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Abstract

We apply dynamic mode decomposition (DMD) and proper ortimad) decomposition (POD)
methods to flows in highly heterogeneous porous media taebttie dominant coherent structures
and derive reduced-order models via Galerkin projectioernfeability fields with high contrast
are considered to investigate the capability of these igales to capture the main flow features
and forecast the flow evolution within a certain accuracy. M based approach shows a better
predictive capability due to its ability to accurately edr the information relevant to long-time
dynamics, in particular, the slowly-decaying eigenmodasesponding to largest eigenvalues.
Our study enables a better understanding of the strengthsvaaknesses of the applicability of
these techniques for flows in high-contrast porous medighBtmore, we discuss the robustness
of DMD- and POD-based reduced-order models with respectat@mtons in initial conditions,
permeability fields, and forcing terms.

Keywords: Model reduction, highly heterogeneous porous media, dymarmde decomposition,
proper orthogonal decomposition.

1. Introduction

In many relevant porous media engineering applicationsliangermeability can vary several
orders of magnitude. For example, in flow through fractureebps media, the conductivity within
fractures can be several orders of magnitude higher thacath@uctivity within the matrix. Sim-
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ilarly, shale barriers with very low permeability can affélow behavior significantly. Because
of these large variations in coefficient values and the faat these features (fractures and shale
barriers) have small spatial dimensions, the direct nusaksimulations of these processes may be
prohibitively expensive. In particular, the resultinggdamumber of degrees of freedom and asso-
ciated computational cost could inhibit the capability &fprm a sensitivity analysis or conduct
uncertainty quantification studies which require many fiomal evaluations. As such, construct-
ing model reduction techniques that can judiciously seleetdominant modes corresponding to
dominant flow features is important in these applicatiortsis Enables the derivation of reduced-
order models with significantly less degrees of freedom evhiéglecting irrelevant features of
the physics in order to remain computationally tractabfethis paper, we discuss global model
reduction techniques for flows in highly heterogeneous medtih high contrast.

Modeling of flow in a high-contrast subsurface requires gapg its long-term dynamics that
is due to heterogeneous diffusion in the low conductivityioas. In this paper, our goal is to
develop model reduction techniques that are suitable fourately predicting the behavior of
flows in high-contrast media in long time scales. This is nadgd by many important applications
(see lﬂl] and references therein) where the flow responseodo® tconductivity regions needs to
be detected in order to identify the location of these regiand their intensity. The sizes of the
problems involving these features are very large because &yers or low conductivity features
can be thin and long and because of the high contrast one mesdsgrid blocks to resolve these
functions. In addition, this small-scale fractures mayehaignificant spatial variations of the
coefficients. Furthermore, these problems usually neee &olved for several initial conditions,
system’s settings, and forcing inputs. To account for althefse, one needs to consider robust
reduced-order models that enable reliable simplified satmus.

Several techniques, such as balanced truncation, projpeganal decompositions (POD), and
dynamic mode decomposition (DMD), have been efficientlydidseglobal model reduction, most
of which involve projection of the original governing equets onto a set of modes. Proper or-
thogonal decomposition (POEB 12] constitutes a comraohrtique for extracting the coherent
structures from a linear or nonlinear dynamical processs iftethod is based on processing infor-
mation from a sequence of snapshots and identifying a lomedsional set of basis functions that
represent the most energetic structures. These functierteen used to derive a low-dimensional
dynamical system that is typically obtained by Galerkinj@cton B-EH]B] Schmidﬂ4] has
recently introduced a model-free decomposition technigamely dynamic mode decomposition
(DMD), to accurately extract coherent and dynamicallyvele structures. This method enables
the computation, from empirical data, of the eigenvaluesegenvectors of a linear model that



best represents the underlying dynamics, even if thosendigisaare produced by a nonlinear pro-
cess. This technique has been successfully applied fomilgsas of experiment 0] and
numerical B 4] flow field data and has shown a greathibiyato capture the relevant
associated dynamics.

