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Abstract

A more accurate, stable, finite-difference time-domain (FDTD) algorithm is developed
for simulating Maxwell’s equations with isotropic or anisotropic dielectric materials. This
algorithm is in many cases more accurate than previous algorithms (G. R. Werner et.
al., 2007; A. F. Oskooi et. al., 2009), and it remedies a defect that causes instability
with high dielectric contrast (usually for ε � 10) with either isotropic or anisotropic
dielectrics. Ultimately this algorithm has first-order error (in the grid cell size) when
the dielectric boundaries are sharp, due to field discontinuities at the dielectric interface.
Accurate treatment of the discontinuities, in the limit of infinite wavelength, leads to an
asymmetric, unstable update (C. A. Bauer et. al., 2011), but the symmetrized version
of the latter is stable and more accurate than other FDTD methods. The convergence
of field values supports the hypothesis that global first-order error can be achieved by
second-order error in bulk material with zero-order error on the surface. This latter point
is extremely important for any applications measuring surface fields.

Keywords: dielectric, anisotropic, electromagnetic, FDTD, embedded boundary,
Maxwell

1. Introduction

The Yee finite-difference time-domain (FDTD) algorithm [2] simulates electromag-
netic waves in uniform, isotropic media with second-order error: i.e., the Yee algorithm
simulates the frequency of a plane wave with an error that scales as O(∆x2) with grid
cell size ∆x. This paper presents a generalization of the Yee algorithm for non-uniform,
anisotropic dielectric media, with particular attention to sharp transitions between dif-
ferent dielectrics. (This generalization is also suitable for the intermediate cases, such as
continuously-varying dielectrics, whether isotropic or not.)

When different dielectric materials meet at a sharp interface, the discontinuity in the
fields introduces greater error into the simulation. If the discontinuity is disregarded,
operations such as field-interpolation typically have local O(1) error at the interface (the
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error remains constant as ∆x → 0 because the field discontinuity remains constant).
However, because the ratio of the cells cut by the interface to the total number of cells is
O(∆x), the local error O(1) is watered down by a factor of O(∆x), leading to a “global
error” of O(∆x). (By global error, we refer to the error in a mode frequency or the
average field error over an entire eigenmode, whereas local error is field error in a single
cell. This relationship between global error and relatively high local error on a subset
of cells has been proven rigorously for 1D waves [3], and demonstrated empirically for
2D and 3D electromagnetic problems, e.g., with curved metal boundaries [4] and curved
dielectric interfaces [5, 6].)

When the dielectric constant varies continuously, the variation across a cell vanishes
as ∆x→ 0, so it is not difficult to obtain local O(∆x) error, hence global O(∆x2) error
[5].

Of course we would like the same O(∆x2) error even with sharp dielectric boundaries;
to the best of our knowledge, the first finite-difference approach to accomplish this was
[6], which obtained global second-order error with local first-order error at the interface.
Instead of considering the error of the discretized system for fixed frequency or wavelength
λ and vanishing ∆x, accuracy was demanded for fixed ∆x and infinite λ. Ref. [6] showed
how to convert D to E exactly in the limit of λ→∞. This led to global O(∆x2) error.

Unfortunately, the accurate method of [6] is unstable in the time-domain, because
it uses an asymmetric inverse dielectric matrix (the linear operator that transforms the
D field to the E field on the Yee mesh), which has complex eigenvalues, hence complex
mode frequencies. While the imaginary parts of the frequencies are within the error
[i.e., Im(ω) . O(∆x2/λ2)], they lead to unphysical growth that becomes significant after
sufficient time. Moreover, while well-resolved modes (∆x � λ) may have slow growth,
there are always modes with λ ∼ ∆x which may grow quickly; thus machine-precision-
level noise eventually grows to overwhelm the desired signal.

A symmetric inverse dielectric matrix was given by [5], yielding an algorithm with
O(∆x) global error (we will refer to this algorithm as “wc07”). This algorithm is stable
at the low dielectric contrasts studied in [5] (where “dielectric contrast” is the ratio
of dielectric constants between neighboring media in a simulation). However, we have
recently found that wc07 is unstable for high dielectric contrast (see Sec. 5), because the
dielectric matrix is not always positive definite.

In this paper we use the “triplets” concept of [6] to obtain stable algorithms in the
time domain. If one can find symmetric and positive-definite (SPD) effective dielectric
tensors acting on triplets of field components, then the tensors can be combined into an
inverse dielectric matrix that is also SPD, which ensures stability in the time domain. We
show that a small change to the wc07 algorithm [5] yields a new algorithm (“wc07mod”)
with an SPD inverse dielectric matrix; wc07mod is therefore stable for arbitrary dielectric
contrast. Using the same framework for stability, we provide yet another algorithm that
is stable for arbitrary dielectric contrast; this algorithm simply uses the symmetrized
matrix of [6]. The act of symmetrizing increases the error from O(∆x2) to O(∆x),
but we find that this algorithm still has smaller error than the other effective-dielectric
methods [5, 1, 7].

For example, for a dielectric contrast around 10, the new method reduces the fre-
quency error by a factor of 2–3 at high resolutions, and it reduces the error of fields by
a factor of 2–10. Reducing the error by a factor of 2 can reduce computation by a factor
of 16, because the error scales as O(∆x) while the computation time typically scales as
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O(1/∆x4) (for a 3D problem).
While examining the error, we show that for low dielectric contrast (less than 10 or

so), the new algorithm yields very similar results to other effective dielectrics ([5, 1, 7]),
and the error is very nearly second-order up to high resolution. In other words, for low
dielectric contrast, the error is dominated not by the field discontinuities, but by the bulk
Yee algorithm. At sufficiently high resolution, however, we believe all these algorithms
transition to first-order. As the dielectric contrast increases, the transition point moves
to lower resolutions.

We also examine the error in fields: the error at (or within a fixed number of cells
of) the dielectric surface is O(1). However, the field error is O(∆x) at a fixed physical
distance from the surface (N.B., that distance spans more cells as ∆x diminishes). This
supports the application of [3] to this problem; in other words, the local surface error is
O(1), but only O(∆x) cells are cut by the surface, so the global error is O(∆x).

The latter point may be very important for applications attempting to characterize
surface fields with effective dielectric algorithms. Such attempts should be wary of errors
in the surface fields, because the error does not decrease with cell size. However, the error
is probably small enough in many cases that it will not be a problem. And, the fields a
fixed distance from the surface do become more accurate as the cell size is reduced.

After a brief outline of algorithms discussed in this paper, we will present the dis-
cretization of Maxwell’s equations, reducing the problem of introducing dielectric to the
problem of finding an inverse dielectric matrix Ξ. Section 4 then describes how to create
Ξ to guarantee stability, assuming the ability to create local 3 × 3 effective dielectric
tensors that are SPD (but otherwise unrestricted), thus reducing the problem to finding
the local effective dielectric.

