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Abstract

We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD)

methods to flows in highly heterogeneous porous media to extract the dominant coherent structures

and derive reduced-order models via Galerkin projection. Permeability fields with high contrast

are considered to investigate the capability of these techniques to capture the main flow features

and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better

predictive capability due to its ability to accurately extract the information relevant to long-time

dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues.

Our study enables a better understanding of the strengths and weaknesses of the applicability of

these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness

of DMD- and POD-based reduced-order models with respect to variations in initial conditions,

permeability fields, and forcing terms.

Keywords: Model reduction, highly heterogeneous porous media, dynamic mode decomposition,

proper orthogonal decomposition.

1. Introduction

In many relevant porous media engineering applications, media permeability can vary several

orders of magnitude. For example, in flow through fractured porous media, the conductivity within

fractures can be several orders of magnitude higher than theconductivity within the matrix. Sim-
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ilarly, shale barriers with very low permeability can affect flow behavior significantly. Because

of these large variations in coefficient values and the fact that these features (fractures and shale

barriers) have small spatial dimensions, the direct numerical simulations of these processes may be

prohibitively expensive. In particular, the resulting large number of degrees of freedom and asso-

ciated computational cost could inhibit the capability to perform a sensitivity analysis or conduct

uncertainty quantification studies which require many functional evaluations. As such, construct-

ing model reduction techniques that can judiciously selectthe dominant modes corresponding to

dominant flow features is important in these applications. This enables the derivation of reduced-

order models with significantly less degrees of freedom while neglecting irrelevant features of

the physics in order to remain computationally tractable. In this paper, we discuss global model

reduction techniques for flows in highly heterogeneous media with high contrast.

Modeling of flow in a high-contrast subsurface requires capturing its long-term dynamics that

is due to heterogeneous diffusion in the low conductivity regions. In this paper, our goal is to

develop model reduction techniques that are suitable for accurately predicting the behavior of

flows in high-contrast media in long time scales. This is motivated by many important applications

(see [1] and references therein) where the flow response due to low conductivity regions needs to

be detected in order to identify the location of these regions and their intensity. The sizes of the

problems involving these features are very large because shale layers or low conductivity features

can be thin and long and because of the high contrast one needsmany grid blocks to resolve these

functions. In addition, this small-scale fractures may have significant spatial variations of the

coefficients. Furthermore, these problems usually need to be solved for several initial conditions,

system’s settings, and forcing inputs. To account for all ofthese, one needs to consider robust

reduced-order models that enable reliable simplified simulations.

Several techniques, such as balanced truncation, proper orthogonal decompositions (POD), and

dynamic mode decomposition (DMD), have been efficiently used for global model reduction, most

of which involve projection of the original governing equations onto a set of modes. Proper or-

thogonal decomposition (POD) [2–12] constitutes a common technique for extracting the coherent

structures from a linear or nonlinear dynamical process. This method is based on processing infor-

mation from a sequence of snapshots and identifying a low-dimensional set of basis functions that

represent the most energetic structures. These functions are then used to derive a low-dimensional

dynamical system that is typically obtained by Galerkin projection [7–10, 13]. Schmid [14] has

recently introduced a model-free decomposition technique, namely dynamic mode decomposition

(DMD), to accurately extract coherent and dynamically relevant structures. This method enables

the computation, from empirical data, of the eigenvalues and eigenvectors of a linear model that
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best represents the underlying dynamics, even if those dynamics are produced by a nonlinear pro-

cess. This technique has been successfully applied for the analysis of experimental [15–20] and

numerical [14, 21–24] flow field data and has shown a great capability to capture the relevant

associated dynamics.

