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a b s t r a c t

We investigate the accuracy of the ellipsoidal-statistical Bhatnagar–Gross–Krook (ES-BGK)
kinetic model for planar force-driven Poiseuille flows. Our numerical simulations are
conducted using the deterministic discrete velocity method, for Knudsen numbers (Kn)
ranging from 0.05 to 10. While we provide numerically accurate data, our aim is to assess
the accuracy of the ES-BGK model for these flows. By comparing with data from the direct
simulation Monte Carlo (DSMC) method and the Boltzmann equation, the ES-BGK model is
found to be able to predict accurate velocity and temperature profiles in the slip flow
regime (0:01 < Kn 6 0:1), for both low-speed and high-speed flows. In the transition flow
regime (0:1 < Kn 6 10), however, the model does not quantitatively capture the viscous
heating effect.

� 2013 Elsevier Inc. All rights reserved.

1. Introduction

Research into non-equilibrium gas flows has been recently stimulated by the development of micro/nano-technologies,
and modern material processing techniques [1,2]. The key characteristic of non-equilibrium gas flows is that the linear con-
stitutive relations become invalid and the Navier–Stokes–Fourier (NSF) model fails. To qualitatively assess the level of non-
equilibrium in the local flowfield, a commonly-used criterion is the Knudsen number (Kn), which is defined as the ratio of the
gas mean free path to an appropriate characteristic length. The NSF equations are usually considered to be valid in the hydro-
dynamic flow regime where Kn 6 0:01. This validity may be extended to the slip flow regime, where 0:01 < Kn 6 0:1, if suf-
ficiently accurate slip boundary conditions are applied. Flows are in the transition regime when 0:1 < Kn 6 10, and in the
free molecular regime when Kn > 10.

The Boltzmann equation describes the dynamical behavior of a dilute gas. However, its formulation requires tracking the
binary collisions of molecules. For this reason, the analysis of the Boltzmann equation, either numerically or theoretically, is
practically formidable. To reduce the complexity, a number of simplified collision models have been proposed to mimic the
main features of the original collision term. A simplified collision model should first satisfy conservation of mass, momentum
and energy, and the Maxwellian distribution has to be achieved in equilibrium. During the collision process, which relaxes
the gas towards equilibrium, the entropy production should always be positive [2]. In addition, it is desirable to have an
adjustable Prandtl number (the ratio of viscosity to thermal conductivity).

The most common kinetic model may be the Bhatnagar–Gross–Krook (BGK) equation, developed in 1954 [3], where a
simple relaxation term towards the Maxwellian distribution function replaces the complicated binary collision term. With
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this approximation, some accurate numerical simulations, even theoretical analysis, is possible. Most importantly, BGK pre-
dictions can be accurate for a range of practical problems. However one defect of the BGK model is that it does not recover
the correct Prandtl number for monoatomic gases. Therefore, in 1966 Holway proposed the so-called ellipsoidal statistical
Bhatnagar–Gross–Krook model (ES-BGK) [4], which replaced the Maxwellian equilibrium distribution with an anisotropic
Guassian distribution. An additional free parameter is thereby introduced to obtain an adjustable Prantdl number. Recently,
its H-theorem has also been proved [5,6], giving the model a sound theoretical basis. In addition, the model may be extended
to describe gas mixtures and gases with polyatomic molecules [4,5]. The ES-BGK model has therefore attracted considerable
interest in recent years [7–10].

