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a b s t r a c t

In this work an iterative strategy to implicitly couple dimensionally-heterogeneous blood
flow models accounting for the continuity of mean total normal stress at interface bound-
aries is developed. Conservation of mean total normal stress in the coupling of heteroge-
neous models is mandatory to satisfy energetic consistency between them. Nevertheless,
existing methodologies are based on modifications of the Navier–Stokes variational formu-
lation, which are undesired when dealing with fluid–structure interaction or black box
codes. The proposed methodology makes possible to couple one-dimensional and three-
dimensional fluid–structure interaction models, enforcing the continuity of mean total
normal stress while just imposing flow rate data or even the classical Neumann boundary
data to the models. This is accomplished by modifying an existing iterative algorithm,
which is also able to account for the continuity of the vessel area, when required. Compar-
isons are performed to assess differences in the convergence properties of the algorithms
when considering the continuity of mean normal stress and the continuity of mean total
normal stress for a wide range of flow regimes. Finally, examples in the physiological
regime are shown to evaluate the importance, or not, of considering the continuity of mean
total normal stress in hemodynamics simulations.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The use of coupled dimensionally-heterogeneous models in hemodynamics simulations has been disseminated through
the last years. In particular, when modeling arterial blood flow, this amounts to put together three-dimensional (3-D) fluid–
structure interaction (FSI) models and one-dimensional (1-D), or lumped parameters, models. This allows to consider differ-
ent levels of complexity at different places of the cardiovascular system or also to impose correct interaction between local
3-D dynamics and the global circulation. In this context several applications have been addressed, e.g., [1–8].

One of the most popular ways to couple 1-D and 3-D FSI models is given by imposing the conservation of mass and the
continuity of mean normal stress (i.e., the normal component of the traction vector in a 3-D model) at coupling interfaces. This
is supported by arguments based on both the strong formulation [9] and the variational formulation [10] of the interface
problem.

Recently, in [11] the concept of energetic consistency between 1-D and 3-D FSI models has been introduced. More pre-
cisely, the authors show that the imposition of the conservation of mass and the continuity of mean normal stress at the
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coupling interfaces does not guarantee that the energy of the coupled system is preserved, i.e., it is not possible to write an
energy estimate. The same authors state that, as a drawback, instabilities could occur at the interface between the models,
although neither in their work, nor in the aforementioned works numerical instabilities have been reported. More generally,
instabilities might arise in particular situations such as (i) in presence of substantial in-plane velocity fields near the bound-
ary interfaces, which can be addressed by adding a weak constraint on the inlet/outlet velocity profiles, as proposed in [12],
or (ii) by an uncontrolled reversal flow at the outlet boundaries, which might be avoided by adding an arbitrary traction to
the outflow face whenever the reversal of the flow is detected, as proposed in [13].

With the aim to preserve the total energy of the problem, in [14,15] as well as in [11], an energetic preserving set of inter-
face equations has been proposed, which is based on the conservation of mass and on the continuity of mean total normal
stress. The main drawback of this set of interface equations is that it does not lead to classical type of boundary data for
the connected models. More precisely, in the classical Navier–Stokes formulation the total normal stress cannot be imposed
as a boundary condition. A possible workaround is to impose the flow rate on the 3-D coupling interfaces, as done in [11].
This is possible within the context of an iterative approach towards performing the coupling between models. Indeed, in [11]
the authors use a Gauss–Seidel iterative procedure where the 3-D and the 1-D FSI models are fed with flow rate and total
pressure boundary data, respectively. Nevertheless, the convergence properties are rather limited to the chosen numerical
algorithm. In addition, the flexibility of choosing the boundary data to be applied on each model of the network is lost
due to the need of prescribing a flow rate boundary condition on all the 3-D FSI coupling interfaces.

Another possible solution to meet the continuity of mean total normal stress, in presence of 3-D FSI models, is to change
the Navier–Stokes formulation integrating by parts the convective term, as done in [14,15]. The resulting formulation is com-
patible with total stress boundary data. However, in a FSI context, the stress coupling condition at the interface between the
fluid and the solid problem is also affected by the modifications in the 3-D Navier–Stokes formulation. Therefore, some addi-
tional changes in the FSI approach are required to match the new formulation. The solution to this issue is not discussed in
the aforementioned works, as also pointed out in [16]. Moreover, from the software implementation viewpoint, any modi-
fication in the Navier–Stokes formulation, as well as in any FSI formulation, might be an issue when dealing with black box
codes (e.g., commercial codes).

With the aim of preserving the appealing flexibility to impose the desired boundary data at each coupling interface of the
network, being able, at the same time, to choose the set of interface equations without any constraint, we propose an algo-
rithm compatible with a black box approach for the coupling of the heterogeneous models. An iterative strategy is adopted in
order to decouple the 3-D and the 1-D problems. This is carried out following the ideas already proposed in [17,18]. However,
the formulation presented in those works employed the conservation of mass and the continuity of mean normal stress at
the interfaces. In this work we extend the interface problem in [18] to couple 3-D and 1-D FSI models by enforcing the con-
servation of mass and the continuity of mean total normal stress. The novelty is that the boundary data type is not forced by
the local numerical scheme; the user can decide whether to impose a classical Neumann boundary condition (i.e., the normal
stress) or a flow rate boundary data. The former is consistent with the FSI context and does not require modifications to the
Navier–Stokes formulation, while the latter introduces a Lagrange multiplier in the system matrix. In addition, we perform a
set of simulations to study the difference between the imposition of the conservation of mean normal stress and the conser-
vation of mean total normal stress. These simulations range from benchmark examples to realistic applications in the mod-
eling of the cardiovascular system.

This work is organized as follows. In Section 2 we briefly recall the 3-D and the 1-D FSI models from previous works. In
Section 3 first we define the interface problem to couple heterogeneous models by imposing the mean normal stress and
then we modify the formulation to account for the conservation of the mean total normal stress; furthermore, both cases
are also extended to account for the continuity of the vessel area between two heterogeneous models. The numerical results
are shown in Section 4, while the final remarks are outlined in Section 5.

2. Fluid–structure interaction models

In this section we briefly summarize the 3-D and the 1-D FSI models employed in this work. The governing equations are
presented and references to the corresponding approximation techniques are given in due course.

2.1. 3-D FSI model

Let X � R3 with boundary @X, where �X ¼ �XF [ �XS, being XF and XS the fluid and solid domains, respectively. In addition,
let CI be the fluid–solid interface @XF \ @XS. In the following we denote by the superscripts 0 and t the reference and current
configurations, respectively, of the fluid/solid domains and boundaries (see Fig. 1).

