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Abstract

A finite difference scheme is presented for the Dirac equation in (1+1)D. It can handle space- and time-
dependent mass and potential terms and utilizes exact discrete transparent boundary conditions (DTBCs).
Based on a space- and time-staggered leap-frog scheme it avoids fermion doubling and preserves the disper-
sion relation of the continuum problem for mass zero (Weyl equation) exactly.
Considering boundary regions, each with a constant mass and potential term, the associated DTBCs are
derived by first applying this finite difference scheme and then using the Z-transform in the discrete time
variable. The resulting constant coefficient difference equation in space can be solved exactly on each of the
two semi-infinite exterior domains. Admitting only solutions in l2 which vanish at infinity is equivalent to
imposing outgoing boundary conditions. An inverse Z-transformation leads to exact DTBCs in form of a
convolution in discrete time which suppress spurious reflections at the boundaries and enforce stability of
the whole space-time scheme.
An exactly preserved functional for the norm of the Dirac spinor on the staggered grid is presented. Sim-
ulations of Gaussian wave packets, leaving the computational domain without reflection, demonstrate the
quality of the DTBCs numerically, as well as the importance of a faithful representation of the energy-
momentum dispersion relation on a grid.

Keywords: Dirac equation, finite difference, leap-frog, fermion doubling

1. Introduction

We start out with a brief summary regarding important properties of the Dirac equation, its role played
in physics, existing numerical schemes for its solution, and the issue of open boundaries.

1.1. The Dirac equation

Next to its fundamental role in relativistic quantum mechanics and field theory, which provide the foun-
dation of modern nuclear and high energy physics [1, 2], the Dirac equation has received a rapidly growing
importance in condensed matter systems as well. Especially, in the context of the recent experimental real-
ization of graphene [3], 2D and 3D topological insulators [4, 5], and optical lattices [6–8] the Dirac equation
describes the underlying physics as an effective field theory. Historically it was proposed by Dirac with his
ingenious idea of linearizing the square root of the relativistic energy momentum relation by the introduction
of Dirac matrices and multi-component wave functions, nowadays known as Dirac spinors. Imposing the
condition that the twofold application of this Dirac operator onto the spinor must yield the Klein-Gordon
equation, leads to the Clifford algebra for the Dirac matrices. In (1+1)D and (2+1)D the minimum dimen-
sion for a representation of this group is two, whereas in (3+1)D the Dirac spinor must have a minimum
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of four components. However, one can work with two components if one accepts higher–order derivatives
in space and time [1, 2]. The latter has lead to the prediction of anti-matter and the concept of the filled
Fermi sea in many-particle physics. Alternatively, the Dirac equation emerges from an investigation of the
transformation properties of spinors under the Lorentz group [9]. In condensed matter physics Dirac-like
equations arise in context of low-energy two-band effective models, e.g. in k · p perturbation theory or the
tight-binding approximations [5]. Indeed, the study of Dirac fermion realizations has developed into one of
the most exciting current topics of condensed matter physics [5].

In this work we restrict ourselves to a study of the (1+1)D Dirac equation and present a numerically stable
scheme for its solution under open boundary conditions. The latter are motivated by a particle transport
situation, as well as the fact that, unlike for the Schrödinger particle, a deep one-particle potential does
not ensure confinement for Dirac particles. In its Schrödinger form, also called the standard or Pauli-Dirac
form, the (1+1)D Dirac equation may be written as (using c = 1, e = 1, and ~ = 1)

i∂tψ(x, t) = Ĥψ(x, t) , Ĥ = m(x, t)σz − i∂xσx − V (x, t)112 . (1)

The σi’s are the 2×2 Hermitian anti-commuting Pauli-matrices, and 112 is the identity matrix. x ∈ R, t ∈ R+,

and ψ =

(
u
v

)
∈ C2 is the complex 2-spinor. m,V ∈ R represent, respectively, a space- and time-dependent

mass and scalar potential. For constant coefficients, Fourier-transformation in the space and time variable
and solving the eigenvalue problem gives the energy spectrum E± = ±

√
m2 + p2. In the physical ground

state all negative energy states are filled with fermions. Empty negative energy states are reinterpreted as
filled hole states (anti-particles) with positive energy, in analogy to multi-band systems in (non-relativistic)
condensed matter physics [1]. The norm of the spinor is defined as |ψ(x, t)|2 =

√
|u(x, t)|2 + |v(x, t)|2, and

its square can be interpreted as the probability density in space for given time t. The norm is conserved
because Eq. eqrefdirac-eq is of Schrödinger form and Ĥ is Hermitian [1]. Global gauge-invariance holds as
for the case of the Schrödinger equation: the addition of a constant V simply adds a phase to the solution.
The free Dirac equation has various other symmetries [1, 10]. First there are the continuous transformations
of spatial rotation (only meaningful for more than one space dimension) which, with the Lorentz boost, form
the Lorentz group. Together with space and time translations, they form the Poincaré group. The latter
is the fundamental group in particle physics, but is of minor importance in solid state physics because the
crystal lattice necessarily breaks these continuous symmetries. The discrete symmetries holding for arbitrary
constants m ∈ R, V ∈ R are space reflection (parity) and time reversal symmetry which will also be present
in the finite difference scheme.

1.2. Numerical aspects

Several schemes have been proposed and used for particle transport simulations based on the time-
dependent Dirac equation. For a numerical treatment one has to discretize the continuum problem either in
real- or Fourier-space, or a combination thereof. Real-space schemes are, for example, the finite-difference
[11–13] and finite-element methods [14], whereas the spectral methods [15] are examples for the momentum
space approach. Split-operator methods separate the time-evolution operator into several parts, with each
of them depending only on either momentum or position [16, 17]. There also exists a coordinate space split-
operator method which transforms the Dirac equation into an advection equation and uses its characteristic
solutions [18]. While having the advantage of a natural implementation of space- and time dependent
potential and mass terms, the finite-difference and finite-element schemes have to deal with the issue of
fermion doubling, which means that, for a given sign of the energy, there are two (or more) extrema in the
m 6= 0 energy-momentum dispersion relation instead of the single one of the continuum problem [12]. In fact
the ’Nielsen-Ninomiya no-go theorem’ forbids the existence of a single fermion flavor for chirally invariant
fermions on a regular grid without breaking either translational invariance, locality, or Hermiticity [19]. In
(1+1)D one can get rid of the fermion doubling using a staggered grid for the two spinor components. This
is equivalent to taking the left-sided first-order derivative operator for one component of the spinor and the
right-sided for the other one [12]. One obtains a monotonic dispersion relation with only one minimum.
Here we present a scheme which provides an even better result by applying staggering to both the space
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and the time coordinate. This yields a numerical scheme which preserves the exact dispersion relation of
the continuum problem for the special choice of the ratio between time and space grid r := ∆t/∆x = 1
and mass m = 0. For m,V 6= 0 and r = 1 the dispersion relation improves for all possible wave-numbers
k ∈ [−π/∆x, π/∆x] with the refinement of the grid. For ∆x→ 0 the numerical dispersion relation becomes
identical to the continuum one. This is not true for most finite difference schemes in general and, to our
knowledge, no finite difference scheme with this property for the Dirac equation has been reported before.