For flows in high-contrast media, long-term dynamics are controlled by the flow in low con-

ductivity regions. As such, it is essential to keep the modesthat capture the local slow dynamical

behavior in the low conductivity regions when selecting basis functions to represent the solu-

tion space and derive a reduced-order model by Galerkin projection. As for POD, the selection

of modes is based on an energy ranking of the coherent structures. However, the energy may

not in all circumstances be the appropriate measure to rank the importance of the flow structures

and especially to detect the slow dynamics. Thus, reduced-order models generated by projection

onto principal components, such as POD modes, unless selected carefully, may be inaccurate be-

cause the dominant modes identified from a set of snapshots may not necessarily correspond to

the dynamically-important ones. Moreover, principal components, such as POD, -based reduced-

order models are often limited in their applications due to their lack of robustness with varying

flow parameters, initial conditions, and forcing inputs.

In this work, we apply POD and DMD approaches to flow in highly heterogeneous porous me-

dia with high contrast to identify the important physical features and derive reduced-order models

that accurately capture the long-term dynamics of the system. Different numerical examples of

flows in porous media characterized by varying permeabilityfields are considered. These perme-

ability fields include channels and inclusions of high and low conductivity. These configurations

lead to different types of behavior. The objective is to investigate the capability of POD and DMD

to capture the main flow characteristics and forecast the flowdynamics response within a certain

accuracy while reducing the computational cost. In all cases, the DMD-based approach shows a

better predictive capability and reproduces the flow field with a more reliable accuracy. We observe

convergence to small errors as the steady-state solution develops when using DMD modes while

larger errors are obtained when POD modes are considered in the construction of reduced-order

models. This is mostly due to the DMD’s ability to extract theinformation relevant to the slow dy-

namics in the system which control the long-time behavior. We also consider parameter-dependent

problems to investigate the robustness of the POD and DMD modes with respect to variations in

the initial conditions, permeability field, and forcing inputs. This analysis is motivated by many

applications where one needs to solve many forward problemscorresponding different permeabil-

ity fields; for instance, when stochastic descriptions are used, such as when the permeability field

may be subject to uncertainty or multi-phase flow where the permeability is modulated by large-
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scale mobility. We show that using basis functions generated from a DMD-based approach which

are determined from few selected samples, one can make accurate predictions of the dynamical

behavior of the flow in highly heterogeneous porous media.

2. Problem Formulation and Numerical Examples

We consider a time-dependent single-phase flow in porous media governed by the following

parabolic partial differential equation

∂u

∂t
= ∇(κ(x)∇u) + f(x) on Ω (1)

whereu is the pressure,Ω is a bounded domain,f is a forcing term,κ(x) is a positive definite scalar

function that is a function of the spatial locationx. κ represents the ratio of the permeability over

the fluid viscosity which is a highly-heterogeneous field with a high contrast (i.e., large variations

in the permeability). The high and low permeability regionsare typically heterogeneous and flow

within them can be have a complicated structure.

We considerΩ =]0 1[×]0 1[, u = 0 on ∂Ω, andf is a heterogeneous spatial field repre-

senting injection and production rates. A finite element mesh is constructed by decomposing the

domainΩ into Nelt triangular elements. The variations of the forcing termf in our numerical

examples overΩ is shown in Figure 1. For each cell, the value off varies randomly between the

discrete values of -1, 0, and 1. We study the flow behavior under different permeability fields that

include high and low conductivity regions. We assume homogeneous Dirichlet boundary condi-

tions in our numerical examples. This model problem is a representation of flow in a reservoir with

injection modeled by the forcing term.

The finite element discretization of Equation (1) yields a system of ordinary differential equa-

tions given by

MU̇ + AU = F (2)

whereU andF are vectors collecting the solution values and forcing at the nodes. Here, A= (aij),

aij =
∫

Ω
κ∇φi · ∇φj, M = (mij), mij =

∫

Ω
φiφj, whereφi is piecewise linear basis functions

defined on a triangulation ofΩ and∇ denotes spatial gradient.

Employing the backward Euler implicit scheme for the time marching process, we obtain

Un+1 =
(

M +∆tA
)−1

M Un +
(

M +∆tA
)−1

∆t F (3)
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Figure 1: Spatial variations of the forcingf over the domainΩ.

where∆t is the time step and the superscriptn refers to the temporal level of the solution.