The field variables of the problem are the fluid velocity uF, the fluid pressure pF, and the solid displacement dS. The fluid–
structure interface problem on the reference interface C0

I reads
uF �Mt � @dS

@t
¼ 0 on C0

I � ð0; T�;

rS � nS � JSG�T
S ðrF �MtÞ � nS ¼ 0 on C0

I � ð0; T�;

8<
:



Γ0
F,j Γ0

S ext ext,

Γ0
S,j Γ0

I

Γt
F, Γt

S,

Γt
S, Γt

I

Mt

Ω0

Ω0
F Ω0

S

Ωt

Ωt
F Ωt

S

j

j

Fig. 1. Reference and current configurations with ALE mapping. The colors in the scheme refer to the computed pressure field. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

138 P.J. Blanco et al. / Journal of Computational Physics 251 (2013) 136–155
where ð0; T� is the time interval, nS the outgoing normal direction of the solid domain, and Mt the reference-to-current con-
figuration map, in this context given by the chosen Arbitrary Lagrangian Eulerian (ALE) map, i.e.,
Mt :X0
F ! Xt

F � R3

x0 # Mtðx0Þ ¼ x0 þ dFðx0Þ;
such that Xt
F ¼MtðX0

FÞ, with x0 2 X0
F a fluid point in the reference configuration. In addition, GS ¼ Iþ $dS is the solid defor-

mation gradient, with JS ¼ detðGSÞ, while rF and rS are the fluid and solid stress tensors, respectively.
The fluid problem consists of the incompressible Navier–Stokes equations written in the ALE formulation
qF
@uF

@t

����
x0

þ ððuF �wFÞ � $ÞuF

� �
� $ � rF ¼ 0 in Xt

F � ð0; T�;

$ � uF ¼ 0 in Xt
F � ð0; T�;

uF � uF ¼ 0 in Xt
F � f0g;

8>>><
>>>:

ð1Þ
where qF is the fluid density, rF ¼ �pFIþ 2lF �FðuFÞ; I the identity matrix, �FðuFÞ the strain rate tensor, lF the dynamic vis-
cosity, wF the fluid domain velocity (defined by the ALE map), and uF the initial fluid velocity field. Problem (1) is closed by
inflow and outflow boundary conditions on Ct

F;j � @X
t
F n Ct

I , j ¼ 1; . . . ;nC
FS. Note that since we are in the geometrical multiscale

context, some of these boundaries are coupling interfaces with surrounding models.
The fluid domain displacement dF is computed by means of a geometrical problem as the harmonic extension of dS (given

on C0
I , and which changes in time) to the interior of the fluid reference domain X0

F , i.e.,
�DdF ¼ 0 in X0
F ;

dF � dS ¼ 0 on C0
I ;

$dF � nF ¼ 0 on @X0
F n C0

I ;

8><
>:
being nF the outgoing normal direction of the fluid domain boundary.
The solid problem is described in a purely Lagrangian frame of reference. We consider a linear elastic isotropic St. Venant–

Kirchhoff model to describe the material response
qS
@2dS

@t2 � $ � rS ¼ 0 in X0
S � ð0; T�;

dS � dS ¼ 0 in X0
S � f0g;

@dS

@t
� vS ¼ 0 in X0

S � f0g;

8>>>>><
>>>>>:

ð2Þ
where qS is the solid density, rS ¼ kS trð�SðdSÞÞIþ 2lS�SðdSÞ, �SðdSÞ the linear strain tensor, kS and lS are the first and second
Lamé parameters, respectively, dS is the initial solid displacement, and vS the initial solid velocity. Recall that the relations
between kS and lS, and the Young’s modulus ES and the Poisson’s ratio mS are
kS ¼
ESmS

ð1� 2mSÞð1þ mSÞ
; lS ¼

ES

2ð1þ mSÞ
:

As with problem (1), also problem (2) requires proper boundary data on @X0
S n C0

I . More precisely, on the external wall C0
S;ext

we apply either homogeneous Neumann or viscoelastic Robin boundary conditions; the latter accounts for the presence of
the external tissues in hemodynamics simulations [19]. Regarding the inlet/outlet solid rings C0

S;j, j ¼ 1; . . . ;nC
FS, they can be

either clamped, let free to deform, or scaled to match the area of surrounding models, as described in [18].
The FSI problem is solved by using a non-modular (monolithic) approach, whose details are given in [20,21]. The fluid

problem is discretized in space by a P1–P1 finite element method, stabilized by an interior penalty technique [22]. The solid
and the geometric problems are discretized in space by P1 finite elements. Regarding time discretizations for the incom-
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pressible Navier–Stokes equations on moving domains we use a first order Euler scheme, while for the structural problem,
we use an explicit second order mid-point scheme. The time interval ½0; T� is split into subintervals ½tn; tnþ1�, n ¼ 0;1;2; . . .,
such that tn ¼ nDt, Dt being the time step. The fluid and solid problems are coupled by using the geometric convective ex-
plicit time discretization, i.e., the fluid problem is linearized by considering explicit the fluid domain displacement and the
convective term. This choice allows to split the solution of the geometric part (the harmonic extension) from the fluid–solid
one, leading to two smaller linear systems and a significant reduction of the computational cost. For more details on the 3-D
FSI problem see [20,21].

2.2. 1-D FSI model

The 1-D FSI model can be derived from the incompressible Navier–Stokes equations by presuming an axisymmetric tubu-
lar domain and by introducing hypotheses related to the behavior of the quantities across the cross sectional area and to the
flow regime [23] (see Fig. 2). The resulting governing equations for continuity of mass and momentum are
Fig. 2.
indicate
interpre
@A
@t
þ @Q
@z
¼ 0 in ð0; LÞ � ð0; T�;

@Q
@t
þ @

@z
aF

Q 2

A

 !
þ A

qF

@P
@z
þ jF

Q
A
¼ 0 in ð0; LÞ � ð0; T�;

A� A ¼ 0; Q � Q ¼ 0 in ð0; LÞ � f0g;

8>>>>>><
>>>>>>:

ð3Þ
where A and A are the current and initial cross-sectional areas, respectively, Q and Q are the current and initial volumetric
flow rates, respectively, and P is the average pressure. In addition, aF and jF are the Coriolis and friction coefficients, respec-
tively, whose definitions are given, e.g., in [17].

The fluid problem (3) is coupled with the 1-D structural model through the pressure-area constitutive relation. As in
[17,18] we take into account the elastic and viscoelastic responses of the vessel wall, such that
P ¼ wðAÞ ¼ Pext þ bS

ffiffiffiffiffi
A

A0

s
� 1

 !
þ cS

1
A
ffiffiffi
A
p @A

@t

� �
in ð0; LÞ � ð0; T�;
being Pext a reference external pressure, A0 the value of the vessel area corresponding to a steady state with P ¼ Pext, and
bS ¼
ffiffiffiffiffi
p
A0

r
hSES

1� m2
S

; cS ¼
TS tan /S

4
ffiffiffiffi
p
p hSES

1� m2
S

;

where hS is the wall thickness, TS the wave characteristic time, and /S the viscoelastic angle, which represents the phase
difference between flow rate and pressure waves in the frequency domain.

The 1-D FSI problem is closed by proper boundary conditions on both sides of the 1-D domain. As in the 3-D case, these
conditions can be either given data or quantities determined by solving the interface problem with the surrounding models.
Finally, the 1-D FSI problem is solved by using an operator splitting technique based on an explicit second order Taylor–
Galerkin discretization, where the solution algorithm is split into two steps where the first one computes the result of a
purely elastic problem, while the second one provides a viscoelastic correction. The spatial discretization is accomplished
using P1 finite elements. For more details see [17].

3. Interface problem

In Section 2 we have introduced two FSI models characterized by different geometrical dimensions and governed by dif-
ferent kinds of partial differential equations, which in turn require different numerical methods to compute the solution. As
r

z

(a)

L
ΓL ΓR

(b)

Scheme of the 1-D FSI model. (a) The vessel is assumed to be a straight cylinder with a circular cross-section: the red (dashed) and black (solid) lines
the reference and current configurations, respectively. (b) The resulting 1-D model is a straight line with two boundary interfaces. (For

tation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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in previous works dealing with heterogeneous models, the coupling between them is set by imposing the conservation of
averaged/integrated quantities over the interfaces, removing any dependency from the geometrical nature and the mathe-
matical formulation of each model. More precisely, let us consider a general network of heterogeneous models connected by
C coupling nodes. Following [24], at each c-th coupling node we impose a set of interface equations for the fluid part of the
problem (see Fig. 3). Being vc the local vector of unknowns, the corresponding local residual form at the c-th coupling node is
Rcðvc; �Þ ¼ 0; ð4Þ
where c ¼ 1; . . . ;C, while the dot in the round parentheses expresses a possible dependence of the local residual on non-local
unknowns, i.e., quantities defined at other coupling nodes of the underlying models.

