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Abstract

The Euler equations subject to uncertainty in the initial and boundary conditions
are investigated via the stochastic Galerkin approach. We present a new fully intrusive
method based on a variable transformation of the continuous equations. Roe variables
are employed to get quadratic dependence in the flux function and a well-defined Roe
average matrix that can be determined without matrix inversion.

In previous formulations based on generalized polynomial chaos expansion of the
physical variables, the need to introduce stochastic expansions of inverse quantities, or
square-roots of stochastic quantities of interest, adds to the number of possible different
ways to approximate the original stochastic problem. We present a method where the
square roots occur in the choice of variables and no auxiliary quantities are needed,
resulting in an unambiguous problem formulation.

The Roe formulation saves computational cost compared to the formulation based
on expansion of conservative variables. Moreover, the Roe formulation is more robust
and can handle cases of supersonic flow, for which the conservative variable formula-
tion fails to produce a bounded solution. We use a multi-wavelet basis that can be
chosen to include a large number of resolution levels to handle more extreme cases (e.g.
strong discontinuities) in a robust way. For smooth cases, the order of the polynomial
representation can be increased for increased accuracy.
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1 Introduction

Generalized polynomial chaos (gPC) expansions are frequently used to represent un-
certain quantities in numerical solutions of partial differential equations (PDEs) with
uncertainty in e.g. initial data, boundary data, unknown material parameters and
forcing functions due to unknown geometry. These quantities of interest are expressed
as generalized Fourier series, where orthogonal polynomials (e.g. Legendre or Hermite
polynomials) are commonly used as basis functions. Building on results due to Wiener
[26], this is the polynomial chaos method introduced by Ghanem and Spanos [7] and
generalized by [28].

Spectral convergence of the gPC expansion is observed when the solutions are suffi-
ciently regular and continuous [28], but for general non-linear conservation laws - such
as in fluid dynamics problems - the convergence is usually less favorable. Spectral ex-
pansion representations are still of interest for these problems because of the potential
efficiency with respect to brute force sampling methods, but special attention must be
devoted to the numerical methodology used. For some problems with steep gradients
in the stochastic dimensions, gPC expansions fail entirely to capture the solution [11].
Global methods can still give superior overall performance, for instance Padé approxi-
mation methods based on rational function approximation [4], and hierarchical wavelet
methods that are global methods with localized support of each resolution level [9, 10].

Intrusive gPC methods for nonlinear conservation laws have been investigated in
e.g. [23], where a reduced-cost Roe solver with entropy corrector was presented, and
in [22] with different localized representations of uncertainty in initial functions and
problem coefficients. In previous works we investigated well-posedness and stability for
an intrusive formulation of Burgers’ equation with uncertainty in [14], and imposition
of uncertain boundary conditions in [15].

In many nonlinear applications of the stochastic Galerkin method, truncation of
the gPC expansion leads to non-unique formulations of the systems of equations. For
instance, cubic products between stochastic quantities a, b and c, are represented as
products of truncated approximations ã, b̃ and c̃, but the pseudo-spectral multiplication
operator ∗, to be explicitly defined in a later section, is not associative, i.e. (ã ∗ b̃) ∗
c̃ 6= ã ∗ (b̃ ∗ c̃). Similar problems are investigated in more detail in [8]. The need to
introduce gPC expansions of inverse quantities, or square-roots of stochastic quantities
of interest, adds to the number of possible different ways to approximate the original
stochastic problem. This leads to ambiguity of the problem formulation. We present a
method where this ambiguity is avoided since no auxiliary quantities are needed. Our
formulation relies on a variable transformation where the square-root of the density
is computed, but this operation can be done in a robust way in a small number of
operations.

Alternative approaches to gPC methods have also been presented in the literature.
Abgrall et. al. [1, 2] developed a semi-intrusive method based on a finite-volume like
reconstruction technique of the discretized stochastic space. A deterministic problem
is obtained by taking conditional expectations given a stochastic subcell, over which
ENO constructions are used to reconstruct the fluxes in the stochastic dimensions.
This makes it particularly suitable for non-smooth probability distributions.
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Poëtte et. al. [17] used a nonlinear projection method to bound the oscillations
close to stochastic discontinuities by gPC expansion of the entropy variables obtained
from a transformation of the conservative variables. Each time step is complemented
by a functional minimization to obtain the entropy variables needed to update the
solution vector. The method we will present here may appear similar at first sight,
but it relies on a different kind of variable transformation and not on kinetic theory
considerations. We do not suggest a variable transformation for general conservation
laws, but a formulation that specifically targets the solution of the Euler equations
with uncertainty in the variables. It is less complicated than a direct gPC expansion
of the conservative variables.

In our method, the system of equations is reformulated using Roe variables so
that only quadratic terms occur. No fourth-order tensors need to be approximated or
calculated, resulting in increased accuracy and reduced computational cost. Moreover,
there is no need to compute additional chaos expansion for inverse quantities. The
Roe variable expansion provides a simple and unambiguous formulation of the Euler
equations. For brevity of notation, we will refer to our expansion method as the Roe
expansion, and the method based on expansion of the conservative variables as the
conservative expansion.

We consider the Sod test case subject to uncertainty in the density, and uncertain
diaphragm location, respectively. The uncertainty is represented with a multi-wavelet
(MW) expansion in the stochastic dimension, following the framework outlined in [10].
Special cases of the MW basis include the Legendre polynomials and the piecewise
constant Haar wavelets. The stochastic Galerkin system is obtained by projection of
the stochastic Euler equations onto the MW basis functions.

We employ a MUSCL reconstruction in space [24] and a fourth-order Runge-Kutta
method for the time integration. A Roe flux based on a stochastic Galerkin Roe average
matrix will be employed. A Roe average matrix for the numerical Roe flux is derived
and proven to fulfill the conditions of Roe [20] under certain circumstances.

In section 2, we present the framework for the stochastic Galerkin formulations of
the Euler equations in conservative and Roe variables, which are introduced in section
3. In section 4, the numerical flux functions are introduced. We derive and prove
properties of the solvers that are necessary to capture essential dynamics of hyperbolic
problems. We use a Roe flux suitable for situations where the system eigenvalues
can be accurately estimated. Numerical results are presented in section 5, where the
previously developed techniques are evaluated. Conclusions are drawn in section 6.

2 Representation of uncertainty

Let (Ω,A,P) be a probability space with event space Ω, and probability measure P
defined on the σ-field A of subsets of Ω. Let ξ(ω) be a random variable for ω ∈ Ω.
Consider a generalized chaos basis {ψi(ξ)}∞i=0 spanning the space of second order (i.e.
finite variance) random processes on this probability space. The basis functions are
assumed to be orthonormal, i.e. they satisfy

〈ψiψj〉 = δij , (1)
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where the inner product between two functions a(ξ) and b(ξ) is defined by

〈a(ξ)b(ξ)〉 =

∫

Ω
a(ξ)b(ξ)dP(ξ).

