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Abstract

The pseudo-spectral analytical time-domain (PSATD) particle-in-cell (PIC) al-
gorithm solves the vacuum Maxwell’s equations exactly, has no Courant time-
step limit (as conventionally defined), and offers substantial flexibility in plasma
and particle beam simulations. It is, however, not free of the usual numer-
ical instabilities, including the numerical Cherenkov instability, when applied
to relativistic beam simulations. This paper derives and solves the numerical
dispersion relation for the PSATD algorithm and compares the results with
corresponding behavior of the more conventional pseudo-spectral time-domain
(PSTD) and finite difference time-domain (FDTD) algorithms. In general,
PSATD offers superior stability properties over a reasonable range of time steps.
More importantly, one version of the PSATD algorithm, when combined with
digital filtering, is almost completely free of the numerical Cherenkov instability
for time steps (scaled to the speed of light) comparable to or smaller than the
axial cell size.

Keywords: Particle-in-cell, Pseudo-spectral, Relativistic beam, Numerical
stability.

1. Introduction

Particle in Cell (PIC) plasma simulation codes typically employ a Finite
Difference Time Domain (FDTD) algorithm with staggered spatial mesh [1]
for advancing Maxwell’s equations. The FDTD algorithm is straightforward,
second-order accurate, and parallelizes well for efficient computation on modern
computers. A very flexible and at least equally accurate approach for solv-
ing Maxwell’s equations numerically is the pseudo-spectral method, in which
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Maxwell’s equations are Fourier-decomposed in space, and the resulting equa-
tions advanced in time to second-order or better accuracy [2]. Pseudo-spectral
PIC algorithms require Fourier-transforming the currents and fields at every
time-step, because particles are advanced in real rather than Fourier space.
Because Fourier transforms generally do not parallelize well, pseudo-spectral
methods are used less commonly than FDTD methods in PIC codes.

Nonetheless, the advantages of pseudo-spectral methods should not be ig-
nored. Haber’s Pseudo-Spectral Analytical Time Domain (PSATD) algorithm
[3], in particular, is exact for plasma currents constant in time and, consequently,
is free of electromagnetic wave numerical dispersion for wave numbers satisfying
k ≤ π/4t and has no Courant limit in the usual sense. It also offers highly ac-
curate balancing of the Lorentz force, E+v×B [4], which is especially desirable
in simulations of relativistic beams or of Laser-Plasma Acceleration (LPA) in
frames co-moving with the interaction region [5, 6]. PSATD also has superior
numerical stability properties [7]. The more commonly used Pseudo-Spectral
Time Domain (PSTD) algorithm [2, 8] enjoys some of these same advantages
but has a restrictive Courant limit.

Importantly, a domain decomposition method recently has been developed
that allows efficient parallelization of Fourier transforms [7] in PIC codes. It
takes advantage of the linearity and finite propagation velocity of light in Maxwell’s
equations to limit communication of data between neighboring computational
domains. The small approximation required appears to be insignificant for a
range of problems of interest.

Despite the advantages of pseudo-spectral methods, they are known not to
be free of the numerical Cherenkov instability [9], which results from coupling
of electromagnetic waves with numerically spurious beam mode aliases in cold
beam simulations. In this paper, the numerical dispersion relation is derived for
the PSATD algorithm with either a version of the Esirkepov algorithm [10] or
conventional current interpolation. Although the PSATD algorithm does not
exhibit special time-steps at which numerical instability growth rates are very
small [8, 11, 12], a slight generalization of the PSATD-Esirkepov combination
is shown to have extraordinarily good stability properties when cubic interpola-
tion and appropriate digital filtering are employed, certainly substantially better
than that of FDTD algorithms previously analyzed [12]. The PSTD-Esirkepov
algorithm also has good stability properties over its range of allowed time-steps,
although not quite as good as that of the PSATD-Esirkepov algorithm. These
analyses have been confirmed using the multidimensional WARP [13] PIC code
for two-dimensional simulations of plasma wake formation in a LPA stage. The
parameters used for the WARP simulations were similar to those used in [12].
However, the length of the plasma was increased thirty-fold, due to the ex-
tremely small growth rates that were observed when using the PSATD solver.

