
ar
X

iv
:1

30
9.

62
43

v1
  [

ph
ys

ic
s.

pl
as

m
-p

h]
  2

4 
Se

p 
20

13

Fluid preconditioning for Newton-Krylov-based, fully implicit,
electrostatic particle-in-cell simulations

G. Chena,∗, L. Chacóna, C. Leibsb, D. Knolla, W. Taitanoc

aLos Alamos National Laboratory, Los Alamos, NM 87545
bUniversity of Colorado Boulder, Boulder, CO 80309

cUniversity of New Mexico, Albuquerque, NM 87131

Abstract

A recent proof-of-principle study proposes an energy- and charge-conserving, nonlinearly implicit elec-

trostatic particle-in-cell (PIC) algorithm in one dimension [Chen et al, J. Comput. Phys., 230 (2011) 7018].

The algorithm in the reference employs an unpreconditioned Jacobian-free Newton-Krylov method, which

ensures nonlinear convergence at every timestep (resolving the dynamical timescale of interest). Kinetic

enslavement, which is one key component of the algorithm, not only enables fully implicit PIC a practi-

cal approach, but also allows preconditioning the kinetic solver with a fluid approximation. This study

proposes such a preconditioner, in which the linearized moment equations are closed with moments com-

puted from particles. Effective acceleration of the linear GMRES solve is demonstrated, on both uniform

and non-uniform meshes. The algorithm performance is largely insensitive to the electron-ion mass ratio.

Numerical experiments are performed on a 1D multi-scale ion acoustic wave test problem.

Keywords: electrostatic particle-in-cell, implicit methods, direct implicit, implicit moment, energy

conservation, charge conservation, physics based preconditioner, JFNK solver
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1. Introduction

The Particle-in-cell (PIC) method solves Vlasov-Maxwell’s equations for kinetic plasma simulations

[1, 2]. In the standard approach, Maxwell’s equations (or in the electrostatic limit, Poisson equation) are

solved on a grid, and the Vlasov equation is solved by method of characteristics using a large number of

particles, from which the evolution of the probability distribution function (PDF) is obtained. The field-PDF

description is tightly coupled. Maxwell’s equations (or a subset thereof) are driven by moments of the PDF

such as charge density and/or current density. The PDF, on the other hand, follows a hyperbolic equation

in phase space, whose characteristics are self-consistently determined by the fields.

To date, most PIC methods employ explicit time-stepping (e.g. leapfrog scheme), which can be very

inefficient for long-time, large spatial scale simulations. The algorithmic inefficiency of standard explicit

∗Corresponding author
Email address: gchen@lanl.gov (G. Chen)

Preprint submitted to Elsevier October 8, 2018

http://arxiv.org/abs/1309.6243v1


PIC is rooted in the presence of numerical stability constraints, which force both a minimum grid-size (due

to the so-called finite-grid instability [1, 2], which requires resolution of the smallest Debye length) and a

very small timestep (due to the well-known CFL constraint, which requires resolution of the fastest plasma

wave, or in the more general electromagnetic case, the light wave). Moreover, a fundamental issue with

explicit schemes is numerical heating due to the lack of exact energy conservation in a discrete setting [1, 2],

which makes the accuracy of explicit PIC simulations questionable on long time scales. This problem is

particularly evident for realistic ion-to-electron mass ratios.

Implicit methods hold the promise of overcoming the difficulties and inefficiencies of explicit methods

for long-term, system-scale simulations. Exploration of implicit PIC started in the 1980s. Two approaches,

namely implicit moment [3, 4] and direct implicit [5, 6] methods, were explored. Both approaches use linear

implicit schemes to simplify the inversion of the original Vlasov-Poisson-Maxwell system, and both enable

a numerically stable time integration with large timesteps. These implicit approaches avoided inverting the

system of a large set of coupled field-particle equations by using a predictor-corrector strategy. The main

limitation of these linear implicit schemes is the lack of nonlinear convergence, which leads to inconsisten-

cies between fields and particle moments. As a result, significant numerical heating is often observed in

long term simulations [7].

There has been significant recent work exploring fully implicit, fully nonlinear PIC algorithms, either

Picard-based [8] (following the implicit moment method school) or using Jacobian-Free Newton-Krylov

(JFNK) methods [9, 10] (more aligned with the direct implicit school). In contrast to earlier studies, these

nonlinear approaches enforce nonlinear convergence to a specified tolerance at every timestep. Their fully

implicit character enables one to build in exact discrete conservation properties, such as energy and charge

conservation [9, 8]. In these studies, particle orbit integration is sub-stepped for accuracy, and to ensure

automatic charge conservation.

The purpose of this study is to demonstrate the effectiveness of fluid (moment) equations to accelerate

a JFNK-based kinetic solver (moment acceleration in a Picard sense has already been demonstrated in Ref.

[8]). An enabling algorithmic component of the JFNK-based algorithm is the enslavement of particles to the

fields, which removes particle quantities from the dependent variable list of the JFNK solver. With particle

enslavement, memory requirements of the nonlinear solver are dramatically reduced. Particle equations of

motion are orbit-averaged and evolve self-consistently with the field. The kinetic-enslaved JFNK not only

makes the fully implicit PIC algorithm practical, but also makes the fluid preconditioning of the algorithm

possible.