Let us mention that numerical methods for the (1+1)D non-linear Dirac (NLD) equation also got some
attention in the literature [20]. Besides being an interesting playground on its own, it might also have some
physical relevance by incorporating electron self-interaction into the Dirac equation. Scalar self-interaction
leads to the Soler model [21], whereas vector-like inclusion of the self-interaction leads to the Thirring model
[22]. Interestingly, the latter is S-dual to the quantum sine-Gordon model [22]. In contrast to the linear
Dirac equation it provides solitary wave solutions, standing wave solutions, and collapse after collision of
two solitary waves [20]. As already for the Dirac equation, analytic solutions are rare, most of the behavior
of the NLD equation can only be investigated numerically [20]. For this purpose plenty of algorithms can be
found in the literature. Without claim to completeness, they are of Crank-Nicholson type [23–25], explicit
finite difference schemes [20, 26], spectral schemes [27, 28], Runge-Kutta methods [29, 30], and moving mesh
methods [31].

Remarkably, for the finite difference method no effort was made so far to eliminate the spurious solutions,
e.g. by staggering the grid for the spinor components. Being well aware of the different behavior of the NLD
equation, we think our scheme could also have some relevance there. At least it could serve to solve the linear
part in the operator-splitting method, thus avoiding the transformation to Fourier space. From a physics
perspective, however, the most natural way for the incorporation of self-consistency (e.g., self-interaction)
is to solve the standard Dirac equation self-consistently and in parallel to the differential equations for the
external potentials which appear in the former. A brief discussion will be given in the Conclusions in Sect.
5.

1.3. Boundary conditions

For a numerical treatment of a differential equation, such as the Dirac equation, the number of degrees of
freedom must be finite. In addition to the discretization of the time and space variable in a real-space scheme
one has to restrict the simulation domain to a finite region in time and space. Then, appropriate boundary
conditions are needed to ensure that the solution obtained within the finite domain is (at least) a good
approximation to the solution of the whole space problem. Generally, the time-dependent Dirac equation is
solved as an initial-value problem in time. The standard approach for the derivation of spatial transparent
boundary conditions (TBCs), e.g. for the Schrödinger equation, has been to solve the continuous exterior
problem by using the Laplace-transformation in time and to discretize the continuous TBCs afterwards [32].
To avoid stability problems [33] and spurious reflections at the boundary from inconsistent discretization
schemes, recently, a new improved approach in which the whole domain is discretized first and then solved
exactly in the constant-coefficient exterior domains using a Z-transform in time has been developed for the
Schrödinger equation [34, 37]. In this way one maintains the stability properties of the scheme on the whole
space and avoids inconsistent discretization for the simulation region and the boundary conditions. The
resulting discrete transparent boundary conditions (DTBCs) which are non-local in time are exact in the
sense that they do not introduce a procedural error. An alternative approach which, in most cases is easier
to handle because an inverse Z-transform can be avoided, is to discretize in space only, derive TBCs, and
discretize in time thereafter. This has been done with good results for hyperbolic systems [38–40]. However
for the proposed scheme, where the good properties regarding dispersion and conservation of norm arise
from the simultaneous discretization of space and time in an interlaced manner, paying the extra price in
form of an inverse Z-transformation is well justified. Therefore we follow the fully discrete approach of [34]
to develop TBCs for the time- and space-staggered leap-frog scheme. Furthermore, in order to preserve the
covariant symmetry of the Dirac equation on a space-time grid, time and space coordinates must be treated
on an equal footing. This is particularly important in higher dimensions.

As a major difference to the Schrödinger equation one should mention that a massless relativistic particle
cannot be trapped by a scalar one-particle potential [1]. The same holds for massive relativistic particles
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with energy E, when the potential depth V is such that E + mc2 > V > E − mc2. This phenomenon
is related to the Klein paradox and is due to the two-band-nature of the dispersion relation, consisting
of an electron and a positron band. One is necessarily dealing with a scattering problem whenever there
are no bound states supported by the Hamiltonian. Then, for initial data which are compactly supported
on the computational domain, the solution always reaches the boundary after a finite time. For simulation
times beyond that threshold, open boundary conditions are required to close the finite difference scheme in a
particle transport situation, similar to non-relativistic particle transport simulations in nano devices [35, 36].

2. Continuous transparent boundary conditions for the Dirac equation in (1+1)D

In this section we derive continuous TBCs for the Dirac equation Eq. (1). We divide the entire space
into the computational domain (0, L), and the semi-infinite exterior domains (−∞, 0] and [L,∞). The mass
is assumed to be constant m(x, t) = m and the potential is constant in space V (x, t) = V (t) in the exterior
domains. This reduces to the case V = 0 with the following gauge change of the spinor:

ψ(x, t) = eiV(t)χ(x, t) with V(t) =

∫ t

0

V (s)ds . (2)

With χ = (u, v), in the exterior, we have

i

(
u(x, t)
v(x, t)

)
t

=

(
m −i∂x
−i∂x −m

)(
u(x, t)
v(x, t)

)
. (3)

The multiplication with σx and a Laplace transformation with respect to the time variable leads to(
ũ(x, s)
ṽ(x, s)

)
x

=

(
0 −s+ im

−s− im 0

)(
ũ(x, s)
ṽ(x, s)

)
. (4)

Eq. (4) has the general solution(
ũ(x, s)
ṽ(x, s)

)
= c1

(
−s+ im

− +
√
s2 +m2

)
e−

+√s2+m2x + c2

(
−s+ im
+
√
s2 +m2

)
e

+√s2+m2x , (5)

where +
√

is written for the square root with positive real part. Because the solution must be in L2(R)
the constant c2 must vanish on the right exterior domain. For the same reason c1 must be zero on the left
exterior domain. Therefore, the boundary conditions on the right boundary are

∂xũ(x, s)
∣∣
x=L

= − +
√
s2 +m2 ũ(L, s) and ∂xṽ(x, s)

∣∣
x=L

= − +
√
s2 +m2 ṽ(L, s) . (6)

On the left boundary one gets

∂xũ(x, s)
∣∣
x=0

=
+
√
s2 +m2 ũ(0, s) and ∂xṽ(x, s)

∣∣
x=0

=
+
√
s2 +m2 ṽ(0, s) . (7)

The structure for both spinor components and both boundaries is the same, so we proceed with ũ on the
right boundary. First we derive boundary conditions as a Neumann-to-Dirichlet map by writing

ũ(L, s) = − 1
+
√
s2 +m2

∂xũ(x, s)
∣∣
x=L

. (8)

Then the inverse Laplace transformation leads to the convolution at the right boundary:

u(L, t) = −J0(mt) ∗t ∂xu(x, t)
∣∣
x=L

= −
∫ t

0

J0(mτ)∂xu(L, t− τ) dτ , (9)
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with J0 being the Bessel function of first kind. Analogously for the left boundary:

u(0, t) = J0(mt) ∗t ∂xu(x, t)
∣∣
x=0

. (10)

Finally, this leads with the gauge Eq. (2) for V 6= 0 to the TBCs in the form of a Neumann-to-Dirichlet
map:

ψ(L, t) = −eiVr(t)
{
J0(mt) ∗t

[
∂xψ(x, t)

∣∣
x=L

e−iVr(t)
]}

. . . right TBC , (11)

ψ(0, t) = eiVl(t)
{
J0(mt) ∗t

[
∂xψ(x, t)

∣∣
x=0

e−iVr(t)
]}

. . . left TBC . (12)

For the derivation of TBCs in the form of a Dirichlet-to-Neumann map we write:

∂xũ(x, s)
∣∣
x=L

= −g̃(s)ũ(L, s) , (13)

with:

g̃(s) :=
+
√
s2 +m2 =

(
s2 +m2

+
√
s2 +m2

− s

)
+ s . (14)

We use

f̃(s) :=
1

+
√
s2 +m2

L−1

→ f(t) = J0(mt) (15)

and

s2f̃(s)− sf(0)
L−1

→ m2J ′′0 (mt) . (16)

This leads to the following inverse Laplace transform of g̃(s):

g̃(s)
L−1

→ g(t) = m2
[
J ′′0 (mt) + J0(mt)