The remainder of this paper is organized as follows. The PSATD algorithm
coupled with either the Esirkepov or the conventional current deposition algo-
rithm is presented in Sec. 2. Derivations of the corresponding numerical insta-
bility dispersion relations for multidimensional PSATD PIC codes are outlined
briefly in Sec. 3. The dispersion relations are specialized in Sec. 4 to a cold, rel-
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ativistic beam in two dimensions for comparison with WARP simulations. Sec.
5 provides a reasonably accurate approximation for maximum numerical insta-
bility growth rates for the PSATD-Esirkepov algorithm with digital filtering,
showing the desirable numerical stability properties just mentioned. Then, the
dispersion relations are solved numerically for a range of options and parameters
and compared with WARP results in Sec. 6. (These analytical and numerical
dispersion relation calculations were performed using Mathematica [14].) As a
comparison, stability results for the more commonly used PSTD algorithm are
derived and discussed in Sec. 6. Sec. 7 presents WARP simulations, demon-
strating the near absence of numerical instabilities in actual LPA simulations
for appropriately chosen options and time-steps. The concluding section sum-
marizes the findings in the paper and compares them with corresponding FDTD
results.

2. PSATD algorithm

The PSATD algorithm is derived in some detail in Appendix A of [7] and
presented in Eqs. (13) and (14) of that article. It also can be obtained directly by
integrating analytically the spatially Fourier-transformed Maxwell’s equations,
Eqs. (1) and (2) of [7], for one time-step under the assumption that currents
are constant over the time-step. In either case, the algorithm is

En+1 = CEn − iSk×Bn/k − SJn+1/2/k + (1− C)kk ·En/k2

+ (S/k −4t)kk · Jn+1/2/k2, (1)

Bn+1 = CBn + iSk×En/k − i (1− C)k× Jn+1/2/k2, (2)

with k the wave-number, k its magnitude, C = cos (k4t), and S = sin (k4t).
The speed of light is normalized to unity. Note that the sign of k is reversed
relative to [7] for consistency with earlier analyses of the numerical Cherenkov
instability, e.g., [12, 15].

Eqs. (1) and (2) define both En and Bn at integer time-steps. For deriving
the PSATD numerical dispersion relation, and perhaps also for implementing
the PSATD algorithm in some PIC simulation codes, a leap-frog arrangement
in which B is defined at half-integer time-steps is more convenient. To do so,
we simply define Bn+1/2 at half-integer time-steps as

Bn =
1

2Ch

(
Bn+1/2 + Bn−1/2

)
. (3)

Using this equation, we can eliminate Bn at integer time-steps from Eqs. (1)
and (2) to obtain

En+1 = En − 2iShk×Bn+1/2/k − SJn+1/2/k + (S/k −∆t)kk · Jn+1/2/k2, (4)

Bn+3/2 = Bn+1/2 + 2iShk×En+1/k, (5)
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after a modest amount of algebra. Here, Ch = cos (k4t/2), and Sh = sin (k4t/2).
(Note that Eqs. (4) and (5) differ from Eqs. (15) and (16) of [7], which are
based on a different definition of Bn+1/2.)

The divergence of Eq. (4) yields k · En+1 = k · En − k · Jn+1/24t, which
assures that k ·En+1 = iρn+1, provided that charge is conserved,

k · Jn+1/2 = −i
(
ρn+1 − ρn

)
/4t (6)

(and also provided that k · E0 = iρ0 at initialization). The Buneman current
deposition algorithm [16] and its generalization, the Esirkepov algorithm [10],
satisfy the discretized continuity equation in real space. The adaptation of the
Esikepov algorithm for k-space in Eq. (20) of [7] automatically satisfies Eq. (6).
(This modification of the Esirekpov algorithm for PSATD will be referred to as
the Esirkepovk algorithm in the remainder of the paper.) Otherwise, (4) must
be rewritten as

En+1 = En − 2iShk×Bn+1/2/k − SJn+1/2/k

+ Skk · Jn+1/2/k3 + ik
(
ρn+1 − ρn

)
/k2, (7)

which has as its divergence, k · En+1 = k · En + i
(
ρn+1 − ρn

)
, as desired. In

subsequent sections both charge-conserving and non-charge-conserving PSATD
variants will be analyzed, and Eq. (7) will be used instead of Eq. (4) in the
latter instances.