Let vG ¼ ðvT
1 ;v

T
2 ; . . . ;vT

C Þ
T be the global vector of unknowns; more generally, in the following we use the subscript G to

refer to quantities of the global interface problem. The solution of the global coupled problem is addressed by using a non-
linear Richardson strategy
vkþ1
G ¼ vk

G þ dvk
G;
until convergence within a suitable tolerance has been achieved. Being
RGðvGÞ ¼ ðR1ðv1; �Þ
T
;R2ðv2; �Þ

T
; . . . ;RCðvC; �Þ

TÞT;
the global residuals vector of the interface problem, the update dvk
G is computed by using either a Newton or an inexact-

Newton method by solving
J Gðvk
GÞdvk

G ¼ �RGðvk
GÞ: ð5Þ
In case the Newton method is used to solve (5), the Jacobian matrix of the global interface problem is given by the derivative
of the residuals vector with respect to the coupling unknowns, i.e.,
J GðvGÞ ¼
@RGðvGÞ
@vG

: ð6Þ
In addition, in view of the results obtained in [18,25,26] we also consider the Broyden method for the update at each non-
linear Richardson iteration, instead of recomputing the exact Jacobian matrix. In [24] other simpler schemes, i.e., the fixed-
point and the Aitken methods, have been tested over different benchmark examples leading to poorly convergent or even
divergent results; for this reason these methods have not been considered in the current work.

In the following sections we detail the expression of the coupling equations behind (4). In particular, first we recall from
[18] the set of equations for the imposition of the conservation of mass and the continuity of the mean normal stress. Then,
we reformulate the interface problem in order to substitute the continuity of mean normal stress by the continuity of mean
total normal stress. Finally, we extend both approaches to account for the continuity of the vessel area.

Before proceeding we remark that all the methodology presented here is general and holds not only for the two models
presented in Section 2, but also for any other FSI formulation characterized, for example, by a nonlinear structure or higher
order space and time discretizations. Anyway, regarding the notation, note that each 3-D FSI model has an arbitrary number
of coupling interfaces nC

FS, while the 1-D FSI model has trivially two coupling interfaces, as shown in Fig. 4.
1

2
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Fig. 3. Generic configuration for the c-th coupling between I c dimensionally-heterogeneous models.
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3.1. Continuity of mean normal stress

A first set of interface equations can be obtained by ensuring the conservation of the mass and the continuity of the mean
normal stress at the coupling nodes. This can be done by directly employing the boundary quantities of the fluid part of the
problem, which are the volumetric flow rate Q and the averaged normal component of the traction vector S, hereafter re-
ferred to as the coupling flow and the coupling stress, respectively. On the j-th coupling interface of the 3-D FSI model these
quantities are computed as
Q3-D
j ¼

Z
Ct

F;j

uF � nF dC; S3-D
j ¼ 1

jCt
F;jj

Z
Ct

F;j

ðrF � nFÞ � nF dC;
where we assume that each boundary surface Ct
F;j, j ¼ 1; . . . ;nC

FS, is planar and equipped with an outward normal vector nF. In
addition, since for modeling reasons we assume that at the boundary interfaces the flow is fully developed and orthogonal to
the plane, the 3-D fluid problem is closed by imposing ðrF � nFÞ � s1F ¼ 0 and ðrF � nFÞ � s2F ¼ 0 on Ct

F;j, j ¼ 1; . . . ; nC
FS, where s1F

and s2F are the two tangential directions. In addition, we assume that the normal stress ðrF � nFÞ � nF is constant over the
boundaries, i.e., S3-D

j ¼ ðrF � nFÞ � nF. Regarding the two coupling interfaces of the 1-D FSI model we have
Q1-D
L ¼ �Q L; S1-D

L ¼ �PL; on CL;

Q1-D
R ¼ QR; S1-D

R ¼ �PR; on CR:
where the subscripts L and R stand for left and right quantities, respectively.

3.1.1. Interface equations
We denote by LS the set of coupling nodes where the continuity of mean normal stress is imposed; following [18] for

c 2 LS the interface equations read
XI c

i¼1

Qc;i ¼ 0;

Sc;1 � Sc;i ¼ 0; i ¼ 2; . . . ; I c;

8>><
>>: ð7Þ
where I c is the local number of connected interfaces, c ¼ 1; . . . ; C. The set of Eqs. (7), together with the nonlinear Richard-
son strategy used to solve the interface problem, are independent from the boundary data type to be imposed at each
coupling interface of the different models. In other words, we can set up each subproblem with different combinations
of boundary data over the coupling interfaces. Among the several possible combinations, in [24, Section 2.5] three signif-
icant cases are addressed. Here we generalize that approach writing a single residual form that holds in all the possible
cases, i.e.,
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Rcðvc; �Þ ¼

XnQc
i¼1

Qc;i þ
XI c

i¼nQc þ1

Qc;iðSc; �Þ

Sc;1ðQc;1; �Þ � Sc

Sc;2ðQc;2; �Þ � Sc

..

.

Sc;nQc
ðQc;nQc

; �Þ � Sc

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
; for c 2 LS ; ð8Þ
being Qc;ið�; �Þ and Sc;ið�; �Þ two boundary operators that given a set of boundary conditions return the coupling flow and the
coupling stress, respectively, at the i-th coupling interface of the c-th coupling node, while nQc is the number of interfaces
where a flow rate boundary datum is imposed, 0 6 nQc 6 I c; more precisely, we use the convention that among the I c local
coupling interfaces, the first nQc take coupling flow boundary data, while the last I c � nQc get coupling stress boundary data. In
view of this, the size Lc of the unknowns vector vc is equal to nQc þ 1, such that
vc ¼ ðQc;1;Qc;2; . . . ;Qc;nQc
;ScÞT; for c 2 LS :
In particular, if coupling stress boundary data are imposed on all the interfaces (i.e., nQc ¼ 0), the local node has just one asso-
ciated unknown (the local coupling stress Sc), while, in the dual case (coupling flow boundary data imposed on all the inter-
faces, i.e., nQc ¼ I c), the local number of unknowns for that node is I c þ 1. Regarding the other terms in (8), we remark that
the boundary operators Qc;iðSc; �Þ and Sc;iðQc;i; �Þ are global, as they may depend also on non-local coupling quantities, i.e.,
unknowns introduced at other coupling nodes; again, this dependence is indicated by the dot in the round parentheses.

The first equation in (8) ensures the conservation of mass at the c-th node. In case nQc ¼ 0, the continuity of the mean nor-
mal stress is satisfied implicitly by the fact that the same coupling stress Sc (which is the only local unknown, i.e., vc ¼ Sc) is
imposed on all the interfaces of the c-th node. In case nQc > 0, on the interfaces where flow rate boundary data are imposed,
the continuity of the mean normal stress is enforced explicitly through a relation of the form:
Sc;iðQc;i; �Þ � Sc ¼ 0; i ¼ 1; . . . ;nQc .

Remark 1. In case nQc ¼ I c , i.e., coupling flow imposed on all the interfaces, the residual form can be reduced to have just I c

unknowns:
Rcðvc; �Þ ¼

XI c

i¼1

Qc;i

Sc;2ðQc;2; �Þ � Sc;1ðQc;1; �Þ
..
.