Sections 5, 6, and 7 present three different methods for calculating local effective
dielectric tensors. First we describe the effective dielectric that reproduces the wc07
algorithm—this effective dielectric is not (always) positive definite, so it doesn’t guarantee
stability. Second, we modify wc07 slightly to guarantee stability. Third, we present an
effective dielectric that guarantees stability, and has similar or better accuracy than the
second option. All these methods require the same amount of computation for every
time step.

Subsequent sections present the error, in both frequency and field, of the different
algorithms for different problems: 2D and 3D, isotropic and anisotropic, over a range of
dielectric contrast from 5–100.

2. Algorithms in this paper

The following algorithms will be discussed in this paper:

• wc07: the algorithm recommended by [5] [therewithin called variant (c)+(e)]—it is
unstable for high dielectric contrast;

(Ref. [7] used wc07, with the improved dielectric averaging of [1] instead of
[8]. These two averaging methods are identical for isotropic dielectrics; accuracy
for anisotropic dielectrics may improve, but the error still converges as O(∆x).)

• wc07mod: a stable algorithm, almost the same as wc07;
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Figure 1: (Color online.) Field components in one grid cell of the Yee mesh. If the above cell has the
3-integer index (i, j, k), then the labeled field components have the same index, e.g., Eijkx. The D
components are collocated with the corresponding E components.

• the “new” method: a stable and more accurate algorithm, but still with O(∆x)
error (sections 4 and 7);

• the second-order method of [6]: the only finite-difference algorithm with second-
order error is unfortunately asymmetric, rendering it unstable for time-domain use
(but still good for frequency-domain eigensolvers).

3. The basic algorithm

We want to simulate the dynamic Maxwell equations with dielectric:

∂B

∂t
= −∇×E (1)

∂D

∂t
= ∇×B (2)

E = ξ(x, y, z)D (3)

where ξ = ε−1 is the inverse dielectric tensor (which can vary in space).

To discretize Maxwell’s equations for computational work, we follow Yee [2]. To
analyze the discretization, we treat the fields as large vectors, with each component
representing a field at one point of the Yee mesh, shown in Fig. 1. (Discretization in
time is irrelevant to this paper, so we retain continuous time derivatives.)

For convenience, we label each component of a field vector with 4 sub-indices: e.g.,
the component Eijkx represents the electric field in the x direction at its Yee location
in cell (i, j, k). The differential operators become matrices, with rows and columns each
indexed by 4 sub-indices: e.g., one element of a matrix M is M(ijkµ),(i′j′k′ν).

We will not review the Yee discretization, since [5] details the relevant aspects, instead
taking it for granted that the matrices C and CT represent the curl operators (the matrix
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representation of the curl of E is the transpose of the curl of B). We depart from Yee
when we introduce the matrix Ξ to discretize the linear relationship between E and D,
yielding:

∂

∂t
Bijkµ = −[CE]ijkµ (4)

∂

∂t
Dijkµ = [CTB]ijkµ (5)

Eijkµ = [ΞD]ijkµ =
∑
i′j′k′ν

Ξ(ijkµ),(i′j′k′ν)Di′j′k′ν . (6)

These equations are a prescription for advancing the fields in time: B is advanced by a
short time (using E), then D is advanced (using B), then E = ΞD, and the cycle repeats
(in practice, this can be implemented with only two fields, E and B). Combining these
into one equation

∂2

∂t2
Bijkµ = −[CΞCTB]ijkµ (7)

shows that the eigenvalues ω2 (frequencies squared) of the −∂2/∂t2 operator are the
eigenvalues of the CΞCT matrix.

Simulating dielectrics therefore reduces to the determination of Ξ such that

1. Ξ accurately represents the inverse dielectric tensor, ξ(x, y, z), and

2. CΞCT is diagonalizable with only real, non-negative eigenvalues.

The first point addresses accuracy. The second addresses robustness/stability: if CΞCT

has negative or complex eigenvalues, some frequencies ω will be complex, and some
fields will grow exponentially (unphysically), ultimately overwhelming the simulation
with noise.

If Ξ is symmetric and positive definite (SPD), then the second point above will be
guaranteed: all modes will oscillate (with real frequency) without growing (cf., [5], or a
standard linear algebra text such as [9])—at least for a sufficiently small time step. (As
stated, temporal discretization is outside the focus of this paper).

This paper is devoted to finding an SPD matrix Ξ that accurately represents dielectric
media.

4. Creating a stable Ξ matrix from local ξ tensors

Our approach to dielectric simulation falls under the “effective dielectric” category,
specifying the matrix Ξ to find E = ΞD, while advancing D (and B) in time according
to the unaltered Yee algorithm [2].

As in Ref. [6], we demand that Ξ have the following properties.

1. In case of uniform (anisotropic) dielectric, Ξ involves only centered interpolations
of fields (i.e., interpolations with O(∆x2) error for continuous fields).

2. Within uniform, isotropic dielectric, Ξ reduces to a multiple of the identity.

3. Ξ must be symmetric.

4. Ξ must be positive definite.
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The first property yields a localO(∆x2) error within uniform dielectric (or even continuously-
varying dielectric [5]). The second is for convenience and minimalism—we can still use
the plain Yee algorithm for fields within any bulk isotropic region. Together, the third
and fourth properties guarantee stability. (For comparison: wc07 satisfies 1, 2, and 3.)

Before defining the Ξ matrix, we need to introduce notation for an effective dielec-
tric tensor involving field components of a single Yee cell. For example, we consider
the “triplet” of three Eµ values labeled in Fig. 1 and the three Dµ values at the same
locations, along edges that touch a common node (corner) of the cell. If the node index is
(ijk), then this triplet comprises (Eijkx, Eijky, Eijkz), and similarly (Dijkx, Dijky, Dijkz).
(We call these components a triplet, instead of a 3-vector, because they are not collo-
cated.) The triplets for E and D can be related by a 3× 3 tensor, ξ+++

ijk :

Eijk = ξ+++
ijk Dijk or Eijkµ =

∑
ν=x,y,z

ξ+++
ijk,µνDijkν (8)

(the meaning of the +++ superscript will be explained shortly). Defined thus, ξ+++
ijk is

an effective (inverse) dielectric tensor for this particular triplet of E and D values.
Touching the same cell node are seven other (eight, in all) geometrically-identical

triplets. Above, we chose a triplet with edges extending positively in each direction from
their common node, but (due to the symmetries of the Yee mesh) we could equally well
have chosen, e.g., the x-edge extending in the negative x direction, namely (E(i−1)jkx, Eijky, Eijkz),
and (D(i−1)jkx, Dijky, Dijkz). With this triplet, we associate a different effective dielec-

tric, ξ−++
ijk , with the minus sign indicating that the Ex and Dx edges extend in the

negative x direction from node (ijk).
We will construct (the large matrix) Ξ from the (small) ξ±±±ijk tensors, through an

intermediate stage involving (large, block-diagonal matrices) Ξ±±±. Symmetry and pos-
itive definiteness transfer easily from one stage to the next: we will show that Ξ is SPD if
all the ξ±±±ijk are SPD; since the latter are mere 3× 3 matrices, evaluating their positive
definiteness is easy, numerically if not analytically.