Any second order random field u(x, t, ξ) (i.e. 〈u2〉 <∞) can be expressed as

u(x, t, ξ) =
∞∑

i=0

ui(x, t)ψi(ξ). (2)

Independent of the choice of basis {ψi(ξ)}∞i=0, we can express the mean and variance
of u(x, t, ξ) as

E(u(x, t, ξ)) = u0(x, t), Var(u(x, t, ξ)) =

∞∑

i=1

ui(x, t)
2,

respectively. For practical purposes, (2) is truncated to a finite number P + 1 terms,
and we set

u(x, t, ξ) ≈
P∑

i=0

ui(x, t)ψi(ξ). (3)

The truncation of the gPC series leading to (3) may result in solutions that are un-
physical. An extreme example is when a strictly positive quantity, say density, with
uncertainty within a bounded range is represented by a polynomial expansion with
infinite range, for instance Hermite polynomials of standard Gaussian variables. The
Hermite series expansion converges to the true density with bounded range in the
limit P → ∞, but for a given order of expansion, say P = 2, the representation
ρ = ρ0 + ρ1H1(ξ) may result in negative density with non-zero probability since the
Hermite polynomial H1 takes arbitrarily large negative values. Similar problems may
be encountered also for polynomial representations with bounded support. Further-
more, polynomial reconstruction of a discontinuity in stochastic space leads to Gibbs
oscillations that may yield negative values of an approximation of a solution that is
close to zero but strictly positive by definition.

For smooth problems, the gPC expansion is attractive due to its spectral conver-
gence. For non-smooth problems such as nonlinear hyperbolic problems, discontinuities
will emerge in finite time in stochastic space and gPC expansions tend to result in Gibbs
oscillations. In the worst case, polynomial chaos may fail entirely to capture essential
features of the solution [9].

2.1 Multi-wavelet expansion

An alternative to gPC expansions for non-smooth and oscillatory problems is general-
ized chaos based on a localization or discretization of the stochastic space [5, 16]. Meth-
ods based on stochastic discretization include adaptive stochastic multi-elements [25]
and stochastic simplex collocation [27]. The robust properties of discretized stochastic
space can also be obtained by globally defined wavelets, see [9]. In this paper, we
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follow the approach of [10] and use piecewise polynomial multi-wavelets (MW), de-
fined on sub-intervals of [−1, 1]. The construction of a truncated MW basis follows the
algorithm in [3].

Wavelets are defined hierarchically on different resolution levels, representing suc-
cessively finer features of the solution with increasing resolution. They have non-
overlapping support within each resolution level, and in this sense they are localized.
Still, the basis is global due to the overlapping support of wavelets belonging to dif-
ferent resolution levels. Piecewise constant wavelets, denoted Haar wavelets, do not
exhibit spectral convergence, but avoid the Gibbs phenomenon in the proximity of
discontinuities in the stochastic dimension.

Starting with the space VNp of polynomials of degree at most Np defined on the
interval [−1, 1], the construction of multi-wavelets aims at finding a basis of piecewise
polynomials for the orthogonal complement of VNp in the space VNp+1 of polynomials
of degree at most Np + 1. Merging the bases of VNp and that of the orthogonal
complement of VNp in VNp+1, we obtain a piecewise polynomial basis for VNp+1.
Continuing the process of finding orthogonal complements in spaces of increasing degree
of piecewise polynomials, leads to a basis for L2([−1, 1]).

We first introduce a smooth polynomial basis on [−1, 1]. Let {Lei(ξ)}∞i=0 be the set
of Legendre polynomials that are defined on [−1, 1] and orthogonal with respect to the
uniform measure. The normalized Legendre polynomials are defined recursively by

Lei+1(ξ) =
√

2i+ 3

(√
2i+ 1

i+ 1
ξLei(ξ)−

i

(i+ 1)
√

2i− 1
Lei−1(ξ)

)
, i ≥ 1,

Le0(ξ) = 1, Le1(ξ) =
√

3ξ.

The set {Lei(ξ)}Np

i=0 is an orthonormal basis for VNp . Double products are readily
computed from (1), and higher-order products are precomputed using numerical inte-
gration.

Following the algorithm by Alpert [3] (see Appendix A), we construct a set of

mother wavelets {ψWi (ξ)}Np

i=0 defined on the domain ξ ∈ [−1, 1], where

ψWi (ξ) =





pi(ξ) −1 ≤ ξ < 0
(−1)Np+i+1pi(ξ) 0 ≤ ξ < 1
0 otherwise,

(4)

where pi(ξ) is an ith order polynomial. By construction, the set of wavelets {ψWi (ξ)}Np

i=0

are orthogonal to all polynomials of order at most Np, hence the wavelets are orthog-

onal to the set {Lei(ξ)}Np

i=0 of Legendre polynomials of order at most Np. Based on
translations and dilations of (4), we get the wavelet family

ψWi,j,k(ξ) = 2j/2ψWi (2jξ − k), i = 0, ..., Np, j = 0, 1, ..., k = 0, ..., 2j−1.

Let ψm(ξ) for m = 0, ..., Np be the set of Legendre polynomials up to order Np, and
concatenate the indices i, j, k into m = (Np+1)(2j +k−1)+ i so that ψm(ξ) ≡ ψWi,j,k(ξ)
for m > Np. With the MW basis {ψm(ξ)}∞m=0 we can represent any random variable
u(x, t, ξ) with finite variance as

u(x, t, ξ) =
∞∑

m=0

um(x, t)ψm(ξ),
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which is of the form (2). In the computations, we truncate the MW series both in
terms of the piecewise polynomial order Np and the resolution level Nr. With the
index j = 0, ..., Nr, we retain P + 1 = (Np + 1)2Nr terms of the MW expansion.

The truncated MW basis is characterized by the piecewise polynomial order Np

and the number of resolution levels Nr, illustrated in Figure 1 for Np = 2 and Nr = 3.
As special cases of the MW basis, we obtain the Legendre polynomial basis for Nr = 0
(i = j = 0), and the Haar wavelet basis of piecewise constant functions for Np = 0.
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Figure 1: Multi-wavelets for Np = 2, Nr = 3. Resolution level 0 consists of the
first Np + 1 Legendre polynomials. Resolution level j > 0 contains 2j−1 wavelets
each. Each basis function is a piecewise polynomial of order Np.