The accuracy of the ES-BGK model has already been investigated for a set of flow problems, e.g., one-dimensional shock
structure, re-entry flow around a compression ramp and a plate, uniform shear flow, wall-bounded Couette flow and Fourier
flow, and thermal creep flow [7–12,14–16,13]. Force-driven Poiseuille flow has not however been investigated. In the near-
continuum regime, the ES-BGK model does have improved accuracy, in comparison to the BGK model, in terms of capturing
thermal effects [8,10]. In the transition regime, it can still give better predictions for some macroscopic quantities [7–9,16],
e.g., the temperature in Fourier flow, and the velocity in Couette flow. However, for shock structures, it was found that the
ES-BGK model may not improve on the BGK model for large Mach numbers [11–13]. For wall-bounded Couette flows, the ES-
BGK may even perform worse than the BGK model in capturing the temperature profile in the transition regime: the tem-
perature jump at bounding surfaces tends to be overestimated and the maximum at the centerline is underestimated [8]. By
comparing the Sonine-polynomial coefficients for Fourier–Couette flow, it has been concluded that the molecular velocity
distributions produced by the ES-BGK model are much more similar to those from the Maxwell interactions of the Boltz-
mann collision term, even when hard sphere interactions are actually employed [9]. For a uniform shear flow, the BGK model
may give better predictions for the fourth-degree moments [15]. It is clear that our understanding of the accuracy of the ES-
BGK model is still incomplete and needs further studies.

To shed new light on the ES-BGK model, we investigate planar force-driven Poiseuille flow using the discrete velocity
method. Our aims are twofold: assessing the model accuracy in comparison with results from the direct simulation Monte
Carlo (DSMC) method [17] and the Boltzmann equation; and providing high-quality simulation data of the ES-BGK model in
the slip and transition flow regimes.

2. The ES-BGK model

The well-known Boltzmann equation provides a complete description of a dilute monatomic gas at the molecular level. It
introduces the concept of a single particle velocity distribution function f ðr; c; tÞ to describe the number (or portion) of mol-
ecules in the volume dr centered at position r ¼ ðx; y; zÞ with velocities within dc around velocity c ¼ ðcx; cy; czÞ at time t.
Macroscopic quantities, such as the gas density q, velocity u, and temperature T can then be obtained as the moments of
f, i.e.

q½1;u;3RT� ¼
Z
½1; c;C2�fdc;

where C ¼ c � u is the peculiar molecular velocity. Assuming that only binary collisions occur in a sufficiently dilute gas, the
Boltzmann equation is:

@f
@t
þ c � @f

@r
þ g � @f

@c
¼ @f

@t

� �
coll
;

with

@f
@t

� �
coll

¼
Z 1

�1

Z 4p

0
ðf �f �1 � ff1Þjc � c1j.dXdc1;

where the body force g ¼ ðgx; gy; gzÞ is assumed to be independent of the molecular velocity. In the collision term, the dis-
tributions f and f � are evaluated at the pre-collision and post-collision molecular velocity c and c�, respectively. Similarly, f1

and f �1 are evaluated for the collision pairs, and . is the differential collision cross section. Although more complicated multi-
ple collisions are ignored, the collision term is still far from simple, making analysis of the Boltzmann equation difficult.

As suggested in [3], the collision term may be approximated as

@f
@t

� �BGK

coll

¼ 1
s
ðfeq � f Þ;

where the Maxwellian distribution feq is written as

feq ¼ q
1

2pRT

� �3=2

exp � C2

2RT

" #
: ð1Þ
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This simple BGK model makes the theoretical analysis (e.g., asymptotic analysis) and numerical simulations relatively easy.
Despite its simplicity, the NSF equations can still be obtained from this model using the Chapman–Enskog technique. How-
ever, the model’s main drawback is that the derived Prandtl number can only be unity. To have different Prandtl numbers,
Holway [4] suggested replacing the Maxwellian distribution feq function with the following anisotropic Gaussian one, i.e.

@f
@t

� �ES

coll

¼ 1
s
ðfES � f Þ;

where

fES ¼ q
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det½2pkij�
p exp �1

2
k�1

ij CiCj

� �
; ð2Þ

and

kij ¼ RTdij þ b
rij

q
; ð3Þ

where rij is the stress. As the matrix k�1
ij must be positive definite, the parameter b is restricted to � 1

2 6 b 6 1. Using the
Chapman–Enskog technique, the viscosity and thermal conductivity can be derived as

l ¼ 1
1� b

ps; j ¼ 5
2

pRs:

Therefore, the Prandtl number is Pr ¼ 1=ð1� bÞ, which is adjustable via the free parameter b. The correct Prandtl number of
an ideal gas, Pr ¼ 2=3, can be recovered with b ¼ �1=2. When b ¼ 0 the ES-BGK model reduces to the BGK model.