We start by creating block-diagonal matrices Ξ+++, Ξ−++, . . . , Ξ−−−, where the
blocks are the ξ±±±ijk ; for example, each block of Ξ−++ is ξ−++

ijk for some node (ijk).
Precisely we define

Ξ+++
(ijkµ)(i′j′k′ν) ≡ δ(ijk)(i′j′k′)ξ

+++
ijk,µν

Ξ++−
(ijkµ)(i′j′k′ν) ≡ ξ

++−
ij,k+δµz,µν

δ(ij,k+δµz),(i′j′,k′+δνz)

Ξ+−+
(ijkµ)(i′j′k′ν) ≡ ξ

+−+
i,j+δµy,k,µν

δ(ij+δµy,k),(i′j′+δνy,k′)

Ξ+−−
(ijkµ)(i′j′k′ν) ≡ ξ

+−−
i,j+δµy,k+δµz,µν

δ(ij+δµy,k+δµz),(i′j′+δνy,k′+δνz)

...
Ξ−−−(ijkµ)(i′j′k′ν) ≡ ξ

−−−
i+δµx,j+δµy,k+δµz,µν

δ(i+δµx,j+δµy,k+δµz),(i′+δνx,j′+δνy,k′+δµz)

(9)

where δ(ijk)(i′j′k′) is the Kronecker delta, equal to one when i = i′, j = j′, and k = k′,
and otherwise equal to zero. A block-diagonal matrix is SPD if and only if each block is
SPD; therefore, if each ξ+++

ijk is SPD, then Ξ+++ is SPD, and likewise for all Ξ±±±.
We finish by taking the Ξ matrix to be the average,

Ξ ≡ 1

8

(
Ξ+++ + Ξ++− + Ξ+−+ + Ξ−++ + Ξ+−− + Ξ−+− + Ξ−−+ + Ξ−−−

)
. (10)
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Since the sum of SPD matrices is again SPD, Ξ is SPD. Figure 2 illustrates how this
scheme determines Eijkx from neighboring D values.

Thus we can create a stable algorithm independent of the details of the ξ±±±ijk , which
can be chosen to improve accuracy at the dielectric interface, within broad constraints:
the ξ±±±ijk must be SPD. In addition, when node (ijk) is within uniform dielectric and far

from a dielectric interface, ξ±±±ijk must equal ξ(x, y, z), where (x, y, z) is the position of
node (i, j, k). This guarantees that, within isotropic dielectric, each Ξ±±± is a multiple
of the identity, and so Ξ satisfies requirement 2, above. Furthermore, within uniform
dielectric, the algorithm becomes identical to wc07 (see Fig. 3), which uses centered
interpolation to yield O(∆x2) error (within uniform dielectric [5]). Therefore, Ξ satisfies
requirements 1 and 2 (as well as 3 and 4).

It is easy to forget, when viewing the algorithm as a way to find a single Ex (as in
Fig. 2), that ξ+−+

ijk,xx, ξ+−+
ijk,xy, and ξ+−+

ijk,xz must come from the same (SPD) tensor ξ+−+
ijk .

Indeed, it was forgetting which ξijk,µν had to be mathematically related to each other
that led to the instability of wc07.

To reiterate: each Ξ±±± matrix is block-diagonal, with 3× 3 blocks (ξ±±±ijk ), each of

which represents the effective dielectric tensor around node (ijk). As long as the ξ±±±ijk

are SPD, the Ξ±±± are SPD. This further implies that the average, Eq. 10, is SPD.
We have thus shown how to find a stable matrix Ξ, given the ability to find 3×3 effec-

tive inverse dielectric tensors that map a triplet of neighboring components (Dx, Dy, Dz)
to the (Ex, Ey, Ez) at the same locations. Moreover, within uniform (isotropic or anisotropic)
dielectric, this algorithm is identical to wc07 (hence it satisfies requirements 1 and 2).

It remains to find the effective dielectric tensors ξ±±±ijk that will accurately represent

the real dielectric. Reference [6] showed how to find ξ±±±ijk with local O(∆x) error,

yielding global O(∆x2) error; unfortunately, those ξ±±±ijk are asymmetric.
In the next section, we will describe the effective dielectric tensors that yield the

wc07 algorithm; some of those tensors may not be positive definite, so that algorithm
can be unstable. We then describe a modification to make it stable. However, another
effective dielectric turns out to yield lower error (Sec. 7). We have tried several other
effective dielectrics, and found them less accurate, but always yielding ultimate O(∆x)
global error (even stairstepped dielectrics have O(∆x) error).

5. The wc07 method, unstable at high contrast

Experiment tells us that wc07 (the algorithm of [5]) can be unstable; therefore, we
need concern ourselves no more with that algorithm. However, it is interesting to see
exactly how these algorithms differ, so in this section we describe wc07 within the frame-
work of this paper, and show why it does not meet the previously-described (sufficient,
but not necessary) conditions for a stable algorithm.

Figure 3 depicts the wc07 method recommended in [5] [where it is called (c)+(e)]. To
find Ex from its nearest-neighbor Dµ values:

1. perform a centered interpolation of Dy and Dz to the nearest cell node;

2. find Ex(x) = ξ
(e)
xxDx, using the effective dielectric ξ(xe) at the x-edge center;

3. find Ex(y) = ξ
(n)
xy Dy at each node, using the effective dielectric ξ(n) at that node;

similarly, find Ex(z) = ξ
(n)
xz Dz at each node;
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Figure 2: (Color online.) A pictorial representation E = ΞD, showing how Ex in cell (i, j, k) is found
from neighboring components of D. For each of 8 “triplets” a local effective inverse dielectric ξ (a 3× 3
matrix) converts D to E. Ultimately Ex is found using 8 different ξ matrices, one for each triplet
involving Ex. By averaging over all 8 triplets, Ex depends symmetrically on its neighboring Dy and Dz ,
which yields a centered algorithm that, in uniform (or continuously-varying) dielectric, has second-order
error [5]. We note that 4 of the triplets use ξ+±±

ijk and 4 use ξ−±±
(i+1)jk

.
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Figure 3: (Color online.) A pictorial representation of E = ΞD as suggested in [5]. Ex in cell (i, j, k)
is found from Dx at the same location and the nearest Dy and Dz values. The I± are interpolation
operators (see [5]).

4. interpolate the two Ex(y) from each node to the center of the x-edge where Ex and
Dx are located; interpolate Ex(z) similarly.