3 Euler equations with input uncertainty

Consider the 1D Euler equations, in non-dimensional form given by

ut + f(u)x = 0, 0 ≤ x ≤ 1, t > 0, (5)

where the solution and flux vector are given by

u =




ρ
ρv
E


 , f =




ρv
ρv2 + p

(E + p)v


 ,

where ρ is density, v velocity, E total energy and pressure p. A perfect gas equation
of state is assumed, and energy and pressure are related by

E =
p

γ − 1
+

1

2
ρv2,
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where γ is the ratio of the specific heats. For the numerical method, we need the flux
Jacobian, given by

∂f

∂u
=




0 1 0
1
2(γ − 3)v2 (3− γ)v γ − 1

1
2(γ − 1)v3 − vH H − (γ − 1)v2 γv


 ,

with the total enthalpy H = (E + p)/ρ.
We scale the physical variables to get the dimensionless variables ρ = ρ′/ρ′ref ,

E = E′/(γp′ref ), p = p′/(γp′ref ) and v = v′/a′ref where a′ = (γp′/ρ′)1/2 and the
subscript ref denotes a reference state.

3.1 Formulation in Roe variables

Roe [20] introduced the variables

w =



w1

w2

w3


 =




ρ1/2

ρ1/2v

ρ1/2H


 .

The flux and the conservative variables are given by

f̂(w) =




w1w2
γ−1
γ w1w3 + γ+1

2γ w
2
2

w2w3


 , u = ĝ(w) =




w2
1

w1w2
w1w3
γ + γ−1

2γ w
2
2


 .

Then
ĝ(w)t + f̂x(w) = 0 (6)

is equivalent to (5). The flux Jacobian in the Roe variables is given by

∂f̂

∂w
=




w2 w1 0
γ−1
γ w3

γ+1
γ w2

γ−1
γ w1

0 w3 w2


 .

3.2 Stochastic Galerkin formulation of the Euler equa-
tions

Define the pseudo-spectral product u ∗ v of order P = P (Np, Nr) by

(u ∗ v)k =

P∑

i=0

P∑

j=0

uivj〈ψiψjψk〉, k = 0, ..., P,

where

〈ψiψjψk〉 =

∫

Ω
ψi(ξ)ψj(ξ)ψk(ξ)dP.
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Alternatively, using matrix notation, we can write the spectral product as u∗v = A(u)v,
where

[A(u)]jk =
P∑

i=0

ui〈ψiψjψk〉. (7)

We will need the pseudo-spectral inverse q−∗, defined as the solution of q∗q−∗ = 1, and
the pseudo-spectral square root, defined as the solution q∗/2 of q∗/2 ∗ q∗/2 = q, where
the spectral expansion of the quantity of interest q is assumed to be known. For more
details, see [6].

Let uP denote the vector of coefficients of the MW expansion of u of order P =
P (Np, Nr). P may take the same value for two distinct pairs of (Np, Nr) but this
ambiguity in notation will not matter in the derivation of the numerical method so
for brevity we use only P in the superscripts. The Euler equations represented by the
conservative formulation (5) can be written as an augmented system, after stochastic
Galerkin projection,

uPt + fP (uP )x = 0, (8)

where

uP =



uP1
uP2
uP3


 =




[(u1)0, ..., (u1)P ]T

[(u2)0, ..., (u2)P ]T

[(u3)0, ..., (u3)P ]T


 , fP (uP ) =




uP2
(uP1 )−∗ ∗ uP2 ∗ uP2 + pP

(uP3 + pP ) ∗ uP2 ∗ (uP1 )−∗


 .

with pP = (γ−1)(uP3 −(uP1 )−∗∗uP2 ∗uP2 /2). The cubic products of (8) are approximated
by the application of two third-order tensors, instead of one fourth-order tensor. That
is, we replace (a ∗ b ∗ c)l =

∑
ijk〈ψiψjψkψlaibjck〉 by the approximation (a ∗ b ∗ c)l ≈

((a ∗ b) ∗ c)l.
For the Roe variable formulation, the stochastic Galerkin projection of (6) gives

the system
ĝP (wP )t + f̂P (wP )x = 0, (9)

where

ĝP (wP ) =




wP1 ∗ wP1
wP1 ∗ wP2

wP
1 ∗wP

3
γ + γ−1

2γ w
P
2 ∗ wP2


 , f̂P (wP ) =




wP1 ∗ wP2
γ−1
γ wP1 ∗ wP3 + γ+1

2γ w
P
2 ∗ wP2

wP2 ∗ wP3


 .

The flux Jacobian for the stochastic Galerkin system in the Roe variables is given by

∂f̂P

∂wP
=




A(wP2 ) A(wP1 ) 0(P+1)×(P+1)
γ−1
γ A(wP3 ) γ+1

γ A(wP2 ) γ−1
γ A(wP1 )

0(P+1)×(P+1) A(wP3 ) A(wP2 )


 . (10)

As P → ∞, the formulations (8) and (9), as well as any other consistent formula-
tion, are equivalent. However, P is assumed to be small (< 20), and truncation and
conditioning of the system matrices will play an important role for the accuracy of the
solution.
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4 Numerical method

As our main numerical method we will use the MUSCL (Monotone Upstream-centered
Schemes for Conservation Laws) scheme introduced in [24].

4.1 Expansion of conservative variables

Let m be the number of spatial points and ∆x = 1/(m− 1) and let UP be the spatial
discretization of uP . The semi-discretized form of (8) is given by

dUPj
dt

+
FPj+1/2 − FPj−1/2

∆x
= 0, j = 1, ...,m, (11)

where FPj+1/2 denotes the numerical flux function evaluated at the interface between
cells j and j + 1.

For the MUSCL scheme with slope limited states UL and UR, we take the numerical
flux

FP
j+ 1

2

=
1

2

(
fP (UL

j+ 1
2

) + fP (UR
j+ 1

2

)
)

+
1

2
|(J̃Pc )j+ 1

2
|
(
UL
j+ 1

2

− UR
j+ 1

2

)
, (12)

where the Roe average J̃Pc is the pseudo-spectral generalization of the standard Roe
average of the deterministic Euler equations, i.e.

J̃Pc (v,H) =




0P×P IP×P 0P×P
1
2(γ − 3)A(v)2 (3− γ)A(v) (γ − 1)IP×P

1
2(γ − 1)A(v)3 −A(v)A(H) A(H)− (γ − 1)A(v)2 γA(v)




where
v = (ρ

−∗/2
L + ρ

−∗/2
R ) ∗ (ρ

∗/2
L ∗ vL + ρ

∗/2
R ∗ vR),

and
H = (ρ

∗/2
L ∗HL + ρ

∗/2
R ∗HR) ∗ (ρ

−∗/2
L + ρ

−∗/2
R ).

The computation of v and H require the spectral square root ρ∗/2 and its inverse, that
are computed solving a nonlinear and a linear system, respectively.

Further details about the formulation of the Roe average matrix are given in [22].
The scheme is a direct generalization of the deterministic MUSCL scheme. Flux limiters
are applied componentwise to all MW coefficients in sharp regions. For a more detailed
description of the MUSCL scheme and flux limiters, see e.g. [12], and for application
to the stochastic Burgers’ equation [13].