In addition, Shakhov also proposed a so-called S-model to fix the Prandtl number issue [18,19], where the ‘‘collision term’’
can be written as

@f
@t

� �S

coll
¼ 1

s ðfS � f Þ;

where

fS ¼ feq 1þ 1� Pr
5

2qiCi

pRT
C2

2RT
� 5

2

 !" #
; ð4Þ

and qi is the heat flux.

3. Numerical scheme

As with the BGK model [20], for a spatially one-dimensional problem we can eliminate gas molecular speeds cx and cz in
the simulations (assuming that cy is perpendicular to the walls). It is convenient to introduce the following dimensionless
variables,

x̂k ¼
xk

L
; ûk ¼

ukffiffiffiffiffiffiffiffi
RT0
p ; t̂ ¼

ffiffiffiffiffiffiffiffi
RT0
p

t
L

; ĝk ¼
Lgk

RT0
; ĉk ¼

ckffiffiffiffiffiffiffiffi
RT0
p ; T̂ ¼ T

T0
;

f̂ ¼ f ðRT0Þ3=2

q0
; q̂ ¼ q

q0
; p̂ ¼ p

p0
; l̂ ¼ l

l0
; q̂i ¼

qi

p0

ffiffiffiffiffiffiffiffi
RT0
p ; P̂ij ¼

Pij

p0
:

The governing equation can then be rewritten as

@ f̂
@t̂
þ ĉk

@ f̂
@x̂k
þ ĝk

@ f̂
@ĉk
¼ �Pr

p0L
l0

ffiffiffiffiffiffiffiffi
RT0
p p̂

l̂
ðf̂ � f̂ ESÞ ¼ �Pr

q̂T̂ð1�xÞ

Kn
ðf̂ � f̂ ESÞ; ð5Þ

where the Knudsen number is defined as

Kn ¼ l0

ffiffiffiffiffiffiffiffi
RT0
p

p0L
:

The relevant macroscopic quantities are

q̂
q̂ûi

P̂ij

3q̂T̂

2
66664

3
77775 ¼

Z
f̂

1
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ĈiĈi

2
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3
7775dĉ: ð6Þ
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In thermal flows the viscosity depends on temperature, which can be expressed as l=l0 ¼ ðT=T0Þx, where x is related to the
molecular interaction model and varies from 0:5 for hard-sphere molecular interactions to 1 for Maxwell molecules. The hat
symbol will be omitted hereafter for clarity. A rescaled Knudsen number,

KD ¼
ffiffiffiffi
p
2

r
Kn

is also used throughout this work for convenient comparison with the DSMC data.1 When we refer below to the Knudsen
number, it should be understood as KD.

To solve a spatially one-dimensional problem such as Couette, or force-driven Poiseuille, or Fourier flows, we can intro-
duce the following marginal velocity distribution functions, and the corresponding parts for the anisotropic Gaussian
distribution:
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With these marginal distribution functions, the macroscopic quantities in Eq. (6) become
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Now let
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so the governing equation for the four distribution functions can be written as

@/
@t
þ cy

@/
@y
¼ Pr

Kn
qTð1�xÞð/e � /Þ þ S: ð9Þ

In particular, if the problem is steady, Eq. (9) can be further reduced to

cy
@/
@y
¼ Pr

Kn
qTð1�xÞð/e � /Þ þ S; ð10Þ

where the time variable is eliminated. In these equations the corresponding differential force terms have been transformed
into non-differential source term S by utilizing integration by parts. For example,Z 1

�1

Z 1

�1
cxgx

@f
@cx

dcxdcz ¼ gx

Z 1

�1

Z 1

�1

@cxf
@cx
� f

� �
dcxdcz ¼ gx

Z
fcxð jcx¼1

cx¼�1
�
dcz �ua

� �
¼ �gxua:

As f is assumed to be decaying sufficiently fast, its product with power functions of c is zero when the components of c ap-
proach infinity. The force terms can be obtained similarly for other marginal distribution functions.