Finally, Ex is the sum of parts coming from Ex(x), Ex(y), and Ex(z).
In the framework of the previous section, wc07 is a choice of effective ξ±±±:

ξ±±±ijk,µν = ξ±±±ijk,νµ = ξ
(n)
ijk,µν (for µ 6= ν)

ξ+±±
ijk,xx = ξ−±±(i+1)jk,xx = ξ

(xe)
ijk,xx (11)

ξ±+±
ijk,yy = ξ±−±i(j+1)k,yy = ξ

(ye)
ijk,yy

ξ±+±
ijk,zz = ξ±±−ij(k+1),yy = ξ

(ze)
ijk,zz

The tensors ξ
(n)
ijk , ξ

(xe)
ijk , ξ

(ye)
ijk , and ξ

(ze)
ijk are all to be found from the averaging method

of [1], where ξ
(n)
ijk is the “average” of ξ(x, y, z) over a cell volume centered at the node

(lowest corner) of cell (i, j, k), and ξ
(xe)
ijk is the “average” over a cell volume centered at

the location of Eijkx (the x-edge-center), etc.
These ξ±±±ijk do not satisfy the conditions for the effective dielectric required by the

previous section. E.g., ξ+++
ijk is symmetric, but it is not necessarily positive definite. The

reason is that the diagonal and off-diagonal elements of ξ+++
ijk come from different tensors:

ξ
(n)
ijk , ξ

(xe)
ijk , ξ

(ye)
ijk , and ξ

(ze)
ijk . Each of these four tensors is SPD (using the averaging method

of [1], cf. Appendix B), but there’s no guarantee that a tensor with a mixture of elements
from those tensors is positive definite.

Indeed, we have found experimentally that the wc07 algorithm can yield an instability
when the dielectric contrast is high enough. We hasten to point out that we have used
that algorithm successfully on a wide range of problems without noticing any instability.
An instability seems to be more likely for higher contrast, and for larger and more
complicated dielectric shapes.

By using the Gershgorin circle theorem to place a lower bound on the eigenvalues of
the Ξ matrix (if the lower eigenvalue bound is positive, then Ξ is positive definite, assum-
ing Ξ is symmetric), we can prove for many particular simulations that the algorithm is
in fact stable. For example, we usually find that simulations with ε ≤ 10 are provably
stable (on an individual basis, by examining Ξ with the Gershgorin circle theorem).

Many simulations appear stable for long times even when not provably stable. Of
course, it’s hard to know whether there might be unstably-growing modes that would
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dominate the simulation if run 100 times longer; and such unstable modes might interfere
with precision measurements well before they become obviously apparent.

For a 2D simulation of photonic crystal modes of a square lattice of isotropic dielectric
discs in vacuum (radius r = 0.37a, where a is the lattice constant), we have seen that at
ε = 60 we can run simulations with 482 cells for a time 3000a/c (where c is the speed
of light) without seeing an instability (which rules out instabilities growing faster than
γ ∼ 0.01c/a, which corresponds to growth of 16 orders of magnitude in 3000a/c). For
642 cells, however, an instability grows as exp(γt), where γ ≈ 0.5c/a.

For the same problem, with contrast ε = 100, it’s harder to find stability for any
resolution. For 322 cells, an instability grows with γ ≈ 3c/a, and for 642 cells, γ ≈ 6c/a.

6. wc07mod: a small change yields stability

In this section we make a small change to the wc07 algorithm that renders it stable.
Although this algorithm, which we will call “wc07mod,” is not the most accurate, we
present it because it is a relatively trivial modification of wc07, and the resulting degra-
dation of accuracy is interesting, in light of the small modification, which still uses the
same averaging method to find the effective dielectric within a given cell-sized volume.

In the language of this paper, this algorithm is described simply as

ξ±±±ijkµν = ξ±±±ijkνµ = ξ
(n)
ijk,µν (12)

where ξ
(n)
ijk is the “average” inverse dielectric tensor for a cell volume centered at the node

of cell (i, j, k)—where averaging is done according to [1].
Only the diagonal elements of the effective dielectric change, compared to Eq. (11).
In the language of [5], we need simply replace, e.g., in Eq. (27e) of [5] or in step 2 of

the wc07 algorithm:

ξ
(xe)
ijkxx → 1

2

[
ξ

(n)
ijkxx + ξ

(n)
(i+1)jkxx

]
(13)

and similarly for the yy and zz elements.

7. The new method

The most accurate local effective dielectric, from [6], yields local O(∆x) error, but is
unfortunately asymmetric (except for a few surface cuts: e.g., when a planar surface is
parallel to a grid plane). Simply symmetrizing it increases the error to O(1), but turns
out to be more accurate than other (symmetric) effective dielectrics.

Section 4 reduced the problem of finding a stable Ξ matrix to the problem of find-
ing SPD 3 × 3 matrices, e.g., ξ+−+

ijk , that map a triplet of neighboring components
(Dx, Dy, Dz) to the (Ex, Ey, Ez) at the same locations—in a way that accurately repre-
sents the real dielectric. In this section, we describe the best such recipe that we have
found.

While we focus on finding the effective dielectric for a single triplet, we will omit the
(+−+) and (ijk) super- and sub-scripts, which identify the triplet.

This effective dielectric, which is not a volume-averaged dielectric as in [8, 1], derives
from Ref. [6], which finds the unique 3×3 tensor ξacc that guarantees that (Ex, Ey, Ez)

T =
10



ξacc(Dx, Dy, Dz)
T will be exactly accurate in the limit of infinite wavelength and planar

interface. In other words, ξacc will convert (Dx, Dy, Dz) to (Ex, Ey, Ez) with no error,
given that the triplets are from the finite-difference (or rather, finite integration) repre-
sentation of an infinite-wavelength solution of Maxwell’s equations. Unfortunately, as we
have mentioned, ξacc is not symmetric.

To achieve stability in the time-domain, we will use

ξeff =
1

2

(
ξacc + ξTacc

)
. (14)

This will be stable; its accuracy will be evaluated empirically.
Finding ξacc is a lengthy process fully described in [6], so we present only a terse recipe

for converting a triplet (Dx, Dy, Dz) to (Ex, Ey, Ez) in the presence of two dielectric
regions, ε1 and ε2 (both symmetric tensors).

1. Within a small region around the triplet (we use the cell volume centered at the
nearest node), the dielectric interface is nearly planar; find the unit surface normal
n̂.

2. Each electric field component Eµ is associated with a cell edge Lµ; for each edge,
determine the fraction `µ of its length in dielectric ε1. See [6] for explicit definition
of Lµ (and Aµ in the following).

3. Each component Dµ is associated with a dual-face area Aµ (centered at the Yee
location of Dµ, perpendicular to µ); for each area, determine the fraction aµ of the
area in ε1.

4. Form the 3× 3 matrices (for p = 1, 2)

Γp ≡ I +
1

n̂T εpn̂
[n̂n̂T ](I − εp) (15)

Πp ≡ εpΓp (16)

Γ ≡

 `x 0 0
0 `y 0
0 0 `z

Γ1 +

 1− `x 0 0
0 1− `y 0
0 0 1− `z

Γ2 (17)

Π ≡

 ax 0 0
0 ay 0
0 0 az

Π1 +

 1− ax 0 0
0 1− ay 0
0 0 1− az

Π2 (18)

where [n̂n̂T ] is the dyadic matrix with elements [n̂n̂T ]µν = n̂µn̂ν , and I is the
identity.

