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In this paper we are concerned with obtaining estimates for the error in Reynolds-

Averaged Navier-Stokes (RANS) simulations based on the Launder-Sharma k − ε

turbulence closure model, for a limited class of flows. In particular we search for

estimates grounded in uncertainties in the space of model closure coefficients, for

wall-bounded flows at a variety of favourable and adverse pressure gradients. In

order to estimate the spread of closure coefficients which reproduces these flows ac-

curately, we perform 13 separate Bayesian calibrations – each at a different pressure

gradient – using measured boundary-layer velocity profiles, and a statistical model

containing a multiplicative model inadequacy term in the solution space. The results

are 13 joint posterior distributions over coefficients and hyper-parameters. To sum-

marize this information we compute Highest Posterior-Density (HPD) intervals, and

subsequently represent the total solution uncertainty with a probability-box (p-box).

This p-box represents both parameter variability across flows, and epistemic uncer-

tainty within each calibration. A prediction of a new boundary-layer flow is made

with uncertainty bars generated from this uncertainty information, and the resulting

error estimate is shown to be consistent with measurement data.
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I. INTRODUCTION

Computational Fluid Dynamics (CFD) and Reynolds-averaged Navier-Stokes (RANS)

simulations in particular form an important part of the analysis and design methods used in

industry. These simulations are typically based on a deterministic set of input variables and

model coefficients. However real-world flow problems are subject to numerous uncertainties,

e.g. imprecisely known parameters, initial- and boundary conditions. For input uncertainties

described as probability density functions (pdfs), established methods exist for determining

the corresponding output uncertainty1–3. Furthermore, numerical predictions are affected

by numerical discretization errors and approximate physical models (turbulence models in

RANS). The former may be estimated and controlled by means of mesh refinement (e.g.

Ref. 4), but no analogue exists for the latter. This error, which we call model inadequacy in

the following, is therefore the only major source of simulation error that remains difficult to

estimate. It is therefore the bottleneck in the trustworthiness of RANS simulations. This

work is an attempt to construct an estimate of model inadequacy in RANS for a limited set

of flows, and for a single turbulence closure model.

Within the framework of RANS, many turbulence models are available, see e.g. Ref. 5 for

a review. There is general agreement that no universally-”best” RANS turbulence closure

model is currently known; the accuracy of models is problem-dependent6. Moreover, each

turbulence model uses a number of closure coefficients which are classically determined by

calibration against a database of fundamental flows7. Model performance may strongly

depend on these values, which are often adjusted to improve model accuracy for a given set

of problems, or for a specific flow code. They are almost always assumed to be constant in

space and time. For a given model there is sometimes no consensus on the best values for

these coefficients, and often intervals are proposed in the literature8.

Our approach is to represent model inadequacy by uncertainty in these coefficients. Sum-

marized we proceed as follows: (1) we define the class of flows for which we wish to estimate

the error, in this article turbulent boundary-layers for a range of pressure gradients. (2) We

collect experimental data for a number of flows of this class. (3) We use Bayesian model

updating to calibrate the closure coefficients against each flow in this data-set, resulting in

posterior distributions on the coefficients for each flow9. (4) We summarize this information

using highest posterior-density (HPD) intervals and p-boxes. This summary gives intervals
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on the coefficients which represent both the spread of coefficients within the flow-class, as

well as the ability of the calibration to provide information about the values these coeffi-

cients should take in each flow. (5) For a new flow of the class, for which there might be no

experimental data, we then perform a simulation using the model with the specified coeffi-

cient uncertainties. The resulting interval on the model output is our probabilistic estimate

of the true flow.

Representing model inadequacy by uncertainty in closure coefficients is reasonable since

the coefficients are empirical, and not perfectly flow-independent. Furthermore each coef-

ficient is involved in an approximation of the underlying physics, and therefore is closely

related to some component of the model inadequacy. Finally an error estimate based on

coefficient uncertainty has the virtue of being geometry-independent – that is we do not

need to assume a particular flow topology to apply the estimate. We do not claim that it

is possible to approximate all turbulence model inadequacy in this way. The method does

rely on being able to approximate most of it, and we demonstrate that this is possible for

the limited class of flows we consider.

The key step in the method is the calibration of the coefficients. For the calibration

phase we follow the work of Cheung et al.10, in which a Bayesian approach was applied to

the calibration of the Spalart-Allmaras11 turbulence model, taking into account measurement

error12. In that work, for a given statistical model, the coefficients were calibrated once on all

the available measured velocity profiles and wall-shear stress components. Model inadequacy

was treated with a multiplicative term parameterized in the wall-normal direction with a

Gaussian process, following the framework of Kennedy and O’Hagan13. In the present

work, we perform an analysis by performing separate calibrations on multiple flows in our

class, using the k − ε model, with Launder-Sharma damping functions14. Using uniform

priors and calibrating against a large, accurate data-set containing boundary-layer profiles

at different pressure gradients, results in informative coefficient posteriors for each flow.

The multiplicative model inadequacy term is retained to capture the part of the error which

cannot be captured by the closure coefficients alone.

We choose the pressure gradient as the independent variable in our flow class because

it is known to have a large impact on the performance of k − ε model15–17. Approaching

this problem in a Bayesian context allows us to estimate how much this deficiency can be

reduced by choice of closure coefficients alone, and how much the coefficients have to vary
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to match measurements at all pressure-gradients. The spread of coefficients is an indication

of flow-independence of the model, and we expect better models to have smaller spreads.

The paper is laid out as follows: we briefly outline the framework of Bayesian data anal-

ysis in Section II, and the k − ε model in Section III. Section V describes our calibration

framework, in particular the statistical model and priors. The results, including verification,

HPD analysis of calibration posteriors, and prediction using the obtained coefficient uncer-

tainties are described in Section VI. Finally the limitations of the k − ε model for strong

adverse pressure gradients under any set of closure coefficients is investigated in Section VII.

II. GENERAL BAYESIAN DATA ANALYSIS

By Bayesian data analysis, we mean practical methods for making inferences from data

using joint probability models for quantities we observe and for quantities we wish to learn

about9. Bayesian data analysis is often applied to problems in uncertainty quantification,

see e.g. Refs. 18–20. One type of uncertainty, namely aleatoric uncertainty, arises through

natural random variations of the process. This type of uncertainty is irreducible (intrinsic to

the system), such that more data or better models will not reduce it. Epistemic uncertainty

on the other hand, arises from a lack of knowledge about the model, e.g. unknown model

parameters or mathematical form, and can in principle be reduced. The Bayesian frame-

work represents epistemic uncertainty using probability, which is often used to represent

only aleatory uncertainty. Hence all sources of uncertainty are probabilistic, leading to a

unified treatment exploiting the tools of uncertainty quantification and Bayes’ theorem. The

general process for Bayesian data analysis consists of four steps: 1) define a joint-probability

distribution for both the observed and unobserved quantities in the problem, 2) calibrate the

model against observations, 3) validate the model, and finally 4) use the calibrated model

to make predictions.