Sc;Ic ðQc;I c ; �Þ � Sc;1ðQc;1; �Þ

0
BBBBBBB@

1
CCCCCCCA
; for c 2 LS ;
being
vc ¼ ðQc;1;Qc;2; . . . ;Qc;I c Þ
T
; for c 2 LS ;
where the unknown Sc has been dropped since the continuity of mean normal stress is now enforced explicitly on all the
interface through a relation of the form: Sc;iðQc;i; �Þ � Sc;1ðQc;1; �Þ ¼ 0; i ¼ 1; . . . ; I c .
Remark 2. Note that, independently of the value of nQc and, consequently, from the chosen repartition of boundaries where
coupling flow and coupling stress boundary data are applied, the solution of the problem is the same. In fact, the general
form of the local residuals vector is derived from the set of interface equations without any approximation. Nevertheless,
in case of rigid wall models (and incompressible flow regimes), e.g., 3-D Navier–Stokes equations, the imposition of flow rate
boundary data cannot be used everywhere, since the incompressibility constraint is not fulfilled in the iterative process that
leads to the solution of the system. In this case, to guarantee the well-posedness of the subproblems, the imposition of the
flow rate on all boundaries of the same model must be avoided.
3.1.2. Jacobian entries computation
To solve the interface problem with the Newton method we have to compute the partial derivatives of the boundary oper-

ators corresponding to the different Jacobian entries, which are subsequently used to fill the different blocks of Jacobian ma-
trix (6). The assembling procedure of the Jacobian matrix and the detailed description of the diagonal and off-diagonal blocks
is extensively described in [27, Chapter 3]. Here, we mainly focus on the computation of the Jacobian entries: besides the
constant values, there are four possible entries types, i.e.,
@Qc1 ;j1 ðvc1
; �Þ

@Qc2 ;j2

;
@Qc1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

;
@Sc1 ;j1 ðvc1

; �Þ
@Qc2 ;j2

;
@Sc1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

; ð9Þ
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where, for the sake of simplicity, since the boundary interfaces of the other models are not relevant at this level, we refer to
the model boundary interfaces numeration, i.e., j ¼ 1; . . . ; nC

FS or j ¼ CL;CR, rather than to the node boundary interfaces one,
i.e., i ¼ 1; . . . ; I c . More precisely, the indices j1 and j2, which are associated to the coupling nodes c1 and c2, respectively, refer
to two boundary interfaces of the same model. Note that in case c1 � c2 the two boundary interfaces coincide and the first
and last entries in (9) are equal to one.

These four Jacobian entry types are computed either solving the tangent problem associated to the coupled models, or by
finite difference approximations. For the two FSI models described in Section 2, a detailed description of these approaches is
provided in [17,18,27].

3.2. Continuity of mean total normal stress

The second set of interface equations we consider ensures the conservation of the mass and the continuity of the mean
total normal stress at the coupling nodes. Let us define the averaged normal component of the total stress on the boundary
interfaces as T , hereafter referred to as the coupling total stress. This quantity can be computed as the sum of the coupling
stress and the dynamic contribution associated to the kinetic energy of the flow, which is a model-dependent quantity. More
precisely, on the j-th coupling interface of the 3-D FSI model it is given by
T 3-D
j ¼ S3-D

j � 1
2
qF

1
jCt

F;jj

Z
Ct

F;j

ðuF � nFÞ2 dC;
while on both sides of the 1-D FSI model it is computed as
T 1-D
L ¼ S1-D

L � 1
2
qFaF

Q1-D
L

A

 !2

; on CL;

T 1-D
R ¼ S1-D

R � 1
2
qFaF

Q1-D
R

A

 !2

; on CR:
3.2.1. Interface equations
To impose the continuity of the mean total normal stress we replace the coupling stress equations in (7) with an equiv-

alent set of equations for the coupling total stress. We denote by LT the set of coupling nodes where the continuity of mean
total normal stress is imposed; for c 2 LT the coupling conditions read
XI c

i¼1

Qc;i ¼ 0;

T c;1 � T c;i ¼ 0; i ¼ 2; . . . ; I c:

8><
>: ð10Þ
As with (7), system (10) does not depend on the imposed boundary data at each coupling interface of the models. However,
in view of the aforementioned drawbacks associated to the imposition of the coupling total stress on the coupling interfaces,
we consider only flow rate and mean normal stress as possible boundary data to set up the interface problem. The resulting
generalized residual form reads
Rcðvc; �Þ ¼

XnQc
i¼1

Qc;i þ
XI c

i¼nQc þ1

Qc;iðSc;i; �Þ

T c;1ðQc;1; �Þ � T c

T c;2ðQc;2; �Þ � T c

..

.

T c;nQc
ðQc;nQc

; �Þ � T c

T c;nQc þ1ðSc;nQc þ1; �Þ � T c

T c;nQc þ2ðSc;nQc þ2; �Þ � T c

..

.

T c;I c ðSc;I c ; �Þ � T c

0
BBBBBBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCCCCCA

; for c 2 LT ; ð11Þ
where T c;ið�; �Þ is a boundary operator that given a set of boundary conditions returns the coupling total stress at the i-th
coupling interface of the c-th coupling node. The size Lc of the unknowns vector vc does not depend on the chosen set of
interface quantities and is always equal to I c þ 1, such that
vc ¼ ðQc;1;Qc;2; . . . ;Qc;nQc
;Sc;nQc þ1;Sc;nQc þ2; . . . ;Sc;Ic ; T cÞT; for c 2 LT :
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Therefore, compared to the previous case, if coupling stress boundary data are imposed on all the interfaces (i.e., nQc ¼ 0), the
local interface problem has I c additional unknowns, while, in the dual case (coupling flow boundary data imposed on all the
interfaces, i.e., nQc ¼ I c), the local number of unknowns is the same as before.

As in the set of coupling conditions introduced in Section 3.1, the first equation in (11) ensures the conservation of mass.
The other I c equations enforce the continuity of the mean total normal stress through an explicit relation of the form:
T c;ið�; �Þ � T c ¼ 0, i ¼ 1; . . . ; I c , where we remark that the first (local to that node) argument in the round parenthesis can
be either a coupling flow or a coupling stress, depending on the type of boundary condition imposed on the i-th interface.

Remark 3. Similarly to what has been done in Remark 1 for the continuity of the mean normal stress, also in this case it is
possible to reduce the size of the residual form when nQc ¼ I c , such that
Rcðvc; �Þ ¼

XI c

i¼1

Qc;i

T c;2ðQc;2; �Þ � T c;1ðQc;1; �Þ
..
.

T c;Ic ðQc;I c ; �Þ � T c;1ðQc;1; �Þ

0
BBBBBBB@

1
CCCCCCCA
; for c 2 LT ;
being
vc ¼ ðQc;1;Qc;2; . . . ;Qc;I c Þ
T
; for c 2 LT :
Remark 4. In case the mean total normal stress is considered as boundary data for the models, the residual form can be
rewritten as
Rcðvc; �Þ ¼

XnQc
i¼1

Qc;i þ
XIc

i¼nQc þ1

Qc;iðT c; �Þ

T c;1ðQc;1; �Þ � T c

T c;2ðQc;2; �Þ � T c

..

.