5. The accurate effective (inverse) dielectric tensor is:

ξacc = ΓΠ−1 (19)

We then symmetrize that to find

ξeff =
1

2
(ξacc + ξTacc) (20)

6. The above can fail if Π is not invertible, and if the resulting ξeff is not positive defi-
nite. Failure is ruled out for isotropic dielectrics [6], and for anisotropic dielectrics,
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it has not yet happened in our experience. Nevertheless, it’s important to guard
against pathological cases. We suggest checking every ξeff for these two problems;
if one should occur, then substitute the effective dielectric from [1] (which is proven
suitable in Appendix B). This will happen so rarely, if ever, that the global error
will not be significantly affected.

8. Simulation Results

We tested various FDTD algorithms on different dielectric problems: a square lattice
of 2D isotropic and anisotropic dielectric discs in vacuum; a square lattice of 2D vacuum
discs (holes) in isotropic dielectric; and a cubic lattice of 3D dielectric spheres in vacuum,
for both isotropic and anisotropic dielectric. For many of these cases, we also tested
different dielectric contrasts. We define a to be the lattice constant, and Na the number
of (square or cubic) cells per lattice constant, hence ∆x = a/Na.

Ultimately, the FDTD algorithms all show first-order error in frequency; the error in
a mode frequency falls as O(∆x), or O(∆x/λ), where λ is a characteristic wavelength of
the mode, with decreasing cell size ∆x. However, at coarse resolutions (large ∆x), the
error often falls as O(∆x2) for low dielectric contrast. This may explain why previous
studies have concluded that methods such as wc07 have second-order error—they did not
explore high-enough resolution or contrast (of course, in practice, one may often reach a
tolerable error level within the second-order regime, in which case the ultimate order of
error may be irrelevant).

The error convergence in surface fields was the same as in frequencies when we con-
sidered the surface fields a fixed distance (e.g., a/8) away from the dielectric boundary.
However, the error in fields a fixed number of cells (e.g., 3∆x) away from the boundary,
is O(1), not O(∆x). This supports our assertion that the local error at the boundary,
due to discontinuous fields, is O(1), but the global error is O(∆x) because the ratio of
boundary cells to total cells is O(∆x).

We performed the FDTD simulations with Vorpal [4] using the FDM method [10]
to extract accurate mode fields and frequencies. We compared these results with the
frequency-domain algorithm of [6], which was shown to have second-order global error.
For 2D simulation frequencies, we extrapolated results from Na = 512 and Na = 1024
assuming second-order convergence to get a normative value with approximately O(∆x3)
error.

We will show the most detailed convergence results for the “new” algorithm (Sec. 7)
for 2D anisotropic discs. Isotropic and 3D dielectrics show similar convergence, so we
present only a few examples.

We will show that the other FDTD algorithms, wc07 and wc07mod generally have
similar or greater error compared to the new algorithm; and the other examples (3D and
isotropic) show qualitatively similar convergence.

For comparison, we also show frequency convergence for the second-order (but un-
stable in the time-domain) method of [6] in Appendix A.

8.1. Convergence: 2D anisotropic discs

We simulated TE modes (with Ez = 0, Bx = 0 = By, and no variation in z) in a
square lattice (lattice constant a) of dielectric discs of radius r = 0.37a in vacuum; the
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Figure 4: (Color online.) For the new algorithm presented in this paper, relative errors vs. resolution
for mode frequencies for a 2D photonic crystal of r/a = 0.37 anisotropic discs with varying dielectric
contrast εb. The error transitions from second-order to first-order at higher resolutions. The transition
point occurs at coarser resolution for higher dielectric contrast.

discs were of dielectric

ε = εb

 1.025 −
√

3/40 0

−
√

3/40 1.075 0
0 0 1.

 (21)

where we vary the scalar εb to vary the dielectric contrast. For εb = 10, the above is the
diagonal matrix (10, 11, 10) rotated by 30 degrees around the z-axis.

Figure 4 shows the relative error in the frequency of the lowest several modes vs.
the number of cells per vacuum wavelength (or c divided by the mode frequency), for
dielectric contrast of εb = 5, 10, 30, 100. Low contrast simulations, εb . 10, yield second-
order error to rather high resolutions. At sufficiently high resolution, the error becomes
first-order; this is more clearly seen in the mid-contrasts. For high contrast, εb & 30, the
second-order region is too small to notice, and first-order convergence is clear.

There is a problem in examining the convergence of the fields. The fields are dis-
continuous at the dielectric interface, and it is not obvious how best to interpolate the
fields near the interface. There is a danger, when choosing an interpolation method,
that it might not be the best interpolation method. Therefore, we avoid the interface.
Staying at least 3∆x (where ∆x is the cell size) away from the surface, there is no serious
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ambiguity in interpolation: a simple bilinear (or, in 3D, trilinear) interpolation should
be sufficient for errors of at least O(∆x2).

We examine field-convergence in two ways.
First, we generate a set of (evenly-distributed) points on a circle at a radius a/8 larger

than the interface, and, at each resolution, interpolate the mode fields to those points,
comparing against our normative values (from the algorithm of [6]) using the `2-norm
over the set of points (after normalizing the entire eigenmodes). We then graph the
relative error vs. resolution. We find (not surprisingly) that it converges at the same
rate (ultimately O(∆x)) as the mode frequencies (Fig. 5).

For εb = 100, modes 4 and 5 have relatively large errors in the surface field; qualita-
tively, however, the modes look more accurate than the `2 norm suggests. These modes
place most of the field energy inside the dielectric; they resemble a pair of quadrupole
(e.g., TE21) modes in a circular waveguide: that is, the field patterns have nearly
(but not exactly, due to the square lattice) an azimuthal dependence cos(2θ + θ0) and
cos(2θ+ θ0 + π/2) for some angle θ0. If the dielectric were isotropic, these modes would
be degenerate, and θ0 could be chosen arbitrarily (since there is a linear combination of
the above two terms that yields cos(2θ+ θ′0) for any θ′0). With the anisotropic dielectric,
the mode frequencies differ by about 0.3%, and so θ0 is determined. It appears that
the error is so high because the eigenmodes have a large error in θ0. In other words,
the field patterns look very similar to the correct fields, except they are rotated slightly.
This is a consequence of the difficulty of eigensolving for nearly-degenerate modes; as two
modes approach degeneracy it becomes impossible to separate them correctly (without
recourse to some other operator). In this light, it is not surprising that when the error
in frequency is larger than the actual separation between the two modes, the resulting
eigenmodes may be the wrong linear combinations of the exact eigenmodes. Indeed the
surface error starts diminishing for modes 4 and 5 approximately when the frequency
errors approach 0.3% (see Fig. 4).

Second, we generate a set of points on a circle that is a radius 3∆x outside the inter-
face; thus each different resolution has a different set of points; as simulation resolution
increases, the points move closer to the actual interface. For each resolution, the fields
are compared to our normative high-resolution simulation. In this case, the error does
not vanish with ∆x; in other words, it is O(1) (Fig. 6).