Inferences are made for two kinds of unobserved quantities, namely

1. Parameters that govern the model, which we denote by the column vector θ, and are

treated as random variables.

2. Future predictions of the model. If we let z = [z1, z2, · · · , zn] denote the observed data,

then the currently unknown (but possibly observable) future predictions are denoted
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by z̃.

In addition to parameters subject to calibration, we have a class of explanatory variables

t. These are the variables that we do not bother to model as random, e.g. the pressure

gradients in our boundary layer calibrations, but do affect the model predictions.

In short, the aim of Bayesian data analysis is to draw conclusions about θ (calibration)

through the conditional posterior distribution p (θ | z), or about z̃ (prediction) through

p (z̃ | z). Here, we let p(· ) denote a probability distribution. We can achieve this via the

application of Bayes’ theorem

p (θ | z) =
p (z | θ) p (θ)

p (z)
, (1)

where the law of total probability states that p(z) =
∫
p(z | θ)p(θ)dθ. Since this denom-

inator does not depend upon θ, it is often omitted to yield the unnormalized version of

(1),

p (θ | z) ∝ p (z | θ) p (θ). (2)

The term p (z | θ), i.e. the distribution of the data given the parameters is called the like-

lihood function, and it provides the means for updating the model once more data becomes

available. The term p(θ) is the prior distribution of θ, i.e. it represents what we know about

the parameters before the data became available.

The posterior predictive distribution conditional on the observed z can be written as

p (z̃ | z) =

∫
p (z̃,θ | z) dθ =

∫
p (z̃ | θ, z)p(θ | z) dθ =∫

p (z̃ | θ)p(θ | z) dθ. (3)

The last step follows because z̃ and z are assumed to be conditionally independent given θ,

i.e. p(z̃ | z,θ) = p(z̃|θ).

In general the relationship between θ and z involves evaluation of a numerical computer

code. Therefore the posterior distribution of coefficients, p(θ | z), and integrals such as (3)

can not be evaluated analytically. Evaluation of p(θ | z) at a single value of θ requires at

least one flow-solve, so for moderate-dimensional θ brute-force sampling of the posterior is

computationally intractable. Markov-chain Monte-Carlo (McMC) methods21,22 are used to

provide samples θj, j = 1, 2, · · · , J from p(θ | z) at a more acceptable cost. The form of the
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right-hand side of (3) then suggests using these samples to draw samples z̃j from the con-

ditional distribution p (z̃ | θ), at which point the integral can be approximated numerically

by standard Monte-Carlo.

In the case of CFD applications, sampling θ could be much too expensive such that even

McMC sampling requires an unacceptably high overall computational time. This problem

may be alleviated by replacing the CFD model with an approximated unexpensive analyt-

ical model, a so-called surrogate model, such as polynomial interpolation or Kriging (see

e.g. Ref. 3). This is not used in the present work since the boundary layer code used for

computing the numerical solution is cheap enough to be directly coupled to McMC.

Note the result of the analysis depends on the chosen stochastic model (which defines the

joint pdf p(z,θ)), hence the necessity for a post-calibration validation step. A way to reduce

the bias introduced by the choice of a single stochastic model is to apply Bayesian model

averaging, in which a Bayesian analysis is performed using multiple stochastic models Mi

from a set of competing model classes M = {M1, · · · ,Mm}. This avoids having to choose

one model, by creating a weighted average model constructed from the models in the set

M . The weights of the models are unknowns to be calibrated, and they can be interpreted

as the level of evidence for a given model23.

III. THE k− ε TURBULENCE MODEL

The general simulation approach considered in this paper is the solution of the RANS

equations for turbulent boundary layers, supplemented by a turbulence model. RANS equa-

tions remain up to now the most advanced and yet computationally acceptable simulation

tool for engineering practice, since more advanced strategies, like Large Eddy Simulation

(see e.g. Ref. 24) are yet too expensive for high-Reynolds flows typically encountered in

practical applications. Under the assumption of incompressibility, the governing equations

for a boundary-layer flow are given by

∂ū1

∂x1

+
∂ū2

∂x2

= 0, (4a)

∂ū

∂t
+ ū1

∂ū1

∂x1

+ ū2
∂ū1

∂x2

= −1

ρ

∂p̄

∂x2

+
∂

∂x2

[
(ν + νT )

∂ū1

∂x2

]
, (4b)

where ρ is the constant density, ūi is the mean velocity in xi direction and ν is the kinematic

viscosity. The eddy viscosity νT is meant to represent the effect of turbulent fluctuations on
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the mean flow, and is calculated here through the k − ε turbulence model:

νT = Cµfµ
k2

ε̃
, (5a)

∂k

∂t
+ ū

∂k

∂x1

+ v̄
∂k

∂x2

= νT

(
∂ū

∂x2

)2

− ε

+
∂

∂x2

[(
ν +

νT
σk

)
∂k

∂x2

]
, (5b)

∂ε̃

∂t
+ ū

∂ε̃

∂x1

+ v̄
∂ε̃

∂x2

= Cε1f1
ε̃

k
νT

(
∂ū

∂x2

)2

−Cε2f2
ε̃2

k
+ E +

∂

∂x2

[(
ν +

νT
σε

)
∂ε̃

∂x2

]
, (5c)

see Ref. 5. Here, k is the turbulent kinetic energy and ε̃ is the isotropic turbulent dissipation,

i.e. the term that controls the dissipation rate of k. The isotropic dissipation (which is zero

at the wall) is related to the dissipation ε by ε = ε0 + ε̃, where ε0 is the value of the

turbulent dissipation at x2 = 0. The system (5a)-(5c) contains several closure coefficients

and empirical damping functions, which act directly on these coefficients. Without the

damping functions the k − ε model would not be able to provide accurate predictions in

the viscous near-wall region5. The Launder-Sharma k− ε model14 is obtained by specifying

these damping functions as follows

fµ = exp [−3.4/(1 +ReT/50)] , f1 = 1,

f2 = 1− 0.3 exp
[
−Re2

T

]
, ε0 = 2ν

(
∂
√
k

∂x2

)2

,

E = 2ννT

(
∂2ū

∂x2
2

)2

, (6)

where ReT ≡ k2/ε̃ν. In the case of the Launder-Sharma k− ε model, the closure coefficients

have the following values

Cµ = 0.09, Cε1 = 1.44, Cε2 = 1.92,

σk = 1.0, σε = 1.3. (7)

We do not expect these values to be generally applicable ’best’ values, and other k−ε models

do use different values. For instance, the Jones-Launder model25, which only differs from

(6) by a slightly different fµ, uses

Cµ = 0.09, Cε1 = 1.55, Cε2 = 2.0,

σk = 1.0, σε = 1.3. (8)
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We refer to Wilcox5 for further discussion on k − ε type models and their limitations.