T c;nQc
ðQc;nQc

; �Þ � T c

0
BBBBBBBBBB@

1
CCCCCCCCCCA
; for c 2 LT ;
being
vc ¼ ðQc;1;Qc;2; . . . ;Qc;nQc
; T cÞT; for c 2 LT :
The resulting residuals and unknowns vectors are similar to those described in Section 3.1; indeed, the only difference be-
tween the two cases is that the coupling stress unknown and operators are replaced with those corresponding to the cou-
pling total stress.
3.2.2. Jacobian entries computation
As done in Section 3.1.2 for the continuity of the mean normal stress, here we provide some details about the computa-

tion of the Jacobian entries when imposing the continuity of the mean total normal stress. More precisely, deriving (11) with
respect to the available coupling quantities, we get four different entry types, i.e.,
@Qc1 ;j1 ðvc1
; �Þ

@Qc2 ;j2

;
@Qc1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

;
@T c1 ;j1 ðvc1

; �Þ
@Qc2 ;j2

;
@T c1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

; ð12Þ
where the indices follow the same conventions discussed in Section 3.1.2. The first two entries in (12) are computed as de-
scribed in Section 3.1.2. Regarding the other two contributions, their computation depends on the type of FSI model to which
they are associated. More precisely for the 3-D FSI model they are computed as
@T c1 ;j1 ðvc1
; �Þ

@Qc2 ;j2

¼ HQ þK;
@T c1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

¼ HS þK;
where
HQ ¼
@Sc1 ;j1 ðvc1

; �Þ
@Qc2 ;j2

if j1 2 !Q;

0 otherwise;

8><
>: HS ¼

@Sc1 ;j1 ðvc1
; �Þ

@Sc2 ;j2

if j1 2 !Q and c1 – c2;

1 if j1 2 !S and c1 � c2;

0 otherwise;

8>>><
>>>:
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being !Q and !S the local lists of indices associated to the boundary interfaces of Xt
F where coupling flow and coupling stress

boundary data, respectively, are applied, while the kinetic term derivative K is
K ¼ 1
2
qF

1

jCt
F;j1
j2

Z
Ct

F;j1

$C � ddF dC

 ! Z
Ct

F;j1

ðuF � nFÞ2 dC

 !

� 1
2
qF

1
jCt

F;j1
j

Z
Ct

F;j1

2ðuF � nFÞðduF � nFÞdCþ
Z

Ct
F;j1

ð$C � ddFÞðuF � nFÞ2 dC

 !
; ð13Þ
being $C� the surface divergence operator written on Ct
F;j1

. We remark that all the quantities defined in (13) are obtained by
solving the tangent problems of the corresponding models (see [18, Section 3.3.1]). Hence, the computational cost of the
Jacobian entries for the two sets of Eqs. (7) and (10) is the same.

Regarding the 1-D FSI model we have
@T c1 ;j1 ðQc1 ;j1 Þ
@Qc1 ;j1

¼ @Sc1 ;j1 ðQc1 ;j1 Þ
@Qc1 ;j1

� qFaF
Qc1 ;j1

A2
c1 ;j1
ðQc1 ;j1 Þ

�
Q2

c1 ;j1

A3
c1 ;j1
ðQc1 ;j1 Þ

@Ac1 ;j1 ðQc1 ;j1 Þ
@Qc1 ;j1

 !
;

@T c1 ;j1 ðSc1 ;j1 Þ
@Sc1 ;j1

¼ 1� qFaF
Qc1 ;j1 ðSc1 ;j1 Þ
A2

c1 ;j1
ðSc1 ;j1 Þ

@Qc1 ;j1 ðSc1 ;j1 Þ
@Sc1 ;j1

�
Q2

c1 ;j1
ðSc1 ;j1 Þ

A3
c1 ;j1
ðSc1 ;j1 Þ

@Ac1 ;j1 ðSc1 ;j1 Þ
@Sc1 ;j1

 !
;

ð14Þ
where we introduced the boundary operator Acð�Þ which expresses the dependence of the local area on the given boundary
data at the c-th node. Note that in (14) we do not consider the case c1 – c2, since due to the hyperbolic nature of the problem
we can assume that a perturbation on the boundary condition imposed on one side of the 1-D segment does not have any
effect on the other side during a sufficiently small period of time (for instance, a single time step [17, Section 3.3]).

The assembling procedure of the Jacobian matrix and the detailed description of the diagonal and off-diagonal blocks is
extensively described in [27, Chapter 3] and is not reported here.

3.3. Continuity of the vessel area

In a geometrical multiscale setting, the interfaces of 3-D FSI models are generally connected with those of reduced mod-
els, such as 1-D FSI models. In this case, the boundary data for the 3-D solid ring can be automatically determined by writing
an additional relation at the coupling interfaces of the two heterogeneous models to impose the continuity of the vessel area.
This is done by using the strategy described in [18, Section 4.3], which is here extended to cover the case in which the con-
tinuity of the mean total normal stress is also enforced.

Remark 5. The value of the boundary area on the j-th solid ring of the 3-D FSI model is imposed through the following set of
boundary conditions
dS � nS ¼ 0 on C0
I \ C0

S;j � ð0; T�;
½dS �Wt

j ðx0 � x0
G;jÞ� � s1S ¼ 0 on C0

I \ C0
S;j � ð0; T�;

½dS �Wt
j ðx0 � x0

G;jÞ� � s2S ¼ 0 on C0
I \ C0

S;j � ð0; T�;

8>><
>>:
where the radial scale factor is defined as
Wt
j ¼

ffiffiffiffiffi
At

j

A0
j

vuut � 1;
being A0
j and x0

G;j the reference area of the j-th coupling interface of the 3-D fluid problem and its geometric center, respec-
tively. This approach preserves the original shape of each 3-D solid ring, whose size is scaled by the value of the given bound-
ary area At

j [18].
Let us define the area of the fluid section as A, hereafter referred to as the coupling area. On the j-th coupling interface of

the 3-D FSI model this quantity is computed as
A3-D
j ¼ jCt

F;jj:
Regarding the two coupling interfaces of the 1-D FSI model we have
A1-D
L ¼ A1-D

L ; on CL;

A1-D
R ¼ A1-D

R ; on CR:



Table 1
Detailed form of the local residuals vector Rcðvc ; �Þ when the continuity of the vessel area is imposed between
a 1-D and a 3-D FSI model. For each residuals vector the corresponding unknowns vector is given in Table 2.

nQc c 2 LS \ LA c 2 LT \ LA

0 Q1-D
c;1 ðSc ; �Þ þ Q3-D

c;2 ðSc ;Ac ; �Þ
A1-D

c;1 ðSc ; �Þ � Ac

 !
Q1-D

c;1 ðSc;1; �Þ þ Q3-D
c;2 ðSc;2;Ac ; �Þ

T 1-D
c;1 ðSc;1; �Þ � T c

T 3-D
c;2 ðSc;2;Ac ; �Þ � T c

A1-D
c;1 ðSc;1; �Þ � Ac

0
BBBB@

1
CCCCA

1 Qc;1 þ Q3-D
c;2 ðSc ;Ac ; �Þ

S1-D
c;1 ðQc;1; �Þ � Sc

A1-D
c;1 ðQc;1; �Þ � Ac

0
B@

1
CA Qc;1 þ Q3-D

c;2 ðSc;2;Ac ; �Þ
T 1-D

c;1 ðQc;1; �Þ � T c

T 3-D
c;2 ðSc;2;Ac ; �Þ � T c

A1-D
c;1 ðQc;1; �Þ � Ac

0
BBBB@

1
CCCCA

2 Qc;1 þ Qc;2

S1-D
c;1 ðQc;1; �Þ � Sc

S3-D
c;2 ðQc;2;Ac ; �Þ � Sc

A1-D
c;1 ðQc;1; �Þ � Ac

0
BBB@

1
CCCA

Qc;1 þ Qc;2

T 1-D
c;1 ðQc;1; �Þ � T c

T 3-D
c;2 ðQc;2;Ac ; �Þ � T c

A1-D
c;1 ðQc;1; �Þ � Ac

0
BBB@

1
CCCA

Table 2
Detailed form of the local unknowns vector vc when the continuity of the vessel area is imposed between a 1-D
and a 3-D FSI model. For each unknowns vector the corresponding residuals vector is given in Table 1.