It is worth pointing out that the preconditioned JFNK approach proposed here can be conceptually

viewed as an optimal combination of the direct implicit and moment implicit approaches. The fluid pre-

conditioner is derived by taking the first two moments of the Vlasov equation, and then linearizing them

into a so-called “delta-form” [11]. Textbook linear analysis shows that such a system includes stiff electron

modes in an electrostatic plasma. Although taking large timesteps for low-frequency field evolutions is
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desirable, previous work [9] indicates that the implicit CPU speedup over explicit PIC is largely insensitive

to the timestep size for large enough timesteps owing to particle sub-cycling for orbit resolution. It is thus

sufficient in this context to target the stiffest time scales supported, i.e., electron time scales. Therefore, we

base our fluid preconditioner on electron moment equations only. The implicit timestep is chosen to resolve

the ion plasma wave frequency. This is to resolve ion waves of all scales (including the Debye length scale

which is physically relevant for some non-linear ion waves). For consistency with the orbit averaging of the

kinetic solver, we take the time-average of the linearized moment equations in the preconditioner. We show

that the fluid preconditioner is asymptotic preserving in the sense that it is well behaved in the quasineutral

limit (as in Ref. [12]). However, beyond the study in Ref. [12], the algorithm proposed here is also well

behaved for arbitrary electron-ion mass ratios.

The rest of the paper is organized as follows. Section 2 motivates and introduces the concept to kinetic

enslavement in the implicit PIC formulation. Section 3 introduces the mechanics of the JFNK method and

preconditioning. Section 5 formulates the fluid preconditioner of an electrostatic plasma system in detail,

with an extension to 1D non-uniform meshes. Linear analysis of electron and ion waves, together with

an asymptotic analysis of the preconditioner are also provided. Section 6 presents numerical parametric

experiments to test the performance of the preconditioner. Finally, we conclude in Sec. 7.

2. Kinetically Enslaved Implicit PIC

We consider a collisionless electrostatic plasma system (without magnetic field) described by the Vlasov-

Ampere equations in one dimension (1D) in both position (x) and velocity (v) [9]:

∂ fα

∂t
+ v

∂ fα

∂x
+

qα

mα
E

∂ fα

∂v
= 0, (1)

ǫ0
∂E

∂t
+ j = 〈j〉 , (2)

where fα(x, v) is the particle distribution function of species α in phase space, qα and mα are the species

charge and mass respectively, E is the self-consistent electric field, j is the current density, 〈j〉 =
´

jdx/
´

dx,

and ǫ0 is the vacuum permittivity. The evolution of Vlasov equation is solved by the method of character-

istics, represented by particles evolving according to Newton’s equations of motion,

dxp

dt
= vp, (3)

dvp

dt
= ap. (4)

Here xp, vp, ap are the particle position, velocity, and acceleration, respectively, and t denotes time. As a

starting point, we may discretize Eqs. 2, 3, and 4 by a time-centered finite-difference scheme, to find:

ǫ0
En+1

i − En
i

∆t
+ jn+1/2

i = 〈j〉 , (5)

xn+1
p − xn

p

∆t
− vn+1/2

p = 0, (6)
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vn+1
p − vn

p

∆t
− qp

mp
E(xn+1/2

p ) = 0, (7)

where a variable at time level n + 1/2 is obtained by the arithmetic mean of the variable at n and n + 1,

the subscript i denotes grid-index and subscript p denotes particle-index, ji = ∑p qpvpS(xp − xi), E(xp) =

∑i EiS(xi − xp), and S is a B-spline shape function [13].

It is critical to realize that solving the complete system of field-particle equations (i.e., with the field and

particle position and velocity as unknowns) in a Newton-Krylov-based solver is impractical, due to the

excessive memory requirements of building the required Krylov subspace. To overcome the memory chal-

lenges of JFNK for implicit PIC, the concept of kinetic enslavement has been introduced [9, 10]. With kinetic

enslavement, the JFNK residual is formulated in terms of the field equation only, nonlinearly eliminating

Eqs. 6 and 7 as auxiliary computations. The resulting JFNK implementation has memory requirements

comparable to that of a fluid calculation. A single copy of particle quantities is still needed for the required

particle computations.

One important implication of kinetic enslavement is that the enslaved particle pusher has the freedom of

being adaptive in its implementation. This can be effectively exploited to overcome the accuracy shortcom-

ings of using a fixed timestep ∆t to discretize the time derivatives of both field and particle equations [14].

This is so because solving low-frequency field equations demands using large timesteps, but if particle or-

bits are computed with such timesteps, large plasma response errors result [15]. In Ref. [9], a self-adaptive,

charge-and-energy-conserving particle mover was developed that provided simultaneously accuracy and

efficiency. For each field timestep ∆t, the orbit integration step consists of four main algorithmic elements:

1. Estimate the sub-timestep ∆τ using a second order estimator [16].

2. Integrate the orbit over ∆τ using a Crank-Nicolson scheme.

3. If a particle orbit crosses a cell boundary, make it land at the first encountered boundary.

4. Accumulate the particle moments to the grid points.

In the last step, the current density is orbit-averaged (over ∆t = ∑ ∆τ) to ensure global energy conservation.