4.2 Expansion of Roe’s variables

Let WP denote the spatial discretization of wP . The semi-discretized form of (9) is
given by

∂ĝPj
∂t

+
F̂Pj+1/2 − F̂Pj−1/2

∆x
= 0, j = 1, ...,m,
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with the numerical flux function

F̂j+ 1
2

=
1

2

(
f̂P (WL

j+ 1
2

) + f̂P (WR
j+ 1

2

)
)

+
1

2
|J̃P
j+ 1

2

|
(
WL
j+ 1

2

−WR
j+ 1

2

)
, (13)

where J̃P = J̃P (WP ) is the Roe matrix for the stochastic Galerkin formulation of the
Euler equations in Roe’s variables, to be derived below.

Each time step provides the update of the solution vector ĝPj , j = 1, ...,m, from

which we can solve for WP to be used in the update of the numerical flux. This involves
solving the nonlinear systems

A(WP
1,j)W

P
1,j = ĝP1,j , j = 1, ...,m, (14)

for WP
1,j , and then using WP

1,j to solve the linear (P + 1)× (P + 1)-systems

A(WP
1,j)W

P
2,j = ĝP2,j , j = 1, ...,m,

for WP
2,j , and

A(WP
1,j)W

P
3,j = γĝP3,j −

γ − 1

2
A(WP

2,j)W
P
2,j , j = 1, ...,m,

for WP
3,j .

The system (14) is solved iteratively with a trust-region-dogleg algorithm1. Starting
with the value of the previous time-step as initial guess, few iterations are required
(typically 2-3). (The same method is used to solve for spectral square roots in the
conservative variable formulation.)

4.3 Stochastic Galerkin Roe average matrix for Roe vari-
ables

The Roe average matrix J̃P is given as a function of the Roe variables w = (w1, w2, w3)T ,
where each wi is a vector of generalized chaos coefficients. It is designed to satisfy the
following properties:

(i) J̃P (wL, wR)→ ∂f̂P

∂w

∣∣∣
w=w′

as wL, wR → w′.

(ii) J̃P (wL, wR)× (wL − wR) = f̂P (wL)− f̂P (wR), ∀wL, wR

(iii) J̃P is diagonalizable with real eigenvalues and linearly independent eigenvectors.

In the standard approach introduced by Roe and commonly used for deterministic
calculations, the conservative variables are mapped to the w variables, which are then
averaged.

In the deterministic case, we have

f̂L − f̂R = J̃(wL, wR)× (wL − wR), (15)

1This is the default algorithm for fsolve in Matlab. For more details, see [18].
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where

J̃(wL, wR) =




w2 w1 0
γ−1
γ w3

γ+1
γ w2

γ−1
γ w1

0 w3 w2


 .

Overbars denote arithmetic averages of assumed left and right values of a variable, i.e.

wj =
wLj + wRj

2
, j = 1, 2, 3.

It is a straightforward extension of the analysis by Roe in [20] to show properties
(i) and (ii) for the Roe variables, without mapping to the conservative variables. To
prove (iii) we note that there exists an eigenvalue decomposition

J̃ = V DV −1, (16)

where

V =




w1
w3

w1
w3

−w1
w3

w2−
√
w2

2+8w1w3γ(γ−1)

2γw3

w2+
√
w2

2+8w1w3γ(γ−1)

2γw3
0

1 1 1


 , (17)

D =




w2(1+2γ)−
√

8w1w3γ(γ−1)+w2
2

2γ 0 0

0
w2(1+2γ)+

√
8w1w3γ(γ−1)+w2

2

2γ 0

0 0 w2


 . (18)

The eigenvalues of J̃ are real and distinct, so property (iii) is also satisfied.
Now consider the stochastic Galerkin formulation, i.e. assume that the wi’s are

vectors of generalized chaos coefficients. The stochastic Galerkin Roe average matrix
J̃P for the Roe variables formulation is a generalization of the mapping (15), i.e. of
the matrix J̃ . We define

J̃P (wL, wR) = J̃P (w) =




A(w2) A(w1) 0P×P
γ−1
γ A(w3) γ+1

γ A(w2) γ−1
γ A(w1)

0P×P A(w3) A(w2)


 , (19)

where the submatrix A(wj) is given by (7) and w = (wL + wR)/2.

Proposition 1. Property (i) is satisfied by (19).

Proof. With wL = wR = w′, J̃P (wL, wR) = J̃P (w′, w′) = ∂f̂P

∂wP

∣∣∣
w=w′

by (10).

Proposition 2. Property (ii) is satisfied by (19).

Proof.

J̃P (wL, wR)× (wL − wR) =
1

2

(
J̃P (wL) + J̃P (wR)

)
(wL − wR) =

=
1

2
J̃P (wL)wL − 1

2
J̃P (wR)wR = f̂P (wL)− f̂P (wR), (20)

where the last equality follows from the fact that the stochastic Galerkin generalizations
of the Euler equations are homogeneous of degree 1.
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To prove (iii), we will need the following proposition.

Lemma 1. Let A(wj) (j = 1, 2, 3) be defined by (7) and A(wj) = QΛjQ
T be an

eigenvalue decomposition with constant eigenvector matrix Q and assume that Λ1 and
Λ3 are non-singular. Then the stochastic Galerkin Roe average matrix J̃P has an
eigenvalue decomposition J̃P = XΛ̃PX−1 with a complete set of eigenvectors.

Proof. We will use the Kronecker product ⊗, defined for two matrices B (of size m×n)
and C by

B ⊗ C =



b11C . . . b1nC

...
. . .

...
bm1C . . . bmnC


 .

The eigenvalue decompositions of each (P + 1)× (P + 1) matrix block of (19) have the
same eigenvector matrix Q, hence we can write

J̃P = (I3 ⊗Q)Ĵ(I3 ⊗QT ) (21)

where

Ĵ =




Λ2 Λ1 0(P+1)×(P+1)
γ−1
γ Λ3

γ+1
γ Λ2

γ−1
γ Λ1

0(P+1)×(P+1) Λ3 Λ2


 .

By assumption, I3 ⊗ Q is non-singular, and it remains to show that Ĵ has distinct
eigenvectors. Let

S = diag(Λ1Λ−1
3 ,
√

(γ − 1)/γΛ
1/2
1 Λ

−1/2
3 , I(P+1)×(P+1)).

By assumption, Λ1 and Λ3 are invertible, so S and S−1 exist. We have

JS ≡ S−1ĴS =




Λ2

[
γ−1
γ Λ1Λ3

]1/2
0P×P

[
γ−1
γ Λ1Λ3

]1/2
γ−1
γ Λ2

[
γ−1
γ Λ1Λ3

]1/2

0P×P

[
γ−1
γ Λ1Λ3

]1/2
Λ2



. (22)

Clearly, JS is symmetric and has the same eigenvalues as Ĵ and J̃P . Hence, JS has an
eigenvalue decomposition JS = Y Λ̃PY T . Then,

Ĵ = SY Λ̃PY TS−1 = SY Λ̃P (SY )−1. (23)

Combining (21) and (23), we get

J̃P = [(I3 ⊗Q)SY ]Λ̃P [(I3 ⊗Q)SY ]−1.