A. Classical identification of closure coefficients

The values of the closure coefficients in (7) are classically chosen by reference to fun-

damental flow problems. We illustrate how the nature of the coefficients leads to some

ambiguity regarding their values, and how flow-independent single best values are unlikely

to exist. One such a fundamental flow problem often considered is homogeneous, isotropic,

decaying turbulence. In this case the k and ε equations (4a)-(5c) (without damping func-

tions) simplify to

dk

dt
= −ε, (9)

dε

dt
= −Cε2

ε2

k
. (10)

These equations can be solved analytically to give

k(t) = k0

(
t

t0

)−n
, (11)

with reference time t0 = nk0/ε0 and n = 1/(Cε2 − 1). And thus,

Cε2 =
n+ 1

n
. (12)

The standard value for n is such that Cε2 = 1.92. However, this is by no means a hard

requirement and other models do use different values for Cε2. For instance, the RNG k − ε
model uses a modified C̃ε2 = 1.68 and the k − τ model (essentially a k − ε model rewritten

in terms of τ = k/ε26) uses Cε2 = 1.835. Also, the experimental data from Ref. 27 suggests

that most data agrees with n = 1.3, which corresponds to Cε2 = 1.77.

The coefficient Cµ is calibrated by considering the approximate balance between produc-

tion and dissipation which occurs in free shear flows, or in the inertial part of turbulent

boundary layers. This balance can be expressed as

P = νt

(
∂ū1

∂x2

)2

= Cµ
k2

ε

(
∂ū1

∂x2

)2

= ε. (13)

Equation (13), can be manipulated together with the turbulent-viscosity hypothesis−u′1u′2 =

νt∂ū1/∂x2 to yield −u′1u′2 = ε(∂ū/∂x2)−1, which in turn yields

Cµ =

(
u′1u

′
2

k

)2

. (14)
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The DNS data from Ref. 28 can be used to show that u′1u
′
2 ≈ −0.30k (except close to the

wall), such that Cµ = 0.09 is the recommended value. Again however, different models use

different values for Cµ, such as Cµ ≈ 0.085 in the case of the RNG k − ε model.

Another fundamental flow to be considered is fully developed (so Dk/Dt = Dε/Dt = 0)

channel flow. The resulting simplified governing equations allows us to find the following

constraint amongst several parameters8

κ2 = σεC
1/2
µ (Cε2 − Cε1) , (15)

where κ is the von-Karman constant. It should be noted that the suggested values (7)

satisfy this constraint only approximately. Using (7) in (15) gives κ ≈ 0.43, instead of the

’standard’ value of 0.41.

The following constraint (between Cε1 and Cε2) can be found by manipulating the gov-

erning equations of uniform (i.e. ∂ū1/∂x2 = constant) shear flows8(P
ε

)
=
Cε2 − 1

Cε1 − 1
, (16)

where the non-dimensional parameter P/ε is the ratio between the turbulent production P
and dissipation ε. Tavoulakis et. al.29 measured P/ε for several uniform shear flows. They

reported values between 1.33 and 1.75, with a mean around 1.47. Note however, that (16)

becomes 2.09 with the standard values for Cε1 and Cε2, which is significantly different from

the mentioned experimental values.

The parameter σk can be considered as a turbulent Prandtl number, defined as the ratio

of the momentum eddy diffusivity and the heat-transfer eddy diffusivity. These quantities

are usually close to unity, which is why the standard value for σk is assumed to be 1.0. As

noted in Ref. 30, no experimental data can be found to justify this assumption. And again,

we see a range of recommended values amongst the different variations of the k − ε model.

For instance, the RNG k − ε model uses σk = 0.725.

The parameter σε controls the diffusion rate of ε, and its value can be determined by

using the constraint (15), i.e.

σε =
κ2

C
1/2
µ (Cε2 − Cε1)

. (17)

Finally, it should be noted that the ’constant’ value of the von Karman constant (0.41) is

being questioned. An overview of experimentally determined values for κ is given in Ref. 31,

which reports values of κ in [0.33, 0.45]
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B. Numerical solution of the k− ε model

To obtain efficient numerical solutions for the boundary-layer problem (4a)-(5c) we used

the program EDDYBL of Ref. 32, which we modified slightly to make it more suitable for

our purpose. EDDYBL is a two-dimensional (or axisymmetric), compressible (or incom-

pressible) boundary-layer program for laminar, transitional and turbulent boundary layers.

This program has evolved over three decades and is based on a code originally developed

by Price and Harris in 197232. The advantage of using a boundary-layer approximation

rather than a full RANS code, is that a boundary-layer code allows for quicker numerical

simulations, and thus avoids the need of a surrogate model.

Parabolic systems of equations such as the boundary-layer equations can, in general, be

solved using unconditionally stable numerical methods. EDDYBL uses the variable-grid

method of Blottner33, which is a second-order accurate finite-difference scheme designed

to solve the turbulent boundary-layer equations. This scheme uses a three-point forward-

difference formula in the stream-wise direction, central differencing for the normal convection

term and conservative differencing for the diffusion terms.

We verify that the discretization error is small enough such it does not dominate over

the uncertainties we want to quantify. The rate at which the grid-point spacing increases

in normal direction is set such that the first grid point satisfies ∆y+ < 1, which provides a

good resolution in the viscous layer. Initially, the maximum number of points in the normal

direction is set to 101, although EDDYBL is capable of adding more points if needed to

account for boundary-layer growth. The maximum number of stream-wise steps is set high

enough such that EDDYBL has no problems reaching the specified sstop, i.e. the final arc

length in stream-wise direction. Using this setup we verify that the discretization errors

are substantially smaller than the uncertainties present in the model and data. To give an

example of the magnitude of the discretization error, we computed the boundary layer over

the curved airfoil-shaped surface of Ref. 34 with sstop = 20.0 [ft] for both our standard mesh

with the first grid point below y+ = 1, and on a finer mesh with the first 15 points below

y+ = 1. The maximum relative error between the two predicted velocity profiles was roughly

0.3%, which is well below the expected variance in the model output that we might see due

to for instance the uncertainty in the closure coefficients. Discretization error is assumed to

be negligible hereafter.
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IV. EXPERIMENTAL DATA

EDDYBL comes with configuration files which mimic the experiments described in the

1968 AFOSR-IFP-Stanford conference proceedings35. From this data source, we selected one

zero pressure-gradient flow, and 12 flows from other types of available pressure gradients,

which range from favorable (dp̄/dx < 0) to strongly adverse (dp̄/dx > 0) gradients. These 13

flows are described in table I. The identification number of each flow is copied from Ref. 35.