We analyze two types of the permeability fields, namely thosethat contain inclusions and

channels as shown in Figure 2. For each type, we consider two cases of high and low conductivity

values inside the domainΩ while the background value is kept equal to one. The mesh resolves

the high or low conductivity regions. For all cases considered in the subsequent analysis, we

assume the forcing distribution shown in Figure 1 unless stated differently. To get an insight on the

dynamical behavior of the flow under the different permeability configurations considered in this

study, we plot the temporal variations of the normalized relative L2 error between two successive

solutions||ui−ui−1||2 / ||ui−1||2 in Figure 3. As expected, for the cases where channel or inclusion

permeabilities have low conductivity, the flow field takes longer time to reach the steady state. The

slow dynamics can be inferred from the eigenvalues of the matrix
(

M+∆tA
)−1

M shown in Figure

4. We observe that when the permeability has low conductivity regions, there are many eigenvalues

that are close to1. The eigenmodes corresponding to these eigenvalues that are close to the unity

will control long-term dynamics of the flow. The eigenvectors corresponding to these eigenvalues

simply represent finite element degrees of freedom with support in the low conductivity regions.

In fact, the number of these modes that are asymptotically close to one when the low conductivity

parameter approaches to zero is equal to the number of degrees of freedom within low conductivity

regions. This can be observed by noting that eigenvectors corresponding to small eigenvalues of

Rayleigh Quotient
∫
Ω
κ|∇φ|2

∫
Ω
|φ|2

(that corresponds to eigenvalues which are close to the one)consist of
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(a) Inclusion - low conductivity
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Figure 2: Four different configurations of the permeabilityfield. High and low conductivity values inside the inclusions
and channels are considered while the background value is kept equal to one.
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functions that vary within low conductivity regions while constant in high conductivity regions.
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Figure 3: Convergence to steady-state configuration.

2.1. Mode decomposition methods

In the subsequent analysis, we present numerical results todemonstrate the capability of the

proper orthogonal decomposition (POD) and the dynamic modedecomposition (DMD) techniques

to reconstruct the flow field. First, we provide a brief description of POD and DMD and their

implementation. We then discuss the usefulness and effectiveness of these decomposition methods

to capture the relevant flow characteristics and derive reduced-order models that will be used to

predict the flow field under different configurations obtained by varying the initial conditions and

permeability field.

2.1.1. Proper Orthogonal Decomposition

A classical way to compute POD modes is to perform a singular value decomposition (SVD) of

the algebraic operator that maps the states between different realizations, however, this approach

may have a limited application, especially when dealing with a large mesh size as in direct nu-

merical simulations (DNS) for which fine meshes (high resolution) imply high computational cost.

Alternatively, one could use the method of snapshots [25] which allows for a significant reduction

of the large data sets. In this method, sets of instantaneoussolutions (or snapshots) of the flow

parameters obtained from the DNS are generated and stored inanM − by − N matrixC where

M andN denote, respectively, the number of grid points and snapshots. SinceM ≫ N , we seek
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Figure 4: Eigenvalues of the dynamic process: (a) inclusiontype permeability field and (b) channel type permeability
field..

to compute the singular values ofC as well as its right singular vector matrix through an eigen

analysis of the matrixC∗C; that is,

C∗ C ∈ R
N×N : C∗ C Vi = σ2

i Vi and φPOD
i =

1

σi

C Vi (4)

whereσi are referred to singular values andVi are the eigenvectors of the matrixC∗ C.

The selection of POD modes is optimal in the sense that the error between each snapshot and

its projection on the space spanned by those modes is minimized [26]. Besides, the square of the

singular values represents a measure of the energy content of each POD mode and thus provides

guidance for the number of modes that should be considered inorder to capture the relevant physics

of the system.