As we shall see in Sec. 6, scaling the Esirkepovk currents by k-dependent fac-
tors ζ can be beneficial for numerical stability; i.e., J = ζ :Je, with ζ =diag(ζz, ζx, ζy)
and Je the current computed by the Esirkepovk algorithm. Doing so, of course,
requires the use of Eq. 7, because introducing the factors ζ typically does not
preserve charge conservation. However, because the Esirkepovk current satisfies
Eq. 6 identically, Eq. 7 can be rewritten in this case as

En+1 = En − 2iShk×Bn+1/2/k − Sζ :Jn+1/2
e /k

+ Skk · ζ :Jn+1/2
e /k3 − kk · Jn+1/2

e 4t/k2, (8)

which can be viewed as a generalization of Eq. 4.
The divergence of (5) yields k ·Bn+3/2 = k ·Bn+1/2, assuring that k ·Bn+3/2 =

0, if it is so at initialization.

3. Numerical instability dispersion relation

The derivation of the numerical instability dispersion relation for the PSATD
and Esirkepovk combined algorithm follows closely the corresponding derivation
for the FDTD and Esirkepov combined algorithm in [12]. To begin, the temporal
Fourier transforms of Eqs. (8) and (5) are

[ω]E = −2Shk×B/k + iSζ :Je/k − iSkk · ζ :Je/k
3 + ikk · Je∆t/k2, (9)
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[ω]B = 2Shk×E/k. (10)

Brackets around the frequency, ω, designate its finite difference (leapfrog) rep-
resentation,

[ω] = sin

(
ω

∆t

2

)
/

(
∆t

2

)
. (11)

The Esirkepov algorithm, either in real or k-space, determines not the cur-
rent itself but its first derivative [10]. In the PSATD algorithm, that derivative
is given by k, not [k]. Consequently, Eq. (5) of [12] becomes Wx

Wy

Wz

 = −i∆t

 kxJx
kyJy
kzJz

 , (12)

and the current contribution from an individual particle, Eq. (7) of [12], becomes JxJyJz
 = SJ

2

∆t


sin
(
k′xvx

∆t
2

) [
cos
(
k′yvy

∆t
2

)
cos
(
k′zvz

∆t
2

)
− 1

3 sin
(
k′yvy

∆t
2

)
sin
(
k′zvz

∆t
2

)]
/kx

sin
(
k′yvy

∆t
2

) [
cos
(
k′zvz

∆t
2

)
cos
(
k′xvx

∆t
2

)
− 1

3 sin
(
k′zvz

∆t
2

)
sin
(
k′xvx

∆t
2

)]
/ky

sin
(
k′zvz

∆t
2

) [
cos
(
k′xxy

∆t
2

)
cos
(
k′yvy

∆t
2

)
− 1

3 sin
(
k′xvx

∆t
2

)
sin
(
k′yvy

∆t
2

)]
/kz

 ,

(13)
with SJ the current interpolation function. Finally, the total current is given
by Eq. (10) of [12],

J =
∑
m

ˆ
F · ∂

∂p
J csc

[
(ω − k′ · v)

∆t

2

]
∆t

2
f d3v, (14)

summed over spatial aliases. The determinant of the 6x6 matrix comprised of
Eqs. (9), (10), and (14) is the desired PSATD-Esirkepovk dispersion relation.

Alternatively, the current can be accumulated at nodal points by conven-
tional interpolation, in which case charge is not conserved automatically, and
Eq. 7 should be used. Its temporal Fourier transform is

[ω]E = −2Shk×B/k + iSJ/k − iSkk · J/k3 + i [ω]kρ/k2. (15)

Currents are interpolated directly to nodes on the grid, so Eq. (14) becomes

J =
∑
m

SJ
ˆ

F · ∂
∂p

v csc

[
(ω − k′ · v)

∆t

2

]
∆t

2
f d3v. (16)

Similarly, the charge density is given by [15]

ρ =
∑
m

SJ
ˆ

F · ∂
∂p

cot

[
(ω − k′ · v)

∆t

2

]
∆t

2
f d3v. (17)

(The charge and current interpolation functions are assumed to be the same.)
The dispersion relation in this case is the determinant of the 6x6 matrix com-
prised of Eqs. (15), (10), (16), and (17).
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4. WARP-PSATD 2-d dispersion relation