According to Ref. 17, the flows are identified as being ’mildly adverse’, ’moderately adverse’

etc, based upon qualitative observations of the velocity profile shape with respect to the

zero-pressure gradient case. We plotted the experimentally determined, non-dimensional,

streamwise velocity profiles in Figure 1. As usual, the normalized streamwise velocity is

defined as u+ ≡ ū1/
√
τw/ρ, where τw is the wall-shear stress. The normalized distance to

the wall, displayed on the horizontal axis of Figure 1, is y+ ≡ x2

√
τw/ρ/ν. Too much weight

should not be given to the classifications of the severity of the adverse gradients, since some

flows (such as 2400) experience multiple gradient types along the spanwise direction. Also,

when we try to justify the classification based upon the velocity profile shape we find some

discrepancies. For instance, based upon the profile shape alone, we would not classify flow

1100 as mildly adverse, or 2400 as moderately adverse.

To obtain an estimate of the spread in closure coefficients, we calibrate the k − ε model

for each flow of table I separately, using one velocity profile as experimental data. We omit

any experimental data in the viscous wall region. Since damping functions (6) dominate the

closure coefficients in this region, little information is obtained from the measurements here.

V. CALIBRATION FRAMEWORK

Bayesian calibration requires selection of a prior and joint pdf (or statistical model). In

our turbulence model calibration we have a large number of accurate observations, and a

belief that model inadequacy will dominate the error between reality and prediction. In this

situation we expect the prior on closure coefficients to be substantially less influential than

the joint pdf. We therefore impose uniform priors on closure coefficients, on intervals chosen

to: (i) respect mild physical constraints, and (ii) ensure the solver converges in most cases.
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TABLE I. Flow descriptions, source35.

Identification Type Description

1400 Zero Equilibrium boundary layer at con-

stant pressure

1300 Fav Near-equilibrium boundary layer in

moderate negative pressure gradient

2700 Fav Equilibrium boundary layer in mild

negative pressure gradient

6300 Fav Near-equilibrium boundary layer grow-

ing beneath potential flow on model

spillway

1100 Mild adv Boundary layer in diverging channel

2100 Mild adv Boundary layer on large airfoil-like

body; pressure gradient first mildly

negative, then strongly positive, with

eventual separation

2500 Mild adv Equilibrium boundary layer in mild

positive pressure gradient

2400 Mod adv Initial equilibrium boundary layer in

moderate positive pressure gradient;

pressure gradient abruptly decreases to

zero, and flow relaxes to new equilib-

rium

2600 Mod adv Equilibrium boundary layer in moder-

ate positive pressure gradient

3300 Mod adv Boundary layer, initially at constant

pressure, developing into equilibrium

flow in moderate positive pressure gra-

dient

0141 Str adv Boundary-layer with strong adverse

pressure gradient, source15

1200 Str adv Boundary layer in diverging channel

with eventual separation

4400 Str adv Boundary layer in strong positive pres-

sure gradient

After the calibration we perform model checking, verifying that the posterior is not unduely

constrained by the prior intervals.

To specify the joint pdf we start from the framework of Cheung et. al.10, who use a

multiplicative model inadequacy term, modeled as a Gaussian process in the wall-normal

direction. By considering multiple different flows we have additional modeling choices. Un-

like Cheung et. al., we choose to calibrate closure coefficients and model-inadequacy hyper-
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FIG. 1. The experimental data from Ref. 35.

parameters independently for each flow, and examine the variability between flows in a

post-calibration step.

Let the experimental observations from flow-case k ∈ {1, · · · , NC} be zk = [z1
k, · · · , zNk

k ].

Here Nk is the number of scalar observations in flow-case k, and zik is the scalar observation

at location y+,i
k > 0, where in the following we work in y+-units. Following Ref. 10, we as-

sume the observation noise λk = [λ1
k, · · · , λNk

k ] is known and uncorrelated at all measurement

points. Furthermore, the closure coefficients and flow parameters for case k are denoted θk

and tk respectively. The flow parameters include specification of the pressure-gradient as

a function of the x-coordinate. The observation locations y+
k , noise λk, and flow parame-

ters tk are modeled as precisely known explanatory variables. In the case that substantial

uncertainties existed in the experiments these could be modeled stochastically as nuisance

parameters.

A statistical model accounting for additive Gaussian noise in the observations and model

inadequacy via a multiplicative term is: ∀k ∈ {1, · · · , NC}

zk = ζk(y
+
k ) + ek, (18a)

ζk(y
+
k ) = ηk(y

+
k ) · u+(y+

k , tk;θk), (18b)

where u+(·, ·; ·) is the simulation code, and is applied element-wise to its arguments. Obser-

vational noise is modeled as

ek ∼ N (0,Λk) , Λk := diag(λk),
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and the model-inadequacy term ηk(·) is a stochastic process in the wall-distance y+. There-

fore (18a) represents the difference between the true process ζk and the measurement obser-

vations, and (18b) the difference between ζk and model predictions. Together they relate θk

to zk.

Cheung et. al. consider three models of this form, which differ only in the modeling of

η. They compared the posterior evidence, and showed that modeling η as a correlated

Gaussian process yielded by far highest evidence of the three models considered10. We

therefore adopt the same strategy and model each ηk as a Gaussian process of unit mean

(dropping the subscript k for convenience):

η ∼ GP(1, cη), (19)

and covariance function

cη(y
+, y+′ | γ) := σ2 exp

[
−
(
y+ − y+′

10αl

)2
]
,

where y+ and y+′ represent two different measurement points along the velocity profile, and

l is a user-specified length scale. We fix this length scale to 5.0, which is the y+ value that

denotes the end of the viscous wall region. The smoothness of the model-inadequacy term

is controlled by the correlation-length parameter α, and its magnitude by σ. This can be

seen in Figure 2 which shows the mean and standard deviation of η(·), computed from 500

samples of (19). Both α and σ require to be calibrated from the data, and form a hyper-

parameter vector γ := [α, σ]. Together (18b) and (19) imply a model inadequacy which

increases with increasing velocity. A consequence is that the true process ζ is also modeled

as a Gaussian process:

ζ | θ,γ ∼ GP(µζ , cζ) (20)

µζ(y
+ | θ) = u+(y+, t;θ)

cζ(y
+, y+′ | θ,γ) = u+(y+, t;θ) · cη(y+, y+′ | γ)·

u+(y+′, t;θ),

which is still centered around the code output. The assumption of normality is made mainly

for convenience, and more general forms are possible. A more boundary-layer specific model

than (19), which takes the multi-scale structure of the boundary layer into account is de-
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scribed in Ref. 36. It tries to achieve this goal by allowing the correlation length to vary in

y+ direction.

102 103

y+

0.6

0.8

1.0

1.2

1.4
µη

µη ±ση

102 103

y+

−2

−1

0

1

2

3

4
µη

µη ±ση

FIG. 2. The statistics of η for low correlation length and deviation (top, σ = 0.01, α = 0.1), and

for high correlation length and deviation (bottom, σ = 0.1, α = 3.5).