Additionally, binomial smoothing can be introduced without breaking energy or charge conservation. This

is done in the particle pusher by using the binomially smoothed electric field, and the binomially smoothed

orbit averaged current density in Ampere’s equation. The resulting Ampere’s equation reads:

ǫ0
En+1

i − En
i

∆t
+ SM( j̄)n+1/2

i =
〈

j
〉n+1/2

, (8)

where the orbit averaged current density is:

j
n+1/2
i =

1

∆t∆x ∑
p

Nν

∑
ν=1

qpS(xi − xν+1/2
p )vν+1/2

p ∆τν. (9)

The binomial operator SM is defined as SM(Q)i =
Qi−1+2Qi+Qi+1

4 . A detailed description of the algorithm

can be found in Ref. [9, 17].

4



The kinetically enslaved JFNK residual is defined from Eq. 8 as:

Gi(En+1) = En+1
i − En

i +
∆t

ǫ0

(

SM( j̄[En+1])n+1/2
i −

〈

j
〉n+1/2

)

. (10)

The functional dependence of j̄ with respect to En+1 has been made explicit. Evaluation of j̄[En+1] requires

one particle integration step, and each linear and nonlinear iteration of the JFNK method requires one

residual evaluation . We summarize the main elements of the JFNK nonlinear solver next.

3. The JFNK solver

In its outer loop, JFNK employs Newton-Raphson’s method to solve a nonlinear system G(x) = 0,

where x is the unknown, by linearizing the residual and inverting linear systems of the form:

∂G

∂x

∣

∣

∣

∣

(k)

δx(k) = −G(x(k)), (11)

with x(k+1) = x(k) + δx(k), and (k) denotes the nonlinear iteration number. Nonlinear convergence is

reached when:
∥

∥

∥G(x(k))
∥

∥

∥

2
< ǫt = ǫa + ǫr

∥

∥

∥G(x(0))
∥

∥

∥

2
, (12)

where ‖·‖2 is the Euclidean norm, ǫt is the total tolerance, ǫa is an absolute tolerance, ǫr is the Newton

relative convergence tolerance, and G(x(0)) is the initial residual.

Such linear systems are solved iteratively with a Krylov subspace method (e.g. GMRES), which only

requires matrix-vector products to proceed. Because the linear system matrix is a Jacobian matrix, matrix-

vector products can be implemented Jacobian-free using the Gateaux derivative:

∂G

∂x

∣

∣

∣

∣

(k)

v = lim
ǫ→0

G(x(k) + ǫv)− G(x(k))

ǫ
, (13)

where v is a Krylov vector, and ǫ is in practice a small but finite number (p. 79 in [18]). Thus, the evaluation

of the Jacobian-vector product only requires the function evaluation G(x(k) + ǫv), and there is no need to

form or store the Jacobian matrix. This, in turn, allows for a memory-efficient implementation.

An inexact Newton method [19] is used to adjust the convergence tolerance of the Krylov method at

every Newton iteration according to the size of the current Newton residual, as follows:

∥

∥

∥J(k)δx(k) + G(x(k))
∥

∥

∥

2
< ζ(k)

∥

∥

∥G(x(k))
∥

∥

∥

2
(14)

where ζ(k) is the inexact Newton parameter and J(k) = ∂G
∂x

∣

∣

∣

(k)
is the Jacobian matrix. Thus, the convergence

tolerance of the Krylov method is loose when the Newton state vector x(k) is far from the nonlinear solution,

and tightens as x(k) approaches the solution. Superlinear convergence rates of the inexact Newton method

are possible if the sequence of ζ(k) is chosen properly (p. 105 in [18]). Here, we employ the prescription:

ζ A(k) = γ





∥

∥

∥G(x(k))
∥

∥

∥

2
∥

∥G(x(k−1))
∥

∥

2





α

,
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ζB(k) = min[ζmax, max(ζ A(k), γζα(k−1))],

ζ(k) = min[ζmax, max(ζB(k), γ
ǫt

∥

∥G(x(k))
∥

∥

2

)],

with α = 1.5 , γ = 0.9, and ζmax = 0.2. The convergence tolerance ǫt is defined in Eq. 12. In this prescription,

the first step ensures superlinear convergence (for α > 1), the second avoids volatile decreases in ζk, and

the last avoids oversolving in the last Newton iteration.

The Jacobian system Eq. 11 must be preconditioned for efficiency. Here, we employ right precondition-

ing, which transforms the original system into the equivalent one:

JP−1y = −G(x) (15)

where J = ∂G/∂x is the Jacobian matrix, P is a preconditioner, and δx = P−1y. The Jacobian-free precondi-

tioned system employs

JP−1v = lim
ǫ→0

G(x + ǫP−1v)− G(x)

ǫ
(16)

for each Jacobian-vector product. An important feature of preconditioning is that, while it may substantially

improve the convergence properties of the Krylov iteration (when P approximates J and is relatively easy

to invert), it does not alter the solution of the system upon convergence.

The purpose of this study is to formulate an effective, fast preconditioner P for the implicit PIC kinetic

system. Before deriving the preconditioner, however, we review the fundamental CPU speedup limits of

implicit vs. explicit PIC.