1 There are different non-dimensional systems. For example, the reference velocity can be chosen as
ffiffiffiffiffiffiffiffiffiffiffi
2RT0

p
, which leads to a factor of

ffiffiffi
2
p

difference from the
present non-dimensional velocity. Also, there can be different formulations for the Knudsen number, although one can easily transform between them if
necessary. For example, if the mean free path is calculated as

ffiffiffi
p
p

l
2p0

ffiffiffiffiffiffiffiffiffiffiffi
2RT0

p
, one can identify the relation with the so-called rarefaction parameter d [21], i.e.ffiffiffiffiffiffiffiffiffi

2=p
p

KD ¼ Kn ¼ 1=
ffiffiffi
2
p

d.
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Once the above macroscopic quantities are determined by solving Eq. (9) or (10), other high order moments like heat flux
may be evaluated by introducing additional marginal distribution functions [20].

As a fully-developed problem is studied here, Eq. (10) needs to be solved numerically. For this purpose, we need to dis-
cretize in a two-dimensional space, i.e. one-dimension in the physical space y, and one-dimension in the molecular velocity
space cy. For the molecular velocity space, Simpson’s rule [22] is chosen for cy, and the grid points are distributed uniformly.
For the physical space, nonuniform grid points are employed with more points near the boundary. To construct this kind of
grid, we first obtain a distribution of points which is highly dense near the middle point of the channel by using

yi ¼ a sinh sinh�1 1
2a

� �
i
N
þ sinh�1 �1

2a

� �
1� i

N

� �� �
; i ¼ 0 . . . N; ð11Þ

where N denotes the total number of points and a is the parameter determining the nonuniformity. Then, the grid system
can be made to be denser near the wall by utilizing symmetry and translation relations.

Regarding the numerical scheme, we employ a second-order upwind scheme, except in the near-wall region where a
first-order upwind scheme is used. Therefore, the evolution of / can be written as

/i ¼
cy g2

i /i�1 � /i�2

� �
þ dyigiðgi � 1Þðwi/e;i þ SiÞ

ðgi � 1Þðgicy þ cy þ dyigiwiÞ
; cy > 0; i ¼ 2 . . . N ð12Þ

and

/1 ¼
cy/0 þ dy1S1 þ dy1w1/e;1

cy þ dyw1
; cy > 0; ð13Þ

where

wi ¼
PrqiT

1�x
i

Kn
; ð14Þ

dyi ¼ yi � yi�1; i ¼ 1 . . . N

and

gi ¼
dyi þ dyi�1

dyi
; i ¼ 2 . . . N:

For simplicity, the rules for cy < 0 are omitted here; they can be easily obtained in a manner similar to the above.
In our simulations, a diffuse kinetic boundary condition is used, which can be written as follows:

f y ¼ �1
2
;�cy < 0

� �
¼ qw

ð2pTwÞ3=2 exp � C2
w

2Tw

 !
; ð15Þ

with

qw ¼

ffiffiffiffiffiffiffi
2p
Tw

s Z
�cy>0

cyf y ¼ �1
2
;�cy > 0

� �				
				dc: ð16Þ

When using the above four marginal distribution functions, this can be transformed to
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2
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Z 1

�1

Z 1

�1

1
cx

c2
x

c2
z

2
6664

3
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where the density qw becomes,

qw ¼

ffiffiffiffiffiffiffi
2p
Tw

s Z
�cy>0

ua �
1
2

� �
cy

				
				dcy:

4. Simulation results

We evaluate the ES-BGK model for force-driven Poiseuille flows, where the gas is confined between two parallel infinite
plates located at y ¼ 0 and y ¼ 1 in the nondimensional system. Both plates are at rest and their temperature is maintained
at Tw ¼ 1. The gas is subject to a uniform external force in the x direction, i.e. the flow direction is parallel to the plates. Due
to the presence of this force, this Poiseuille flow is more interesting than Couette or Fourier flows, as it presents a bi-modal
temperature profile that the NSF equations fail to predict even qualitatively [20,23–26]. To assess the modeling accuracy of
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the ES-BGK equation, gx ¼ 0:22 and 1 (which are also close to the values used in previous BGK simulations [20] and DSMC
simulations [23]) are chosen in the following simulations. We focus on fully-developed flows, and the diffuse kinetic bound-
ary condition is employed for the gas-wall interactions.