]
+ δ′ =

m2

2

[
J2(mt) + J0(mt)

]
+ δ′ , (17)

where δ′ is the first derivative of the delta distribution. Then the TBC as a Dirichlet-to-Neumann map on
the right boundary is

∂xψ(x, t)
∣∣
x=L

= −eiVr(t)
{m2

2

[
J2(mt) + J0(mt)

]
∗t ψ(L, t)e−iVr(t) + ∂tψ(L, t)e−iVr(t)

}
. (18)

On the left boundary one gets

∂xψ(x, t)
∣∣
x=0

= eiVr(t)
{m2

2

[
J2(mt) + J0(mt)

]
∗t ψ(0, t)e−iVr(t) + ∂tψ(0, t)e−iVr(t)

}
. (19)

Discretizations of Eqs. (11) and (12) or Eqs. (18) and (19) can serve as boundary conditions for arbitrary
finite difference discretizations of the Dirac equation Eq. (1). But one has to be aware of the fact that
inconsistent discretization of the differential equation and the associated boundary conditions usually leads
to spurious reflections or even instability. As already mentioned in the introduction we will therefore first
apply the discretization scheme to Eq. (1) for the the boundary regions also and derive the associated TBCs
by Z-transformation. Eqs. (11), (12), (18), and (19) serve as a guide to gain intuition for the behavior of
the convolution coefficients.
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3. Time- and space-staggered leap-frog scheme

Leap-frog time-stepping, in combination with a staggered spatial grid, plays a special role among the
finite difference methods because, in addition to the elimination of the fermion-doubling problem, it proves
to be dispersion relation preserving in (1+1)D for the ‘golden ratio’ of r = ∆t/∆x = 1, m = 0, and V = 0
(Weyl equation). Moreover, for m 6= 0 and/or V 6= 0 the dispersion relation is still monotone and improves
with a refinement of the grid. It is identical to the exact analytic dispersion when ∆t,∆x → 0, for fixed
r = 1. This is particularly important for simulations where the whole possible range of the wave numbers
k ∈

[
− π

∆x ,
π

∆x

]
is used, for example, in strong external fields. An initial wave-packet which consists only

of wave-components near k = 0 may acquire high wave number components due to strong spatial and/or
temporal changes of potential and/or mass.

For schemes with non-monotonic dispersion a problem can also arise at the boundary. The modes of such
a scheme consist of additional, spurious, numerically generated modes on the lattice which, nevertheless,
must be accounted for in the DTBCs for consistency. This requires special attention at the boundary because
improper realization of the boundary condition may lead to ‘energy’ transfer between the modes, spurious
reflections, and eventually instability (see e.g. [40]). A correct dispersion relation means correct phase and
group velocity on the grid and is essential for faithful long-time propagation studies. We now present such
a scheme.

3.1. The discretization scheme

We shall consider the following leap-frog discretization of the Dirac equation in Pauli-Dirac form given
in Eq.(1):

u
n+1/2
j − un−1/2

j

∆t
+ i(mn

j − V nj )
u
n+1/2
j + u

n−1/2
j

2
+

(Dvn)j
∆x

= 0 , (20)

vn+1
j−1/2 − v

n
j−1/2

∆t
− i(mn+1/2

j−1/2 + V
n+1/2
j−1/2 )

vn+1
j−1/2 + vnj−1/2

2
+

(Dun+1/2)j−1/2

∆x
= 0 , (21)

with j ∈ Z, n ∈ N. Here we used the notation ψ(x, t) =
[
u(x, t), v(x, t)

]
with u(xj , t

n−1/2) ≈ u
n−1/2
j and

v(xj−1/2, t
n) ≈ vnj−1/2. The symmetric spatial difference operator is defined as (Dvn)j = vnj+1/2 − v

n
j−1/2

and (Dun+1/2)j−1/2 = u
n+1/2
j − u

n+1/2
j−1 . For the mass and potential term we use the averages gnj =(

g
n+1/2
j + g

n−1/2
j

)
/2 for the integer spacial grid-points and g

n+1/2
j−1/2 =

(
gn+1
j−1/2 + gnj−1/2

)
/2 for the half-

integer ones, where g = m,V . The space-time stencil is shown in Fig. 1 (a). As one can see, the components
u and v are not defined on the same space-time grid points but on sub-grids shifted by a half time and
space grid spacing. A Taylor expansion about the grid points (xj , tn) and (xj−1/2, tn+1/2) shows that the
staggered-grid leap-frog scheme is second order accurate in space and time.
The leap-frog time stepping is not self starting. Assume, for example, initial data ψ(x, t) given at the
time-level t0. Then the u component has to be propagated from t0 to t1/2. In principle this can be done by
any time stepping method. We have chosen a symplectic Euler step [42] with half space-time grid spacing,
which is algorithmically equivalent to the leap-frog scheme, with the exception that all the data (u and v)
are stored at the same time and space level. Moreover it is only first order accurate (omitting indices for m
and V ):

u
1/2
j − u0

j

∆t/2
+ i(m− V )

u
1/2
j + u0

j

2
+
v0
j − v0

j−1/2

∆x/2
= 0 , j ∈ Z/2. (22)
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Figure 1: (color online). (a) Staggered-grid scheme for Dirac equation in Pauli-Dirac form with leap-frog time-stepping; (b)
the algorithmically equivalent (except for starting procedure) symplectic Euler time-stepping.

After this first initialization step the u-component is stored only at integer and the v-component at half
integer spatial points. With a relabeling of the indices, the algorithm Eq. (21) can be written as follows:

un+1
j − unj

∆t
+ i(m− V )

un+1
j + unj

2
+
vnj − vnj−1

∆x
= 0 ,

vn+1
j − vnj

∆t
− i(m+ V )

vn+1
j + vnj

2
+
un+1
j+1 − u

n+1
j

∆x
= 0 , (23)

with j ∈ Z, n ∈ N0. Here we use the approximations unj ≈ u(xj−1/4, t
n−1/4), vnj ≈ v(xj+1/4, t

n+1/4) (see
Fig. 1 (b)). Rearranging of terms leads to the following equations for the explicit recursive update

un+1
j =

2− i(m− V )∆t

2 + i(m− V )∆t
unj −

2∆t/∆x

2 + i(m− V )∆t

(
vnj − vnj−1

)
, (24)

vn+1
j =

2 + i(m+ V )∆t

2− i(m+ V )∆t
vnj −

2∆t/∆x

2− i(m+ V )∆t

(
un+1
j+1 − u

n+1
j

)
. (25)

The starting procedure for the leap-frog scheme with a symplectic Euler step of half grid-size is especially
suitable since symplectic Euler is algorithmically equivalent to the leap-frog staggered-grid scheme and has
the same dispersion relation for equal ratio r.