4. Performance limits of implicit PIC

As mentioned earlier, the ability of implicit PIC to take large timesteps without numerical instabilities

does not necessarily translate into performance gains of implicit PIC over its explicit counterpart [9]. In this

section, we summarize the back-of-envelope estimate for the CPU speedup introduced in the reference that

supports this statement.

We begin by estimating the CPU cost for a given PIC solver to advance the solution for a given time

span ∆T as:

CPU =
∆T

∆t
Npc

(

L

∆x

)d

C, (17)

where Npc is the number of particles per cell, (L/∆x) is the number of cells per dimension, d is the number

of physical dimensions, and C is the computational complexity of the solver employed, measured in units

of a standard explicit PIC Vlasov-Poisson leap-frogd timestep. Accordingly, the implicit-to-explicit speedup

is given by:

CPUex

CPUim
∼
(

∆xim

∆xex

)d (
∆t

∆tex

)

1

Cim
,

where we denote ∆t to be the implicit timestep. Assuming that all particles take a fixed sub-timestep ∆τ in

the implicit scheme, and that the cost of one timestep with the explicit PIC solver is comparable to that of
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a single implicit sub-step, it follows that Cim ∼ NFE (∆t/∆τim), i.e., the cost of the implicit solver exceeds

that of the explicit solver by the number of function evaluations (NFE) per ∆t multiplied by the number of

particle sub-steps (∆t/∆τim). Assuming typical values for ∆τim ∼ min[0.1∆x/vth, ∆timp], ∆tex ∼ 0.1ω−1
pe ,

∆xim ∼ 0.2/k, and ∆xex ∼ λD, we find that the CPU speedup scales as:

CPUex

CPUimp
∼ 0.2

(5kλD)d
min

[

1

kλD
,

√

mi

me

]

1

NFE
. (18)

This result supports two important conclusions. Firstly, it predicts that the CPU speedup is asymptotically

independent of the implicit time step ∆t for ∆t ≫ ∆τim. The effect of the implicit time step is captured in the

extra power of one in the (kλD) term, once one accounts for sub-stepping, but that effect disappears when

the mesh becomes coarse enough (i.e., kλD <

√
me/mi). Also, it predicts that the speedup improves with

larger ion-to-electron mass ratio, indicating that the approach is more advantageous when one employs

realistic mass ratios. Because the CPU speedup is asymptotically independent of ∆t, algorithmically it will

be advantageous to use a time step that is large enough to be in the asymptotic regime, but no larger. This

will motivate the choice in the preconditioner to include only electron stiff physics.

Secondly, Eq. 18 indicates that large CPU speedups are possible when kλD ≪ 1, particularly in multiple

dimensions, but only if NFE is kept small and bounded. The latter point motivates the development of

suitable preconditioning strategies. We focus on this in the next section.

5. Fluid preconditioning the electrostatic implicit PIC kinetic system

The preconditioner of the nonlinear kinetic JFNK solver needs to return an approximation for the E-

field update only. The approximate E-field update will be found from a linearized fluid model, consistently

closed with particle moments. As will be shown, the fluid model provides an inexpensive approximation

to the kinetic Jacobian. We demonstrate the concept in the 1D electrostatic, multispecies PIC model.

5.1. Formulation of the fluid preconditioner

Following standard procedure [11], we work with the linearized form of the governing equations to de-

rive a suitable preconditioner. The linearized, orbit-averaged, binomially smoothed 1D Ampere’s residual

equation (Eq. 5 with E = E0 + δE, and δ j̄ ≡
´ ∆t

0 δjdt/∆t) reads:

δE = −∆t

(

G(E0) +
1

ε0
SM(δ j̄)

)

, (19)

where G(E0) = E0 − En + ∆t
ε0
(SM( j̄n+1/2

0 )−
〈

j̄0
〉

) is the residual of Ampere’s law, the superscript n denotes

last timestep, and the subscript 0 of the E-field denotes the current Newton state. From the discussion in

the previous section, for the purpose of preconditioning we consider only the linear response of electron

contribution to the current (δ j̄ ≃ −eδΓ̄ where Γ is the electron flux). Thus, the electric field update in the

preconditioner will be found from:

δE ≈ −∆t

(

G(E0)−
e

ε0
SM(δΓ̄)

)

, (20)
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where δΓ̄ = 1
∆t

´ ∆t
0 dtδΓ(t), a time-average between timestep n and n + 1..