For comparison withWARP-PSATD-Esirkepovk two-dimensional, cold beam
simulation results, we reduce Eqs. (9) and (10) to a 3x3 system in {Ez, Ex, By}
and perform the integral in Eq. (14) for a cold beam propagating at velocity v
in the z -direction. The resulting matrix equation is ξz,z + [ω] ξz,x ξz,y + [kx]

ξx,z ξx,x + [ω] ξx,y − [kz]
[kx] −[kz] [ω]

 Ez
Ex
By

 = 0. (18)

Its determinant set equal to zero,

[ω]
(
[ω]2 − [kz]

2 − [kx]2
)

+
(
[ω]2 − [kz]

2
)
ξz,z − [kz][kx]ξx,z

− [kz][kx]ξz,x − [ω][kx]ξz,y +
(
[ω]2 − [kx]2

)
ξx,x + [ω][kz]ξx,y

+ ξz,z ([ω]ξx,x + [kx]ξx,y)− ξx,z ([ω]ξz,x + [kz]ξz,y)

+ [kx] (ξz,xξx,y − ξz,yξx,x) = 0, (19)

is the dispersion relation. The quantities [k] and ξ are introduced purely for
notational simplicity.

[kz] = kz sin

(
k

∆t

2

)
/

(
k

∆t

2

)
, (20)

[kx] = kx sin

(
k

∆t

2

)
/

(
k

∆t

2

)
. (21)

ξz,z = −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

]
(
kk2

z∆t+ ζzk
2
x sin (k∆t)

)
∆t [ω] k′z/4k

3kz, (22)

ξz,x = −n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
ηzk
′
x/2k

3kz, (23)

ξz,y = nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
ηzk
′
x/2k

3kz, (24)

ξx,z = −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

]
(k∆t− ζz sin (k∆t)) ∆t [ω] kxk

′
z/4k

3, (25)

ξx,x = −n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
ηxk
′
x/2k

3kx, (26)
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ξx,y = nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
ηxk
′
x/2k

3kx, (27)

with

ηz = cot

[
(ω − k′zv)

∆t

2

] (
kk2

z∆t+ ζzk
2
x sin (k∆t)

)
sin

(
k′zv

∆t

2

)
+ (k∆t− ζx sin (k∆t)) k2

z cos

(
k′zv

∆t

2

)
, (28)

ηx = cot

[
(ω − k′zv)

∆t

2

]
(k∆t− ζz sin (k∆t)) k2

x sin

(
k′zv

∆t

2

)
+
(
kk2

x∆t+ ζxk
2
z sin (k∆t)

)
cos

(
k′zv

∆t

2

)
. (29)

Sums are over spatial aliases, k′z = kz + mz 2π/∆z and k′x = kx + mx 2π/∆x,
with mz and mx integers. n is the beam charge density divided by γ, which
can be normalized to unity. However, explicitly retaining it in the dispersion
relation sometimes is informative. Eqs. (22) - (29) are substantially more
complicated than their counterparts in [12], the additional terms arising from
the final expression in Eq. (1).

Like most other PIC codes, WARP employs splines for current and field
interpolation. The Fourier transform of the current interpolation function is

SJ =

[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]`z+1 [
sin

(
k′x

∆x

2

)
/

(
k′x

∆x

2

)]`x+1

; (30)

`z and `x are the orders of the current interpolation splines in the z- and x-
directions. Fields typically are interpolated with splines of the same centering
and order in PSATD implementations, so SEz = SEx = SJ . The magnetic
field interpolation function also includes the conversion factor from B at half-
integer time-steps, as given in Eq. (5), to B at integer time-steps, as used to
push the particles. Hence, from the temporal Fourier transform of Eq. (3),
SBy = SJ cos (ω∆t/2) / cos (k∆t/2). With SEx and SBy as just define,

ξz,y/ξz,x = ξx,y/ξx,x = −v cos (ω∆t/2) / cos (k∆t/2) (31)

Note, however, that field interpolation from a staggered mesh could be em-
ployed instead, as it is in the FDTD version of WARP and most other PIC
codes. In that case the field interpolation functions would be as described in
Eqs. (21) - (23) of [12] and the associated text. Eq. (31) is only approximately
satisfied for staggered mesh interpolation.

Next, we present the dispersion matrix for WARP-PSATD with conventional
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current (and charge) deposition, as described in the final paragraph of Sec. 3.