3.2. Von Neumann stability analysis

For constant coefficients in Eq. (23), Fourier analysis can be used to perform a von Neumann stability
analysis and to derive the dispersion relation for the whole space problem. A Fourier transform in space of
Eq. (23) leads to(

1
∆t + i(m−V )

2 0
e−ik∆x−1

∆x
1

∆t −
i(m+V )

2

)
︸ ︷︷ ︸

=:A

(
ũn+1

ṽn+1

)
+

(
− 1

∆t + i(m−V )
2

1−eik∆x

∆x

0 − 1
∆t −

i(m+V )
2

)
︸ ︷︷ ︸

=:B=−A∗

(
ũn

ṽn

)
= 0 . (26)

Using the definitions ξ = k∆x, µ = m∆t, ν = V∆t, and r = ∆t/∆x the eigenvalues of the amplification
matrix

G = −A−1B = A−1A∗ =

(
2i−ν+µ
2i+ν−µ

2ir(eiξ−1)
2i+ν−µ

2r(1−e−iξ)(2+iν−iµ)
4−ν2−4νi+µ2

4+ν2−µ2+4µi+8r2[cos ξ−1]
4−ν2−4νi+µ2

)
(27)

are computed by means of

λ± = P/2±
√(

P/2
)2 −Q , (28)
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Figure 2: (color online). Numerical dispersion relation ω(k) for the staggered-grid leap-frog scheme with m = 1 and r = 1 for
real k (hyperbolically shaped curves) and for imaginary k inside the energy gap (elliptically shaped curve) shown as solid lines.
The dispersion relation for the continuum problem is shown for comparison using dotted lines: (a) very coarse grid ∆x = 1.5
and k ∈ [π/∆x, π/∆x]; (b) finer grid ∆x = 0.5 where merely an excerpt of the wave number range k ∈ [π/(3∆x), π/(3∆x)] is
shown.
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Figure 3: Dispersion relation ω(k) for V = 0, m = 1, and ∆x = 0.1, and k ∈ [0, π/∆x] with r = 1, 0.99, 0.95, 0.9, 0.8, 0.7, 0.6, 0.5
(from top to bottom).

where P = tr[G] and Q = det[G], with

P =
[
2(ν2 − µ2) + 8(1− r2 + r2 cos ξ)

]
/N (29)

and
Q =

[
µ2 − (ν − 2i)2

]
/N , (30)

where N = µ2 − (ν + 2i)2. A lengthy but straightforward computation yields |λ±| = 1 for r ≤ 1. The
eigenvalues are non-degenerate except for the case k = µ = 0 and r = 1 (with geometric multiplicity 2), as
well as the case k = π/∆x, ν = 0, and r = 1 (with geometric multiplicity 1). Except for the latter case, the
scheme is stable under the constraint r ≤ 1, which constitutes its Courant-Friedrichs-Lewy (CFL) condition.
Below we use a different technique to prove stability which allows one also to identify a functional (related
to the l2-norm defined on the staggered grid) which is exactly conserved.

3.3. The energy-momentum dispersion relation

The Fourier transform of Eq. (26) with respect to the time variable with ω̃ = ω∆t leads to the homoge-
neous system

(eiω̃A + B)ψ̃ = 0 , (31)

with the solutions for r ≤ 1:

ω̃± = − i
r

ln[λ±] , (32)
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where λ± is given in Eq. (28). By setting µ, ν = 0 they reduce to

ω̃± = − i
r

ln

{
1 + r2

(
cos ξ − 1

)
±
√[

r2
(

cos ξ − 1
)

+ 1
]2
− 1

}
, (33)

and with the choice r = 1 they read

ω̃± = −i ln
(

cos ξ ±
√

cos2 ξ − 1
)

= −i ln
(

cos ξ ± i sin ξ
)

= ±ξ . (34)

Thus for µ, ν = 0, and r = 1 the linear dispersion of the continuum problem (Weyl equation) is exactly
preserved.

The connection to the phase of the growth factor (i.e. eigenvalues of G) can be established via

ω̃± = − i
r

ln[λ±] = − i
r

[ln |λ±|+ i arg(λ±) + 2πin] =
1

r
[arg(λ±) + 2πn] . (35)

In Fig. 2 the dispersion relation for a rather coarse grid with ∆x = 1.5 is compared to that of a finer one
using ∆x = 0.5, for m = 1, V = 0, and r = 1. Clearly, the quality of the numerical dispersion relation
improves for a finer grid and, for all wave-numbers k ∈ [−π/∆x, π/∆x], it approaches the continuum form
in the limit ∆x → 0 and r = 1. In Fig. 3 the dispersion relation for fixed values of m and V is shown for
several values of r and ∆x = 0.1.

In Fig. 4, the scheme is compared to a scheme using a centered approximation for the space derivative
and Crank-Nicolson time averaging, showing the fermion-doubling problem. The comparison is made for
m = 0 = V , r = 1, and initial Gaussian wave packets with different mean energies. The Crank-Nicolson
scheme shows large dispersive errors and for high mean energy (large wavenumbers) and even propagation in
the wrong direction (fermion-doubling) occurs, whereas the leap-frog staggered-grid scheme yields (almost)
the exact solution.

3.4. Phase error and gauge invariance

One can define the phase error for one time-step as

εphase(k, r,∆t) =
[
ωanalytical(k)− ωnumerical(k, r,∆t)

]
∆t , (36)

where the analytic dispersion relation is ωanalytical = ±
√
m2 + k2 and the numerical one is given in Eq. (32).

Together with Eq. (34) it follows that εphase vanishes in the case of m = V = 0 and r = 1 where the scheme
indeed propagates the solution without error. In Fig. 5, εphase is shown for different values of m and V on
a coarse grid ∆t = ∆x = 0.01 (a) and (b), and on a finer grid ∆t = ∆x = 10−4 (c) and (d).

Due to gauge invariance, when adding a diagonal term V (constant scalar potential) to the Hamitionan
Eq. (1) one can introduce a new spinor

ψ̆(t) = ψ(t) exp
(
− iV t) , (37)

which fulfills the original equation. Therefore the gauge error per time-step is equivalent to εphase due to a
finite V (see Fig. 5 (b) and (d)). The gauge invariant introduction of the electromagnetic vector potential
is shown in B.
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Figure 4: Comparison of the leap-frog staggered-grid scheme with a scheme that is centered in space and Crank-Nicolson in
time. We have choosen ∆t = ∆x = 0.05 and m = V = 0. The Gaussian wave packet is initially placed at the center (x = 200)
and should then move to the right. We give the results for 5 different energy mean values (E = 10, ..., 50). For each prescribed
energy we merge the simulation results at three times (t = 0, 70, 140) into one graphics. The figures show the probability
density |ψ(x)|2 (solid lines for the leap-frog staggered-grid scheme) and the negative probability density (dash-dotted lines) for
the Crank-Nicolson scheme. The latter shows large dispersive errors, whereas the leap-frog staggered-grid scheme shows the
correct propagation.

3.5. Stability analysis within a multiplication technique

The von Neumann analysis above and the fact that the dispersion relation ω(k) is real for r 6= 1 revealed
the stability conditions of the scheme for constant mass and potential terms. However, there is another
technique available which is not based on the Fourier transform and leads to the identification of an “en-
ergy” functional which is exactly conserved by the scheme, even in the presence of non-constant mass and
potential terms. The use of this multiplication technique has been inspired by a stability analysis of a
leap-frog pseudo-spectral scheme for the Schrödinger equation [43].

We define the inner product (u, v) :=
∑
j uj v̄j on l2(Z; C) and we will use the notation ‖u‖2 := (u, u).