We approximate the linear response of the electron current via the continuity and momentum equations

of electrons, closed with moments from particles (as in the implicit moment method [3]). The continuity

equation for electrons is
∂n

∂t
+

∂Γ

∂x
= 0, (21)

where where n is electron number density. Linearizing, we obtain:

∂δn

∂t
= −∂δΓ

∂x
, (22)

where we have used particle conservation (∂n0/∂t + ∂Γ0/∂x = 0), which is satisfied at all iteration levels

owing to exact charge conservation [9]. We then take the time-average ( 1
∆t

´ ∆t
0 dt, equivalently to the orbit

average in Eq. 9) of Eq. 22 to obtain

δn = −∆t
∂δΓ̄

∂x
. (23)

The update equation for δΓ̄ is found from the electron momentum equation, which in conservative form

reads

m

[

∂Γ

∂t
+

∂

∂x

(

ΓΓ

n

)]

= −enE − ∂P

∂x
(24)

where m is the electron mass, P ≡ nT is the electron pressure, and T is the electron temperature. Linearizing

it, we obtain:

m

[

∂δΓ

∂t
+

∂

∂x

(

2Γ0δΓ

n0
− Γ0Γ0

n2
0

δn

)]

+ e(n0δE + δnE0) +
∂(δnT0)

∂x
= 0, (25)

where T0 ≡
´

f (v)m(v − u)(v − u)dv/n0 is the current temperature (or normalized pressure). Closures for

Γ0, n0 and T0 are obtained from current particle information. In Eq. 25, we take m [∂Γ0/∂t + ∂(Γ0Γ0/n0)/∂x] +

en0E0 + ∂(n0T0)/∂x = 0 by ansatz. To close the fluid model, we have neglected the linear temperature re-

sponse δT.

To cast Eq. 25 in a useful form, we take its time-derivative to get (assuming that n0, E0, and T0 do not

vary with time):

m
∂2δΓ

∂t2
+ e(n0

∂δE

∂t
+

∂δn

∂t
E0) +

∂

∂x
(T0

∂δn

∂t
) = 0, (26)

and then time-average the result to find (substituting Eqs. 19 and 22):

2mδΓ̄

∆t2
+ e2n0δΓ̄ − eE0

∂δΓ̄

∂x
− ∂

∂x
(T0

∂δΓ̄

∂x
) = −n0G(E0). (27)

Here, we have neglected the convective term for simplicity, and approximated the first time-derivative term

as:
∂δΓ

∂t
≃ 2δΓ̄

∆t
(28)

(which is exact if δΓ(t) is linear with t). We discretize Eq. 27 with space-centered finite differences, resulting

in a tridiagonal system, which we invert for δΓ̄ using a direct solver. Finally, we substitute the solution of

δΓ̄ in Eq. 20 to find the E-field update.

8



5.2. Extension to curvilinear meshes

The fully implicit PIC algorithm has been recently extended to curvilinear meshes [20]. In this section,

we rewrite the above fluid model on a 1D non-uniform mesh using a map x = x(ξ). In 1D, the curvilinear

form of in Eqs. 21 and 24 can be derived straightforwardly by replacing every dx with J dξ, where J ≡
dx/dξ is the Jacobian. It follows that the continuity equation in logical space is written as:

∂n

∂t
+

1

J
∂Γ

∂ξ
= 0. (29)

The transformed momentum equation is

m

[

∂Γ

∂t
+

1

J
∂

∂ξ

(

ΓΓ

n

)]

= qnE − 1

J
∂P

∂ξ
. (30)

Similar to the procedure described above, linearizing and discretizing Eqs. 29 and 30 again results in a

tridiagonal system.

5.3. Electrostatic wave dispersion relations

It is instructive to look at the dispersion relation of Eq. 19, 22 and 25, for both electrons and ions.

Figure 1 shows the dispersion relation of electron plasma waves and ion acoustic waves [21], from which

we make the following observations. The stiffest wave is the electron plasma wave, whose frequency ωpe

is essentially insensitive to the wave number k for kλD < 1. The wave frequency increases for kλD > 1,

but in that range the plasma wave is highly Landau-damped [22]. In contrast to the electron wave, the ion

wave frequency increases with k for kλD < 1, but saturates at ∼ ωpi for kλD > 1. In a propagating ion

acoustic wave (IAW), nonlinear effects lead to wave steepening. Because of the wave dispersion, the IAW

steepening stops when the high frequency waves propagate slower than the low frequency ones [23]. Those

high frequency ion waves are physically important, and therefore need to be resolved. For this reason, in

our numerical experiments, we limit the implicit time step to ∆t ∼ 0.1ω−1
pi . The frequency gap between the

electron and ion waves is about a factor of
√

mi/me, which provides enough room to place the algorithm in

the large timestep asymptotic regime (Eq. 18).

5.4. Asymptotic behavior of the implicit PIC formulation in the quasineutral limit.

Since the implicit scheme is able to use large grid sizes and timesteps stably, it is important to ensure

that the fluid preconditioner be able to capture relevant asymptotic regimes correctly [12]. In the context

of electrostatic PIC, the relevant asymptotic regime is the quasineutral limit, which manifests when the

domain length is much larger than the Debye length (L ≫ λD) and when me ≪ mi. In this limit, the

electric field must be found from the fluid equations [24], and leads to the well know ambipolar electric

field, E = − 1
en ∂xP.