To achieve satisfactory accuracy, it is important to choose appropriate molecular velocity and spatial grids. For this pur-
pose, each simulation is run on two discretized systems with the finer one usually having double the molecular velocity and
spatial points. Only when the difference between the results for these two systems is sufficiently small do we consider the
coarser grid acceptable. The difference is evaluated based on two types of errors: the first type, �1, is the relative difference in
the macroscopic quantities at the chosen points in the two systems, i.e.

�1
i ¼

Q {i � QFi
QFi

					
					;

where Q denotes the macroscopic quantities to be evaluated. The superscript { represents values obtained on the coarser grid
and F on the finer grid, and i is the point index. The second error, �2, is the difference in the macroscopic quantities in the
two systems relative to the maximum difference in the corresponding macroscopic quantities in the finer system, i.e.

�2
i ¼

Q {i � QFi
maxðQF Þ �minðQF Þ

					
					:

Specifically, we choose the macroscopic velocity and temperature as the benchmark quantities. The two errors are eval-
uated at the six points ½0;0:01;0:1;0:2;0:3;0:4;0:5� which include the boundary point. As the present problem setup is sym-
metrical, these points effectively cover the full space. If both types of errors for temperature and velocity in the coarser
system are less than 1% in comparison with the finer system, we accept the coarser system to be sufficient. According to
these criteria, we determine an appropriate discretized system for each set of parameters in the following simulations.
The typical spatial grid point number is 200 with which we obtain a minimal grid size of 0:000461 near the boundary.
For the molecular velocity, the typical number of grid points is 10,000. Nevertheless, either grid point number may be in-
creased to achieve satisfactory accuracy. For instance a finer molecular velocity grid becomes necessary for Knudsen num-
bers KD P 3, particularly for KD ¼ 10. As the temperature variation, i.e. maxðTÞ �minðTÞ, can be small for some Knudsen
numbers (e.g., KD ¼ 0:4 and 0:5), �2 becomes sensitive so that a finer spatial grid (400 points) is also necessary.

To further verify the numerical implementation, two cases with gx ¼ 1 are run using the Maxwell interaction model with
Pr ¼ 1, i.e. b is set to be 0 and x is 1. These simulation results should be directly comparable with the BGK data reported in
[20], and both are presented in Fig. 1. The agreement confirms the validity of our chosen grids for both molecular velocity
and space.

Another issue is the truncation of the molecular velocity space. Although this space is infinite, appropriate bounds have to
be chosen for practical simulations. These may be estimated by a combination of the maximum of the macroscopic velocity
and temperature, i.e. maxðuxÞ þmaxða

ffiffiffi
T
p
Þ [8]. Here, a is set to be 12, so the bound is chosen to be ½�20;20�. The validity of

this velocity bound is also confirmed by a comparison between the bounds ½�20;20� and ½�30;30� for the case KD ¼ 0:05
which is shown in Fig. 2. The errors for both velocity and temperature effectively approach zero (less than Oð10�11Þ). As
the maximum velocity and temperature for the low Knudsen number cases are usually larger than those in the considered
high Knudsen number cases, this bound is employed for all simulations.