ξz,z = −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

]
∆t{(

sin

[
(ω − k′zv)

∆t

2

]
k′zv +

2

∆t

)
k2
x sin (kz∆t) + k kzk

′
z [ω] ∆t

}
/4k3, (32)

ξz,x = −n
∑
m

SJSEx csc2

[
(ω − k′zv)

∆t

2

]
∆t{(

sin

[
(ω − k′zv)

∆t

2

]
kxk
′
xv −

2

∆t
kz

)
kx sin (kz∆t) + k kzk

′
x [ω] ∆t

}
/4k3,

(33)

ξz,y = nv
∑
m

SJSBy csc2

[
(ω − k′zv)

∆t

2

]
∆t{(

sin

[
(ω − k′zv)

∆t

2

]
kxk
′
xv −

2

∆t
kz

)
kx sin (kz∆t) + k kzk

′
x [ω] ∆t

}
/4k3,

(34)

ξx,z = −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

]
∆t{(

sin

[
(ω − k′zv)

∆t

2

]
k′zv +

2

∆t

)
kz sin (kz∆t) + k k′z [ω] ∆t

}
kx/4k

3, (35)

ξx,x = n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
∆t{(

sin

[
(ω − k′zv)

∆t

2

]
kxk
′
xv −

2

∆t
kz

)
kz sin (kz∆t)− k kxk′x [ω] ∆t

}
/4k3,

(36)

ξx,y = −nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
∆t{(

sin

[
(ω − k′zv)

∆t

2

]
kxk
′
xv −

2

∆t
kz

)
kz sin (kz∆t)− k kxk′x [ω] ∆t

}
/4k3.

(37)

Here too, Eq. (31) is satisfied, provided that currents and fields all are interpo-
lated to and from the same mesh nodes.

As pointed out in [12], mx alias terms in the dispersion relations can be
summed explicitly by means of Eqs. (1.421.3) and (1.422.3) of [17] or derivatives
thereof.
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5. Approximate growth rates

Useful results can be obtained from the dispersion relation without solving
it in its entirety.

When Eq, (31) is satisfied (and approximately otherwise),

ξz,xξx,y − ξz,yξz,y = 0, (38)

and the dispersion relation, Eq. 19, reduces to

C0 +n
∑
mz

C1 csc

[
(ω − k′zv)

∆t

2

]
+n

∑
mz

(
C2x + γ−2C2z

)
csc2

[
(ω − k′zv)

∆t

2

]

+ γ−2n2

(∑
mz

C3z csc2

[
(ω − k′zv)

∆t

2

])(∑
mz

C3x csc

[
(ω − k′zv)

∆t

2

])
= 0,

(39)

with C0 the vacuum dispersion function,

C0 = [ω]
2 − [kx]

2 − [kz]
2
, (40)

and, for the PSATD-Esirkepovk algorithm,

C1 = −
∑
mx

k′x
(
SJ
)2

cos

(
k′zv

∆t

2

)
{
ζxkz sin (k∆t)

(
kz sin

(
ω

∆t

2

)
− k v tan

(
k

∆t

2

)
cos

(
ω

∆t

2

))
+ k k2

x∆t C0/ sin

(
ω

∆t

2

)}
/k3kx∆t,

(41)

C2x = kx
∑
mx

k′x
(
SJ
)2

cos

[
(ω − k′zv)

∆t

2

]
sin

(
k′zv

∆t

2

)
{
ζz sin (k∆t)

(
kz sin

(
ω

∆t

2

)
− k v tan

(
k

∆t

2

)
cos

(
ω

∆t

2

))
− k kz∆t C0/ sin

(
ω

∆t

2

)}
/k3kz∆t,

(42)

C3x =
∑
mx

k′x
(
SJ
)2

sin (k∆t) cos

(
k′zv

∆t

2

)
(
k sin

(
ω

∆t

2

)
− kzv tan

(
k

∆t

2

)
cos

(
ω

∆t

2

))
/k2kx∆t, (43)

C2z = −k′z
∑
mx

(
SJ
)2
(
ζz sin (k∆t) k2

x sin

(
ω

∆t

2

)
− k k2

z∆t C0

)
/k3kz∆t, (44)
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C3z = k′z∆t
2
∑
mx

(
SJ
)2 (

ζzk
2
x + ζxk

2
z

)
/4k2kz. (45)

For γ2 large but not infinite, which is the focus of this paper, the approximate
solutions of Eq. 39 are the solutions of

C0 + n
∑
mz

C1 csc

[
(ω − k′zv)

∆t

2

]
+ n

∑
mz

C2x csc2

[
(ω − k′zv)

∆t

2

]
= 0, (46)

plus an additional, stable mode,

ω = k′zv −
2

∆t
γ−2nC3zC3x/C2x

∣∣∣∣
ω=k′zv

, (47)

provided that C2x does not vanish there. If it does, the extra mode may be
unstable, with growth rate scaling as γ−1. As already noted, sums over mx can
be performed explicitly,

∑
mx

(
SJ
)2

= −
[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]2`z+2

1

(2`x + 1)!