In our context, the algorithm must be well behaved when L varies from ∼ λD to ≫ λD, and for arbitrary

mass ratios. In particular, the fluid preconditioner must feature these properties to successfully accelerate

9
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Figure 1: Dispersion relations of electron and ion waves in an electrostatic plasma. The dispersions can be obtained by Fourier analysis
of the fluid model of Eq. 19, 22 and 25, for both electrons and ions, assuming that E0, Γ0, n0, T0 =const.

the kinetic algorithm. To confirm that this is the case, following Ref. [12] we normalize the electron fluid

equations to the following reference quantities:

x̂ =
x

x0
, v̂ =

v

v0
, t̂ =

tv0

x0
, n̂ =

n

n0
, q̂ =

q

q0
, m̂ =

m

m0
, Ê =

Eq0x0

kBT0
. (31)

We choose x0 = L, v0 =
√

kBT0/m0, q0 = e, m0 = mi. For electrons, q = −e, and hence q̂ = −1. The

normalized preconditioning equations become:

λ̂2
D

∂Ê

∂t̂
− Γ̂ = 0, (32)

∂n̂

∂t̂
+

∂Γ̂

∂x̂
= 0, (33)

m̂
∂Γ̂

∂t̂
+ n̂Ê + T̂

∂n̂

∂x̂
= 0, (34)

where in Eq. 34 we have neglected the convective term. Substituting Eq. 32 into Eq. 34, we find the equation

for the electric field:

m̂
∂

∂t̂

(

λ̂2
D

∂Ê

∂t̂

)

+ n̂Ê + T̂
∂n̂

∂x̂
= 0, (35)

where λD may change in time and space. The solution of Ê is well behaved as m̂λ̂2
D → 0, where we

indeed find that n̂Ê = −T̂ ∂n̂
∂x̂ , which is the correct (ambipolar) E-field. Our fluid preconditioner is based

on the linearization of Eqs. 32-34, and therefore inherits this asymptotic property. In what follows, we will

demonstrate among other things the effectiveness of the preconditioner as we vary the domain size and the

mass ratio.

6. Numerical experiments

We use the IAW problem for testing the performance of the fluid-based preconditioner. IAW prop-

agation is a multi-scale problem determined by the coupling between electrons and ions. The 1D case
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used in Ref. [9] features large-amplitude IAWs in an unmagnetized, collisionless plasma without signif-

icant damping. The base simulation parameters used here are Te/Ti = 545 and mi/me = 1836. The

periodic computational domain, measured in units of Debye length, is discretized with both uniform and

non-uniform meshes. We test the solver performance by varing the timestep, the electron-ion-mass-ratio,

the domain length, the number of particles, and the number of cells, with and without preconditioning.

We also compare the solver performance against explicit PIC simulations. In all cases, the nonlinear tol-

erances of implicit JFNK solver are set to εr = 1 × 10−8 and εa = 0. The number of function evaluations

(NFE), given by the number of Newton-Raphson and GMRES iterations, is monitored and averaged over 20

timesteps. With the proposed linear preconditioner, the performance gain will stem mainly from reducing

the GMRES iteration count. The Newton iteration count remains nearly constant (at about 4 to 5 iterations,

unless otherwise stated) regardless of preconditioning.

We initialize the calculation with the following ion distribution function:

f (x, v, t = 0) = fM(v)

[

1 + a cos

(

2π

L
x

)]

(36)

where fM(v) is the Maxwellian distribution, a is the perturbation level, L is the domain size. The spatial

distribution is approximated by first putting ions randomly with a constant distribution, e.g. x0 ∈ [0, L].

The electrons are distributed in pairs with ions according to the Debye distribution[25]. Specifically, in each

e-i pair, the electron is situated away from the ion by a small distance, dx = ln(R) where R ∈ (0, 1) is a

uniform random number (note that we normalize all lengths with the electron Debye length). We then shift

the particle position by a small amount such that x = x0 + a cos
(

2π
L x0

)

, with a = 0.2.

For testing the solver performance with non-uniform meshes, the mesh adaptation in the periodic do-

main is provided by the map [20]:

x(ξ) = ξ +
L

2π
(1 − N∆xL/2

L
) sin

(

2πξ

L

)

, (37)

which has the property that the Jacobian J is also periodic. Here, N is the number of mesh points, and ∆xL/2

is the physical mesh resolution at x = ξ = L/2.

Before we begin the convergence studies, it is informative to look at the condition number of the Jacobian

system, which can be estimated as the number of times we step over the explicit CFL:

σ ∝ ωpe∆t = 0.1
ωpe

ωpi
= 0.1

√

mi

me
, (38)

where we have used that ∆t ∼ 0.1ω−1
pi , and we have assumed kλD < 1. The first important observation

is that, as expected, the Jacobian system will become harder to solve as we increase the ion-to-electron

mass ratio. Secondly, the condition number does not depend on kλD . The latter, while surprising, is a

consequence of our chosen implicit time step upper bound. Dependence of σ with kλD is recovered for

kλD > 1, but in this regime Langmuir waves are highly Landau-damped [22], and do not survive in the

system.
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Figure 2: The performance of the JFNK solver against the timestep, with L = 100, Nx = 128, Npc = 1000, and mi/me = 1836. The
number of function evaluations are well controlled by the preconditioner over a large range of ∆t.