Figs. 2–4 show comparisons between the results of the ES-BGK model and the DSMC particle technique for
KD ¼ 0:05;0:1;1 and 5, and two body forces gx ¼ 0:22;1. When KD ¼ 0:05, the ES-BGK model agrees with the DSMC, but

Fig. 1. Convergence analysis: the present results (lines) are compared with the BGK data (symbols) reported by Aoki et al. [20]. Maxwell gas interactions are
used in both models, and the results are comparable by letting b ¼ 0, x ¼ 1 in the ES-BGK model. Two Knudsen numbers 0.0392 (the upper lines and
symbols) and 1.571 (the lower lines and symbols) are considered. The agreement between the two set of results confirms the validity of our chosen
molecular velocity and spatial grids.
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Fig. 2. Velocity and temperature profiles of force-driven Poiseuille flows for KD ¼ 0:05;0:1 with gx ¼ 1. Hard sphere molecular interactions are considered,
i.e. x ¼ 0:5. The solid lines are the ES-BGK data with Pr ¼ 2=3 and the symbols are the DSMC data. The BGK data (dashed lines) and the S-model data
(dashed-dotted lines) are also included.

Fig. 3. Velocity and temperature profiles of force-driven Poiseuille flows for KD ¼ 1;5 with gx ¼ 1. Hard sphere molecular interactions are considered, i.e.
x ¼ 0:5. The solid lines are the ES-BGK data with Pr ¼ 2=3 and the symbols are the DSMC data. The BGK data (dashed lines) and the S-model data (dashed-
dotted lines) are also included.
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Fig. 4. Velocity and temperature profiles of force-driven Poiseuille flows with gx ¼ 0:22. Hard sphere molecular interactions are considered, i.e. x ¼ 0:5. The
lines are the ES-BGK data with Pr ¼ 2=3 and the symbols are the DSMC data. The Knudsen numbers are KD ¼ 0:05;0:1 and 1:0 as noted and they are
distinguished by different plot styles as shown.

Fig. 5. Comparisons of BGK and ES-BGK marginal distribution functions ua and uc at the left wall boundary (y ¼ �0:5) with those of the Boltzmann
equation (BE) for gx ¼ 1.
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as KD increases to 0.1, the deviation from the DSMC data becomes larger although the agreement is still satisfactory. Specif-
ically, however, the viscous heating effect is not accurately captured; although the phenomenon of bi-modal temperature
distribution is captured qualitatively, the bimodality is not as significant as the DSMC prediction. When KD increases to
1:0, the ES-BGK model tends to overestimate the temperature profile for this force-driven flow, while it underestimates it
for Couette flow in the transition flow regime [8].

It is informative to compare the ES-BGK model with the BGK model and the S-model. For lower Knudsen numbers, both
the ES-BGK model and the S model predict more realistic temperature profiles than the BGK model. This should be attributed
to the fact that the Prandtl number issue is corrected. However, for larger Knudsen numbers such as KD ¼ 1 (gx ¼ 0:22 and
gx ¼ 1) and 5 (gx ¼ 1), the temperature predictions become unsatisfactory for all three models. For gx ¼ 1 velocity predic-
tions also show large errors in comparison to the DSMC results, although they appear to be acceptable for gx ¼ 0:22 and
KD ¼ 1 where the viscous heating effect is less significant.

The ES-BGK model predicts the highest temperature among the three models for KD ¼ 1 and 5 with gx ¼ 1. These predic-
tions are even worse than the BGK model, which is the opposite of the situation at small Knudsen number. Meanwhile, the
accuracy of the S model appears to be at least no worse than the BGK model.

To further investigate this phenomenon, we compare the marginal distribution functions (see Eq. (7)) with direct solu-
tions of the full Boltzmann equation using the numerical method reported in [27,28], where the molecular velocity distri-
bution function can be obtained accurately. The results for ua and uc at the left wall boundary and the middle channel
point are shown in Figs. 5 and 6.

Fig. 6. Comparisons of BGK and ES-BGK marginal distribution functions ua and uc at the middle point (y ¼ 0) with those of the Boltzmann equation (BE) for
gx ¼ 1.
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Fig. 7. Simulation results of the ES-BGK model applied to force-driven Poiseuille flow at various Knudsen numbers (labeled) and for gx ¼ 0:22.