Setting X = (I3 ⊗ Q)SY , we get the eigenvalue decomposition J̃P = XΛ̃PX−1. By
assumption, S and Y are non-singular, and we have that

det (X) = det ((I3 ⊗Q)SY ) 6= 0,

which proves thatX is non-singular, and thus J̃P has a complete set of eigenvectors.
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Proposition 3. Property (iii) is satisfied by (19).

Proof. Lemma 1 shows that since the eigenvalue matrix Λ̃P is also the eigenvalue matrix
of the symmetric matrix JS defined in (22), the eigenvalues are all real. Lemma 1 also
shows that the eigenvectors are distinct.

The conditions in Lemma 1 are true for certain basis functions assuming moderate
stochastic variation, but it can not be guaranteed for every case, and it certainly does
not hold for pathological cases with e.g. negative density. The requirement of non-
singularity of Λ1,Λ3 is not very restrictive since it amounts to excluding unphysical
behavior, for instance naturally positive quantities taking negative values with non-
zero probability. The assumption of constant eigenvectors of the matrix A holds for
Haar wavelets (i.e. multi-wavelets with Np = 0), for all orders P + 1 = 2Nr , with
Nr ∈ N. See appendix B for a proof sketch. Expressions for the first constant eigenvalue
decompositions are included in appendix C for Haar wavelets and piecewise linear
multi-wavelets. The eigenvectors of A for P + 1 = 1, 2, 4, 8 are shown to be constant,
but we do not give a proof that this is true for piecewise linear multi-wavelets of any
order P .

Remark: The Roe variable scheme has been outlined under the implicit assump-
tion of uncertainty manifest in the variables, e.g. initial and boundary condition un-
certainty. However, situations such as uncertainty in the adiabatic coefficient γ may
be treated in a similar way, although it would result in additional pseudo-spectral
products. Pseudo-spectral approximations of (γ − 1)/γ and (γ + 1)/γ could then be
precomputed to sufficient accuracy.

5 Numerical results

We use the method of manufactured solutions to verify the second order convergence
in space of a smooth problem using the MUSCL scheme with Roe variables. We then
introduce two test cases for the non-smooth problem; case 1 with an initial function
that can be exactly represented by two Legendre polynomials, and case 2 with slow
initial decay of the MW coefficients in both Np and Nr. The errors in computed
quantities of interest (here variances) as functions of the order of MW are investigated.
Qualitative results are then presented to indicate the behavior we can expect for the
convergence of two special cases of MW, namely the Legendre polynomials and Haar
wavelet basis, respectively. Robustness with respect to more extreme cases (density
close to zero leading to high Mach number) is demonstrated for the Roe variable
formulation for a supersonic case where the conservative variable method breaks down.
Finally, we perform a comparative study of the computational time for the formulation
in conservative variables and the formulation in Roe variables.

5.1 Spatial convergence

The MUSCL scheme with appropriate flux limiters is second order accurate for smooth
solutions. Since the Euler solution in general becomes discontinuous in finite time,

13



the method of manufactured solutions [19, 21] is used to solve the Euler equations
with source terms for a known smooth solution. The smooth solution is inserted into
the Euler equations (5) and results in a non-zero right-hand side that is used as a
source function. In order to test the capabilities of the method, we choose a solution
that varies in space, time and in the stochastic dimension and with time-dependent
boundary conditions. It is designed to resemble a physical solution with non-negative
density and pressure. The solution is given by



ρ
v
p


 =




ρ0 + ρ1 tanh(s(x0 − x+ t+ σξ))
tanh(s(x0 + v0 − x+ t+ σξ)) + tanh(−s(x0 − v0 − x+ t+ σξ))

p0 + p1 tanh(s(x0 − x+ t+ σξ))


 .

The parameters are set to ρ0 = p0 = 0.75, ρ1 = p1 = x0 = 0.25, v0 = 0.05, s = 10,
σ = 0.1 and ξ ∈ U [−1, 1].

We measure the error in the computed u(x, t, ξ) in the L2(Ω,P) norm and the
discrete `2 norm,

∥∥uP − u
∥∥

2,2
≡
∥∥uP − u

∥∥
`2,L2(Ω,P)

=

(
∆x

m∑

i=1

∥∥uP (xi, t, ξ)− u(xi, t, ξ)
∥∥2

L2(Ω,P)

)1/2

=

(
∆x

m∑

i=1

∫

Ω
(uP (xi, t, ξ)− u(xi, t, ξ))

2dP(ξ)

)1/2

=

≈


∆x

m∑

i=1

q∑

j=1

(uP (xi, t, ξ
(j)
q )− u(xi, t, ξ

(j)
q ))2w(j)

q




1/2

, (24)

where a q-point quadrature rule with points {ξ(j)
q }qj=1 and weigths {w(j)

q }qj=1 was used
in the last line to approximate the integral in ξ. The Gauss-Legendre quadrature is
used here since the solution is smooth in the stochastic dimension.

Figure 2 depicts the spatial convergence in the ‖.‖2,2 norm of the error in density,
velocity and energy. An order (Np, Nr) = (10, 0) basis is used to represent the uncer-
tainty. The solution dynamics is initially concentrated in the left part of the spatial
domain. By the time of t = 0.4, it has moved to the right and has begun to exit the
spatial domain, so the time snapshots of Figure 2 summarizes the temporal history
of the spatial error decay. The theoretical optimal convergence rate for the MUSCL
scheme with the van Leer flux limiter is obtained for all times and all quantities.
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Figure 2: Convergence in space using the method of manufactured solutions,
Np = 10, Nr = 0 (Legendre polynomials).

5.2 Initial conditions and discontinuous solutions

We consider (5) with two different initial functions on the domain [0, 1]. Since the an-
alytical solution of Sod’s test case is known for any fixed value of the input parameters,
the exact stochastic solution can be formulated as a function of the stochastic input ξ.
Exact statistics can be computed by numerical integration over ξ. As case 1, assume
that the density is subject to uncertainty, and all other quantities are deterministic at

15



t = 0. The initial condition for (5) is given by

u(x, t = 0, ξ) =

{
uL = (1 + σξ, 0, 2.5/γ)T x < 0.5
uR = (0.125(1 + σξ), 0, 0.25/γ)T x > 0.5

where we assume ξ ∈ U [−1, 1], γ = 1.4 and the scaling parameter σ = 0.5. This
is a simple initial condition in the sense that the first two Legendre polynomials are
sufficient to represent the initial function exactly. As case no 2, we consider (5) subject
to uncertainty in the initial shock location. Let

u(x, t = 0, ξ) =

{
uL = (1, 0, 2.5/γ)T x < 0.5 + ση
uR = (0.125, 0, 0.25/γ)T x > 0.5 + ση

where we assume γ = 1.4 and the scaling parameter σ = 0.05. Here, η takes a triangular
distribution, which we parameterize as a nonlinear function in ξ ∈ U [−1, 1], i.e.