Taking the inner product of Eq. (20) with (un+1/2 + un−1/2) and taking the real part gives∥∥∥un+1/2
∥∥∥2

−
∥∥∥un−1/2

∥∥∥2

+ r<
[
(Dvn, un+1/2 + un−1/2)

]
= 0 . (38)

Eq. (21) is multiplied by (v̄n+1 + v̄n) and again the real part is taken to give∥∥vn+1
∥∥2 − ‖vn‖2 + r<

[
(Dun+1/2, vn+1 + vn)

]
= 0 . (39)

Performing a summation by parts with vanishing boundary terms at infinity gives

<
[
(Dvn, un+1/2 + un−1/2)

]
= −<

[
(Dun+1/2 +Dun−1/2, vn)

]
. (40)

Then adding Eq. (38) and Eq. (39) leads to∥∥∥un+1/2
∥∥∥2

+
∥∥vn+1

∥∥2
+ r<

[
(Dun+1/2, vn+1)

]
=
∥∥∥un−1/2

∥∥∥2

+ ‖vn‖2 + r<
[
(Dun−1/2, vn)

]
(41)
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Figure 5: The dependence of the phase error εphase on the wave vector k ∈ [0, π/∆x] for V = 0, m = 1, 2, 3, 4, 5 (from bottom

to top): (a) coarse grid ∆t = ∆x = 0.01, (c) fine grid ∆t = ∆x = 10−4; for V = 1, 2, 3, 4, 5 (from bottom to top), m = 0: (b)
coarse grid ∆t = ∆x = 0.01, (d) fine grid ∆t = ∆x = 10−4. In (d) the functions exceed the plot-range, where the maxima for
V = (1, 2, 3, 4, 5) are εphase = (1, 2, 3, 4, 5) ∗ 10−4 at k = 104π.

and one immediately identifies the conserved functional

Enr :=
∥∥∥un+1/2

∥∥∥2

+
∥∥vn+1

∥∥2
+ r<

[
(Dun+1/2, vn+1)

]
= const = E0

r . (42)

With this result one obtains the stability condition for the scheme by using∣∣∣<[(Dun+1/2, vn+1)
]∣∣∣ ≤ ∥∥∥un+1/2

∥∥∥2

+
∥∥vn+1

∥∥2
. (43)

This gives the estimate ∥∥∥un+1/2
∥∥∥2

+
∥∥vn+1

∥∥2 ≤ E0
r

1− r
∀ n , (44)

for r < 1. The case r = 1 must be treated separately and one rewrites En1 as

En1 =
∑
j

|un+1/2
j |2 + |vn+1

j+1/2|
2 + <

∑
j

(
u
n+1/2
j+1 − un+1/2

j

)
v̄n+1
j+1/2 (45)

=
1

2

∑
j

|un+1/2
j − vn+1

j+1/2|
2 +

1

2

∑
j

|un+1/2
j+1 + vn+1

j+1/2|
2 . (46)

11



Alternatively, when shifting indices, one obtains

En1 =
1

2

∑
j

|un+1/2
j + vn+1

j−1/2|
2 +

1

2

∑
j

|un+1/2
j − vn+1

j+1/2|
2 . (47)

Using 1
4 ‖a1 + a2‖2 ≤ 1

4

(
‖a1 + b‖+ ‖a2 − b‖

)2 ≤ 1
2 ‖a1 + b‖2 + 1

2 ‖a2 − b‖2 gives

from Eq. (46):
∥∥∥ũn+1/2

∥∥∥2

:=
∑
j

∣∣∣∣∣u
n+1/2
j + u

n+1/2
j+1

2

∣∣∣∣∣
2

≤ En1 = E0
1 ∀n (48)

from Eq. (47):
∥∥ṽn+1

∥∥2
:=
∑
j

∣∣∣∣∣v
n+1
j−1/2 + vn+1

j+1/2

2

∣∣∣∣∣
2

≤ En1 = E0
1 ∀n

⇒
∥∥∥ũn+1/2

∥∥∥2

+
∥∥ṽn+1

∥∥2 ≤ 2E0
1 . (49)

One easily verifies that ‖ũ‖ is a norm on l2(Z). Indeed, ũ = 0 implies uj = (−1)jλ for some λ ∈ C. And
u ∈ l2 then yields u = 0.

This allows us to conclude that the scheme is stable for all r = ∆t/∆x ≤ 1. Moreover we have identified
the functional which is conserved by the scheme (see Eq. (42)). In fact, it is conserved for arbitrary time
and space dependent m,V ∈ R.

3.6. Time-reversal invariance

The time reversal invariance of the scheme can easily be seen in Eqs. (20) and (21). One has to set
∆t → −∆t and replace the role of the old and new time-levels n − 1/2 ↔ n + 1/2 and n ↔ n + 1. Then
one observes that the scheme for the backward propagation has exactly the same form as for the forward
propagation and concludes the scheme is time-reversal invariant.

4. Discrete transparent boundary conditions for the staggered-grid leap-frog scheme

Having discussed the properties of the leap-frog scheme we now turn to the derivation of the associated
TBCs. Again, we divide the entire space into the computational domain (0, L), a left semi-infinite exterior
domain (−∞, 0], and a right semi-infinite exterior domain [L,∞). This corresponds to a typical device
simulation geometry (scattering scenario) in which the nano-device is placed in the computational domain
and the (macroscopic) contacts are represented by the exterior domains. We make the following simplifying
assumptions:

• The initial data ψ0(x) = ψ(0, x) is compactly supported inside the computational domain.

• In each exterior domain the mass m(x, t) = m and potential V (x, t) = V are constant in t and x.

Both assumption are made for simplicity but can be loosened when needed, as will be discussed below.

We first Z-transform Eq. (23) in t-direction on each of the exterior domains, j ∈ {. . . ,−2,−1, 0} and
j ∈ {J, J + 1, J + 2, . . .}, and solve the resulting finite difference equations explicitly. Using the definition of

the Z-transform b(z) := Z(bn) =
∞∑
n=0

bnz
−n, its shifting property Z(bn+1) =

∞∑
n=0

bn+1z
−n =

∞∑
n=1

bnz
−n+1 =

12



zb(z)− zb0, and setting b0 = 0 (since the initial spinor is compactly supported on (0, L) ) we obtain

(
1

∆t (z − 1) + i(m−V )
2 (z + 1) 1

∆x
z

∆x 0

)(
uj(z)
vj(z)

)
(50)

+

(
0 − 1

∆x

− z
∆x

1
∆t (z − 1)− i(m+V )

2 (z + 1)

)(
uj−1(z)
vj−1(z)

)
= 0 .

Translation from grid point j to j + 1 therefore is given by(
uj
vj

)
=

(
1 ∆x

∆t
1−z
z + i(m+V )∆x

2
1+z
z

∆x
∆t (1− z)− i(m−V )∆x

2 (1 + z) 1 + ∆x2

z

[
(1−z)2

∆t2 + iV 1−z2

∆t + (m2−V 2)(z+1)2

4

] )( uj−1

vj−1

)
.

(51)

This can also be written as(
uj − uj−1

vj − vj−1

)
=

(
0 ∆x

∆t
1−z
z + i(m+V )∆x

2
1+z
z

∆x
∆t (1− z)− i(m−V )∆x

2 (1 + z) ∆x2

z

[
(1−z)2

∆t2 + iV 1−z2

∆t + (m2−V 2)(z+1)2

4

] )
︸ ︷︷ ︸

=:M

(
uj−1

vj−1

)
,

(52)

where M :=

(
0 a
b c

)
fulfills ab = c. Solving the system Eq. (52) leads to

uj+1 − (2 + c)uj + uj−1 = 0 , (53)

whose characteristic equation has the roots:

τ1,2 = 1 +
c

2
±
√
c+

c2

4
. (54)

The same result is obtained for the component v. Since τ1τ2 = 1, there is one decaying mode (as j → ∞)
with |τ1| ≤ 1 and one increasing mode with |τ2| ≥ 1. In order to have a solution in l2(Z) one has to choose
the mode with |τ1| ≤ 1. At each boundary only one spinor component couples to the contact region. The
spinor components u and v, respectively, only need a right and a left TBC (see Eq. (23) and Fig. 1)

v0(z) = τ1(z)v1(z) (55)

uJ(z) = τ1(z)uJ−1(z)

Then, the inverse Z-transformed boundary conditions are in the form of a convolution in the discrete time
variable:

vn0 =

n∑
k=0

τ
(n−k)
1 vk1 . (56)

unJ =

n∑
k=0

τ
(n−k)
1 ukJ−1 . (57)