2.1.2. Dynamic Mode Decomposition

The basic principles and mathematical background of dynamic mode decomposition (DMD)

are given below following [14, 22]. Over the last few years, this technique has been widely applied

on experimental [15–20] and numerical [14, 21–24] flow field data to identify dominant coherent

structures and help in understanding the underlying physics. These structures can be used to project

a large-scale problem onto a low-dimensional subspace to obtain a dynamical system with much

fewer degrees of freedom. For a more detailed description, the reader is referred to [14, 16, 22, 27].

The DMD method is based on postprocessing a sequence of snapshots to extract the dynamic

information. Let a snapshot sequence, separated by a constant time step∆t, collected in a matrix
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VN
1 ; that is,

VN
1 = {v1, v2, v3, · · · , vN} (5)

wherevi denotes theith solution field and the subscript denotes the first element of the sequence

while the superscript denotes the last element. In Equation(5), these correspond to1 andN ,

respectively. The basic idea of DMD is to relate the solutionfield vi to the subsequent solution

field vi+1 through a linear mappingA; that is,

vi+1 = Avi. (6)

This assumption leads to a representation of the solution field as a Krylov sequence

VN
1 = {v1,Av1,A2vi, · · · ,AN−1v1} (7)

The objective is to determine the main characteristics of the dynamical process represented by

the linear mappingA (even if the solution field involves nonlinear aspects). This is performed

by computing (or approximating) the eigenvectors and eigenvalues of the matrixA. For a very

large system, these computations may be numerically intractable. Furthermore, for instance in

experimental fluid simulations, the exact form of the matrixA is not given. As such, an efficient

and fast numerical approach that approximates well the slowdynamics is useful.

Assuming that for sufficiently long sequence, the vectorvN can be represented by a linear

combination of the previous solution fields; that is,

vN =
N−1
∑

i=1

aivi + r (8)

or

vN = VN−1
1 a + r (9)

wherea = {a1, a2, · · · , aN−1}
∗ andr is the residual vector. Combining Equations (7) and (9) and

rearranging the result, we obtain

A VN−1
1 = VN

2 = VN−1
1 S + r e∗N−1 (10)

wheree∗N−1 =
(

0 · · · 0 1
)

is the(N−1) unit vector and the matrixS is a companion matrix
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defined as:

S =



















0 a1

1 0 a2
. . . .. .

...

1 0 aN−2

1 aN−1



















(11)

The unknown matrixS is determined by minimizing the residualr which is obtained by ex-

pressing theN th snapshotvN by a linear combination of{v1, v2, v3, · · · , vN−1} in a least-squares

sense. The minimization problem to determineS is expressed then as:

S = min
S

‖ VN
2 − VN−1

1 S ‖ (12)

To avoid cumbersome notation, we use the same variable for the minimizer as the variable that is

being minimized. The solution can be determined either using a QR-decomposition of the snapshot

matrixVN−1
1 ; that is [22],

S = R−1 Q∗ VN
2 (13)

where the matricesQ andR are obtained from QR decomposition of the snapshot matrixVN−1
1 or

using the Moore-Penrose pseudoinverse of the matrixVN−1
1 to obtain a solution [27]

S =
(

(VN−1
1 )∗ VN−1

1

)−1

(VN−1
1 )∗ VN

2 (14)

OnceS is computed, the next step is to evaluate its eigenvalues andeigenvectors collected in the

diagonal matrixD, the matrixX, respectively.

Finally, the DMD spectrumλj is obtained by transforming the eigenvalues ofS from the time-

stepper format to the format more commonly used in stabilitytheory (accomplished through a

logarithmic mapping), and the dynamic modes are computedφDMD
j by weighing the snapshot

based by the eigenvectors ofS; that is,

λj = log(Djj)/∆t (15)