Fig. 8. Simulation results of the ES-BGK model applied to force-driven Poiseuille flow at for various Knudsen numbers (labeled) and for gx ¼ 1.
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It is evident that the ES-BGK model can provide more accurate distribution functions when the Knudsen number is smal-
ler than 0:1. However, for Knudsen numbers larger than 0:1, the ES-BGK equation tends to produce less accurate distribution
functions. When KD is 0:5; uc is even quantitatively worse than the one predicted by the BGK model. This is directly respon-
sible for the worse performance of the ES-BGK model in predicting the temperature-field at larger Knudsen numbers.

As kinetic models are approximations to the Boltzmann equation in which the particle interactions are simplified, they
should not be expected to be particularly accurate if the details of the collisions play a vital role, as for viscous heating effects.
As the temperature rise greatly influences the gas properties such as the viscosity, the predictions of other macroscopic
quantities may then not be sufficiently accurate for high Mach number flows at larger Knudsen numbers. However, when
the body force is relatively small, the temperature rise may be insignificant, and then reasonable predictions for other mac-
roscopic quantities could be given by the ES-BGK model as the gas properties will not change too much. For instance, the
velocity profiles in Fig. 4 are in satisfactory agreement with those of the DSMC simulations. This echoes the previous findings
of satisfactory predictions of velocity profiles for Couette flow when the Mach number is not very large [9,8]. In particular,
when viscous heating is negligible, even the temperature field may be predicted accurately, e.g., Fourier flows [9,7].

More simulation data for the force-driven flow are presented in Figs. 7 and 8. In the near-continuum regime, the temper-
ature profiles are parabola-like and open downward. They become bimodal for intermediate Knudsen numbers, and then
return to a parabola-like shape again but open upward for larger Knudsen numbers. The density and velocity profiles main-
tain a parabola-like shape. By contrast, the shear stress has a nearly linear-like profile except in the cases of gx ¼ 1.

The mass and heat flow rates,

M¼
Z 1=2

�1=2
quxdy; H ¼

Z 1=2

�1=2

Z
1
2

CxC2fdc
� �

dy;

Fig. 9. Mass and heat flow rates predicted by the ES-BGK model (the solid lines with circles and upper triangles), the Boltzmann equation (the squares) and
the BGK model (the dashed lines with hexagons and right triangles). The body force magnitudes are presented in the legend. The BGK data are from Table 2
of Aoki et al. [20], with the Knudsen numbers converted to KD accordingly. The mass and heat flow rates are further normalized by the corresponding body
force magnitude.

Table 1
Non-dimensional mass flow (M) and heat flow (H) rates predicted by the ES-BGK model.