τ1(z) is a non-rational function of z, hence there is no easy way of finding an analytic expression for its
inverse Z-transformed in general. However, the poles and branch-points in the z-plane, which determine the
general behavior of their inverse Z-transformed in (discrete) real time n, can be identified. We give a brief
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Figure 6: Absolute value of τ1 = 1/τ2 which is zero at |z| = 0 and |z| = ∞, shown for ∆t = ∆x = 0.1. The contour lines are
at 0.1, 0.2, 0.3 . . . etc. The branch-point locations are marked by (red) stars.

discussion of these special points for ∆ := ∆t = ∆x.
First, one observes that τ1 has no poles. For the branch cuts we examine the branch points of the square
root function – due to zeros of its argument. This leads to the four branch points of τ1 (Fig. 6):

z1 = −1 , z2 = −4(1 + iV∆) + (m2 − V 2)∆2

4(1− iV∆) + (m2 − V 2)∆2
and z3,4 =

2i− (V ±m)∆

2i+ (V ±m)∆
. (58)

It can easily be seen that they all lie on the unit circle. These branch points induce damped oscillations

in time for the convolution coefficients τ
(n)
1 . The high frequency part (−1)n of these oscillations, which

arises from z1 = −1, can introduce numerical problems because of subtractive cancellation. It may be
advantageous to eliminate this behavior: A multiplication of τ1(z) by (z+ 1)/z allows one to construct new
coefficients as a linear combination of the original coefficients involving the two time steps τ̃ (k) = τ (k)+τ (k−1)

(see [34, 41]). Then (56) becomes

vn0 =

n−1∑
k=0

τ̃
(n−k)
1 vk1 − vn−1

0 ,

where we used τ0
1 = limz→∞ τ1(z) = 0.

For our numerical simulations, the inverse Z-transformation was carried out by performing a power

series expansion about z = 0 using Mathematica. In Fig. 7 we show the convolution coefficients τ
(n)
1 for

∆t = ∆x = 0.1 and various values of m and V . For the special case m = V = 0 and r = 1 the inverse
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Figure 7: (color online). Decay of the convolution coefficients τ
(n)
1 for different values of m and V for ∆t = ∆x = 0.1: (a)

m = 1 and V = 0, (b) m = 0 and V = 1, (c) m = 1 and V = 1, (d) m = 1 and V = 2. The darker (blue) color shows

the real part of the coefficients, the brighter (orange) color shows the imaginary part. The zeroth coefficient τ
(0)
1 is always

zero and is not shown in the plots. The first coefficient exceeds the plot-range and has the values: (a) τ
(1)
1 = 0.9975, (b)

τ
(1)
1 = 0.9925 + 0.0995i, (c) τ

(1)
1 = 0.9901 + 0.0990i, (d) τ

(1)
1 = 0.9682 + 0.1951i .

Z-transform can be computed analytically. One gets

τ1 =
1

2

(
z +

1

z

)
− 1

2

√(
z − 1

z

)2

= . . . =
1

z
. (59)

The convolution coefficient then simply is τ
(n)
1 = δn1 , where δnk is the Kronecker symbol. In the Appendix

A we shall give an explicit, analytic derivation of the convolution coefficients τ
(n)
1 in the general case.

4.1. Numerical examples

With the general properties of the scheme established and the associated TBCs identified, we now put
it to test in challenging numerical applications.

In Fig. 8 we show the results of a simulation run for a Gaussian wave packet starting out with a mean
value of k = 15.92% of kmax and a standard deviation of σk = 1.59% of kmax. A coarse grid ∆t = ∆x = 0.05
is used. The individual figures show the probability density |ψ(x, t)|2 computed with

|ψnj |2 := |un+1/2
j |2 + |vn+1

j+1/2|
2 + <

[(
u
n+1/2
j+1 − un+1/2

j

)
v̄n+1
j+1/2

]
, (60)

which gives the conserved functional Eq. (42) when summed over j on an infinite grid. Additionally, the real
part of the upper component u, and the mass-gap (= energy region between the minimum of the electron
band and the maximum of the positron/hole band) is shown. One can observe that the wave packet leaves
the simulation domain without reflections (the numerical error is less than machine precision = 2.2204e-16).
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In Fig. 9 the time dependence of the probability for finding the Dirac particle inside the computational
interval ‖ψ(t)‖2 (:= Eq. (60) summed over j on the computational domain) is shown for this simulation.

In Fig. 10 we show the reflection at a mass barrier (= spatial region where the energy of the wave
packet lies inside the mass-gap) with m = 7 and a width of 25 grid-points placed near the center of the
simulation region. A variation of the mass term can be achieved for Dirac fermions on topological insulators
by magnetic texturing [47, 48]. The wave packet initially has a mean value of k = 1.59% of kmax and a
standard deviation of σk = 1.99% of kmax, where ∆t = ∆x = 0.01. In this tunneling problem it is of
profound importance that the dispersion relation is correct also for imaginary k, which is the case for the
proposed scheme already for relatively coarse grids, as illustrated in Fig. 2.

Fig. 11 shows a simulation for an initial wave packet with a mean value of k = 27.06% of kmax and a
standard deviation of σk = 1.99% of kmax moving across a linear potential drop. In this process, the wave
number grows beyond the maximum wave number provided by the grid kmax, where the wave packet is
under-sampled. The propagation is still correctly described because the dispersion and therefore the group
velocity is well approximated for all possible wave numbers resolved by the grid.

4.2. Non-compactly supported initial condition for the spinor and time-dependent exterior potential

The constraints stated at the beginning of chapter 4 can be loosened:

• The DTBCs can readily be generalized to the case where the initial wave packet is not compactly
supported inside the computational domain x ∈ (0, L). The inhomogeneous boundary conditions can
be derived by substituting ψ(xr,l, t) with ψ(xr,l, t) − ψin(xr,l, t) and carrying out the procedure as
detailed in chapter 4. Here, ψ −ψin should initially have compact support in (0, L). And ψin should
be a solution to the discrete exterior domain problem, e.g. a discrete plain wave (see [44] for details in
the analogous Schrödinger case). Re-substitution afterwards leads to the result

unJ =

n∑
k=0

(
τ

(n−k)
1 ukJ−1

)
+ unJ,in , (61)

vn0 =

n∑
k=0

(
τ

(n−k)
1 vk1

)
+ vn0,in . (62)

The rationale is that the Dirac equation is a linear differential equation which here is approximated
by a linear finite difference scheme. Therefore one may simply add inhomogeneous boundary terms
via the superposition principle.

• The scalar potential V (t) on the exterior domain may depend on time. This is useful when considering
a time-dependent net potential drop across the system. As for the case of the Schrödinger equation
a time-dependent exterior potential, e.g. at the right boundary, can be incorporated by treating it in
the interaction picture which removes V (t) from the Hamiltonian and leads to a gauge (phase change)
for the spinor Eq. (2) [41].