φDMD
j = VN−1

1 Xj (16)
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whereXj is thejth column of the matrixX.

The above algorithm to compute the dynamic modes based on thecompanion matrixS may be

ill-conditioned in practical situation. As such, Schmid [14] proposed a more robust implementa-

tion. The algorithm includes the following steps. First, welet VN−1
1 = U Σ W∗ be the singular

value decomposition of the data sequenceVN−1
1 . Substituting the SVD representationU Σ W∗

into Equation (10) and multiplying the result by from the left U∗ and byW Σ−1 from the right, we

obtain the following matrix

U∗ A U = U∗ VN
2 W Σ−1 ≡ S̃ (17)

For configuration sets with dim(vi) ≫ N , the method of snapshots, as described in Section 2.1.1,

can be used to avoid the computational burden associated with the singular value decomposition

of large matrices. The matrixU contains the POD modes of the sequence of snapshotsVN−1
1 , one

may conclude that the matrix̃S is obtained from the projection of the linear operatorA, which is

used to approximate the underlying dynamical process, ontoa the POD basis. A key advantage

of the above implementation is the ability to take into account the rank-deficiency ofVN−1
1 by

considering a limited basisU given only by the non-zero singular values ofΣ (or by singular

values above a threshold that can be determined based the amount of cumulative energy that needs

to be captured). The dynamic modes are computed from the matrix S̃ as follows:

φDMD
j = U yj, (18)

whereyj is thejth eigenvector of̃S, i.e., S̃ yj = µjyj, andU is the matrix collecting the right

singular vectors of the snapshot sequenceVN−1
1 .

In a recent paper, Chen et al. [27] proposed an optimized version of the DMD algorithm where

they employ a global optimization technique to minimize theresidual error at all snapshots instead

of the error at only the last snapshot. They tested the approach over a variety of fluid problems and

showed its superiority in capturing the relevant frequencies and reproducing flowfields with small

projection errors.

2.2. Numerical Examples

Pre-processing.We solve numerically Equation (1) over a time interval of[0 8000∆t] where∆t =

0.001. This time interval is observed to be long enough to reach thesteady-state solution for

all cases considered, as shown in Figure 3. Then, we record the first 25 instantaneous solutions
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(usually referred as snapshots) and collect them in a snapshot matrix as:

VN
1 = {v1, v2, v3, · · · , vN} (19)

whereN is the number of snapshots and the size of the column vectorsvi is denoted byM . In these

numerical simulations,N is taken equal to 25 andM is equal to 1169 and 1871 for the inclusion-

and channel-type permeability fields, respectively. The snapshot selection process is determinant

for the accuracy of the resulting reduced-order model. The use of 25 snapshots is observed to be

appropriate to reproduce results with acceptable accuracyas will be shown later.

The POD and DMD basis vectors are computed by applying the numerical approaches as de-

scribed in the previous section to data obtained from flow simulations in highly heterogeneous

porous media. For the sake of comparison, we extract and keepthe same number of modes for

POD and DMD in our simulations.

The POD technique identifies the most energetic structures.The POD is based on an energy

ranking of the coherent structures obtained by enforcing the orthogonality of the correlation spatial

matrix. This energy ranking is given by the singular values of the spatial correlation matrix shown

in Equation (4). Thus, to gain insight into the contributionof each mode to the total energy of

the system, we define the cumulative energy asE =
∑m

i=1
σi and the cumulative contribution of

the firstj modes ascj =
(

∑j

i=1
σi

)

/E. We plot in Figure 5 the variations of the normalized

cumulative energy content with the number of POD modes. Mostof the energy is contained in the

first few modes. Specifically, the first six modes contain morethan 99.9% of the total flow energy.

As such, the following numerical results from the POD and DMD-based approaches use the first

six modes.

Approximate solution.We postprocess the snapshot matrix, as described in section2.1, to compute

the POD and DMD modes and use these modes to approximate the solution field. As such, we

assume an expansion in terms of the modesφk
i ; that is, we let

u(x, t) ≈ ũ(x, t) =

m
∑

i=1

αi(t)φ
k
i (x) (20)

or in a matrix form

Un ≈ Ũ
n
= Φαn (21)

whereΦ =
(

φk
1 · · · φk

m

)

andk can refer to either POD or DMD.