For flows in high-contrast media, long-term dynamics aretratled by the flow in low con-
ductivity regions. As such, it is essential to keep the mdbascapture the local slow dynamical
behavior in the low conductivity regions when selectingi®dsnctions to represent the solu-
tion space and derive a reduced-order model by Galerkiregtion. As for POD, the selection
of modes is based on an energy ranking of the coherent stesctitHowever, the energy may
not in all circumstances be the appropriate measure to tenkriportance of the flow structures
and especially to detect the slow dynamics. Thus, reducgekonodels generated by projection
onto principal components, such as POD modes, unless egleatefully, may be inaccurate be-
cause the dominant modes identified from a set of snapshotsotanecessarily correspond to
the dynamically-important ones. Moreover, principal camgnts, such as POD, -based reduced-
order models are often limited in their applications dueh@irtlack of robustness with varying
flow parameters, initial conditions, and forcing inputs.

In this work, we apply POD and DMD approaches to flow in highdydrogeneous porous me-
dia with high contrast to identify the important physicatieres and derive reduced-order models
that accurately capture the long-term dynamics of the systBifferent numerical examples of
flows in porous media characterized by varying permealdiktgs are considered. These perme-
ability fields include channels and inclusions of high and tonductivity. These configurations
lead to different types of behavior. The objective is to Btigate the capability of POD and DMD
to capture the main flow characteristics and forecast the digmamics response within a certain
accuracy while reducing the computational cost. In all saiee DMD-based approach shows a
better predictive capability and reproduces the flow fielthaimore reliable accuracy. We observe
convergence to small errors as the steady-state solutieiages when using DMD modes while
larger errors are obtained when POD modes are considerée iconstruction of reduced-order
models. This is mostly due to the DMD’s ability to extract thiBormation relevant to the slow dy-
namics in the system which control the long-time behavice.algo consider parameter-dependent
problems to investigate the robustness of the POD and DMDesadth respect to variations in
the initial conditions, permeability field, and forcing img. This analysis is motivated by many
applications where one needs to solve many forward probtemesponding different permeabil-
ity fields; for instance, when stochastic descriptions aedysuch as when the permeability field
may be subject to uncertainty or multi-phase flow where thenpability is modulated by large-



scale mobility. We show that using basis functions gendriten a DMD-based approach which
are determined from few selected samples, one can makeadeqredictions of the dynamical
behavior of the flow in highly heterogeneous porous media.

2. Problem Formulation and Numerical Examples

We consider a time-dependent single-phase flow in porousangederned by the following
parabolic partial differential equation

g—? — V(k(2)Vu) + f(z) on O ()
whereu is the pressuré) is a bounded domairf,is a forcing termg(x) is a positive definite scalar
function that is a function of the spatial location x represents the ratio of the permeability over
the fluid viscosity which is a highly-heterogeneous fieldwathigh contrast (i.e., large variations
in the permeability). The high and low permeability regi@me typically heterogeneous and flow
within them can be have a complicated structure.

We considef2 =0 1[x]0 1[,» = 0 on 052, andf is a heterogeneous spatial field repre-
senting injection and production rates. A finite elementimesconstructed by decomposing the
domain into N,; triangular elements. The variations of the forcing tefnm our numerical
examples ovef? is shown in Figuré]l. For each cell, the valuefofaries randomly between the
discrete values of -1, 0, and 1. We study the flow behavior uddierent permeability fields that
include high and low conductivity regions. We assume homegas Dirichlet boundary condi-
tions in our numerical examples. This model problem is agggntation of flow in a reservoir with
injection modeled by the forcing term.

The finite element discretization of Equatidn (1) yields steyn of ordinary differential equa-
tions given by

MU+ AU =F (2)

whereU andF are vectors collecting the solution values and forcing aribdes. Here, A= (a;;),
ai; = [okVi-Voj, M = (my;), my = [, ¢id;, whereg; is piecewise linear basis functions
defined on a triangulation ¢t andV denotes spatial gradient.

Employing the backward Euler implicit scheme for the timechéng process, we obtain

Ut = <M + AtA) MU <M + AtA>_1At F ©)
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Figure 1: Spatial variations of the forcirfgover the domaiif).

whereAt is the time step and the superscriptefers to the temporal level of the solution.

We analyze two types of the permeability fields, namely thibse contain inclusions and
channels as shown in Figurke 2. For each type, we considerasesf high and low conductivity
values inside the domai while the background value is kept equal to one. The meshveso
the high or low conductivity regions. For all cases congdein the subsequent analysis, we
assume the forcing distribution shown in Figure 1 unlesedtdifferently. To get an insight on the
dynamical behavior of the flow under the different permegbdonfigurations considered in this
study, we plot the temporal variations of the normalizedtre¢ L, error between two successive
solutions||u’—u'!||5 / ||u’~!||2 in Figurel3. As expected, for the cases where channel ordiuziu
permeabilities have low conductivity, the flow field takesder time to reach the steady state. The
slow dynamics can be inferred from the eigenvalues of theiméM +AtA) _1M shown in Figure
[4. We observe that when the permeability has low condugtieigions, there are many eigenvalues
that are close td. The eigenmodes corresponding to these eigenvalues thalome to the unity
will control long-term dynamics of the flow. The eigenvestaorresponding to these eigenvalues
simply represent finite element degrees of freedom with stipp the low conductivity regions.