The likelihood evaluated at the measurement locations y+,i can now be written for each

flow case k independently as:

p(z | θ,γ) =
1√

(2π)N |K|
exp

[
−1

2
dTK−1d

]
,

d := z− u+(y+)

K := Λ +Kζ . (21)
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where

[Kζ ]ij := cζ(y
+,i, y+,j|θ,γ).

Since in general the computational grid does not coincide with measurement locations we

linearly interpolate the code output at y+,i where needed.

Note that η includes no physics other than correlation length, whereas closure coefficients

are related to specific physical approximations in the model derivation. The expectation is

therefore that uncertainties on coefficients will represent model inadequacy more closely

than η. Furthermore η is spatially dependent, and it is not obvious how to transplant it to

make predictions of a flow with a different topology to the calibrated flow. Overall θ-like

uncertainties are more general and useful than η-like uncertainties, though η is still necessary

to capture remaining model inadequacy.

In Section VI the calibrated values of θk for each tk, k ∈ {1, . . . , NC}, will be used to

estimate the uncertainty in θ. An alternative to this independent calibration per case, is to

model closure coefficients as random variables represented as polynomial chaos expansions

with unknown coefficients, i.e. a hierarchical Bayesian model with a general form of proba-

bility density37. This holistic approach would make better use of the data, is closer to our

goal of estimating uncertainties, and will be the subject of future work.

A. Priors for θ and γ

Unlike Cheung et. al., we do not treat all closure coefficients as independent random

variables in the prior. Instead we use the physical relations described in Section III A to

constrain the value of two closure coefficients. Specifically we fix Cε1, by rewriting (16) as

Cε1 =
Cε2
P/ε +

P/ε− 1

P/ε , (22)

where, similar to Ref. 30, we fix the ratio P/ε to 2.09. In our results, this choice locates

the mode of the posterior for Cε2 relatively close to the standard value of 1.92. If we

instead would have used a different (experimentally determined) value of P/ε, the mode Cε2

would be located elsewhere. Whether or not our choice is reasonable has to be determined

by the ability of the posterior distributions to capture the observed data, as outlined in

Section VI D. Two other possibilities we do not employ are: (i) to move P/ε into θ and

calibrate it along with the other parameters with some suitable prior, or (ii) model P/ε as

16



an aleatory uncertainty, using the P/ε data from Ref. 29 to construct an approximate pdf

p(P/ε). Also, we fix σε using (15). Such a choice avoids running the boundary-layer code

with non-physical parameter combinations.

All priors, for both the closure coefficients θ and hyper-parameters γ, are independent

uniform distributions. The choice of interval end-points was made based on three factors:

the spread of coefficients recommended in the literature, the range of coefficients for which

the solver was stable, and avoidance of apparent truncation of the posterior at the edge of

the prior domain. The range we used is specified in Table II. We chose uniform distributions

TABLE II. The empirically determined range (absolute and relative to nominal value) of the

uniform prior distributions.

coefficient left boundary right boundary

Cε2 1.15 (-40%) 2.88 (+50%)

Cµ 0.054 (- 40 %) 0.135 (+50 %)

σk 0.450 (-45 %) 1.15 (+50 %)

κ 0.287 (-30 %) 0.615 (+50 %)

σ 0.0 0.1

logα 0.0 4.0

because we lack confidence in more informative priors for these parameters. We note however

that some reasonable, informative priors can be obtained using the classical framework

for coefficient identification (c.f. Section III A) in combination with multiple experimental

measurements from different sources30.

To obtain samples from the posterior distributions p (θ | z), we employed the Markov-

chain Monte Carlo (McMC) method22. We subsequently approximated the marginal pdf of

each closure coefficient using kernel-density estimation, using the last 5, 000 (out of a total

of 40, 000) samples from the Markov chain. It was observed that at 35, 000 samples, the

Markov chain was in a state of statistical convergence.
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VI. RESULTS AND DISCUSSION

A. Marginal posterior pdf’s

Calibration of the k − ε model, using the experimental data described in Section IV,

and the statistical model of Section V was performed. The marginal posterior pdfs of all

four parameters in θ, for all of the 13 calibration cases are shown in Figures 3a-3b. There

we see that the data has been informative for Cε2 in all cases, resulting in sharply peaked

posteriors. This is in contrast to Cµ, which has been only weakly informed. Experience

suggests that for these cases the level of informativeness is predicted by the sensitivity of

the Quantity of Interest (QoI) u+(θ) to the individual parameters. Parameters with the

largest sensitivities are the best identified, see section VI B. The calibrations have provided

us with a bit more information regarding σk, since more posterior distributions show clear

modes compared to the Cµ results. The spread of coefficients between cases is also visible.

For instance Cε2 values cluster around the center of the prior interval, while κ is sharply

identified at distinctly different values for the different flow conditions.

To examine dependencies between variables in the posterior, we show a two-dimensional

marginal plot of the posterior θ McMC traces for flow 3300 in Figure 4. This is a typical of

result of the considered flow cases. Any trending behavior between two coefficients indicates

either a positive or negative correlation, depending on the sign of the trend. As can be

seen, there is a weak negative correlation between Cε2 and Cµ, and Cε2 and σk show a weak

positive correlation. However, overall the coefficients appear largely uncorrelated, as they

were in the prior.

B. Sobol indices

Figures 3a-3b show that, for a given flow case k, there is significant variation in the amount

of information contained in the posterior closure-coefficient distributions, even though they

are calibrated on the same data. In an attempt to explain this behavior, we perform a

global sensitivity analysis on θ. If the QoI is very sensitive to a particular parameter in θ,

we expect the corresponding posterior distribution to be well informed and vice versa.

Therefore, we perform a variance-based, global-sensitivity analysis. In such an analysis,

the total variance of the QoI is decomposed into partial variances of increasing dimension-
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prior
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2700, fav
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2400, mod adv
2600, mod adv
3300, mod adv
0141, str adv
1200, str adv
4400 str adv

FIG. 3a. The marginal posterior distributions of the coefficients Cε2 and Cµ, for the 13 cases of

Table I.

ality. This allows us to measure the contribution of a single parameter, or any combination

of parameters, to the total QoI variance.

Let us define u as a multi-index u ⊂ U of the parameters, where U = {1, 2, · · · , Q} is a

set of integers and Q is the number of parameters in the model. Furthermore, the ratio of

a partial variance over the total variance is defined as a Sobol sensitivity index. Thus, the

Sobol index corresponding to the u parameters is given by

Su =
Du

D
. (23)

Thus, Du is the partial variance and D is the total variance. Our final note on Sobol indices is

that they satisfy the property
∑
F Su = 1, where F is the collection of all u, i.e. F = P (U),

the power set of U . For an overview of the theory behind the Sobol indices, we refer to
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FIG. 3b. The marginal posterior distributions of the coefficients σk and κ, for the 13 cases of Table

I.