12
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Figure 5: Variations of the normalized cumulative energy content with the number of POD modes.

L2 projection error. To assess the capability of the POD and DMD modes in capturingthe dynam-

ics involved in the process and enabling good projection subspaces, we project each snapshot onto

the POD modes, and compute the following inner product

αi(tj) =
〈

φk
i (x), u(x, tj)

〉

, or αj = (Φ∗Φ)−1Φ∗Uj (22)

where〈F,G〉 =
∫

Ω
(F G) dΩ, and define the relative error as the L2-norm of the difference

between the exact and approximate solutions over the exact one; i.e.

‖ E(t) ‖2=
‖ ũ(x, t)− u(x, t) ‖2

‖ u(x, t) ‖2
. (23)

The L2 projection error is computed for both DMD and POD- based representations. The num-

ber of modes kept in the expansion given by Equation (20) is taken equal to six. The corresponding

results are presented in Figure 6. A low projection error is obtained in the interval of snapshots

used to compute the modes. This is expected since POD produces the optimal modal subspace

that contains the largest amount of energy. When using DMD modes to construct the projection

subspace, a large error is obtained at the first few time stepsand recovers as time evolves to reach

small values. The L2 projection error increases with time outside snapshots sequence interval and

converges to steady-state values. We observe that the steady-state error values obtained when ap-

proximating the solution field in terms of the POD modes are larger than those obtained when
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Figure 6: Variations of the L2 projection error with time for different permeability configurations. Results are obtained
using POD and DMD modes.

projecting the solution field onto the space spanned by the DMD modes. These observations show

that DMD performs better than POD in extracting relevant dynamic information and then has better

predictive capability of the long-term dynamical behavior. However, low projection error indicates

the ability of modal decomposition techniques to compute good projection subspaces, but it does

not guarantee that a reduced-order model obtained mainly byGalerkin projection of the original

governing equation on the subspace spanned by the modes willcertainly reproduce the reference

solution.

Reduced-order model.To obtain the reduced-order model, we use the solution expansion given by

Equation (20), substitute it into Equation (1) and project the result onto the space formed by the

modes as
〈

φk,
∂u

∂t
−∇ (κ(x) ∇u)− f

〉

= 0, (24)
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one obtains a set ofm ordinary differential equations that constitute a reduced-order model; that

is,

α̇ = −(Φ∗MΦ)−1Φ∗AΦα + (Φ∗MΦ)−1Φ∗F (25)

Thus, the original problem withM degrees of freedom is reduced to a dynamical system with

m dimensions wherem ≪ M . We solve numerically Equations (25) and compute the approximate

solution given by Equation (20). Again, six modes (i.e.,m = 6) have been used. We consider the

permeability field shown in Figure 2(a) and run flow simulations where we vary the number of

snapshots and compute the errors between the reference and approximate solutions obtained by

employing POD- and DMD-based approaches. The results are presented in the Table 1. Clearly,

the selection of snapshots is an important step when applying POD and DMD for model reduction.

Using only seven snapshots yields large value for the error while considering more snapshots

improves significantly the forecasting capability of the reduced-order model and leads to small

errors. The results show that POD and DMD modes computed from25 snapshots contain relevant

information of the flow dynamics and then enable a reduced-order model that predicts the flow

behavior with good accuracy. Increasing the number of snapshots would decrease more the error

but the aim of this study is to show the potentiality of DMD and/or POD techniques to detect the

dominant modes that govern long-term dynamics from a small set of snapshots and to forecast the

evolution of the flow field an acceptable accuracy.

Table 1: Variations of the error att = 5 with the number of snapshotsN . Results are obtained using POD and DMD
modes.