nQc c 2 LS \ LA c 2 LT \ LA

0 ðSc ;AcÞT ðSc;1;Sc;2; T c ;AcÞT

1 ðQc;1;Sc ;AcÞT ðQc;1;Sc;2; T c ;AcÞT

2 ðQc;1;Qc;2;Sc ;AcÞT ðQc;1;Qc;2; T c ;AcÞT
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3.3.1. Interface equations
Let LA be the set of coupling nodes where the continuity of the area between the two heterogeneous FSI models is im-

posed. For c 2 LS \ LA the set of Eqs. (7) becomes
Q1-D
c;1 þQ

3-D
c;2 ¼ 0;

S1-D
c;1 � S

3-D
c;2 ¼ 0;

A1-D
c;1 �A

3-D
c;2 ¼ 0;

8>><
>>: ð15Þ
while, for c 2 LT \ LA, the set of Eqs. (10) reads
Q1-D
c;1 þQ

3-D
c;2 ¼ 0;

T 1-D
c;1 � T

3-D
c;2 ¼ 0;

A1-D
c;1 �A

3-D
c;2 ¼ 0:

8>><
>>: ð16Þ
For the sake of clarity, in both cases the model to which each quantity belongs is indicated in the superscript. Indeed, we
remark that (15) and (16) are written for the specific case of a 3-D FSI interface coupled with a single 1-D FSI model. In
the case of a generalization to two or more 1-D models connected to the same 3-D FSI interface, the continuity of the area
does not make sense, and for this reason we do not address this case. In addition, as described in [17], the 1-D FSI problem
needs just one physical boundary condition on each side of the segment; by imposing either the coupling flow or the cou-
pling stress, the value of the coupling area of the 1-D segment is already determined by the solution of the 1-D problem. In
view of these considerations, for each coupling approach there are only three possible residual forms, depending on the value
of nQc , as summarized in Table 1; the corresponding local vectors of unknowns are detailed in Table 2.

3.3.2. Jacobian entries computation
Deriving the residuals in Table 1 with respect to the available coupling quantities, we get eleven different entry types, i.e.,
@Qc1 ;j1 ðvc1
; �Þ

@Qc2 ;j2

;
@Sc1 ;j1 ðvc1

; �Þ
@Qc2 ;j2

;
@T c1 ;j1 ðvc1

; �Þ
@Qc2 ;j2

;
@A1-D

c1 ;j1
ðvc1

; �Þ
@Qc2 ;j2

;

@Qc1 ;j1 ðvc1
; �Þ

@Sc2 ;j2

;
@Sc1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

;
@T c1 ;j1 ðvc1

; �Þ
@Sc2 ;j2

;
@A1-D

c1 ;j1
ðvc1

; �Þ
@Sc2 ;j2

;

@Q3-D
c1 ;j1
ðvc1

; �Þ
@Ac2 ;j2

;
@S3-D

c1 ;j1
ðvc1

; �Þ
@Ac2 ;j2

;
@T 3-D

c1 ;j1
ðvc1

; �Þ
@Ac2 ;j2

;

ð17Þ
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where the indices follow the same conventions used in Sections 3.1.2 and 3.2.2. The first three entries in the first two lines
have already been discussed previously, while all the other entries appear here for the first time, since they are introduced by
the presence of the coupling area (and its boundary operator) in the residual forms. More precisely, the last entries in the first
two lines represent variations of the boundary area of the 1-D FSI model (as highlighted by the superscripts) due to varia-
tions of other coupling quantities (specifically, coupling flow and coupling stress), while the three entries in the last line rep-
resent variations of quantities defined in the 3-D FSI model due to a variation of the coupling area.

The computation of the last entries in the first two lines has already been addressed in [17,27], while that of the three
entries in the last line can be achieved by using the procedure described in [18,27], where the mean total normal stress deriv-
ative is given by
Fig. 5.
numbe
blue (0
@T c1 ;j1 ðvc1
; �Þ

@Ac2 ;j2

¼ HA þK;
with
HA ¼
@Sc1 ;j1 ðvc1

; �Þ
@Ac2 ;j2

if j1 2 !Q;

0 otherwise:

8><
>:
The assembling procedure of the Jacobian matrix and the detailed description of the diagonal and off-diagonal blocks is
extensively described in [27, Chapter 3] and is not reported here.
4. Results

In this section we extend results presented in [18,19,24], where the continuity of the mean normal stress has been already
extensively used, by using the continuity of the mean total normal stress to solve the same problems. The goal is to compare
the results of the two approaches in terms of physics as well as from the point of view of the convergence properties of the
analyzed algorithms. Moreover, we also consider situations in which the Jacobian matrix of the mean normal stress case is
used to perform inexact-Newton iterations when enforcing the continuity of the mean total normal stress at the boundary
interfaces. We refer to this strategy as the ‘‘approximated’’ case, where it is important to point out that the approximation is
introduced at the level of the Jacobian matrix in the continuum problem. This approximation amounts to neglect the partial
derivatives of the kinetic term and, evidently, does not affect the physics of the solution.

The layout of this section is the following: in Section 4.1 we consider a 3-D steady state benchmark case, with the aim to
test the proposed methodology in a simple problem and for several Reynolds numbers. Then, in Section 4.2 we address the
case of the coupling of two dimensionally-heterogeneous FSI pipes, comparing the amplitude of numerical reflections at the
interface of the problem. Finally, in Section 4.3 we perform a numerical comparison on a realistic cardiovascular example,
where a 3-D FSI model of the aorta is coupled with a network of 1-D FSI elements modeling the systemic circulation.

All the simulations presented here have been performed on one or more cluster nodes with two Intel� Xeon� processors
X5550 (quad core, 8 MB cache, 2.66 GHz CPU).
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Configuration and velocity magnitude of seven 3-D rigid wall pipes in a steady state regime. (a) Nodes and interfaces numeration: black and white
rs indicate the coupling nodes and the local numeration of the boundary interfaces, respectively. (b) Velocity magnitude: the color bar ranges from
) to red (400). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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4.1. Seven 3-D rigid wall pipes in a steady state regime

The first example we consider is a 3-D rigid wall steady state problem (see [24, Section 4.1]), whose domain consists in a set
of seven cylinders connected by four coupling interfaces, as shown in Fig. 5(a). All the cylinders have the same geometrical
dimensions (diameter 0.08; length 0.4) and are discretized by the same mesh (3,886,200 tetrahedral elements and 670,464
vertices, with an average space discretizations of 0.00186). A unitary flow rate is imposed on the inflow on the leftmost side,
while a homogeneous Neumann boundary condition is applied on the rightmost outflow. The value of the fluid density has
c ∈ ∀c; Re = 1; Color range: 0 0 – 1 6 · 107... ..

..

..

c ∈ ∀c; Re = 1; Color range: 0 0 – 1 6 · 107.

c ∈ ∀c; Re = 1000; Color range: 0.0 – 1.6 · 104. c ∈ ∀c; Re = 1000; Color range: 0 0 – 3 5 · 104.

c ∈ ∀c; Re = 10000; Color range: 0.0 – 1.6 · 103. c ∈ ∀c; Re = 10000; Color range: 0 0 – 2 6 · 104.