In fact, the number of these modes that are asymptoticalgedio one when the low conductivity
parameter approaches to zero is equal to the number of dagfrreedom within low conductivity
regions. This can be observed by noting that eigenvectaresmonding to small eigenvalues of

Rayleigh Quotientf”f”"iz“’g‘2 (that corresponds to eigenvalues which are close to thecames)st of
Q
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Figure 2: Four different configurations of the permeabfigyd. High and low conductivity values inside the inclusson
and channels are considered while the background valugiskeal to one.



functions that vary within low conductivity regions whilemstant in high conductivity regions.
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Figure 3: Convergence to steady-state configuration.

2.1. Mode decomposition methods

In the subsequent analysis, we present numerical resultsntmnstrate the capability of the
proper orthogonal decomposition (POD) and the dynamic ndedemposition (DMD) techniques
to reconstruct the flow field. First, we provide a brief dgsttoin of POD and DMD and their
implementation. We then discuss the usefulness and effeetss of these decomposition methods
to capture the relevant flow characteristics and deriveaedhorder models that will be used to

predict the flow field under different configurations obtality varying the initial conditions and
permeability field.

2.1.1. Proper Orthogonal Decomposition

A classical way to compute POD modes is to perform a singalrevdecomposition (SVD) of
the algebraic operator that maps the states between diffexalizations, however, this approach
may have a limited application, especially when dealindhvaittarge mesh size as in direct nu-
merical simulations (DNS) for which fine meshes (high resoh) imply high computational cost.
Alternatively, one could use the method of snaps?iags [25¢vallows for a significant reduction
of the large data sets. In this method, sets of instantansaluions (or snapshots) of the flow
parameters obtained from the DNS are generated and stoeetlih— by — N matrix C' where
M and N denote, respectively, the number of grid points and snapsisincelM > N, we seek
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Figure 4: Eigenvalues of the dynamic process: (a) inclugipa permeability field and (b) channel type permeability
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to compute the singular values 6fas well as its right singular vector matrix through an eigen
analysis of the matrix*C; that is,

C*CeRMN.C*CV,=0%;, and ¢fOD:iCVZ- (4)

0;
whereo; are referred to singular values algare the eigenvectors of the matrtix C.

The selection of POD modes is optimal in the sense that tloe between each snapshot and
its projection on the space spanned by those modes is m'mih@]. Besides, the square of the
singular values represents a measure of the energy coriteatlo POD mode and thus provides
guidance for the number of modes that should be consideda@n to capture the relevant physics
of the system.

2.1.2. Dynamic Mode Decomposition

The basic principles and mathematical background of dyaanude decomposition (DMD)
are given below foIIowindﬂEZ]. Over the last few yealss technique has been widely applied
on experimentaiﬂ@O] and numeric@[ ﬂ—24] flow fieddedto identify dominant coherent
structures and help in understanding the underlying pby3ikese structures can be used to project
a large-scale problem onto a low-dimensional subspacetsroa dynamical system with much
fewer degrees of freedom. For a more detailed descripti@rgader is referred t@ 27].

The DMD method is based on postprocessing a sequence ofgngps extract the dynamic
information. Let a snapshot sequence, separated by a obtigte stepAt, collected in a matrix



VY, thatis,

VY = {vi, vy, Vs, vy} (5)

wherev; denotes theth solution field and the subscript denotes the first elemerti®tequence

while the superscript denotes the last element. In EqudBpnthese correspond tband N,
respectively. The basic idea of DMD is to relate the solutield v; to the subsequent solution
field v;,, through a linear mapping; that is,

Vigr = Av;. (6)
This assumption leads to a representation of the solutithd®a Krylov sequence
VY = {v;,Avy, A%y, - ANy ) (7)

The objective is to determine the main characteristics efdiinamical process represented by
the linear mappincA (even if the solution field involves nonlinear aspects). sTii performed
by computing (or approximating) the eigenvectors and eigeies of the matriXA. For a very
large system, these computations may be numerically tafbéez Furthermore, for instance in
experimental fluid simulations, the exact form of the ma&iis not given. As such, an efficient
and fast numerical approach that approximates well the diovamics is useful.