[
sin

(
kx

∆x

2

)]2`x+2
d2`x+1 cot (κ)

d κ2`x+1

∣∣∣∣
κ=kx

∆x
2

, (48)

∑
mx

k′x
(
SJ
)2

=

[
sin

(
k′z

∆z

2

)
/

(
k′z

∆z

2

)]2`z+2

1

(2`x)!

[
sin

(
kx

∆x

2

)]2`x+2
d2`x cot (κ)

d κ2`x

∣∣∣∣
κ=kx

∆x
2

. (49)

Analogous expressions for the C’s also can be obtained for the PSATD-conventional
algorithm.

Vacuum electromagnetic modes are described by C0 = 0,

sin2

(
ω

∆t

2

)
= sin2

(
k

∆t

2

)
, (50)

which yields real ω for all values of k∆t. The PSATD algorithm thus has
no Courant limit on ∆t. However, |ω| begins decreasing with increasing k∆t,
when k∆t first exceeds 2π. This threshold is expressed in terms of the grid
cell size as ∆t > ∆tc =

(
∆z−2 + ∆x−2

)−1/2, which is recognizable as the usual
Courant condition in FDTD algorithms. Digitally filtering wave-numbers for
which k > 2π/∆tc often is prudent.

All beam modes in Eq.(39) are numerical artifacts, even the mz = 0 mode,
and their interaction with the electromagnetic modes gives rise to the numerical
Cherenkov instability [9, 18]. Fig. 1 is a typical normal mode diagram, showing
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the two electromagnetic modes and beam aliases mz = [−1, +1] for v∆t/∆z =
1.2 and kx = 1/2π/4x. (Unless otherwise noted, other parameters for these and
other figures are n = 1 and ∆x = ∆z = 0.3868.) Not surprisingly, most rapid
growth occurs at resonances, where normal modes intersect. Fig. 2 depicts the
locations in k -space of normal mode intersections, such as those in Fig. 1, as kx
is varied.1 Because the electromagnetic modes are dispersionless for ∆t < ∆tc,
the otherwise often dominant mz = 0 numerical Cherenkov instability cannot
occur unless ∆t somewhat exceeds ∆tc. To be precise, the resonant mz = 0
instability occurs only for ∆t/∆x > 2 (∆x/∆tc − ∆z/∆x), or ∆t/∆z > 2

(√
2− 1

)
for ∆x = ∆z (accurate to order γ−2). The mz = −1 instability dominates at
smaller time-steps.

More generally, instability resonances occur at

krx =

(((
kz +mz

2π

4z

)
v − p 2π

4t

)2

− k2
z

)1/2

, (51)

where p is any integer within the domain,[
mzv

4t
4z
− 4t

24x
,

(
mz +

1

2

)
v
4t
4z

+
(
4z−2 +4x−2

)1/2 4t
2

]
, (52)

except p = 0 for mz = 0. In effect, p is the temporal alias number.
Ref. [12] described in detail how to estimate numerical Cherenkov instability

peak growth rates as a function of ∆t, based on an approximate evaluation of
Eq. 39. This approach was used to good effect to explain the existence and
value of time-steps for which instability growth rates in WARP-FDTD [11, 20]
and other PIC codes (e.g., [8, 21]) were greatly reduced. Here, the approximate
resonant growth rate is

Im (ω) ' |nC2∆t/4kz|
1/3
/∆t, (53)

with C2 evaluated at ω = kzv and kx chosen to satisfy the resonance condition.
In this paper we focus instead on finding parameters for which non-resonant

growth at small k naturally is minimized, while relying on digital filtering to
suppress the otherwise faster growing resonant instabilities at large k. Non-
resonant instability occurs when C0C2 > nC 2