η(ξ) = (−1 +
√
ξ + 1)1{−1≤ξ≤0}(ξ) + (1−

√
1− ξ)1{0<ξ≤1}(ξ),

where the indicator function 1{A} of a set A is defined by 1{A}(ξ) = 1 if ξ ∈ A and
zero otherwise. For case 2, exact representation of the initial function requires an
infinite number of expansion terms in the MW basis. Figure 3 depicts the shock tube
setup for the two cases, with dashed lines denoting uncertain parameters. We will
also investigate another version of case 2, where the right state density is significantly
reduced to obtain a strong shock.

0 x0 1

ρL

ρR

2σ

?

6

0.25σ ?6

2σ�-

0 x0 1

ρL

ρR

Figure 3: Schematic representation of the initial setup for case 1 (left) and case
2 (right).

5.3 Initial conditions and resolution requirements

For case 2, it should be noted that although the initial shock position can be exactly
described by the first two terms of the Legendre polynomial chaos expansion, this is not
the case for the initial state variables. In fact, for the the polynomial chaos expansions
of the density, momentum and energy, the error decay only slowly with the number
of expansion terms. Thus, unless a reasonably large number of expansion terms are
retained, the stochastic Galerkin solution of case 2 will not be accurate even for small
times.

The Legendre coefficients at small times display an oscillating behavior that be-
comes sharper with the order of the coefficients. The wavelet coefficients exhibit peaks
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that get sharper with the resolution level, and require a fine mesh. Figure 4 shows the
initial Legendre coefficients and the initial Haar wavelets for case 2. The numerical
method has a tendency to smear the chaos coefficients, resulting in under-predicting
the variance. The increasing cost of using a larger number of basis functions is further
increased by the need for a finer mesh to resolve the solution modes.
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(a) Legendre polynomials
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(b) Haar wavelets

Figure 4: Initial w1 modes for case 2, first 8 basis functions.

5.4 Convergence of multi-wavelet expansions

For moderate simulation times, the numerical solution on a sufficiently fine spatial
mesh converges as the order of MW expansion increases by increasing the polynomial
degree Np or the resolution level Nr. Figure 5 shows the decay in the error of the
variance of velocity and energy as a function of Np and Nr. For well-behaved cases
like these, one may freely choose between increasing Np and Nr, in order to increase
the accuracy of the solution of the quantity of interest.
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Figure 5: Decay in variance of velocity and energy as a function of the order
of expansion, polynomial order Np and resolution level Nr. Case 1, t = 0.05,
280 spatial points restricted to x ∈ [0.4, 0.65]. Solution obtained with the Roe
variable scheme.

For longer simulation times or more extreme cases, e.g. supersonic flow, high-order
polynomial representation (increasing Np) may not lead to increased accuracy, but
instead breakdown of the numerical method. Next, we study the qualitative proper-
ties of the MW representation of case 1 and case 2 for two extreme cases: Legendre
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polynomials (Nr = 0) and piecewise constant Haar wavelets (Np = 0).
Figure 6 shows the density surface in the x − ξ-plane of case 1 and case 2 at

t = 0.15 based on exact solution evaluations, and computed with Legendre polynomials
and Haar wavelets. The computed solution with Legendre polynomial reconstruction
captures essential features of the exact solution, but the use of global polynomials cause
oscillations downstream of the shock.

With Haar wavelets, there are no oscillations downstream, as in the Legendre poly-
nomials case. However, the 8 ’plateaus’ seen in figure 6 (e) corresponds to the 8 basis
functions. When the order of wavelet chaos expansion increases, the number of plateaus
increases, and the solution converges to the exact solution.

From Figure 6 it is clear that the effect of the choice of multi-wavelet basis to some
extent depends on the problem at hand. The Haar wavelets yield numerical solutions
that are free of oscillations but converge only slowly. Oscillations around discontinuities
in stochastic space should be expected when a polynomial basis is used and may lead
to severe problems when variables attain unphysical values, e.g. when the oscillations
downstream of the shock leads to negative density. Thus, more robust multi-wavelets
are required for problems with stronger shocks, as we demonstrate below.

5.5 Robustness

The stochastic Galerkin method applied to the Roe variables gives a more robust
method than the conservative variables formulation. Figure 7 shows the relative errors
of the solution in the 2, 2 norm for modified versions of case 2 with stronger shocks,
ρL = 1, and a range of right state densities, ρR = 2−k, k = 3, .., 8 for 8 basis wavelets.
This corresponds to Mach numbers up to Ma = 2.0. Figure 7 also includes the relative
error of the Mach number to verify that the cases solved for were reasonable close to the
supersonic range they model. For this problem, the conservative variable formulation
was unstable except for the original subsonic case 2 (ρR = 0.125). Thus, although no
clear explanation is known to us, it seems that the Roe variable formulation is more
suitable for problems where robustness is an issue.

Legendre polynomials are not suitable for this problem. As seen in Figure 6 (c)
and (d), the solution is oscillatory in the right state close to the shock. If the right
state density is small, as in this supersonic case, such oscillations cause the density
to be very close to zero, or even negative. This leads to an unphysical solution and
breakdown of the numerical method.
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(e) Haar wavelets (Np, Nr) = (0, 3), case 1.
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(f) Haar wavelets (Np, Nr) = (0, 3), case 2.

Figure 6: Density as a function of x and ξ at t = 0.15.
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Figure 7: Relative error in density, velocity, energy and Mach number at t = 0.15
for different shock strengths. m = 300 spatial points, 8 Haar wavelets (Np = 0,
Nr = 3).

5.6 Computational cost

For two stochastic Galerkin systems of order P = (Np + 1)2Nr − 1 and P ′ = (N ′p +

1)2N
′
r − 1 where P = P ′ but Np 6= N ′p, N

′
r 6= Nr, the size of the problem and the

computational cost is the same. Although the different bases could possibly result in
properties that make them very different in e.g. the number of iterations required to
solve the nonlinear matrix problems, no such tendency was observed. The numerical
experiments yield very similar computational costs for the cases tested.

In order to compare the computational cost of the Roe variable expansion with that
of the conservative expansion, a similar experimental setup is used for both methods.
Sufficiently small test cases are run in order not to exceed the cache limit which would
slow down the simulation time for fine meshes and bias the result. We used test case
1 for short simulation times.