Ref. 38.

In order to compute the partial variance Du, several multi-dimensional integrals must

be evaluated. These integrals can be approximated using MC techniques38. However, it

is shown by Ref. 39 that the formulation of polynomial-chaos expansions is very amenable

for the outlined sensitivity analysis. In similar work, Tang40 shows that the stochastic-

collocation expansion can be used for the same purpose, i.e. computing Du at a fraction

of the computational cost compared to a standard MC approach. We will apply the latter

approach to the Probabilistic Collocation Method (PCM) of Ref. 41.

In the same way as the traditional MC method, the PCM is used for propagating input

uncertainties through the model in order to obtain an uncertain response. The difference is

that is does so at reduced computational cost, provided that the number of uncertain inputs
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FIG. 4. A two-dimensional contour plot of the posterior θ samples from flow 3300.

Q is not too high. In the PCM, our QoI u+ is decomposed in a deterministic and stochastic

part. More specifically, the deterministic part consists of so-called PCM coefficients, which

in our case are u+ profiles computed with the RANS solver. The stochastic dimension is

spanned by Lagrange chaoses. The abscissas of the Lagrange chaoses are chosen such that

they coincide with the Gaussian Quadrature (GQ) points that are used to approximate the

(multi-dimensional) integrals arising in a Galerkin projection of the PCM expansion onto

the Lagrange chaoses. For more information on the PCM, we refer to Ref. 41. Tang40 shows

that once the GQ weights and the PCM coefficients are calculated, the Sobol indices may

be computed without any additional function evaluations.

Using the described setup, we calculate the main indices Si with i = 1, 2, 3, 4 for our QoI.

Here, {1, 2, 3, 4} corresponds to {Cε2, Cµ, σk, κ}. To create the required input uncertainties

we use uniform distributions where we perturb each coefficient by ±10% from its standard

value. The results are shown in Figure 5. The ranking from most sensitive parameter to least

sensitive one for the velocity profile is Cε2, κ, σk, Cµ. Notice that this is the same ranking

that we get when we sort the coefficients from most informed posterior distribution to least

informed one, see Figures 3a-3b. Thus, the very low sensitivity of our QoI to the value of

Cµ is an explanation for the lack of information in the posterior Cµ distributions.

From a Bayesian viewpoint, the posterior distributions will get more informative if we

increase the size of the experimental data set zk. This could be done by adding more velocity
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FIG. 5. The Sobol indices Si for flow 1400, with the velocity profile as QoI. The horizontal axis

represents the direction normal to the wall for the streamwise location s = 16.3[ft].

profiles or by including other types of data, such as measured friction coefficients Cf . Using

the Sobol indices for Cf , we might now attempt to answer the question if this will lead to

better informed distributions, before we actually perform another calibration run. The Si

corresponding to the friction coefficient can be found in Figure 6.

2 4 6 8 10 12 14 16

s [ f t]

0.0

0.2

0.4

0.6

0.8

1.0

SCε2

SCµ

Sσk

Sκ

∑Si

FIG. 6. The Sobol indices Si for flow 1400, with Cf as QoI. The horizontal axis represents the

streamwise direction.

Notice that the influence of Cµ is still very low. Therefore, if more informative posteriors

were required, we would not choose to do an additional calibration run with added Cf data.

This choice is consistent with the results from Cheung et. al.10. They actually did calibrate
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the SA turbulence model using both velocity profiles and measured friction coefficients, and

still some of their posterior distributions are quite uninformative as well.

In Figures (5)-(6) we also show
∑
Si, i.e. the sum of all displayed Sobol indices. This

sum is very close, but not equal to 1. This indicates that for the considered range in the

closure coefficients, the interaction effects are low, i.e. the Sobol indices corresponding a

combination of closure coefficients are small.

C. Summary statistics

Our goal is to examine the spread of most-likely closure coefficient values. However,

due to the large number of pdfs, it can be hard to obtain a clear picture of this spread in

parameter space from Figures 3a-3b. We therefore use the Highest Posterior Density (HPD)

statistic to summarize the results. An HPD interval is a Bayesian credible interval which

satisfies two main properties, i.e.

1. The density for every point inside the interval is greater than that for every point

outside the interval.

2. For a given probability content 1− β, β ∈ (0, 1), the interval is of the shortest length.

We use the algorithm of Chen et. al.42 to approximate the HPD intervals using the

obtained McMC samples. To do so, we first sort the samples of the Q closure coefficients

θq, q = 1, 2, · · · , Q in ascending order. Then, if we let {θqj , j = 1, 2, · · · , J} be the McMC

samples from p (θq | z), the algorithm basically consists of computing all the 1− β credible

intervals and selecting the one with the smallest width. For a given j, we can use the

empirical cumulative-distribution function to approximate the 1− β interval by computing

the first θqs which satisfies the inequality

J∑
i=j

1θqi≤θ
q
s
≥ [J (1− β)] , (24)

where 1θqi≤θ
q
s

is the indicator function for θqi ≤ θqs and [J (1− β)] is the integer part of

J (1− β). Secondly, if we let θq(i) be the smallest of a set {θqi }, then the first θqs for which

(24) is satisfied simply is θq([J(1−β)]). Thus, the jth credible interval is given by θq(j+[J(1−β)])−θ
q
(j)

and the HPD interval for θq is found by solving
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min
j

θq(j+[J(1−β)]) − θ
q
(j), 1 ≤ j ≤ J − [J (1− β)] . (25)

The algorithm of Chen assumes a uni-modal posterior pdf, although it could possibly be

extended to deal with multi-modal pdf’s42. By examining Figures 3a-3b, it can be seen that

our posterior distributions do not show strongly multi-modal behavior, so for sufficiently

large β the above algorithm is sufficient.

The HPD results for θ are shown in Figures 7a-7b. The spread of the posterior modes

of Cε2 is quite concentrated, they all lie relatively close to the standard value of 1.92. The

small width of the HPD intervals (compared to the prior range), indicates that the posterior

distributions are informative. Also notice that a slight downward trend of the HPD intervals

can be observed with increasing pressure gradient.

The spread of Cµ is relatively small, with most distributions centered close to 0.06,

consistently to the left of the standard value (0.09). The only clear exception is flow 2600,

which also showed some deviating behavior for Cε2. The parameter σk shows a larger spread,

although in general values above the standard value of 1.0 are preferred.

Most individual pdf’s of κ are quite well informed, but the modes are spread roughly

between 0.31 and 0.46. Previous studies have looked at the spread of the von Karman

constant. An overview is given in Ref. 31, which reports values of κ between [0.33, 0.45],

roughly similar to the spread that we have observed.

