model. This is consistent with the observation in
Fig. 2 where the prediction by the single-particle model of CO2 is worse than
the three-particle model EPM [22] in liquid phase.
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Table 3: Comparisons of the mole fractions in phase-coexistence of CH4+CO2

at 230 K

p (atm)
Experimental data [24] MC results in [26] MC results by single-particle model
xCO2 yCO2 xCO2 yCO2 xCO2 yCO2

15 0.973 0.601 0.973 0.571 0.959 0.684
20 0.950 0.475 0.954 0.451 0.917 0.526
32 0.885 0.317 0.899 0.313 0.796 0.339
40 0.830 0.277 0.838 0.260 0.707 0.290
48 0.765 0.249 0.796 0.238 0.616 0.247
55 0.686 0.236 0.753 0.231 0.535 0.226
65 0.528 0.243 0.575 0.214 0.382 0.203

Figure 4: Comparisons of the mole fractions in phase-coexistence of
CH4+CO2 at 230 K.

5.2. Gibbs-NPT ensemble MC simulation of CH4+N2 mixture

We also simulate the mixture of CH4+N2 at 160 K and N2 is modeled
by a single-particle model. The variation of the mole fraction of N2 in the
two phases with the pressure and the corresponding experimental data [23]
are listed in Table 4. The same results are plotted in Fig. 5. The agreement
of our MC results with experimental data in the liquid phase is better than
that in the simulation of the mixture of CH4+CO2 by single-particle model
for CO2. Nevertheless, the accuracy in the gas phase does not improve in
spite of the fact that the MC density results of pure CH4 and N2 agree very
well with experimental data (see Figs. 1 and 3). A possible explanation for
this model behavior is that the pressure deviation of the single-particle model

21



for a pure component system increases the computed density (namely mole
fraction) deviation as the pressure is an input parameter in the simulation
of mixture.

Table 4: Comparisons of the mole fractions in phase-coexistence of CH4+N2

at 160 K

p (MPa)
Experimental data [23] MC results by single-particle model
xN2 yN2 xN2 yN2

1.9913 0.0448 0.1742 0.0478 0.1521
2.194 0.0684 0.2406 0.0742 0.2165
2.619 0.1205 0.3442 0.1438 0.3483
3.038 0.1756 0.4184 0.2101 0.4340
3.395 0.2243 0.4657 0.2674 0.4926
3.846 0.2820 0.5051 0.3414 0.5492

Figure 5: Comparisons of the mole fractions in phase-coexistence of CH4+N2

at 160 K.

5.3. Gibbs-NPT ensemble MC simulation of CO2+N2 mixture

Finally, we simulate the mixture of CO2+N2 at 270 K. The variations of
the mole fraction of N2 in the two phases with pressure and the corresponding
experimental data [25] are listed in Table 5. The same results are plotted
in Fig. 6. Although both CO2 and N2 are modeled with the single-particle
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models, the agreement of our MC results with experimental data in the liquid
phase is good, particularly in the case of high pressure. The MC results
deviate from the experimental data in the gas phase (namely yN2) with a
shift of about 0.05.

Table 5: Comparisons of the mole fractions in phase-coexistence of CO2+N2

at 270 K

p (atm)
Experimental data [25] MC results by single-particle model
xN2 yN2 xN2 yN2

37.50 0.0108 0.1140 0.0150 0.1637
40.68 0.0168 0.1598 0.0211 0.2090
42.25 0.0197 0.1783 0.0238 0.2274
45.30 0.0263 0.2156 0.0303 0.2660
50.85 0.0368 0.2674 0.0413 0.3204
59.70 0.0545 0.3280 0.0596 0.3826
70.00 0.0778 0.3770 0.0816 0.4317
82.70 0.1080 0.4126 0.1127 0.4735
91.70 0.1319 0.4173 0.1343 0.4872
100.71 0.1585 0.4188 0.1591 0.4976

Figure 6: Comparisons of the mole fractions in phase-coexistence of CO2+N2

at 270 K.
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6. Comparison between the Gibbs-NV T and Gibbs-NPT ensem-
bles

Theoretically, both the Gibbs-NV T and Gibbs-NPT MC methods are
valid for simulating mixtures. We simulate the mixture of CH4+N2 at 160 K
as an example to show differences between two methods and how their results,
under certain conditions, are consistent. We use εN2 and σN2 to normalize
quantities including ρ∗, V ∗, p∗, T ∗, u∗. To make direct comparison between
simulation results, we first run a Gibbs-NV T MC simulation to determine the
system’s pressure. Using this pressure value as input data, we run a Gibbs-
NPT simulation. Similarly to the simulations of the previous section, we
choose the total particle number N as 1024 and the normalized total volume
V ∗total is 6000 in our Gibbs-NV T MC simulation. V ∗total is selected according
to N such that the normalized number density at the initial uniform state
lies between the values of the liquid and gas phases in equilibrium state. We
set

N1,N2 = N2,N2 = 118

and
N1,CH4 = N2,CH4 = 394

at the initial state making the initial mole fraction of N2 in the two boxes
about 0.23 which is between xN2 and yN2 at 2.619 MPa. The final pressure
obtained by the Gibbs-NV T MC simulation is slightly different from 2.619
MPa because the selections of V ∗total, N1,N2 , N2,N2 , N1,CH4 , N2,CH4 are roughly
based on the results of the Gibbs-NPT MC simulation at pfix = 2.619 MPa.