Assuming that for sufficiently long sequence, the vestgrcan be represented by a linear
combination of the previous solution fields; that is,

Vy = Nz_laivi +r (8)
=1

or

vy =VVtatr 9)
wherea = {ay,as,--- ,ay_1}* andr is the residual vector. Combining Equatiohk (7) dnd (9) and
rearranging the result, we obtain

AVITt=Vv)=Vv¥1lsSire, , (10)

whereey,_; = ( 0O --- 01 ) is the(N — 1) unit vector and the matri®is a companion matrix

9



defined as:

S= : (11)

1 0 anN_—2

1 an—y

The unknown matrixS is determined by minimizing the residualWwhich is obtained by ex-
pressing theV" snapshovy by a linear combination ofv, Vs, vs, - -+ ,vy_1} in a least-squares
sense. The minimization problem to determ$is expressed then as:

S=min | VY - Vi | (12)

To avoid cumbersome notation, we use the same variabledanthimizer as the variable that is
being minimized. The solution can be determined eithergaiQR-decomposition of the snapshot
matrix VY ~!: that is ],

S=R!Q"VY (13)

where the matrice® andR are obtained from QR decomposition of the snapshot mst}ix* or
using the Moore-Penrose pseudoinverse of the met}ix' to obtain a solutiorﬁ?]

= (Vi) v ) v vy (14)

OnceSis computed, the next step is to evaluate its eigenvalueg@gathvectors collected in the
diagonal matribXD, the matrixX, respectively.

Finally, the DMD spectrum\; is obtained by transforming the eigenvaluesSdfom the time-
stepper format to the format more commonly used in stabiligory (accomplished through a
logarithmic mapping), and the dynamic modes are compmgé(HD by weighing the snapshot
based by the eigenvectors$fthat is,

Aj = log(Dj;)/ At (15)
¢ =VITHX (16)

10



whereX; is thejth column of the matrixX.

The above algorithm to compute the dynamic modes based amothpanion matrixs may be
ill-conditioned in practical situation. As such, Schn@lbroposed a more robust implementa-
tion. The algorithm includes the following steps. First, eV ~! = U ¥ W* be the singular
value decomposition of the data sequeNd&'. Substituting the SVD representatith > W*
into Equation[(ID) and multiplying the result by from thetlef and byW >~! from the right, we
obtain the following matrix

U'AU=U"VYwWx!t=S (17)

For configuration sets with difw;) > N, the method of snapshots, as described in Settion 2.1.1,
can be used to avoid the computational burden associatadhetsingular value decomposition
of large matrices. The matri¥ contains the POD modes of the sequence of snapsHots, one

may conclude that the matriis obtained from the projection of the linear operatgmwhich is
used to approximate the underlying dynamical process, artkee POD basis. A key advantage
of the above implementation is the ability to take into actaine rank-deficiency o/~ by
considering a limited basig given only by the non-zero singular values Xf(or by singular
values above a threshold that can be determined based thmaai@umulative energy that needs
to be captured). The dynamic modes are computed from théxnSs follows:

oM =0y, (18)

wherey; is thejth

eigenvector of5, i.e.,Sy; = y;y;, andU is the matrix collecting the right
singular vectors of the snapshot sequevi¢e’’.

In a recent paper, Chen et ﬂ[zn proposed an optimizedoreod the DMD algorithm where
they employ a global optimization technique to minimizetdsidual error at all snapshots instead
of the error at only the last snapshot. They tested the approger a variety of fluid problems and
showed its superiority in capturing the relevant frequeseind reproducing flowfields with small

projection errors.

2.2. Numerical Examples

Pre-processing We solve numerically Equatiohl(1) over a time interval®8000A¢] whereAt =
0.001. This time interval is observed to be long enough to reachstbady-state solution for
all cases considered, as shown in Fiddre 3. Then, we recerfirsih 25 instantaneous solutions

11



(usually referred as snapshots) and collect them in a spapsdtrix as:
ViV: {V17V27V37'~' 7VN} (19)

whereN is the number of snapshots and the size of the column vectmdenoted byl/. In these
numerical simulationsy is taken equal to 25 antl/ is equal to 1169 and 1871 for the inclusion-
and channel-type permeability fields, respectively. Thapshot selection process is determinant
for the accuracy of the resulting reduced-order model. ™eeaf 25 snapshots is observed to be
appropriate to reproduce results with acceptable accasayill be shown later.