The spread of the κ HPD intervals in Figure 7b can be qualitatively explained by con-

sidering the deviation of the experimental velocity profiles of Figure 1 from the standard

log law 1/κ ln (y+) + C. As can be seen from Figure 1, from roughly y+ = 30 the velocity

profiles overlap onto the standard log law. However, around y+ = 200 the first profiles start

to deviate from this law. Qualitatively, the profiles which show a larger deviation from the

log law, are also the ones which show a lower κ HPD interval compared to the rest.

The HPD intervals of the hyper-parameters σ and logα can be found in Figure 8. Most

posterior modes of σ are located near the bottom edge of the domain, indicating that for

the cases we considered so far, most predictions do not deviate much from the true process.

Thus, for the cases where most of the probability mass of σ is close to zero, the model

inadequacy is not significantly high. The posterior modes for log (α) all lie between 2.5 and

3.5, indicating that the model inadequacy is correlated over a large fraction of the boundary

24



layer10. In other words, a smooth model inadequacy term such as depicted on the right-hand

side of Figure 2 is preferred over the ones depicted on the left.

Figure 8 shows three clear deviating σ HPD intervals, i.e. the ones from flows 2400,

2500 and 1200. These high HPD intervals correspond to a larger deviation of the posterior

u+ mean from the experimental data. This is an indication that in these cases the model

inadequacy is becoming more severe compared to the other 10 flows.
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FIG. 7a. The 50 % HPD intervals of Cε2 and Cµ, for the 13 cases of Table I.

D. Posterior model check

In Bayesian analysis, it is good practice to assess the fit of the chosen model. We expect

all observed data (used in the calibration) to lie within the range of the posterior predictive

distribution of the true process ζ. It should be noted that this is not the same as validating
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FIG. 7b. The 50 % HPD intervals of σk and κ, for the 13 cases of Table I.

the model, since it only ensures that the chosen model can predict the observed data. It does

not ensure that it can also be used for extrapolative predictions. In our model the variability

in ζ can be broken down into that due to the explicit model inadequacy term η(y+), and that

due to uncertainty in θ. The former can be obtained directly from (19) and the calibrated

values of γ = [σ, α]. The latter is just the posterior of u+(θ), and can be computed using the

velocity traces stored during the McMC calibration run. This is equivalent to propagating

posterior samples of θ through the k − ε model as in Monte-Carlo.

In Figure 9 we show only the uncertainty due to θ for two flows. The posterior prediction

of u+ encompasses all the experimental data, and this is true for all the flows described in

Table I, even for the three flows with large σ HPD values. They are therefore all consistent

(in the sense of Ref. 43, i.e. existence of an overlap between the predictions and the region of

experimental uncertainty). In addition, the calibrated models approximate the data better
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FIG. 8. The 50 % HPD intervals of γ, for the 13 cases of Table I.

than the uncalibrated models in all cases. Based on this we judge the calibrations successful.

To illustrate the effect of using η, we compare posterior distributions of u+ and ζ in

Figure 10. The mean of both distributions is the same, which could be inferred from (20).

Thus, including a model inadequacy term of the form (19) results in a posterior distribution

of the true process with the same mean as the posterior u+ distribution, but a larger variance.

When making predictions with the model this contribution to the variance must be included,

see Section VII.
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FIG. 9. The mean and 3 standard deviations of posterior u+(y+,θ) samples of a favorable (top),

and a strongly adverse flow (bottom). The green line indicates the solution of the k − ε model

using the standard values (7), and the red dots represent the experimental data with error bars.

E. Building a more general model for the uncertainty in the k− ε model

Performing a Bayesian calibration can tell us something about the posterior uncertainty

present in the k − ε model, but it does so only for the case considered in the calibration.

And as can be seen from Figures 7a-8, there is significant case-to-case variability in the

posterior uncertainty of the k − ε model. This is true for both the closure coefficients and

the hyper-parameters of the model inadequacy term.
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FIG. 10. The posterior distribution of y (top), and the posterior distribution of ζ (bottom).

For this reason we propose to estimate the uncertainty in the QoI by combining the

posterior uncertainty and the case-to-case variability of the coefficients, using all obtained

posterior distributions pi(θ | z), i = 1, 2, · · · , NC . As a first step, we use the obtained HPD

intervals to construct a probability box (p-box). A p-box is often used to visualize the range

of possible outcomes in the QoI’s due to epistemic uncertainty in the input parameters44.

For a given new and uncalibrated flow case, we construct the p-box by plotting multiple

distinct posterior cdfs of the QoI. In our case the distinction is due to the variability in

closure coefficients over the NC calibrated flow cases.

We approximate each of the NC distinct posterior cdfs (all belonging to the new flow
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case) by

pr
(
ζ ≤ ζ i

)
≈ 1

S

S∑
j=1

1ζj<ζi , (26)

i.e. we use empirical cumulative-distribution functions (ecdf’s). Here, we use pr(· ) to denote

a probability rather than a pdf, and ζ i is a given value of ζ. Notice that the ecdf’s in (26)

are constructed based upon S samples from the true process ζ (20), rather than just the

k − ε output u+. This way, the effect of the model inadequacy term is included in our

final estimate of the uncertainty in the QoI. To obtain the S samples from ζ, we applied

a straight-forward MC approach, using the HPD intervals corresponding to a certain flow

case k as a uniform input distribution. We repeat this process over all NC calibrated flow

cases. Then, for a given y+ station, we can use the S samples to construct NC different

ecdf’s. The envelope formed by this collection of ecdf’s is a p-box. For a given cumulative

probability pr (ζ ≤ ζ i), the width of the p-box is an interval-valued QoI response.

To illustrate this methodology, we applied it to a validation flow case not considered

during the calibration. We used the data from Ref. 45, which is boundary-layer data on a

cylinder in axially symmetric flow. This is flow 3600 from the 1968 AFOSR-IFP-Stanford

conference35. The results for three y+ stations (46.2, 267.0 and 1039.7) are given in Figure

11.

The width of the p-box denotes the range of interval valued response in the QoI, for a given

cumulative probability pr (ζ ≤ ζ i). In our case, the width is determined by an inextricable

mix between the case-to-case variability and the posterior uncertainty in most-likely closure

coefficient values corresponding to different dp̄/dx, and the structural uncertainty in the

k− ε model. If we would not have included the strong-adverse pressure gradients ecdf’s, the

width of the p-box would be significantly smaller.

We can of course extract confidence intervals from the p-boxes of Figure 11. For instance

in Figure 12 we show the 90 % confidence intervals obtained by selecting the ζi values cor-

responding to pr (ζ ≤ 0.05) from the left, and pr (ζ ≤ 0.95) from the right p-box boundaries

at all experimental y+ stations. Note that all error bars extracted from the p-boxes are

consistent with the experimental data.
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VII. EXPLORING STRUCTURAL LIMITATIONS OF k− ε FOR

ADVERSE PRESSURE GRADIENTS

In most cases considered so far the model inadequacy of the k − ε model was relatively

small, as can be seen by the HPD intervals of σ in Figure 8. In other words, we captured a

significant fraction of the total uncertainty by means of the posterior closure-coefficient dis-

tributions. However, if we consider flow cases with more extreme adverse pressure gradients,

the structural inadequacy of the k − ε model becomes more dominant.