N 7 10 15 20 25 30
‖ E ‖POD 51.63% 36.8% 19.59% 10.9% 7.9% 7 %
‖ E ‖DMD 37.6% 7.54% 4.69% 3.78% 2.8% 2.9%

The variations of the projection error, as defined in Equation (23), with time for different per-

meability configurations are depicted in Figure 7. Clearly,the large projection steady-state errors

(more than 80% for the case of the inclusion permeability structure with low conductivity) ob-

tained when deriving a reduced-order using POD modes shows that POD is able to reproduce well

the flow field only within the snapshot interval while it obviously fails to predict it outside that

interval. On the other hand, small projection errors between the reference and approximate solu-

tions (except those observed at the first few time steps), as shown in Figure 7, demonstrates the

capability of the reduce-order model obtained by projection the governing equations onto the space

spanned by the DMD modes to predict the flow field within an acceptable accuracy (at most, the
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Figure 7: Variations of the Galerkin projection error with time for different permeability configurations. Results are
obtained using POD and DMD modes.

error reaches 8%). Clearly, the eigenvalues and eigenvectors of the low-dimensional subspace of

DMD modes capture the principal dynamics of the flow. In particular, the DMD -based approach

allows for eliminating the eigenvectors associated with small asymptotically vanishing eigenvalues

and detect the slow dynamics. The large errors obtained fromDMD-based analysis and observed

at the first few time steps are mostly due to the fact the DMD modes do not contain the eigenvectors

that correspond to small eigenvalues and which govern the fast decaying dynamics.

Next, we consider a time-varying permeability field where the permeability is changed in every

time instant by a mobility function (c.f., two-phase flow simulations [28–30]). At this stage, we

use simplified mobility functions to demonstrate that dynamic modes obtained from DMD can

be used to accurately predict flow dynamics for different initial conditions and for time-varying

16



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 8: Snapshots of the time-varying permeability field.

permeability fields. As such, we consider the following coefficient:

κt(x, t) = κ(x) Γ(x, r(t)), (26)

whereκ is the coefficient of the permeability field shown in Figure 2(a),Γ(x, r(t)) is defined as

Γ(x, r(t)) =

{

2 if x ∈ Π

1 else
(27)

andΠ is a circle of a time-varying radiusr(t) and center (0,0) andr(t) = 10 t. Figure 8 shows the

permeability field at three different instants. In this case, the matrix A is time-dependent and then

it is evaluated at each time step in Equation (3). Similar to the previous analysis, we follow POD-

and DMD-based approaches and derive reduced-order models to investigate their appropriateness

for time-varying porous media problems. In Figure 9, we plotthe variations of the L2 projection

and Galerkin projection errors with time. We observe small L2 projection errors when using POD

and DMD modes. However, a large error is reached when projecting the governing equations onto

the space spanned by POD modes to obtain a reduced-order model. This error keeps growing as

time evolves. On the other hand, a small error is obtained when using DMD modes. This indicates

the suitability of the use of DMD modes for model reduction offlows in time-varying and highly

heterogeneous porous media.

2.3. Parameter-dependent case

In this section, we investigate the robustness of model reduction techniques with respect to

moderate variations in the permeability distribution, thecontrast, the initial conditions, and the

forcing inputs. We first consider a permeability field which is represented by a linear combination

of five different permeability fields with each containing low-conductivity inclusions. These per-

meability fields are shown in Figure 10 where each permeability field contains low-conductivity
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Figure 9: Variations of the L2 projection (represented by dashed lines) and Galerkin projection (represented by solid
lines) errors with time: time-varying permeability field. Results are obtained using POD and DMD modes.

inclusions in different locations. This, for example, corresponds to the case where locations of low

conductivity regions are not deterministic. The coefficient describing the resulting permeability is

expressed as

κ(x;µ) = µ1κ1(x) + µ2κ2(x) + µ3κ3(x) + µ4κ4(x) + µ5κ5(x) (28)

The resulting permeability field obtained for{µ1, µ2, µ3, µ4, µ5} = {1, 5, 2, 10, 0.1} is depicted in

Figure 11. We compute the POD and DMD modes for each of the five permeability configurations