This latter conclusion is disquieting for those who want particularly to measure fields
at the interface. However, we point at that the error, although O(1), can be quite low,
especially for low dielectric contrast. For dielectric contrast ≤ 15, the relative error in
field is less than one percent. The error drops significantly as one moves away from the
interface, and we believe it might be possible to extrapolate the fields from several cells
away to find surface fields with vanishing error as ∆x→ 0.

The wc07 method [5, 7], and indeed all the effective FDTD dielectric methods we’ve
tried, have very similar error convergence, transitioning from second- to first-order at
a resolution that decreases as the dielectric contrast increases. We believe this may
explain a discrepancy that has puzzled us: this work and [5] see first-order error (in
mode frequencies) for this effective dielectric, while the results of [7] show second-order
error. The latter uses two anisotropic dielectrics, one with eigenvalues (1.45, 2.81, 4.98),
and another with (8.49, 8.78, 11.52), both rotated by random orthogonal matrices. At
contrast 11.52/1.45 ≈ 8, we do in fact see second-order behavior up to hundreds of cells
per wavelength, and for contrasts between other pairs (e.g., 8.49/4.98), second-order
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Figure 5: (Color online.) For the new method, 2D, anisotropic: relative error (in an `2-norm) vs.
resolution in E at points on a circle of radius a/8 outside the dielectric interface, for a 2D photonic
crystal of anisotropic discs with varying dielectric contrast εb. At high resolutions, the error is first-
order.
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Figure 6: (Color online.) For the new method, 2D, anisotropic: relative error (in an `2-norm) vs.
resolution in E at points on a sphere of radius (0.37 + 3∆x)a for a 2D photonic crystal of anisotropic
discs with varying dielectric contrast εb. This error does not go to zero as ∆x→ 0.
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Figure 7: (Color online.) For the new method, 2D, isotropic: relative errors vs. resolution for mode
frequencies for a 2D photonic crystal of r/a = 0.37 isotropic discs with dielectric contrast εb = 15 (left)
and εb = 100 (right). Again, the error transitions from second-order to first-order. The transition point
occurs at coarser resolution for higher dielectric contrast.

behavior persists up to higher resolutions than we have explored.
In fact, practically, it must be said that the effective dielectric in [1, 7] does yield

second-order behavior for low-contrast dielectric up to nearly the highest resolutions
that one might practically use. Ultimately, however, it has first-order error.

For low contrasts, the local error associated with the dielectric interface doesn’t see
to have much effect, and so the results are similar for different algorithms.

8.2. Convergence: 2D isotropic discs

To show that using isotropic dielectric (instead of anisotropic) does not change the
order of error, we present frequency convergence results for the same problem in the
previous section, except that the dielectric is replaced with an isotropic dielectric ε = εb.
Figure 7 shows frequency error convergence for εb = 15 and εb = 100. The former shows
a gradual transition from second-order to first-order error, while the the higher contrast
shows just first-order error.

8.3. Convergence: 3D isotropic spheres

Figure 8 shows frequency convergence for a 3D cubic lattice of isotropic spheres
(r/a = 0.37) with ε = 15 and ε = 30. Although the computational requirements prevent
exploration over the wide range of resolutions of the 2D simulations, the ε = 15 case shows
mostly second-order behavior starting to transition to first-order, while ε = 30 shows
nearly first-order behavior. This is very similar to Fig. 4, considering the resolutions
where they overlap. There is no reason to suspect that error convergence in 3D is any
different from 2D.

8.4. Comparison to wc07: 2D and 3D, aniso- and iso-tropic

In this section we compare the “new” method recommended in this paper (Sec. 7) to
wc07 (which uses the effective dielectric of [8]), except we improved wc07 for anisotropic
dielectrics by using the effective dielectric of [1, 7].
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Figure 8: (Color online.) For the new method, 3D, isotropic: relative errors vs. resolution for mode
frequencies for a 3D cubic lattice of spheres with isotropic ε = 15 (left) and ε = 30 (right), using the
algorithm of Sec. 7. For ε = 15 convergence is second-order for low resolution, but gradually moves
toward first-order; for ε = 30, convergence is nearly first-order.

The main advantage of the new method is that it is always stable; since wc07 is usually
stable for contrasts less than ε = 30, and can be used practically, we wanted to compare
their accuracies. The new method is generally better than wc07, by a small factor (2–10),
for higher contrasts and resolutions. We cannot compare them for contrasts at ε = 100
because the old method becomes unstable.

For low contrast, and low resolution, there is less reason to choose one algorithm over
the other—for some modes one is better, for other modes the other is better. However,
even for ε = 5, the new method can yield more accurate fields, even while the frequencies
are more or less equally accurate. Of course, there may be geometries and contrasts for
which wc07 is better.

Figure 9 shows the error for wc07 divided by the error for the new method, for the 2D
square lattice of anisotropic discs (as in Sec. 8.1). Not only is the new method guaranteed
stable, it performs better for medium and high dielectric contrast.

Occasionally, for a problem of low contrast, one sees the error of wc07 plunge at some
low resolution; the same sometimes happens for other methods as well. In this case, it
appears that the frequency error has first- and second-order contributions: α∆x+β∆x2.
When α and β have opposite signs, there is a narrow range of ∆x for which the error is
nearly zero. However, this drop in frequency error is not reflected in the field error. An
example of this can be seen for ε = 5 in Figs. 13 and 14.

Figure 10 shows the error of algorithm wc07 divided by that of the new algorithm for
surface fields on the circle at r/a = 0.37 + 1/8. In nearly all cases, the wc07 algorithm
has higher error. The error ratio is seen to increase with the number of cells per vacuum
wavelength.

A similar advantage for the new method is also apparent in 3D, as shown in Fig. 11,
for sapphire (anisotropic, εb ≈ 10) and isotropic, εb = 15 spheres. The dielectric tensor
for the sapphire spheres was

ε =

 10.225 −0.825 −0.55
√

3/2

−0.825 10.225 0.55
√

3/2

−0.55
√

3/2 0.55
√

3/2 9.95

 (22)
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Figure 9: (Color online.) For wc07/new, 2D, anisotropic: the frequency error in wc07 over the error in
the new algorithm, for modes of a 2D photonic crystal of r/a = 0.37 anisotropic discs with dielectric
contrast εb. For εb & 10, the new method has lower frequency error; however, Fig. 10 shows that even
for εb = 5, the new method has lower field error.