The k−ε model is known to provide inaccurate predictions in the case of adverse pressure

gradients, even for relatively simple flow problems15–17. To illustrate this we focus on flow

2100, which is the boundary-layer flow over a large airfoil-shaped body, investigated by

Schubauer et. al.34. The pressure gradient is initially favorable, but increases progressively

and becomes adverse in the aft part of the airfoil, with eventual separation near the trailing

edge. The pressure coefficient Cp along with the standard u+ solutions along three spanwise

stations is depicted in Figure 13. Notice that the k − ε model performs quite well at the

favorable and zero dp̄/dx stations. For these cases we are confident that we would be able to

obtain consistent posterior predictions by calibrating the model without a model inadequacy

term, i.e. η = 1. For the strong adverse case however, there is a very large discrepancy

between the computed solution and the experimental data. However, the profiles shown

in Figure 13 are computed using the standard coefficients (7). Therefore, we do not know

how much of this discrepancy is due to parametric uncertainty and how much due to model
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inadequacy. Since we compute both types of uncertainty jointly using (18b), it is still hard to

estimate from our Bayesian analysis how much of the observed discrepancy can be attributed

to either one.
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FIG. 13. The k − ε solutions, using (7), on three spanwise locations of the Schubauer airfoil.

Therefore, to estimate whether the discrepancy is largely due to an inadequacy in the

mathematical structure of the k−ε model, we look for cases of severe model inadequacy. For

this reason we calibrated flow 2100 at two stations with extremely-adverse pressure gradients.

In anticipation that the model inadequacy would become more severe, we broadened the

prior range of the σ hyper-parameter to [0.0, 0.3]. The posterior distributions of both u+

and ζ for the first calibration (at arc length sstop = 23.5 [ft]), are shown in Figure 14. As

can be seen from this figure, without a model inadequacy term the (calibrated) predictions

of u+ still fail to be completely consistent. The last part of the predicted defect layer has

no real overlap with the region of experimental uncertainty.

The situation deteriorates when we move further downstream. We show the same results

for the calibration at sstop = 24.0 [ft] in Figure 15. Note that in both cases, the statistical

model with a model-inadequacy term does result in a posterior distribution which captures

the experimental data. This indicates the superiority of a statistical model of the form (20)

in the case of extremely adverse pressure gradients.

The downside of the correlated-Gaussian model-inadequacy of Section V, is that it can

only capture the extreme-adverse pressure-gradient data with the tail of the p (ζ | θ) distri-
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FIG. 14. The posterior distribution of u+ (top), and the posterior distribution of ζ (bottom) at

sstop = 23.5 [ft].

bution. Since its mean equals u+, this model is not capable of representing any bias in the

k− ε predictions. Or in other words, since the stochastic part (i.e. η) of ζ has a unit mean,

any failure of the posterior ζ mean to capture the data can be attributed to a structural

inadequacy of the k−ε model. Since we assumed that ζ is normally distributed, its posterior

mean is also the posterior mode, i.e. the ’best-fit’ of u+ (θ) under the assumed form of the

statistical model (20). The consequence is that the posterior uncertain range of ζ becomes

very large. Especially notice the µζ − 3σζ boundary of figure 15, which is extremely close to

zero.

To capture the data with the tail, the mode of the posterior σ distribution (and thus the

corresponding HPD interval), must be shifted to higher values. This can be seen in Figure
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sstop = 24.0 [ft].

16. The modes in Figure 16 are almost one order of magnitude higher than the σ modes in

Figure 8.

Thus, as expected, a high posterior σ mode indicates a region of significant model in-

adequacy, one where the posterior u+ distribution might not be consistent with the data.

VIII. CONCLUSION

Using a Bayesian framework, we performed 13 separate calibrations of the closure coeffi-

cients in the standard k− ε model. The experimental data on which we calibrated consisted

of velocity profiles from 13 boundary-layer flows, each subject to a different pressure gradi-
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ent. The considered gradients ranged from favorable to ones labeled as ’strongly adverse’.

This allowed us to investigate the resulting spread of the posterior parameter distributions,

caused by the large range of considered pressure gradients. To summarize the spread we

perform a Highest Posterior Density (HPD) analysis on all posterior distributions, which

gives us 13 credible intervals of most-likely values for both the closure coefficients and the

hyper-parameters used to parameterize the model-inadequacy term.

These results show a significant variation in the most-likely closure-coefficient values

due to the different pressure gradients. Also, not all posterior distributions are equally

informative. The closure coefficient which is the most informed by the calibrations is Cε2,

which a sensitivity analysis based on Sobol indices shows is also the parameter with highest

impact on the computed velocity. On the other hand, coefficients which have a small impact

on our quantity of interest (e.g. σk), show a larger posterior variance. It should be noted

that informative posteriors can also show a large spread. For instance κ is well informed by

the data, but the individual posterior modes are not grouped closely together.

The case-to-case variability in the closure coefficients means that an individual calibration

does not provide us with a general representation of the uncertainty present in the k − ε

model. To remedy this, we use all obtained HPD results to build a more general measure of

error, which we represent through a probability-box (p-box) of the quantity of interest. The

uncertainty displayed in the p-box results from the spread and uncertainty in the best-fit

closure coefficients values, and the uncertainty introduced by the model-inadequacy term.
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In the initial 13 calibrations, we tried to capture most of the output uncertainty with the

posterior closure-coefficient distributions. However, in the final part of this article, we show

that in operating conditions of extremely-adverse pressure gradients the uncertainty in the

output cannot be captured by the closure coefficients alone. In such cases, the inclusion of

a model-inadequacy term becomes crucial. Even in this case, if the model is applied to flow

characterized by significant departures from the model range of applicability, the average

calibrated solution can be far from the experimental data, which are only captured with

the tail of the posterior solution distribution. This is true for the model-inadequacy term

used in this paper, which is able to capture the data, even in the case of the extremely-

adverse pressure gradients. However, it is always centered at the (possibly highly incorrect)

calibrated k − ε output, i.e. it is not able to correct for any bias in the RANS output with

respect to the experimental data. The consequence is that the posterior uncertain range of

the quantity of interest can become very large in cases of high model inadequacy.

Future work might include the investigation of the parameter spread for other turbulence

models, as well as the dependence of their predictive quality upon the inclusion of a model

inadequacy term. Alternatively, the already obtained parameter spread for the k− ε model

might be used to generate uncertainty bars on the predictions of different, (more complex)

flow topologies, in order to investigate the generality of our error estimate.
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