KD M H

gx ¼ 0:22 gx ¼ 1 gx ¼ 0:22 gx ¼ 1

0.05 6.047 � 10�1 2.042 � 100 �6.225 � 10�3 6.864 � 10�2

0.1 4.000 � 10�1 1.501 � 100 �1.408 � 10�2 1.892 � 10�2

0.2 3.002 � 10�1 1.192 � 100 �2.402 � 10�2 �2.647 � 10�2

0.3 2.706 � 10�1 1.092 � 100 �3.073 � 10�2 �3.958 � 10�2

0.4 2.583 � 10�1 1.049 � 100 �3.574 � 10�2 �3.496 � 10�2

0.5 2.526 � 10�1 1.028 � 100 �3.966 � 10�2 �1.697 � 10�2

0.6 2.500 � 10�1 1.018 � 100 �4.279 � 10�2 1.217 � 10�2

0.7 2.491 � 10�1 1.013 � 100 �4.530 � 10�2 5.152 � 10�2

0.8 2.491 � 10�1 1.012 � 100 �4.730 � 10�2 1.002 � 10�1

0.9 2.497 � 10�1 1.013 � 100 �4.886 � 10�2 1.576 � 10�1

1.0 2.507 � 10�1 1.015 � 100 �5.005 � 10�2 2.231 � 10�1

1.1 2.520 � 10�1 1.018 � 100 �5.089 � 10�2 2.965 � 10�1

1.2 2.533 � 10�1 1.021 � 100 �5.141 � 10�2 3.773 � 10�1

1.5 2.579 � 10�1 1.034 � 100 �5.133 � 10�2 6.609 � 10�1

3.0 2.798 � 10�1 1.095 � 100 �2.151 � 10�2 2.820 � 100

5.0 3.016 � 10�1 1.158 � 100 7.863 � 10�2 7.061 � 100

10.0 3.359 � 10�1 1.259 � 100 5.704 � 10�1 2.178 � 101
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respectively, predicted by the ES-BGK model are shown in Fig. 9 and in Table 1. The BGK data from [20] for Maxwell inter-
actions are also presented in Fig. 9 for comparison. For the mass flow rate, the so-called Knudsen minimum is clearly seen
around KD ¼ 1. As some work due to the applied force is dissipated by viscous heating, different predictions of the temper-
ature rise may affect those of mass flow rate. A higher temperature means more work has been converted to internal energy
rather than kinetic energy via viscous heating. Therefore, in comparison to the ES-BGK model, the BGK model tends to under-
estimate the mass flow rate in the continuum regime as it overestimates the viscous effect (see the curves for gx ¼ 1). For
larger Knudsen numbers, it appears that the mass flow rate is only slightly influenced by the molecular interaction detail
and the Prandtl number in the simulated range, although the heat flow rates appear to be moderately influenced by them.
The heat flow rate may also become negative for some Knudsen numbers, which shows the complex characteristics of force-
driven flows.

To further investigate the accuracy of the ES-BGK model, we completed more simulations for the full Boltzmann equation
for gx ¼ 0:22. As has been shown, the ES-BGK model can give satisfactory predictions of mass flow rate for Knudsen numbers
up to 2. For larger Knudsen numbers, compared with the solutions of the full Boltzmann equation, the error becomes larger.
The trend accords with the predictions for velocity, where the error becomes larger for larger Knudsen numbers (cf. Fig. 4).
While the heat flow rates are very small in the simulated Knudsen number range, the absolute errors are not significant.

5. Concluding remarks

We have investigated the ES-BGK model for predicting a force-driven Poiseuille flow. It was shown that the ES-BGK model
does improve predictions of the temperature field, in comparison with the BGK model, in the slip flow regime. However, the
improvement is not significant for flows in the transition regime. At high Knudsen numbers, its prediction of the temperature
field is even worse than that from the BGK model (in comparison with the benchmark DSMC data). Its accuracy is also worse
than the S-model as shown by numerical comparisons. Alongside the previous investigation of Couette flow [8], it may now
be concluded that the ES-BGK model does not always accurately capture the viscous heating effect in wall-bounded flows in
the transition flow regime. It appears that this inaccuracy can also influence predictions of the mass flow rate.

As kinetic models attempt to use simple relaxation terms to capture the effect of molecular collisions, it may be no sur-
prise to observe that they actually fail to predict the viscous heating effect at larger Knudsen numbers where the detail of
molecular collisions becomes important. However, if the viscous heating is negligible the ES-BGK model may be able to per-
form well. In fact, the ES-BGK model still predicts reasonable velocity profiles even if the viscous heating effect is significant
(e.g., the case of gx ¼ 1). With its sound theoretical foundation (the H theorem), the ES-BGK model could be useful for flows
in which thermal conduction plays a major role, and may also give more confidence on numerical stability.

We have provided profiles of macroscopic quantities and mass/heat flow rates from the ES-BGK model for force-driven
Poiseuille flows over a range of Knudsen numbers (density, velocity, temperature and shear stress for Knudsen numbers
(KD) between 0:1 and 1:5, mass and heat flow rates for 0:05 < KD 6 10). The model can capture the bimodal temperature
distribution phenomenon that occurs at intermediate Knudsen numbers. The Knudsen minimum is also clearly identified.
As some work due to the applied force is dissipated by viscous heating, the mass flow rate does not increase linearly as
the body force increases. The heat flow parallel to the wall surfaces varies in a complicated way as the Knudsen number
and body force increase. In some cases it may flow in a direction opposite to the body force, the BGK model and the BE also
show similar behavior. When the Knudsen number and the body force magnitude become sufficiently large, the heat flow
rate tends to increase quickly with the Knudsen number.
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