The POD and DMD basis vectors are computed by applying theenoal approaches as de-
scribed in the previous section to data obtained from flonugations in highly heterogeneous
porous media. For the sake of comparison, we extract and tkeepame number of modes for
POD and DMD in our simulations.

The POD technique identifies the most energetic structuras. POD is based on an energy
ranking of the coherent structures obtained by enforciegtthogonality of the correlation spatial
matrix. This energy ranking is given by the singular valuethe spatial correlation matrix shown
in Equation [(4). Thus, to gain insight into the contributioiheach mode to the total energy of
the system, we define the cumulative energyzas )", o, and the cumulative contribution of
the first; modes as; = (Eﬁzl ai) /E. We plot in Figure b the variations of the normalized
cumulative energy content with the number of POD modes. Mbi$te energy is contained in the
first few modes. Specifically, the first six modes contain ntbagé 99.9% of the total flow energy.
As such, the following numerical results from the POD and Didised approaches use the first
six modes.

Approximate solution\We postprocess the snapshot matrix, as described in s@clipgto compute
the POD and DMD modes and use these modes to approximatelthi@sdield. As such, we
assume an expansion in terms of the magleghat is, we let

m

u(w, t) & (e, 1) = ) ai(t)of (2) (20)
i=1
or in a matrix form
U" ~ U" = da” (21)
where® = < ok ok ) andk can refer to either POD or DMD.

12
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Figure 5: Variations of the normalized cumulative energyteat with the number of POD modes.

L, projection error. To assess the capability of the POD and DMD modes in capttinegynam-
ics involved in the process and enabling good projectiosgabes, we project each snapshot onto
the POD modes, and compute the following inner product

a;(t;) = <¢§(m),u(x,tj)>, or o = (&*®) ' d*U’ (22)

where(F,G) = [,(F G) d©, and define the relative error as the-horm of the difference
between the exact and approximate solutions over the eraci.e.

[ a(e,t) — ufz,t) |2
[ uz,t) |2

| E(t) |l2= (23)
The L, projection error is computed for both DMD and POD- basedagg@ntations. The num-
ber of modes kept in the expansion given by Equafioh (20kert@qual to six. The corresponding
results are presented in Figlide 6. A low projection errorbamed in the interval of snapshots
used to compute the modes. This is expected since POD pwtue@ptimal modal subspace
that contains the largest amount of energy. When using DMdendo construct the projection
subspace, a large error is obtained at the first few time steghsecovers as time evolves to reach
small values. The {_projection error increases with time outside snapshotseseze interval and
converges to steady-state values. We observe that theysttsd error values obtained when ap-
proximating the solution field in terms of the POD modes argdathan those obtained when

13
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Figure 6: Variations of the 4 projection error with time for different permeability cogfirations. Results are obtained
using POD and DMD modes.

projecting the solution field onto the space spanned by th®DMdes. These observations show
that DMD performs better than POD in extracting relevantadyict information and then has better
predictive capability of the long-term dynamical behavidowever, low projection error indicates
the ability of modal decomposition techniques to computedgorojection subspaces, but it does
not guarantee that a reduced-order model obtained main{yabgrkin projection of the original
governing equation on the subspace spanned by the modesewdinly reproduce the reference
solution.

Reduced-order modello obtain the reduced-order model, we use the solution estpagiven by
Equation [2D), substitute it into Equatidd (1) and projéet tesult onto the space formed by the
modes as

(005 =¥ sl0) Vu) = £ ) =0, (24)
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one obtains a set ofi ordinary differential equations that constitute a reduceter model; that
is,

a=—(P*MP) ' d*Ada + (P*MP) 1 F (25)

Thus, the original problem with/ degrees of freedom is reduced to a dynamical system with

m dimensions where: << M. We solve numerically Equatioris (25) and compute the apprate
solution given by Equatior (20). Again, six modes (ire.= 6) have been used. We consider the
permeability field shown in Figuiile 2(a) and run flow simulasavhere we vary the number of
shapshots and compute the errors between the referenceprakianate solutions obtained by
employing POD- and DMD-based approaches. The results asepted in the Tablg 1. Clearly,
the selection of snapshots is an important step when agpB@D and DMD for model reduction.
Using only seven snapshots yields large value for the ertdlewconsidering more snapshots
improves significantly the forecasting capability of thelueed-order model and leads to small
errors. The results show that POD and DMD modes computed Z®enapshots contain relevant
information of the flow dynamics and then enable a reduceéromodel that predicts the flow
behavior with good accuracy. Increasing the number of sr@psvould decrease more the error
but the aim of this study is to show the potentiality of DMD &rdPOD techniques to detect the
dominant modes that govern long-term dynamics from a sreatdfssnapshots and to forecast the
evolution of the flow field an acceptable accuracy.