19



101 102 103 104

Cells per vacuum wavelength

10-1

100

101

R
a
ti

o
 o

f 
e
rr

o
rs

Field error ratio (wc07/new) for εb = 5

mode 1
mode 2
mode 3
mode 4
mode 5
mode 6

101 102 103 104

Cells per vacuum wavelength

10-1

100

101

R
a
ti

o
 o

f 
e
rr

o
rs

Field error ratio (wc07/new) for εb = 10

mode 1
mode 2
mode 3
mode 4
mode 5
mode 6

101 102 103 104

Cells per vacuum wavelength

10-1

100

101

R
a
ti

o
 o

f 
e
rr

o
rs

Field error ratio (wc07/new) for εb = 30

mode 1
mode 2
mode 3
mode 4
mode 5
mode 6

Figure 10: (Color online.) For wc07/new, 2D, anisotropic: the field error in wc07 over the error in the
new algorithm, for fields on a circle at r/a = 0.37 + 1/8, a fixed distance outside the dielectric disc. The
new method is better in almost every case, even for εb = 5. (The simulations are the same as in Fig. 9.)
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Figure 11: (Color online.) For wc07/new, 3D, aniso- and iso-tropic: the frequency error in wc07 over the
error in the new algorithm, for modes of a 3D photonic crystal of r/a = 0.37 spheres of sapphire (left)
and isotropic ε = 15 (right).
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Figure 12: (Color online.) For wc07/new, 2D, isotropic (inverse): the frequency error in wc07 over the
error in the new algorithm, for modes of a 2D photonic crystal of r/a = 0.37 vacuum discs (holes) inside
an isotropic background of ε = 15.

which has ε = 11.6 along its c-axis, and 9.4 in the two perpendicular directions; we took
the c-axis along y, and then rotated the dielectric by 30◦ about the x-axis, and then 45◦

about the z-axis.
The advantage of the new method remains when the concavity of the dielectric inter-

face changes: Figure 12 shows the advantage of the new method for vacuum discs in a
background of εb.

8.5. Comparison to wc07mod: 2D anisotropic discs

Here we compare the new algorithm to the wc07mod algorithm (Sec. 6), for the modes
of a square lattice of r/a = 0.37 anisotropic discs, as before. The new algorithm is better
except (surprisingly, given how much worse wc07mod is at medium contrast) for εb = 100.

Figure 13 shows the ratio in frequency errors. For low contrast, we see that the error
for wc07mod plunges within a narrow range of resolutions, due to fortuitous cancellation
of first- and second-order error; we note that one cannot depend on this cancellation
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Figure 13: (Color online.) For wc07mod/new, 2D, anisotropic: the frequency error in wc07mod over the
error in the new algorithm, modes of a 2D photonic crystal of r/a = 0.37 anisotropic discs with dielectric
contrast εb.

(it does not occur for all shapes, nor is the range of resolutions predictable). This is
illustrated by the convergence of field, where such fortuitous cancellation is much less
likely; there, wc07mod has no less error.

Figure 14 shows the ratio of the surface field error of the wc07mod algorithm to that
of the new algorithm on a circle at r/a = 0.37 + 1/8. This shows that the wc07mod
algorithm generally has higher error, and that the factor by which it is worse increases
with the number of cells per vacuum wavelength.

9. Summary and Discussion

We have demonstrated a new FDTD algorithm for simulating electromagnetics in
the presence of sharp dielectric transitions; the new algorithm is generally as accurate or
more accurate than previous FDTD algorithms, and it is stable at high dielectric contrast
(unlike the algorithm of [5, 7]).

We showed how to create a stable algorithm, given the ability to form an “effective”
(or “average”) 3 × 3 dielectric tensor relating any three neighboring components of the
D-field and the E-field. As long as each 3× 3 tensor is symmetric and positive definite
(SPD), the algorithm will be stable. One can then try to construct SPD effective dielectric
tensors to achieve the highest accuracy.
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Figure 14: (Color online.) For wc07mod/new, 2D, anisotropic: the field error in wc07mod over the error
in the new algorithm, for fields on a circle at r/a = 0.37 + 1/8, a fixed distance outside the dielectric
disc.

23



We compared three different ways to compute the effective dielectric: a sometimes
unstable method, wc07, described in [5, 7]; a small alteration of that method to achieve
stability, wc07mod, but still using the dielectric averaging of [1]; and a new method based
on symmetrizing the asymmetric effective dielectric of [6].

All these algorithms (except [6], which is unstable in the time domain) have first-order
error in the grid-cell-size ∆x; that is, the error in mode frequencies and fields at given
points decreases ultimately as O(∆x). However, at coarse resolutions the error decreases
as O(∆x2), before transitioning to O(∆x). For low dielectric contrast (less than about
10), the transition point occurs at fairly high resolution, so that for many simulations,
these methods may be practically considered to have second-order error.

By examining the convergence of mode fields, we showed that the fields at fixed points
(fixed as ∆x varies) converge at the same rate as the mode frequencies. However, when
we look at the fields at a fixed cell-distance away from a dielectric interface (so that the
points move closer to the interface as ∆x decreases), we find that the error is O(1)—it
does not decrease with ∆x.

This demonstrates two important points. First, the global error is O(∆x): the local
error in the bulk material isO(∆x2) (due to centered differencing), is (eventually) eclipsed
by the O(1) local error at the interface (due to the discontinuity in fields). However, the
interface cuts a fraction of cells scaling as O(∆x), so the ultimate global error (e.g., in
mode frequency) in O(∆x). Heuristically, we can write “Error = a∆x + b∆x2,” where
a comes from the interface, and b from the bulk (as well higher order terms from the
interface). Our results show that a can be relatively small for low dielectric contrast,
and therefore the error at low resolutions (large ∆x) appears second-order for a while.
Sometimes a and b may be of opposite signs, in which case the error may plunge briefly
for a small range of ∆x at the transition between second- and first-order (but only for
frequency error; field error is not a one-dimensional quantity like frequency, and so the
first- and second-order parts cannot fortuitously cancel).

Although we cannot prove that the symmetric effective dielectrics used in FDTD
simulations must yield (ultimate) first-order error, the logic of [6] strongly hints that
should be the case. Reference [6] achieved second-order error by demanding local first-
order, or O(∆x), error at the dielectric interface—accomplished by finding an effective
dielectric that exactly maps D to E in the limit of infinite wavelength (and planar
interface). Unfortunately, that effective dielectric is asymmetric, and unusable in FDTD
codes due to the instability it creates. Equally unfortunate, the symmetric effective
dielectrics do not appear to be able to satisfy this property of mapping D to E exactly
in the infinite wavelength limit.

The O(1) convergence of error at a fixed cell-distance from the surface could be a
problem for finding surface fields with arbitrary accuracy. However, the error drops
rapidly by several cells away from the surface, and we believe that it will be possible
to obtain surface fields with arbitrary accuracy by extrapolating from the fields several
cells away from the surface. Of course, that extrapolation introduces some error, but we
currently believe that the field error plus the extrapolation error can be made to vanish
as ∆x → 0. However, a much more thorough study will be needed in the future to
determine this issue.