16



0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

20

25

30

x

2

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

20

25

30

x

= 0.99989

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

20

25

30

x

= 0.57428

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

20

25

30

x

= 0.00042962

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

20

25

30

x

= 3.3383e−012

||ψ(t=200)||2

||ψ(t=250)||2 ||ψ(t=300)||2

0 50 100 150 200 250 300 350 400
−10

−5

0

5

10

15

20

25

30

x

1||ψ(t=50)||2= ||ψ(t=100)||2= 1

||ψ(t=150)||2

E
, R

e(
u)

, |
ψ

(x
j)|

2

E
, R

e(
u)

, |
ψ

(x
j)|

2

E
, R

e(
u)

, |
ψ

(x
j)|

2

E
, R

e(
u)

, |
ψ

(x
j)|

2
E

, R
e(

u)
, |

ψ
(x

j)|
2

E
, R

e(
u)

, |
ψ

(x
j)|

2

Figure 8: Simulation run for a coarse grid ∆t = ∆x = 0.05 and an initial Gaussian wave packet with a mean value of k = 15.92%
of kmax and a standard deviation of σk = 1.59% of kmax. The figures show the probability density |ψ(x)|2 (solid lines), the
real part of the upper component u (dotted lines), and the mass-gap (point-dotted lines). The zero line on the vertical axis is
shifted by 10, which is the mean energy of the wave packet. With time evolving, the probability ‖ψ‖2 for finding the particle
in the computational domain approaches zero because the wave packet leaves the domain without reflection.
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5. Conclusions and future work

In this paper we have presented a finite difference scheme for the numerical solution of the time-dependent
Dirac equation in (1+1)D, allowing fully time- and space-dependent mass and potential terms. Owing to a
combined staggering of the grid both in space and time, unphysical additional Dirac cones are avoided and,
for the special case of the Weyl equation, the linear dispersion is preserved exactly for all wave numbers
supported by the grid. In the case of finite mass and/or potential terms the dispersion relation improves
for all wave numbers, approaching the continuum dispersion relation exactly, when the grid is refined. This
is a relevant feature when modeling Dirac fermions on a lattice, such as Dirac fermions propagating on
topological insulator surfaces, graphen, or in quantum spin Hall states. The electromagnetic potentials
accounting for an external electromagnetic field are included in gauge invariant fashion. A stability analysis
of the scheme was performed and a functional, exactly conserved by the scheme, was identified. It provides
a valid norm for the spinor on the proposed staggered grid.

Furthermore, we have derived exact DTBCs to close the finite difference scheme for constant mass and
potential in the boundary regions. With these BCs one is in the position to deal with particle transport
scenarios and to account for the multi-band nature of the Dirac equation which may cause inter-band
transfer rather than quantum confinement. For completeness, DTBCs were also derived for the (1+1) Dirac
(differential) equation in Schrödinger form.

Using the norm for a measure, numerical simulations of Gaussian wave packets show them leaving the
computational domain without reflections (with an error below computer precision), thus verifying the
quality of the DTBCs numerically. The importance of a faithful representation of the energy-momentum
dispersion relation, in particular, avoiding fermion doubling, is exemplified in numerical simulations.

The assumptions of constant mass and potential on the exterior domain can be loosened. It is however
desirable that an analytic solution on the discrete exterior domain can be found. The case of purely time-
dependent exterior potential can be treated by using a proper phase change of the spinor. Initial conditions
for which the initial wave packet is not compactly supported on the computational domain can be handled
as well, leading to inhomogeneous terms in the boundary conditions. There are various ways to extend the
proposed leap-frog scheme to the (2+1)D Dirac equation where it retains many of its attractive features
[45, 46, 49]. The formulation of DTBCs for the (2+1)D Dirac equation in the spirit of this paper is the
subject of future work [49].

In view of existing work on non-linear versions of the Dirac equation accounting, for example, for self-
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Figure 10: Reflection at a mass barrier with a width of 25 grid-points and a height of m = 7. ∆t = ∆x = 0.01, the initial
Gaussian wave packet has a mean value of k = 1.59% of kmax and a standard deviation of σk = 1.99% of kmax. The individual
figures show the probability density |ψ(x)|2 (solid lines), the real part of the upper component u (dotted lines), and the mass
(dash-dotted lines). The zero for the vertical axis is shifted by 5, which corresponds to the mean energy of the initial wave
packet.
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Figure 11: Initial Gaussian wave packet with a mean value of k = 27.06% of kmax and a standart deviation of σk = 1.99%
of kmax meeting a linear potential. A rather coarse grid ∆t = ∆x = 0.05 is used. The figures show the probability density
|ψ(x)|2 as dashed line, the real part of the upper component u as solid line, and the mass-gap as dash-dotted lines. The zero
line is shifted by 17 which is the value for the mean energy of the wave packet.

interaction corrections in a single equation, we wish to point out that a self-consistent treatment of such
effects can be treated readily (and in more generality) within the present approach based on the stan-
dard Dirac equation and a parallel self-consistent update of the effective electromagnetic potentials. In a
semi-classical picture, for example, the latter may be accomplished within Maxwell’s theory for the elec-
tromagnetic potentials [53]. In this fashion, a self-consistent open-boundary treatment of the Schrödinger
equation was performed whereby, instead of the nonlinear Hartree term, equivalently the Poisson equation
was solved in parallel [35]. Any nonlinearity arising from the (classical) electromagnetic interaction can
readily be treated within this approach and its advantages be exploited, as long as the conditions on the
asymptotic regions made for the linear Dirac equation can be met. This is the case, for example, when
non-linear effects are confined to the simulation region and/or nonlinear effects in the outer regions can be
accounted for by constant electromagnetic potential and mass terms. Clearly, the direct use of non-linear
versions of the Dirac equation requires the use of individually matched transparent boundary conditions, as
for the case of the Schrödinger equation [41].
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Appendix A. Analytic derivation of the convolution coefficients τ
(n)
1 for the general case

We shall first consider the case m = V = 0 where (54) reads

τ1(z) = 1 +
1

2r2z
(z − 1)2 − z − 1

2r2z

√
z2 − 2µz + 1 ,

with µ := 1 − 2r2. Here, the branch of the square root is chosen such that τ1(z) = O(|z|−1) as z → ∞.
Using

Z−1

{√
z2 − 2µz + 1

z

}
= Pn−2(µ)− 2µPn−1(µ) + Pn(µ) =

1

n
[Pn−2(µ)− µPn−1(µ)] , (A.1)

where Pn denotes the Legendre polynomials (with the convention P−1 = P−2 := 0), we obtain

τ
(n)
1 = (1− 1

r2
)δn0 +

1

2r2
δn1 −

1

2r2

[
Pn+1(µ)− (2µ+ 1)(Pn(µ)− Pn−1(µ))− Pn−2(µ)

]
, n ≥ 0 .

And this simplifies to τ
(n)
1 = δn1 for r = 1.

Next we shall discuss the general case with m, V ∈ R. Here we have

τ1(z) = 1 +
c̃

2z
− 1

2z

√
c̃
√
c̃+ 4z ,

where c̃(z) := z c(z) = αz2 +βz+γ is a quadratic polynomial given by (52). Using again (A.1), both square

root factors can be inverse Z-transformed. And the explicit formula for the coefficients τ
(n)
1 would then

involve a discrete convolution.

But we shall proceed differently here and rather derive a recursion relation for τ
(n)
1 (similar as in §3 of

[50]). A lengthy, but straightforward computation shows that τ̂1(z) := z τ1(z) satisfies the inhomogeneous
differential equation

c̃(c̃+ 4z) τ̂ ′1 − [2α2z3 + 3α(β + 2)z2 + (β2 + 4β + 2αγ)z + (β + 2)γ] τ̂1 = 2z(γ − αz2) . (A.2)

Since all coefficients in (A.2) are polynomials we shall use the Laurent series of τ̂1, i.e. τ̂1 =
∑∞
n=0 s

(n)z−n,

with τ
(n)
1 = s(n−1). A comparison of the coefficients then yields:

s(0) =
1

α
, s(1) = −β + 2

α2
, s(2) =

β2 + 4β + 5− αγ
α3

,

and the exact recursion

(n+5)α2s(n+3)+(2n+7)α(β+2)s(n+2)+(n+2)(β2+4β+2αγ)s(n+1)+(2n+1)(β+2)γs(n)+(n−1)γ2s(n−1) = 0 ,

for n ≥ 0 with the convention s(−1) := 0.
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Appendix B. Gauge-invariant introduction of the electromagnetic vector potential

Dirac equation Eq. (1) sofar has been written for a charged massive particle in a scalar potential. For a
general account of external electromagnetic fields and/or self-interaction both scalar and vector potential are
needed. A gauge invariant introduction of the electromagnetic vector potential A(x, t) is executed by replac-

ing the complex 2-spinor ψ =

(
u(x, t)
v(x, t)

)
in Eq. (1) by ψ(x, t) exp{−ia(x, t)} =

(
u(x, t) exp{−ia(x, t)}
v(x, t) exp{−ia(x, t)}

)
,

with[51, 52]

a(x, t) :=
q

~c

∫ x

xo

dyA(y, t) .