We demonstrate the performance of the fluid preconditioner by varying several relevant parameters,

namely, the implicit timestep ∆t, the mass ratio mi/me, the domain length L, the mesh size Nx, and the

number of particles per cell Npc. We begin with the implicit timestep, which we vary from 0.01ω−1
pi to

0.25ω−1
pi . For this test, we choose L = 100, Nx = 128, Npc = 1000, and mi/me = 1836. As shown in Figure 2,

the performance for preconditioned and unpreconditioned solvers is about the same for small time steps,

where the Jacobian system is not stiff. However, significant differences in performance develop for larger

timesteps, reaching a factor of 2 to 3 as the timestep approaches 0.2ω−1
pi . Overall, the preconditioner is able

to keep the linear and nonlinear iteration count fairly well bounded as the timestep increases.

For bounded NFE, Eq. 18 predicts that the actual CPU time should be largely insensitive to the timestep

size. This is confirmed in Fig. 3, which shows the CPU performance of a series of computations with a fixed

simulation time-span. Clearly, the total CPU time is essentially independent of ∆t with preconditioning

(but not without). Also, both with and without preconditioning, the average particle pushing time, which

is the average CPU time used for all particle pushes during the simulation time-span, saturates for large

enough time steps (e.g. vthe∆t > 1 ∼ 10∆x), indicating that we have reached an asymptotically large time

step. Even though the CPU performance of the preconditioned solver is independent of ∆t, the use of

larger timesteps is beneficial for the following reasons. Firstly, the orbit-averaging performed to obtain the

plasma current density helps with noise reduction, as it provides the time average of many samplings per

particle [26]. Secondly, the operational intensity (computations per memory operation) per particle orbit

increases with the timestep, which helps enhance the computing performance (or efficiency) and offset
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Figure 3: Overall CPU performance as a function of timestep, comparing the unpreconditioned and preconditioned solvers in terms
of the average particle pushing time (obtained by the total CPU time divided by the average number of iterations) (left) and wall clock

CPU time (right). L = 100, Nx = 128, mi/me = 1836, and the time-span is fixed at 4.67ω−1
pi for all computations.

Table 1: Solver performance with and without the fluid preconditioner for the IAW case with L = 100, Nx = 512, and Npc = 1000 on

a uniform mesh. For all the test cases, ∆t = 0.1ω−1
pi . The Newton and GMRES iteration numbers are obtained by an average over 20

timesteps. For all the runs, we have kept the ion and electron temperature constant.

mi/me
no preconditioner with preconditioner
Newton GMRES Newton GMRES

100 4 8 4 7
1600 5 21.2 4 10.1

10000 5.8 50.1 5.5 13.5

communication latencies in the simulation [17].

The performance of the preconditioner vs. the electron-ion mass ratio for both uniform and non-uniform

meshes is shown in Tables 1 and 2. To make a fair comparison, both uniform and non-uniform meshes have

the same finest mesh resolution, which locally resolves the Debye length. From the tables it is clear that

similar performance gains of the preconditioned solver vs. the unpreconditioned one are obtained for both

uniform and non-uniform meshes. The dependence of the GMRES performance on the mass ratio is much

weaker with the preconditioner: as the mass ratio increases by a factor of 100, the GMRES iteration count

increases by a factor of 5 without the preconditioner, vs. a factor of 2 with the preconditioner. Although not

completely independent of the mass ratio, the solver behavior is consistent with the asymptotic analysis

made in Sec. 5.4.

The impact of the domain length in the solver performance is shown in Fig. 4. Clearly, the solver

performance remains fairly insensitive to the domain length both with and without the preconditioner,
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Table 2: Solver performance with and without the fluid preconditioner for the IAW case with the non-uniform mesh (Nx = 64 and the
smallest mesh size 0.2).

mi/me
no preconditioner with preconditioner
Newton GMRES Newton GMRES

100 4 7.6 4 7
1600 5 21.3 5.1 12.1

10000 5.8 48.6 5.3 16.5
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Figure 4: Solver performance as a function of the domain size, with Nx = 64, Npc = 1000, ∆t = 0.1ω−1
pi .

even though the domain length varies from 10 to 1000 Debye lengths. This is consistent with the condition

number analysis in Eq. 38. The impact of the preconditioner in the number of GMRES iterations is expected

for the time step chosen.

The impact of the number of particles in the performance of the solver is shown in Fig. 5, which depicts

the iteration count of both Newton and GMRES vs. the number of particles. The timestep is varied by a

factor of two, corresponding to about one-tenth and one-fifth of the inverse ion plasma frequency (ω−1
pi ).

As expected, the solver performs better with smaller timesteps and with larger number of particles. The

number of linear and nonlinear iterations increases as the number of particles decreases. This behavior

is likely caused by the increased interpolation noise associated with fewer particles: the noise in charge

density results in fluctuations in the self-consistent electric field, making the Jacobian-related calculations

less accurate, thus delaying convergence. The preconditioner seems to ameliorate the impact of having too

few particles on the performance of the algorithm, thus robustifying the nonlinear solver.