In the experiments, the same time step has been used for the different variable
expansions, since the stability limit is very similar. Table 1 displays the relative sim-
ulation time of the two different variable expansions for increasing number of Haar
wavelets (P̃ = P + 1 = 2Nr , Np = 0). One time unit is defined as the time for the nu-
merical simulation of a single deterministic problem using the same numerical method
with similar input conditions, discretization and time step. The higher computational
cost for the conservative variable formulation is due to the need to compute inverse
quantities and cubic spectral products. The Roe variable formulation only requires the
solution of the nonlinear system for the square root of the density and quadratic flux
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function evaluations. The relative benefit of the Roe variable expansion decreases with
the order of wavelet expansion. This is due to the increasing cost of forming spectral
products that dominates the total cost for high-order expansions.

Order of MW P̃ = 2 P̃ = 4 P̃ = 8 P̃ = 16

Time Roe variables 14 16 26 60
Time cons. variables 410 457 534 643

Table 1: Relative simulation time using conservative variables and Roe variables,
respectively. One time unit is defined as the simulation time of a single deter-
ministic problem with the same time-step as for the MW cases.

6 Conclusions

An intrusive formulation of the stochastic Euler equations based on Roe variables is
presented. A Roe average matrix for the standard MUSCL-Roe scheme with Roe
variables is derived, and we prove that it satisfies the conditions stated by Roe under
certain conditions.

The Legendre polynomial basis exactly represents the input uncertainty in our first
test case, but it leads to oscillations around the discontinuity in stochastic space. The
Haar wavelets do not represent the input uncertainty exactly in either test case, but
are more robust to discontinuities.

The Roe variable formulation is robust for supersonic problems where the conserva-
tive variable formulation fails, but only for localized basis functions of the generalized
chaos representation. For global Legendre polynomials, the discontinuities in stochastic
space lead to oscillations and unphysical behavior of the solution and numerical insta-
bility. Wavelet functions are more robust in this respect, and do not yield oscillations
around discontinuities in stochastic space.

The Roe variable formulation leads to speedup compared to the conservative vari-
able formulation. The relative speedup decreases with the order of generalized chaos
since the total computational cost for high-order expansions is no longer dominated by
spectral inversion and square root calculations. Instead, the main cost lies in the for-
mation of spectral product matrices. However, for low order multi-wavelet expansions,
the speedup is significant.

We demonstrate the need for robust flux functions by presenting cases where the
standard MUSCL-Roe flux fails to capture the solution. The design of a robust numer-
ical method is also highly dependent on the choice of the stochastic basis. The Haar
wavelets are not only more robust than Legendre polynomials for representation of dis-
continuities in stochastic space, but also admit the proof of existence of a Roe matrix
and more specifically the hyperbolicity of the stochastic Galerkin formulation. This
implies that the truncated problem mimics the original problem - a desirable feature.

If the representation of the initial function has not converged, the solution at future
times can not be accurate. Case 2 illustrates the need to find a representation of
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uncertainty with fast decay of the coefficients of the generalized chaos expansion.
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Appendix A Generation of multi-wavelets

Algorithm 1 Generation of multi-wavelets

The goal is to generate the mother-wavelets {ψWi (ξ)}Np

i=0 of (4).

Start with a set of functions {f 1
k}

Np

k=0, defined by

f 1
k (ξ) =





ξk, ξ ∈ [−1, 0],
−ξk, ξ ∈ [0, 1],
0, otherwise.

STEP 1: Orthogonalize with respect to the monomials 1, ..., ξNp using Gram-
Schmidt to obtain {f 2

k}
Np

k=0.
STEP 2:

for i← 0 to Np − 1 do
Make sure 〈f i+1

i ξNp+i〉 6= 0 (otherwise reorder).
for j = i+ 1 to N0 do

w =
〈f i+2

j ξNp+i〉
〈f i+2

i ξNp+i〉

f i+3
j ← f i+2

j − wf i+2
i

end for
end for

STEP 3: Orthogonalize {f i+2
i }

Np

i=0 using G-S.

for i← Np to 0 do
ψWi (ξ)← Apply Gram-Schmidt to f i+2

i .
end for
output {ψWi (ξ)}Np

i=0.

Appendix B Constant eigenvectors of A

Proposition 1. The matrix A defined by (7) for Haar wavelets {ψj}Pj=0 has constant

eigenvectors for all P + 1 = 2Nr , Nr ∈ N.

Sketch of proof. We will use induction on the order P of wavelet chaos to show that the
matrix A has constant eigenvectors for all orders P . In order to do this, we will need
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certain features of the structure of A. To facilitate the notation, denote P̃ = P + 1.
We can express A2P̃ in terms of the matrix AP̃ . Two properties of the triple product
〈ψiψjψk〉 will be used to prove that A indeed has the matrix structure presented.

Property 1: Let i ∈ {0, ..., P̃ − 1}, j = k ∈ {P̃ , ..., 2P̃ − 1} and let j′ and j′′ be
the progenies of j. Then

〈ψiψ2
j 〉 = 〈ψiψ2

j′〉 = 〈ψiψ2
j′′〉.

Property 2: Consider the indices i ∈ {P̃ , ..., 2P̃ − 1}, j = k ∈ {2P̃ , ..., 4P̃ − 1}. Then

〈ψiψ2
j 〉 =





P̃ 1/2 if j first progeny of i

−P̃ 1/2 if j second progeny of i
0 otherwise

.

As induction hypothesis, we assume that given AP̃ for some P̃ = 2Nr , Nr ∈ N, the
next order of triple product matrix A2P̃ can be written

A2P̃ =

[
AP̃ QP̃MP̃

MP̃Q
T
P̃

Λ

]

where QP̃ is the matrix of constant eigenvectors of AP̃ satisfying
∥∥QP̃

∥∥2

2
= P̃ , MP̃ =

diag(wP̃ , ..., w2P̃−1) and Λ is diagonal and contains the eigenvalues of AP̃ . Then, we
have that[

AP̃ QP̃MP̃
MP̃Q

T
P̃

Λ

] [
QP̃
±P̃ 1/2I

]
=

[
QP̃Λ± P̃ 1/2QMP̃

P̃MP̃ ± P̃ 1/2Λ

]
=

[
QP̃
±P̃ 1/2I

]
(Λ±P̃ 1/2M),

so the eigenvalues and eigenvectors of A2P̃ are given by Λ±P̃ 1/2MP̃ and [QP̃ ,±P̃ 1/2I]T ,

respectively. For the next order of expansion, 4P̃ , we have

A4P̃ =




[
AP̃ QP̃MP̃

MP̃Q
T
P̃

Λ

] [
QP̃ ⊗ [1, 1]

P̃ 1/2I ⊗ [1,−1]

]
M2P̃

M2P̃

[
QP̃ ⊗ [1, 1]

P̃ 1/2I ⊗ [1,−1]

]T
Λ⊗ I2 + P̃ 1/2MP̃ ⊗

[
1 0
0 −1

]


 (25)

To see that this is indeed the structure of A4P̃ , note that any non-zero matrix entry
not already present in A2P̃ , can be deduced using properties 1 and 2, and scaling the
rows/columns by multiplication by the diagonal matrix M2P̃ . The structure of A4P̃
follows from the construction of the Haar wavelet basis, but we do not give a proof
here.