Position xo is arbitrary but constant. Under this Peierls substitution the canonical momentum p := ~
i
∂
∂x

in Eq. (1) is replaced by the kinetic momentum p − q
cA(x, t) = ~

i
∂
∂x −

q
cA(x, t). Under local gauge trans-

formation A(x, t)→ A(x, t) + ∂
∂xΛ(x, t), Φ(x, t)→ Φ(x, t)− ∂

c∂tΛ(x, t), the spinor acquires the phase factor
exp{−i q~c (Λ(x, t)− Λ(xo, t))}, and the electromagnetic fields E and B remain invariant.

Here it should be pointed out that in a (1+1)D model, orbital forces are confined to one spatial direc-
tion (i.e., x), while non-vanishing torque on the spin degree of freedom (in a Larmor term) arising from
Ax(x, t) = A(x, t) requires a non-vanishing B field component in the plane orthogonal to x. Note, however,
that the two-component nature of an effective Dirac model may not arise from the spin degree of freedom.
Most notable example in 2+1D is graphene [3]. This shows that the physical interpretation of the effective
Dirac equation and the way an electromagnetic field couples to the system is determined by the underlying
basic theory.

We now discuss the consequences of the Peierls substitution on the leap-frog scheme Eqs. (20) and (21).
Again, we have V (x, t) = −Φ(x, t), and for any grid point xj , tn we define anj := a(xj , tn). The leap-frog
scheme for non-zero vector potential is obtained by the substitution

u
n−1/2
j → û

n−1/2
j := u

n−1/2
j exp{−ian−1/2

j } ,
vnj−1/2 → v̂nj−1/2 := vnj−1/2 exp{−ianj−1/2} . (B.1)

Likewise, the stability analysis for zero vector potential detailed above can immediately be extended to the
case of a non-vanishing vector potential by the substitution Eq. (B.1) and noting that the vector potential
A(x, t) is real valued. Hence, a strictly conserved functional Ênr is identified by this substitution applied to
the expression for Enr in Eq. (42) for arbitrary time t and space x dependent m,V,A ∈ R. It follows that
the scheme remains stable for all r = ∆t/∆x ≤ 1.

Expressed in terms of spinor components u and v the scheme in presence of an external electromagnetic
potential takes the form

f+(a
n+1/2
j , a

n−1/2
j )

[
u
n+1/2
j − un−1/2

j

∆t
+ i

(
mn
j − V nj −

a
n+1/2
j − an−1/2

j

∆t

)
u
n+1/2
j + u

n−1/2
j

2

]

+ if−(a
n+1/2
j , a

n−1/2
j )(mn

j − V nj )
u
n+1/2
j − un−1/2

j

2

+ f+(anj+1/2, a
n
j−1/2)

[
(Dvn)j

∆x
− i

anj+1/2 − a
n
j−1/2

∆x

vnj+1/2 + vnj−1/2

2

]
= 0 , (B.2)
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f+(an+1
j−1/2, a

n
j−1/2)

[
vn+1
j−1/2 − v

n
j−1/2

∆t
− i(mn+1/2

j−1/2 + V
n+1/2
j−1/2 +

an+1
j−1/2 − a

n
j−1/2

∆t
)
vn+1
j−1/2 + vnj−1/2

2

]

− if−(an+1
j−1/2, a

n
j−1/2)(m

n+1/2
j−1/2 + V

n+1/2
j−1/2 )

vn+1
j−1/2 − v

n
j−1/2

2

+ f+(a
n+1/2
j , a

n+1/2
j−1 )

[
(Dun+1/2)j−1/2

∆x
− i

a
n+1/2
j − an+1/2

j−1

∆x

u
n+1/2
j + u

n+1/2
j−1

2

]
= 0 . (B.3)

Here we have used the definition f±(a1, a2) := (e−ia1±e−ia2)/2. As in the main text, we set c = ~ = 1 = −q.
For slowly varying vector potential (or within first order in ∆t) one may approximate these equations by

u
n+1/2
j − un−1/2

j

∆t
+ i(mn

j − V̂ nj )
u
n+1/2
j + u

n−1/2
j

2

+

[
(Dvn)j

∆x
+ iAnj

vnj+1/2 + vnj−1/2

2

]
= 0 , (B.4)

vn+1
j−1/2 − v

n
j−1/2

∆t
− i(mn+1/2

j−1/2 + V̂
n+1/2
j−1/2 )

vn+1
j−1/2 + vnj−1/2

2

+

[
(Dun+1/2)j−1/2

∆x
+ iA

n+1/2
j−1/2

u
n+1/2
j + u

n+1/2
j−1

2

]
= 0 . (B.5)

Here we have used the following abbreviations on the two sub-lattices: V̂ nj := V nj +
a
n+1/2
j −an−1/2

j

∆t and

V̂
n+1/2
j−1/2 = V

n+1/2
j−1/2 +

an+1
j−1/2

−anj−1/2

∆t denote the net scalar potential associated with the E field after introduction

of the vector potential, and Anj =
anj−1/2−a

n
j+1/2

∆x and A
n+1/2
j−1/2 =

a
n+1/2
j−1 −an+1/2

j

∆x are the vector potential, as

defined by symmetric spatial derivatives of a(x, t). Note that we use q = −1.
The approximate scheme (B.4) and (B.5) may have been guessed directly by inspection of Eqs. (20) and

(21). Going the present way, however, not only has given the way for precise implementation of the vector
potential into the latter but also has taken care of the stability analysis for this general case. Finding an
exactly conserved functional for the approximate scheme is complicated by the fact that the vector potential
leads to additional coupling between the spinor components u and v.
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[36] W. Pötz, Scattering theory for mesoscopic quantum systems with non-trivial spatial asymptotics in one dimension, Journal

of Mathematical Physics 36 (1995) 1707.
[37] A. Zisowsky, A. Arnold, M. Ehrhardt, and T. Koprucki, Discrete transparent boundary conditions for transient kp-

Schrödinger equations with application to quantum heterostructures, Journal of Applied Mathematics and Mechanics 11
(2005) 793-805.

[38] I. Alonso-Mallo and N. Reguera, Weak Ill-Posedness of Spatial Discretizations of Absorbing Boundary Conditions for
Schrödinger-Type Equations, SIAM Journal on Numerical Analysis 40 (2002) 134-158.

25
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Conditions Techniques for Linear and Nonlinear Schröodinger Equations, Communications in Computational Physics 4
(2008) 729-796.

[42] E. Hairer, C. Lubich, and G. Wanner, Geometric numerical integration illustrated by the Störmer/Verlet method, Acta
Numerica 12 (2003) 399-450.

[43] A. Borz̀ı and E. Decker, Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, Journal of Compu-
tational and Applied Mathematics 193 (2006) 65-88.

[44] A. Arnold, Mathematical concepts of open quantum boundary conditions, Transp. Theory Stat. Phys. 30/4-6 (2001)
561-584.
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