Fig. 6. Pressure field of seven 3-D rigid wall pipes in a steady state regime, as a function of the chosen set of interface equations and of the Reynolds
number. The color bar range (blue to red) is indicated in the caption of each subfigure. Note that in the case of continuity of the mean total normal stress the
pressure is far from being continuous for high Reynolds numbers. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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been set equal to one, while the dynamic viscosity is chosen in order to obtain the desired Reynolds number. All the quantities
in the problem are dimensionless.

The resulting velocity magnitude and flow distribution are shown in Fig. 5(b). Note that the computed flow rate is exact up
to the imposed tolerance for the linear solver. Regarding the pressure field and the stress boundary quantities, the solution
changes as a function of the chosen set of interface equations and of the Reynolds number, as shown in Figs. 6, 7, Tables 3,
and 4.
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Fig. 7. Pressure field along the three central pipes of the seven cylinder topology in Fig. 5(a). (a) Re = 1. (b) Re = 1000. (c) Re = 10,000.

Table 3
Coupling stress Sc;i at the coupling interfaces of the seven 3-D rigid wall pipes in a steady state regime, as a function of the Reynolds number (Re) and for
different sets of interface equations.

c i Re = 1 Re = 1000 Re = 10,000

c 2 LS c 2 LT c 2 LS c 2 LT c 2 LS c 2 LT

1 1 �9,506,443 �9,525,744 �9506 �29,333 �951 �20,783
1 2 �9,506,443 �9,505,919 �9506 �9506 �951 �951
1 3, 4 �9,506,443 �9,530,701 �9506 �34,289 �951 �25,732

2 1 �6,337,759 �6,337,368 �6338 �6338 �634 �634
2 2 �6,337,759 �6,357,194 �6338 �26,164 �634 �20,467
2 3, 4 �6,337,759 �6,362,151 �6338 �31,120 �634 �25,415

3, 4 1 �7,922,168 �7,946,426 �7922 �32,704 �792 �25,573
3, 4 2 �7,922,168 �7,946,426 �7922 �32,704 �792 �25,573

Table 4
Coupling total stress T c;i at the coupling interfaces of the seven 3-D rigid wall pipes in a steady state regime, as a function of the Reynolds number (Re) and for
different sets of interface equations.

c i Re = 1 Re = 1000 Re = 10,000

c 2 LS c 2 LT c 2 LS c 2 LT c 2 LS c 2 LT

1 1 �9,512,974 �9,532,353 �16,115 �35,941 �7559 �27,386
1 2 �9,533,223 �9,532,353 �35,940 �35,941 �27,384 �27,386
1 3, 4 �9,508,096 �9,532,353 �11,159 �35,941 �2602 �27,386

2 1 �6,363,803 �6,363,803 �32,772 �32,772 �27,069 �27,069
2 2 �6,344,424 �6,363,803 �12,946 �32,772 �7242 �27,069
2 3, 4 �6,339,412 �6,363,803 �7989 �32,772 �2286 �27,069

3, 4 1 �7,923,820 �7,948,078 �9574 �34,356 �2444 �27,227
3, 4 2 �7,923,687 �7,948,078 �9574 �34,356 �2444 �27,227

Table 5
Nonlinear Richardson iterations for the solution of the benchmark problem as a function of the Reynolds number and for different sets of interface equations.
For the case of the continuity of mean total normal stress, the results obtained by both considering or neglecting the kinetic contribution in the partial
derivatives of the Jacobian matrix are both presented.

Reynolds number 1 500 1000 5000 10,000

Mean normal stress 1 1 1 1 1
Mean total normal stress 2 3 3 3 3
Mean total normal stress (approximated) 3 4 4 5 8
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As expected, for low Reynolds numbers both solutions are very close, since the kinetic term is nearly negligible with re-
spect to the mean normal stress. On the contrary, for high Reynolds numbers the kinetic term dominates, such that the con-
tinuity of the mean normal stress cannot be considered a good approximation of the continuity of the mean total normal
stress any longer.

The number of iterations required to obtain the solution of the steady state problem for the different conditions is sum-
marized in Table 5. In the case of continuity of mean normal stress, the Newton method converges in one iteration, since the
interface equations and the fluid flow problem defined inside each pipe is linear. In contrast, when imposing the continuity
of the mean total normal stress, the number of iterations increases due to the nonlinearity in the interface problem intro-
duced by the kinetic term. However, this increase is bounded to one or two iterations; moreover, it does not show a signif-
icant dependence from the Reynolds number for the configuration considered here. We can also observe that if the
approximated Jacobian (from the system of equations involving the mean normal stress) is used when imposing the conti-
nuity of the mean total normal stress, a slower converge occurs for Reynolds numbers above 1000, when the kinetic term
dominates over the hydrostatic pressure term at coupling interfaces.

Finally, the relative CPU time is presented in Table 6. From the first row, which is associated to the continuity of the mean
normal stress, we can observe that the CPU time reduces increasing the Reynolds number. This is due to the cost of the eval-
uation of the residual, which in turn is associated to the cost of solving the linear system for which our preconditioner be-
haves better in case of low viscosity values. The same behavior is visible in the last two rows, which are associated to the
imposition of the continuity of the mean total normal stress. There, however, the cost of the additional iterations required
to solve the interface problem inverts the trend for high Reynolds numbers.
Table 6
Relative CPU time required for the solution of the benchmark problem as a function of the Reynolds number and for different sets of interface equations. For the
case of the continuity of mean total normal stress, the results obtained by either considering or neglecting the kinetic contribution in the partial derivatives of
the Jacobian matrix are both presented.

Reynolds number 1 500 1000 5000 10,000

Mean normal stress 1.00 0.67 0.61 0.58 0.55
Mean total normal stress 1.55 1.33 1.32 1.17 1.20
Mean total normal stress (approximated) 1.95 1.68 1.63 1.74 2.10

D-3D-1

(a)

1-D

(b)

Fig. 8. Schematic representation of the benchmark case. (a) The wave flow propagates from the 1-D FSI model to the 3-D FSI one. The length of each pipe is
equal to 3. (b) The reference case: a single 1-D FSI pipe of length 6.
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Fig. 9. Volumetric flow rate wave reflection at the coupling interfaces for different sets of interface equations. On the x-axis we represent the normalized
time, while on the y-axis we show the difference between the volumetric flow rate in the heterogeneous case and the one given by the reference case (see
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Continuity of the area at the coupling interfaces.



P.J. Blanco et al. / Journal of Computational Physics 251 (2013) 136–155 151
4.2. Wave reflection analysis in a series of heterogeneous FSI pipes