The impact of the number of grid points on the solver performance is shown in Fig. 6 for ωpi∆t = 0.093,

L = 100λD, and Npc = 1000. We see that the linear and nonlinear iteration count remains fairly constant
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Figure 6: Solver performance vs. the number of grid-points Nx for ωpi∆t = 0.093, L = 100λD , and Npc = 1000.

with respect to Nx, with and without preconditioning. This is consistent with the condition number result in

Eq. 38 (which is independent of the wavenumber). However, despite the fact that the number of iterations

is virtually independent of the number of grid points, the CPU time grows significantly with it. Figure 7

shows that the computational cost scales as N2
x for Nx large enough. The reason is two-fold. On the one

hand, since we keep the number of particles per cell fixed, the computational cost of pushing particles

increases proportionally with the number of grid points. On the other hand, as we refine the grid, the

cost per particle increases because particles have to cross more cells (for a given timestep). In multiple

dimensions, the particle orbit will sample N1/d cells on average, for large enough N (or ∆t), with N and d

denoting the total number of grid points and dimensions, respectively. Hence, the cost of particle crossing

will scale as N1/d, and the computational cost will scale as N1+1/d. In this sense, the 1D configuration is the

least favorable.

The performance of the implicit PIC solver vs. the explicit PIC one is compared in Fig. 8, which depicts

the CPU speedup vs. kλD. For this test, we choose mi/me = 1836, ∆t = 0.1ω−1
pi , and Npc = 1000. In the

implicit tests, the number of grid-points is kept fixed at Nx = 32 as L increases with k = 2π/L. In the

explicit computations, ∆x ≃ 0.3λD is kept constant for stability, and therefore the number of grid-points

increases with L. Both implicit and explicit tests employ a uniform mesh. We monitor the scaling power

index of Eq. 18 with and without the preconditioner. We test the performance with a large implicit timestep

(about 40 times larger than the explicit timestep). The scaling index is found to be ∼ 1.86 for small domain

sizes, close to the expected value of 2. As L increases, the scaling index becomes ∼ 1. The scaling index

turns at kλD ∼
√

me/mi ∼ 0.025, as predicted by Eq. 18. The estimated scaling index of 2 would be
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recovered if one increased the timestep proportionally to L, but this would result in timesteps too large

with respect to ω−1
pi . Overall, these results are in very good agreement with our simple estimates. The

preconditioned solver gains about a factor of two compared to the un-preconditioned one, insensitively to

kλD, which is consistent with the results depicted in Fig. 4. We see that for kλD < 10−3, the implicit scheme

delivers speedups of about three orders of magnitude vs. the explicit approach, while remaining exactly

energy- and charge-conserving.

The setup in Fig. 8 employs a uniform mesh. However, sometimes it is necessary to resolve the Debye

length locally, e.g. at a shock front or a boundary layer near a wall. In this case, using a non-uniform mesh

is advantageous [20]. We test the performance of the preconditioner on a non-uniform mesh for a nonlinear

ion acoustic shock wave, as setup in Ref. [20]. Specifically, we use L = 100λD, Npc = 2000, Nx = 64, and

∆t = 0.1ω−1
pi for 20 timesteps. The minimum resolution is ∆x = 0.5λD at the shock location (as in [20], we

perform the simulation in the reference frame of the shock). With a nonlinear tolerance ǫr = 2 × 10−4, we

have found that, with preconditioning, the average number of Newton and GMRES iterations is 3 and 10.1,

respectively, compared to 3.6 and 23 without preconditioning. The performance gain in the linear solve

is about factor of two, comparable to that obtained for a uniform mesh with similar problem parameters.

Similar performance gains are found with tighter nonlinear tolerances: for ǫr = 10−8, we find 5.1 Newton

and 46.6 GMRES iterations without preconditioning, vs. 5 and 20.5 with it.
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7. Conclusions

This study has focused on the development of a preconditioner for a recently proposed fully implicit,

JFNK-based, charge- and energy-conserving particle-in-cell electrostatic kinetic model [9]. In the reference,

it was found that, for large enough implicit time steps ∆t, the potential implicit-to-explicit CPU speedup

scaled as 1
NFE(kλD)d , with NFE the number of function evaluations per time step, and kλD ∝ λD/L. Thus,

large speedups are expected when kλD ≪ 1 provided that NFE is kept bounded. While the CPU speedup

does not scale directly with ∆t, the use of large ∆t is advantageous to maximize operational intensity [17]

(i.e., to maximize floating point operations per byte communicated), and to control numerical noise via

orbit averaging [26].

We have targeted a preconditioner based on an electron fluid model, which is sufficient to capture the

stiffest time scales, and thus enable the use of large implicit time steps while keeping the number of function

evaluations bounded. The performance of the preconditioned kinetic JFNK solver has been analyzed with

various parametric studies, including time step, mass ratio, domain length, number of particles, and mesh

size. The number of function evaluations is found to be insensitive against changes in all of these, delivering

a robust nonlinear solver. The CPU time of the implicit PIC solver is found to be insensitive to the time step

(as expected), but to scale with the square of the number of mesh points in 1D. This scaling is due to the

number of particles per cell being kept constant, and to the number of particle crossings increasing linearly

with the mesh resolution. The latter scaling will be more benign in multiple dimensions, as particle orbits

remain one-dimensional. Speedups of about three orders of magnitude vs. explicit PIC are demonstrated
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when λD ≪ L (i.e., in the quasineutral regime). Based on the speedup prediction in [9], more dramatic

speedups are expected in multiple dimensions.

We conclude that the proposed algorithm shows much promise for extension to multiple dimensions

and to electromagnetic simulations. This will be the subject of future work.
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