One can verify that A4P̃ given by (25) has the eigenvectors and eigenvalues

Q4P̃ =



[

QP̃ ⊗ [1, 1]

P̃ 1/2IP̃ ⊗ [1,−1]

]

±(2P̃ )1/2I2P̃


 ,

Λ4P̃ = Λ⊗ I2 + P̃ 1/2MP̃ ⊗
[

1 0
0 −1

]
± (2P̃ )1/2M2P̃ ,

so the eigenvectors are constant (but the eigenvalues are variable in the coefficients
(wi)j through MP̃ and M2P̃ ). The base cases P̃ = 1, P̃ = 2, can easily be verified, so

by induction AP̃ has constant eigenvectors for all P̃ = 2Nr , Nr ∈ N.
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Appendix C Eigenvalue decompositions of A

C.1 Piecewise constant multi-wavelets (Haar wavelets)

C.1.1 Nr = 2

Q =
1

2




1 1 1 1
1 1 −1 −1√
2 −

√
2 0 0

0 0
√

2 −
√

2


 , Λ = diag




u0 + u1 +
√

2u2

u0 + u1 −
√

2u2

u0 − u1 +
√

2u3

u0 − u1 −
√

2u3




C.1.2 Nr = 3

Q =




1 1 1 1 1 1 1 1

1 1 1 1 −1 −1 −1 −1
√

2
√

2 −
√

2 −
√

2 0 0 0 0

0 0 0 0
√

2
√

2 −
√

2 −
√

2

2 −2 0 0 0 0 0 0

0 0 2 −2 0 0 0 0

0 0 0 0 2 −2 0 0

0 0 0 0 0 0 2 −2




Λ = diag




u0 + u1 +
√

2u2 + 2u4

u0 + u1 +
√

2u2 − 2u4

u0 + u1 −
√

2u2 + 2u5

u0 + u1 −
√

2u2 − 2u5

u0 − u1 +
√

2u3 + 2u6

u0 − u1 +
√

2u3 − 2u6

u0 − u1 −
√

2u3 + 2u7

u0 − u1 −
√

2u3 − 2u7



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C.2 Piecewise linear multi-wavelets

C.2.1 Nr = 1

Q =




1
2

1
2

1
2

1
2

−
√

3+1
4

√
3−1
4

√
3+1
4 −

√
3−1
4

−1
2

1
2 −1

2
1
2

−
√

3−1
4 −

√
3+1
4

√
3−1
4 −

√
3+1
4




, Λ = diag




u0 −
√

3+1
2 u1 − u2 −

√
3−1
2 u3

u0 +
√

3−1
2 u1 + u2 −

√
3+1
2 u3

u0 +
√

3+1
2 u1 − u2 +

√
3−1
2 u3

u0 −
√

3−1
2 u1 + u2 −

√
3+1
2 u3




C.2.2 Nr = 2

Q =




1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

1√
8

√
14+3

√
3

8
−
√

14+3
√

3
8

−
√

14−3
√

3
8

√
14−3

√
3

8

√
3+1

8
√
2

−
√
3+1

8
√
2

−
√
3−1

8
√
2

√
3−1

8
√
2

−
√
3+1

4
√
2

−
√
3+1

4
√
2

−
√
3−1

4
√
2

−
√
3−1

4
√
2

√
3−1

4
√
2

√
3−1

4
√
2

√
3+1

4
√
2

√
3+1

4
√
2

√
3+1

8
√
2

−
√
3+1

8
√
2

√
3−1

8
√
2

−
√
3−1

8
√
2

−
√

14−5
√
3

8

√
14−5

√
3

8

√
14+5

√
3

8
−
√

14+5
√
3

8

0 − 1
2

1
2

0 0 1
2

− 1
2

0

0 −
√
3−1
4

√
3+1
4

0 0 −
√
3+1
4

√
3−1
4

0

− 1
2

0 0 1
2

1
2

0 0 − 1
2

√
3−1
4

0 0 −
√
3+1
4

√
3+1
4

0 0 −
√
3−1
4




Λ = diag




u0 +

√
14+3

√
3

8 u1 −
√

3+1
2 u2 +

√
3+1
4 u3 −

√
2u6 +

√
3−1√

2
u7

u0 −
√

14+3
√

3
8 u1 −

√
3+1
2 u2 −

√
3+1
4 u3 −

√
2u4 −

√
3−1√

2
u5

u0 −
√

14−3
√

3
8 u1 −

√
3−1
2 u2 +

√
3−1
4 u3 +

√
2u4 +

√
3+1√

2
u5

u0 +

√
14−3

√
3

8 u1 −
√

3−1
2 u2 −

√
3−1
4 u3 +

√
2u6 −

√
3+1√

2
u7

u0 +
√

3+1
4 u1 +

√
3−1
2 u2 −

√
14−5

√
3

8 u3 +
√

2u6 +
√

3+1√
2
u7

u0 −
√

3+1
4 u1 +

√
3−1
2 u2 +

√
14−5

√
3

8 u3 +
√

2u4 −
√

3+1√
2
u5

u0 −
√

3−1
4 u1 +

√
3+1
2 u2 +

√
14+5

√
3

8 u3 −
√

2u4 +
√

3−1√
2
u5

u0 +
√

3−1
4 u1 +

√
3+1
2 u2 −

√
14+5

√
3

8 u3 −
√

2u6 −
√

3−1√
2
u7



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A simple semi-intrusive method for Uncertainty Quantification of shocked flows,
comparison with a non-intrusive Polynomial Chaos method. In ECCOMAS CFD,
Lisbonne, Portugal, June 2010.

[3] Bradley K. Alpert. A class of bases in L2 for the sparse representations of integral
operators. SIAM J. Math. Anal., 24(1):246–262, January 1993.

[4] T. Chantrasmi, A. Doostan, and G. Iaccarino. Padé-Legendre approximants for
uncertainty analysis with discontinuous response surfaces. J. Comput. Phys.,
228:7159–7180, October 2009.

[5] Manas K. Deb, Ivo M. Babuska, and J. Tinsley Oden. Solution of stochastic
partial differential equations using Galerkin finite element techniques. Comput.
Methods Appl. Mech. Eng., 190(48):6359 – 6372, 2001.

[6] Bert J. Debusschere, Habib N. Najm, Philippe P. Pébay, Omar M. Knio, Roger G.
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