In this section we focus our analysis on the spurious backward wave reflections that might be generated at the coupling
interfaces between two dimensionally-heterogeneous pipes. Particularly, we consider a wave that propagates from a 1-D FSI
segment to a 3-D FSI pipe (see Fig. 8) and we extend the analysis presented in [18, Section 5] to the case in which the con-
tinuity of the mean total normal stress is imposed at the interface between these two pipes. On the leftmost inflow we im-
pose a single flow rate wave defined as
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where Tw ¼ 0:005 is the chosen wave period. On the rightmost outflow, a classical absorbing boundary condition is applied.
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Flow rate comparison, at the sixth heart beat, between the results obtained by imposing the continuity of the mean normal stress at all the coupling
ith respect to those given by enforcing the continuity of the mean total normal stress. The graphs refer to the eight interfaces of the 3-D aorta. The

the 3-D images represents the pressure field at the end-systole of the sixth heart beat (t ¼ 4:4 s), where the color bar ranges from blue (80,000 dyn/
red (165,000 dyn/cm2). Positioning of 1-D network elements is purely visual.
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The list of parameters and tolerances, as well as the 3-D fluid and solid mesh sizes used for the numerical simulations are
reported in [18, Section 5] and are not repeated here. We remark that, to be coherent with the results presented in [18], at
the solid ring interface of the 3-D pipe we impose three different interface conditions corresponding to the case of fixed ring,
free ring, and scaled ring (coupled area); see [18, Section 4] for more details about these three interface conditions.
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Fig. 11. Pressure and radial scale factor comparisons, at the sixth heart beat, between the results obtained by imposing the continuity of the mean normal
stress at all the coupling nodes, with respect to those given by enforcing the continuity of the mean total normal stress. The graphs refer to the most
significant coupling interfaces of the 3-D aorta (see Fig. 10).
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Fig. 12. Comparison, in terms of number of iterations, of different algorithms for the coupling of the geometrical multiscale model at the first heart beat. (a)
Continuity of the mean normal stress imposed at all the interfaces. (b) Continuity of the mean total normal stress imposed at all the interfaces. Recall that
continuity of the mean normal stress is imposed at interfaces between 1-D and windkessel models.

Table 7
Relative CPU time required for the solution of the first heart beat of the full geometrical multiscale model.

Mean normal stress Mean total normal stress

Broyden Newton Broyden Newton Newton (approximated)

Relative CPU time per heart beat 1.00 5.41 1.51 5.77 20.44
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The comparison between the imposition of the continuity of the mean normal stress (see problem (7)), with that of the
mean total normal stress (see problem (10)) for a wave that propagates from a 1-D FSI segment to a 3-D FSI pipe (see [18,
Fig. 5.1]) is presented in Fig. 9. The same result (which for brevity is not reported here) holds in the inverted configuration
(wave propagation from a 3-D FSI pipe to a 1-D FSI segment, see [18, Fig. 5.5]).

The difference between the results computed with the two sets of interface equations is very small because, for the cho-
sen set of values of the parameters, the kinetic contribution to the composition of the mean total normal stress is almost
negligible. This is also characteristic in the flow regimes observed when studying blood circulation, as shown in the next
section.

Therefore, we can conclude that the imposition of the mean total normal stress does not affect the numerical reflections
that emerge at coupling interfaces of the problem. Regarding the convergence properties, we postpone our analysis to the
next section, where we study a problem characterized by several interfaces.
4.3. Geometrical multiscale modeling: 3-D FSI aorta coupled with 1-D FSI network

In this section we use one of the geometrical multiscale models presented in [19] to compare, in a realistic cardiovascular
setting, the results of the set of interface equations imposing the continuity of the mean normal stress, with those of the
interface equations prescribing the continuity of the mean total normal stress. Specifically, as benchmark we select the geo-
metrical multiscale model composed by assembling a large network of 1-D arteries (see [19, Section 3.1]) with a 3-D geom-
etry representing the aorta (see [19, Fig. 2(a)]). The full detailed description of the benchmark, the list of parameters and
tolerances, as well as the 3-D fluid and solid mesh sizes used for the numerical simulations are reported in the reference
work and are not repeated here. We just remark that, among the several sets of values for the elastic external tissues param-
eters presented in [19, Section 3.3.1], we select the one named EA

4 , while the viscoelastic ones are determined through the
empiric relation cS ¼ kS=10 [19].

In all the presented cases we impose the continuity of the vessel area at the interfaces between the 3-D geometries and
the 1-D arteries through either (15) or (16). Moreover, the continuity of the mean normal stress is always imposed at the
coupling nodes between the distal 1-D segments and the corresponding windkessel terminal models.

The results of the flow rate waveform comparison at all the coupling interfaces between the 1-D network and the 3-D
aorta are summarized in Fig. 10. As expected, the results of the two sets of interface equations almost coincide. This behavior
can be justified by the fact that the kinetic contribution to the mean total normal stress is negligible compared to the one
given by the pressure; in particular, in a physiological regime, the ratio between the pressure and the kinetic term is around
one hundred. Regarding the behavior of the pressure and the radial scale factor, which are summarized in Fig. 11, similar
comments hold.

Finally, in Fig. 12 we compare the number of iterations required by different algorithms for the solution of the global geo-
metrical multiscale problem, for both sets of interface equations. When imposing the continuity of the mean normal stress at
all the nodes of the problem we need an average of 2 iterations per time step to achieve convergence using the Newton
method, while this number increases to 2.8 when employing the Broyden method. In contrast, when imposing the continuity
of the mean total normal stress, the average number of iterations per time step increases to 2.26 and to 4.89 for the Newton
and Broyden methods, respectively. Therefore, we conclude that despite the physiological results obtained for the two sets of
interfaces equations are very similar, the imposition of the continuity of the mean total normal stress leads to an increase of
the computational cost of the problem, especially when using the Broyden method. Moreover, in the case where the Jacobian
matrix is approximated by neglecting the kinetic contribution, the performance of the Newton method strongly deteriorates,
requiring an average of 8.48 iterations per time step.

Notice that from the point of view of the computational cost, the Broyden method is still the cheapest one (see Table 7).
Indeed, it does not require the solution of the tangent problem associated to the 3-D FSI model (see [[18], Section 6] for an-
other quantitative example). In particular, we remark that to assemble the Jacobian matrix at each Newton iteration the
algorithm requires the solution of a 3-D tangent problem for each interface of a 3-D model: since the 3-D aorta considered
here has eight interfaces, the approximate number of tangent problems solved during each time step is 18, which entails a
significant computational cost.

The comparisons between the solutions obtained for the two different sets of interface equations inside the aorta, in
terms of 3-D velocity and pressure fields, have been omitted because the results practically coincide; this is a direct conse-
quence of, and can be concluded from, the indistinctness of results reported in Fig. 11.
5. Conclusions

In the present work a methodology to couple dimensionally-heterogeneous models in an iterative fashion by imposing
the continuity of the mean total normal stress at the interfaces has been proposed and tested. This has been carried out
by extending a geometrical multiscale framework in order to account for this new interface equation, while maintaining
robustness and flexibility in the existing algorithms. The salient feature of the proposed strategy is that it makes possible
to preserve the total energy at model interfaces while imposing Neumann boundary conditions in the classical Navier–Stokes
formulation of the 3-D FSI model.
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The new set of energy preserving interface equations has been tested over several examples and its results have been
compared with those provided by the original approach, which preserves the continuity of the mean normal stress. For both
strategies convergence properties of Newton and Broyden methods have been assessed for different flow regimes. It is con-
cluded that both, Newton and Broyden methods are robust alternatives to solve the associated system of interface equations,
while the former performs better in terms of iterations number and the latter performs better in terms of overall computa-
tional cost.

Moreover, it is worthwhile to highlight that the results obtained at flow regimes observed in the cardiovascular system by
using the continuity of the mean total normal stress are practically the same to those obtained when using the continuity of
the mean normal stress. Indeed, no unstable conditions caused by the lack of an energy boundedness theoretical result were
observed in the latter case, neither in the simulations reported here, nor in those conducted in our previous works and that
were not repeated here. This is important in practical applications because prescribing the continuity of the mean normal
stress is much simpler at the software level and implies less computational cost, as also demonstrated in the examples con-
ducted in this work.

In conclusion, we believe that continuity of mean normal stress can be safely used for most of the cardiovascular appli-
cations. Nonetheless, the presented coupling algorithm allows the user to decide whether to consider the continuity of the
mean total normal stress or the continuity of the mean normal stress, without having to be concerned with modifications of
features which are specific of the computational models.
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