It would be great if we could somehow form a symmetric effective dielectric with the
accuracy of the asymmetric effective dielectric of [6]. Indeed, there are some degrees
of freedom one could exploit. For example, we used a symmetric average of the Ξ±±±
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matrices is Sec. 4 to form Ξ. We could have have used different non-negative coefficients
(not 1/8) that add up to one, without affecting stability; however, the accuracy within
uniform, anisotropic dielectric would be degraded. In principle, one can vary those
coefficients in space; however, varying them can destroy the symmetry of Ξ, so one
would need some sort of global solution to attain accuracy and symmetry (not to mention
positive definiteness). We have made some attempts to do this, without complete success.
There may be a way; if not, it may still be possible to achieve greater accuracy, though
not as high as [6], while maintaining stability.
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Appendix A. The error in the asymmetric second-order method

To demonstrate what second-order convergence looks like, we show convergence using
the results for the 2D anisotropic dielectric problem for εb = 10 and εb = 100 using the
algorithm of [6] in Fig. A.15. Here we compare to the Richardson-extrapolated values
from simulations at resolutions Na = 512 and Na = 1024 (and therefore, we do not plot
the values for Na = 1024).
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Figure A.15: (Color online.) For the second-order method, 2D, anisotropic: relative error vs. resolution
for the second-order method of [6] (which would be unstable in the time-domain), for the anisotropic
2D photonic crystal with εb = 10 (left) and εb = 100 (right). Errors shown are in frequency (top), and
in E (middle) for a circle at radius (0.37 + 1/8)a, and (bottom) for a circle of radius (0.37 + 3∆x)a. As
expected, global errors (top and middle) are O(∆x2), but local field errors at the interface are ultimately
O(∆x) (as clearly seen in εb = 100).
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The code used to produce these graphs is open-sourced at https://github.com/

bauerca/maxwell.

Appendix B. The effective dielectric tensor of (Kottke, 2008) is positive
semi-definite

If two dielectrics, ε1 and ε2, coexist in a cell in which the normal to the interface
between dielectrics is n̂, then we compute the effective dielectric as follows, according to
[1].

Rotating into a coordinate system where the first coordinate is n̂ (the other two
directions, perpendicular to n̂, are labeled 2 and 3), we calculate τ1 and τ2:

τ i ≡ τ(εi) ≡


− 1

εinn

εin2

εinn

εin3

εinn
εi2n
εinn

εi22 −
εi2nε

i
n2

εinn
εi23 −

εi2nε
i
n3

εinn
εi3n
εinn

εi32 −
εi3nε

i
n2

εinn
εi33 −

εi3nε
i
n3

εinn


. (B.1)

According to [1], τ (not, e.g., ε) is the quantity that should be volume-averaged. We
perform a simple average on τ1 and τ2 to get the effective τ̃ , and then transform back
to get the effective ε̃.

ε(τ) =


− 1

τnn
− τn2

τnn
− τn3

τnn

− τ2n
τnn

τ22 −
τ2nτn2

τnn
τ23 −

τ2nτn3

τnn

− τ3n
τnn

τ32 −
τ3nτn2

τnn
τ33 −

τ3nτn3

τnn

 . (B.2)

For example, if the volume fractions for ε1 and ε2 are V1 and V2, respectively (V1+V2 = 1),
then the effective dielectric is

ε̃ = ε(V1τ
1 + V2τ

2). (B.3)

We can show that, if ε1 and ε2 are symmetric and positive semi-definite (SPSD), then
ε̃ is also SPSD.

We remember that a real, symmetric matrix A is positive semi-definite when, for all
x, xTAx ≥ 0. It follows that the sum of SPSD matrices is again SPSD.

Whenever A is real and SPSD, there exists a matrix P such that A = PTP .1 The
reverse also holds: if A = PTP , then for all x, xTAx = xTPTPx = ‖Px‖2 ≥ 0. From
this we can conclude that QTAQ = (PQ)T (PQ) is SPSD for any matrix Q.

We will prove that ε̃ = ε(τ̃) = ε(V1τ
1 + V2τ

2) is SPSD, by showing that there is an
invertible matrix Γ such that ΓT ε̃Γ is SPSD.

1 Since A is symmetric, it has an eigendecomposition A = V TDV ; since A is positive semi-definite,
the eigenvalues are non-negative, and D has a real square root; therefore, A = (

√
DV )T (

√
DV ).
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The matrix Γ

Γ(ε) =


1

εnn
− εn2

εnn
− εn3

εnn
0 1 0
0 0 1

 (B.4)

is invertible, since it is diagonalizable and none of its eigenvalues (1/εnn, 1, and 1) are
zero. The matrix product

ΓT εΓ =



1

εnn
0 0

0 ε22 −
ε2nεn2

εnn
ε23 −

ε2nεn3

εnn

0 ε32 −
ε3nεn2

εnn
ε33 −

ε3nεn3

εnn

 =

 −τnn 0 0
0 τ22 τ23

0 τ32 τ33

 (B.5)

is SPSD whenever ε is (since xTΓT εΓx = (Γx)T ε(Γx)). Since Γ is invertible the converse
also holds: if ΓT εΓ is positive semi-definite, then so is ε.

All this means that because the εi are SPSD, Γ(εi)T εiΓ(εi) are SPSD. Since τ̃ =
V1τ

1 + V2τ
2, the matrix

Γ(ε̃)T ε̃Γ(ε̃) =

 −τ̃nn 0 0
0 τ̃22 τ̃23

0 τ̃32 τ̃33

 = V1Γ(ε1)T ε1Γ(ε1) + V2Γ(ε2)T ε2Γ(ε2)

(B.6)

is the sum of two positive semi-definite matrices, which is itself positive semi-definite.
Therefore the effective dielectric tensor, ε̃ is positive semi-definite.

Incidentally, the matrix Γ plays a well-known role. If F = (Dn, E2, E3) is the 3-tuple
of continuous field components (at the dielectric interface), then F = Γ(ε)E. In fact, the
effective dielectric is derived (see [1]) by taking the perturbative formula for change in
eigenvalue:

∆ω2 ∝ 〈E|ε(x)− ε′(x)|E′〉 (B.7)

where E is the eigenmode corresponding to ε(x) and E′ is the (exact) eigenmode corre-
sponding to ε′(x). The above expression contains no approximation; the problem is that
one typically doesn’t know E′—usually a first-order approximation is realized by approx-
imating E′ ≈ E. In this case, the authors of [1] argued that because E is discontinuous,
it jumps when ε changes by a finite amount, and so E′ ≈ E is a bad approximation (it
has zeroth-order error). It is better to approximate F ′ ≈ F . Therefore, we write

∆ω2 ∝ 〈E|ε(x)− ε′(x)|E′〉 = 〈F |Γ(ε)T [ε(x)− ε′(x)]Γ(ε′)|F ′〉
≈ 〈F |Γ(ε)T [ε(x)− ε′(x)]Γ(ε′)|F 〉. (B.8)

To obtain approximately zero frequency shift when we substitute ε′ for ε, we demand that∫
V

Γ(ε)T [ε(x)−ε′(x)]Γ(ε′) vanish, which leads directly to the condition that
∫
V
τ(ε(x)) =∫

V
τ(ε′(x)).
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