Table 1: Variations of the error at= 5 with the number of snapshof$. Results are obtained using POD and DMD
modes.

N 7 10 15 20 25 30
| Elpop 51.63% 36.8% 19.59% 10.9% 79% 7%
| E lpyp 37.6% 7.54% 4.69% 3.78% 2.8% 2.9%

The variations of the projection error, as defined in Eque#8), with time for different per-
meability configurations are depicted in Figlie 7. Cledahyg large projection steady-state errors
(more than 80% for the case of the inclusion permeabilitycstre with low conductivity) ob-
tained when deriving a reduced-order using POD modes sh@t/&0D is able to reproduce well
the flow field only within the snapshot interval while it obuiy fails to predict it outside that
interval. On the other hand, small projection errors betwtbe reference and approximate solu-
tions (except those observed at the first few time steps)hasrsin Figurd ¥, demonstrates the
capability of the reduce-order model obtained by projectiee governing equations onto the space
spanned by the DMD modes to predict the flow field within an ptai@le accuracy (at most, the

15
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Figure 7: Variations of the Galerkin projection error witme for different permeability configurations. Results are
obtained using POD and DMD modes.

error reaches 8%). Clearly, the eigenvalues and eigemgectdhe low-dimensional subspace of
DMD modes capture the principal dynamics of the flow. In paitr, the DMD -based approach
allows for eliminating the eigenvectors associated witalkasymptotically vanishing eigenvalues
and detect the slow dynamics. The large errors obtained BbtD-based analysis and observed
at the first few time steps are mostly due to the fact the DMDesatb not contain the eigenvectors
that correspond to small eigenvalues and which govern #ialéaying dynamics.

Next, we consider a time-varying permeability field where permeability is changed in every
time instant by a mobility function (c.f., two-phase flow silations QO]). At this stage, we
use simplified mobility functions to demonstrate that dyiamodes obtained from DMD can
be used to accurately predict flow dynamics for differentiahiconditions and for time-varying
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Figure 8: Snapshots of the time-varying permeability field.
permeability fields. As such, we consider the following ¢ioednt:
Ke(z,t) = k() T(z,r(t)), (26)
wherer is the coefficient of the permeability field shown in FiguraR((x, r(t)) is defined as

F(x,r(t)):{Q if 2l 27

1 else
andII is a circle of a time-varying radiugt) and center (0,0) andt) = 10 ¢. Figure[8 shows the
permeability field at three different instants. In this gabe matrix A is time-dependent and then
it is evaluated at each time step in Equation (3). Similahtgrevious analysis, we follow POD-
and DMD-based approaches and derive reduced-order madekgetstigate their appropriateness
for time-varying porous media problems. In Figlie 9, we phat variations of the 4 projection
and Galerkin projection errors with time. We observe smalbtojection errors when using POD
and DMD modes. However, a large error is reached when piogetite governing equations onto
the space spanned by POD modes to obtain a reduced-ordet. mbdeerror keeps growing as
time evolves. On the other hand, a small error is obtainecwiseng DMD modes. This indicates
the suitability of the use of DMD modes for model reductiorflofvs in time-varying and highly
heterogeneous porous media.