(shown in Figure 10) and collect them in a global matrix as

Φglobal =
{

Φ1, · · · ,Φ5

}

. (29)

Then, we derive a general reduced-order model, with5 × m dimensions, by Galerkin projecting

the governing Equation (1) onto the space spanned by the POD and DMD global modes and check

its capability to predict accurately the case shown in Figure 11. The temporal variations of the

Galerkin projection error are plotted in Figure 12. Different initial conditions are considered and

similar trends are observed. Unlike POD, DMD predicts the flow field with good accuracy. An er-

ror of 2% is obtained. This error is comparable to the error between the reference and approximate

solutions obtained when using the DMD modes computed directly for the permeability field shown

in Figure 11. These results show the robustness of the globalDMD modes for developing reduced-

order models that can be efficiently used to analyze the sensitivity of the dynamical behavior of

the flow to moderate variations in the structure of permeability field (in terms of distribution and
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Figure 10: Five permeability fields each containing inclusions with different contrast.

contrast).

To investigate further the suitability of POD and DMD modes to model flows in varying and

highly heterogeneous porous media, we consider the channel-type permeability (shown in Figure

2(c)) and multiply its coefficient by a smooth positive spatial function; that is,

κs(x; ǫ; f) = κ(x)× (1 + ǫ+ sin(2πfx) sin(2πfy)). (30)

The obtained permeability field forǫ = 1 andf = 100 is depicted in Figure 13. We use POD and

DMD modes generated for the permeability field shown in Figure 2(c) and employ the Galerkin

projection to obtain a reduced-order model which is used to predict the flow field resulting from

the modified permeability field described by Equation (30). In Figure 14, we plot the temporal

variations of the projection error obtained from the POD- and DMD- based representations while

varying the value ofǫ. Large Galerkin projection errors are obtained when using POD modes.

These errors increase substantially as the value ofǫ increases. This indicates that POD-based

reduced-order model can be only valid for the original configuration considered when computing

the modes. On the other hand, the DMD-based model reduction approach seems to be much less

sensitive to variations in the permeability. In fact, it shows a great capability to predict the flow

field as can be deduced from the small error values shown in Figure 14(a) (about 8% for different
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Figure 11: Permeability field (a linear combination of five different permeability fields shown in Figure 10).

values ofǫ).

Next, we modify moderately the distribution and magnitude of the forcing term as shown in

Figure 15. We use the DMD and POD modes obtained for the forcing case shown in Figure 1 to

derive a reduced-order model and predict the behavior of theflow field subjected to the modified

forcing input. The variations of the L2 projection and Galerkin projection errors with time are

plotted in Figure 16. As expected, smaller errors are obtained from the L2 projection in comparison

to those obtained when using the reduced-order model. The use of DMD modes yields small errors.

This shows the robustness of DMD-based approach to derive a reliable reduced-order model while

moderately varying forcing inputs.

3. Conclusions

In this work, we applied proper orthogonal decomposition (POD) and dynamic mode decom-

position (DMD) to flow in highly heterogeneous porous media with high contrast to derive a

reduced-order model. Different numerical examples of flowsin porous media characterized by

highly varying permeability fields were considered. These permeability fields include channels

and inclusions of high and low conductivity. The long-time dynamics of these flows are due to

complex changes within low permeability regions. Through our cases, we investigated the capa-

bility of POD and DMD to capture the main flow characteristicsand predict the flow field within

a certain accuracy. The DMD-based approach showed better capability to reproduce the flow field

when compared to the POD-based approach. This is mostly due to the DMD’s ability to extract the
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Figure 12: Variations of the Galerkin projection error withtime. Results are obtained using POD and DMD modes.

dynamic information and particularly the modes that governthe long-time dynamics. We also con-

sidered parameter-dependent problems to investigate the robustness of the POD and DMD modes

with respect to variations in the initial conditions, permeability field, and input forcing. We found

that DMD-based approach provides robust basis functions tomake accurate predictions of the

dynamical behavior of flow in highly heterogeneous porous media.
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