In the Gibbs-NV T MC simulation, the probability for selecting the par-
ticle displacement trial move is 0.95, 0.0009 for volume change, and 0.0491
for particle swap after the initial short period of 1× 106 cycles before which
the trial move of volume change is avoided. We use 2 × 108 cycles for the
transitional process and adjust the trial move step sizes ∆x and ∆V every
5× 105 cycles during the transitional process such that the acceptance ratios
of the trial moves of particle displacement and volume change approach to
the predetermined value of 0.5. After the transitional process, the system is
sampled every 50 cycles and 224 samples are collected to calculate the average
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values. We get the average values as

pg = 2.6793MPa (p∗g = 0.091976),

pl = 2.6664MPa (p∗l = 0.091535),

ρg,N2 = 6.1215× 1026m−3 (ρ∗g,N2
= 0.028656),

ρl,N2 = 1.8245× 1027m−3 (ρ∗l,N2
= 0.085406),

ρg,CH4 = 1.1004× 1027m−3 (ρ∗g,CH4
= 0.051510),

ρl,CH4 = 1.0195× 1028m−3 (ρ∗l,CH4
= 0.47726).

As the MC results in the gas phase contain less stochastic error, we im-
plement the Gibbs-NPT MC simulation at pfix = 2.6793 MPa of the gas
pressure of the above Gibbs-NV T MC simulation such that the two sim-
ulations are comparable. The parameters setting is almost the same as in
the Gibbs-NV T MC simulation but we slightly modified the selection prob-
abilities of the three trial moves to 0.95, 0.0018, 0.0482 having the selection
probability of the volume change increased twice because the volume of each
box is changed independently in the Gibbs-NPT MC simulation. We get

pg = 2.6796MPa (p∗g = 0.091986),

pl = 2.6997MPa (p∗l = 0.092678),

ρg,N2 = 6.1528× 1026m−3 (ρ∗g,N2
= 0.028802),

ρl,N2 = 1.8237× 1027m−3 (ρ∗l,N2
= 0.085373),

ρg,CH4 = 1.0978× 1027m−3 (ρ∗g,CH4
= 0.051390),

ρl,CH4 = 1.0204× 1028m−3 (ρ∗l,CH4
= 0.47768),

which are very close to the results of the above Gibbs-NV T MC simulation.
The computed gas pressure pg = 2.6796 MPa agrees very well with the
prescribed parameter pfix = 2.6793 MPa.

The evolution of the normalized ρ∗g,N2
, ρ∗l,N2

, ρ∗g,CH4
, ρ∗l,CH4

, p∗g, p
∗
l , V

∗
g and

V ∗l are given in Fig. 7 to show the comparison between the Gibbs-NV T
and Gibbs-NPT MC simulations. The average values agree well with each
other but the transient results of the Gibbs-NPT MC simulation contain
larger stochastic error particularly in the transient volumes of the two boxes
as they are changed independently. But, the application of the Gibbs-NV T
MC method in the simulation of mixture is inconvenient because the pressure
cannot be prescribed before the simulation is performed and so the study of
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the relationship between the mole fraction and the pressure at a fixed tem-
perature is inconvenient. Nevertheless, the Gibbs-NV T MC simulation can
be used for the validation of Gibbs-NPT MC simulation when experimental
data is not available since their simulation results should be consistent with
each other.

7. Conclusions

Markov chain Monte Carlo (MC) simulations of N2 and CO2 are per-
formed using a single-particle model to improve the efficiency of the MC
simulation. The corresponding Lennard-Jones (L-J) parameters are deter-
mined according to existing experimental data. The L-J parameters for other
small molecules can be obtained using the procedure described herein.

The validity of the single-particle model with the selected parameters is
verified in the simulations of systems of pure components and fluid mixtures
by comparison with experimental data. In the pure system of N2, the pressure
and the gas and liquid densities by the single-particle model agree very well
with the experimental data over a wide range of temperatures. For CO2,
the single-particle model has comparable accuracy to the traditional three-
particle model in predicting the gas-phase properties but has larger deviation
in the liquid phase. In the simulations of binary mixtures of CH4+CO2 and
CH4+N2, the predictions by the single-particle model are relevant for the gas
phase although the deviation is obvious in the liquid phase. Nevertheless,
the prediction by the single-particle model in the liquid phase becomes better
than that in the gas phase when simulating the mixture of CO2+N2.

The comparison between the Gibbs-NV T and Gibbs-NPT MC simula-
tions is made in a particular case of binary mixture to show their difference in
performance as well as the consistency of the average results at appropriate
conditions. Although the application of the Gibbs-NV T MC simulation is in-
convenient for systems of mixtures, it is a useful tool for checking the validity
of Gibbs-NPT MC simulation when experimental data is not available.
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