2.3. Parameter-dependent case

In this section, we investigate the robustness of modelatsaiu techniques with respect to
moderate variations in the permeability distribution, tuatrast, the initial conditions, and the
forcing inputs. We first consider a permeability field whishrépresented by a linear combination
of five different permeability fields with each containing@onductivity inclusions. These per-
meability fields are shown in Figufe]10 where each permegliiéild contains low-conductivity
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Figure 9: Variations of the 4_projection (represented by dashed lines) and Galerkireption (represented by solid
lines) errors with time: time-varying permeability fieldegults are obtained using POD and DMD modes.

inclusions in different locations. This, for example, @sponds to the case where locations of low
conductivity regions are not deterministic. The coeffiti@ascribing the resulting permeability is
expressed as

k() = ke (z) + poka() + paks(z) + para(x) + psks(x) (28)

The resulting permeability field obtained o, pz, 13, 14, 5} = {1,5,2,10,0.1} is depicted in
Figure[11. We compute the POD and DMD modes for each of the &uwa@ability configurations
(shown in Figuré_10) and collect them in a global matrix as

Dyt = { @+, @7}, (29)

Then, we derive a general reduced-order model, withm dimensions, by Galerkin projecting
the governing Equationl(1) onto the space spanned by the P@DIID global modes and check
its capability to predict accurately the case shown in Feflit. The temporal variations of the
Galerkin projection error are plotted in Figure 12. Differénitial conditions are considered and
similar trends are observed. Unlike POD, DMD predicts the field with good accuracy. An er-
ror of 2% is obtained. This error is comparable to the errtwben the reference and approximate
solutions obtained when using the DMD modes computed diyrixtthe permeability field shown
in Figure[11. These results show the robustness of the dgliitdél modes for developing reduced-
order models that can be efficiently used to analyze the thaétysof the dynamical behavior of
the flow to moderate variations in the structure of permésgldield (in terms of distribution and
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Figure 10: Five permeability fields each containing inausi with different contrast.

contrast).

To investigate further the suitability of POD and DMD modestodel flows in varying and
highly heterogeneous porous media, we consider the chéypepermeability (shown in Figure
[2(c)) and multiply its coefficient by a smooth positive sphtiinction; that is,

rs(x; € f) = k(x) X (1 + €+ sin(2n fx) sin(27 fy)). (30)

The obtained permeability field fer= 1 and f = 100 is depicted in Figure13. We use POD and
DMD modes generated for the permeability field shown in Fegfc) and employ the Galerkin
projection to obtain a reduced-order model which is used¢dipt the flow field resulting from
the modified permeability field described by Equationl (303).Flgure[1#, we plot the temporal
variations of the projection error obtained from the PODd &MD- based representations while
varying the value ot. Large Galerkin projection errors are obtained when usi@@ Pnodes.
These errors increase substantially as the valueintreases. This indicates that POD-based
reduced-order model can be only valid for the original canfigion considered when computing
the modes. On the other hand, the DMD-based model redugbhimmach seems to be much less
sensitive to variations in the permeability. In fact, it alsoa great capability to predict the flow
field as can be deduced from the small error values shown uréfi4(d) (about 8% for different
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Figure 11: Permeability field (a linear combination of fivéfelient permeability fields shown in Figurel10).

values ofe).

Next, we modify moderately the distribution and magnitufi¢he forcing term as shown in
Figure[15. We use the DMD and POD modes obtained for the fgrcase shown in Figufé 1 to
derive a reduced-order model and predict the behavior ofidhefield subjected to the modified
forcing input. The variations of the,Lprojection and Galerkin projection errors with time are
plotted in Figuré 1l6. As expected, smaller errors are obthfrom the Ly projection in comparison
to those obtained when using the reduced-order model. TehefldBMD modes yields small errors.
This shows the robustness of DMD-based approach to dergigdle reduced-order model while
moderately varying forcing inputs.

3. Conclusions

In this work, we applied proper orthogonal decompositio®[F and dynamic mode decom-
position (DMD) to flow in highly heterogeneous porous medighvhigh contrast to derive a
reduced-order model. Different numerical examples of flawporous media characterized by
highly varying permeability fields were considered. Thesamneability fields include channels
and inclusions of high and low conductivity. The long-timgnedmics of these flows are due to
complex changes within low permeability regions. Through cases, we investigated the capa-
bility of POD and DMD to capture the main flow characteristesl predict the flow field within
a certain accuracy. The DMD-based approach showed betiabitidy to reproduce the flow field
when compared to the POD-based approach. This is mosthodhe DMD'’s ability to extract the
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Figure 12: Variations of the Galerkin projection error wittme. Results are obtained using POD and DMD modes.

dynamic information and particularly the modes that govkenlong-time dynamics. We also con-
sidered parameter-dependent problems to investigat®bustness of the POD and DMD modes
with respect to variations in the initial conditions, peabdity field, and input forcing. We found
that DMD-based approach provides robust basis functiomadake accurate predictions of the
dynamical behavior of flow in highly heterogeneous poroudime
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