1 /4, evaluated at ω ' k′z and
arbitrary kx. The resulting growth rate is

Im (ω) '
√

4nC0C2 − n2C 2
1

C0∆t
. (54)

By numerical experimentation we have found that C0C2 > 0 is bounded away
from kz = 0 for mz = 0 and any ζz < 1, and that for some choices of ζz this

1Software to generate plots such as those in Figs. 1 and 2 is available in Computable
Document Format [19] at http://hifweb.lbl.gov/public/BLAST/Godfrey/.
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region free of non-resonant instability can be fairly large. Fig. 3 depicts maxi-
mum approximate growth rates as a function of v∆t/∆z according to Eq. 54
for the PSATD-Esirkepov algorithm with (a) ζz = (kz4z/2) cot (kz4z/2) , ζx =
(kx4x/2) cot (kx4x/2) or (b) ζz = ζx = 1, cubic interpolation, and smooth-
ing as in Eq. (37) of [12]. Option (a) exhibits essentially no instability for
v∆t/∆z < 1.2, while option (b) does exhibit instability there. This useful
finding is substantiated in Sec. 6. Incidentally, both numerical and analytical
solutions of Eq. (39) indicate significant numerical instability even at small kz
when ζx > 1.

Of course, other fruitful choices for ζz may exist. One promising possibility
is ζz chosen such that C2 vanishes for ω = kzv, in order to suppress non-resonant
mz = 0 growth in accordance with Eq. (54),

ζz = k kz4t
(

sin2

(
kz

∆t

2

)
− sin2

(
k

∆t

2

))
csc

(
kz

∆t

2

)
csc

(
k

∆t

2

)
/

2

(
kz sin

(
kz

∆t

2

)
cos

(
k

∆t

2

)
− k cos

(
kz

∆t

2

)
sin

(
k

∆t

2

))
(55)

Equivalently, Eq. (55) is obtained by setting to zero the first term in the Laurent
expansion of Eq. (46) about ω = kzv. Note that vz has been set equal to unity
in this expression to assure that ζz → 1 as k → 0. Moreover, it is necessary
to impose 0 ≤ ζz ≤ 1. We do this by setting ζz = 0 everywhere that the
constraint just given is not satisfied, which is almost everywhere outside the
curve, kz = π

∆t − k
2
x

∆t
4π . Not coincidentally, this is the curve at which the first

mz = 0 instability resonance occurs. Seemingly, the corresponding ζx should be
obtained by setting to zero the second term in the Laurent expansion,

ζx = k k2
x4t

(
k sin

(
kz

∆t

2

)
sin

(
k

∆t

2

)(
cos2

(
kz

∆t

2

)
+ cos2

(
k

∆t

2

))
− kz cos

(
kz

∆t

2

)
cos

(
k

∆t

2

)(
sin2

(
kz

∆t

2

)
+ sin2

(
k

∆t

2

)))
csc

(
k

∆t

2

)
/

2kz cos

(
kz

∆t

2

)(
kz sin

(
kz

∆t

2

)
cos

(
k

∆t

2

)
− k cos

(
kz

∆t

2

)
sin

(
k

∆t

2

))2

.

(56)

However, it satisfies the constraint, 0 ≤ ζx ≤ 1, over too small a region in
k -space. Credible alternatives are ζx = 1, ζx = (kx4x/2) cot (kx4x/2), and
ζx = ζz. Each produces roughly the same growth rates when paired with Eq.
(55), at least when digital filtering is employed as well. The choice, ζx = ζz, is
designated PSATD option (c) and used in representative numerical calculations
in Sec. 6. Although this approach may seem rather arbitrary, it does give good
results.

Axial group velocities of unstable modes, vg = ∂ω/∂kz, are of interest when
dealing with short beam pulses, because numerical instability energy propagates
backward relative to the beam pulse, limiting total growth, when the instabil-
ity group velocity is somewhat less than the beam velocity. Low instability
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group velocities can be expected for beam aliases interacting resonantly with
backward propagating electromagnetic waves. Indeed, numerical solutions to
the dispersion relation predict group velocities between 0.3 and 0.5 the beam
velocity in this case. On the other hand, numerical instabilities associated with
beam aliases interacting with forward propagating electromagnetic waves can be
expected to have group velocities about equal to the beam velocity. The same
is true of non-resonant instabilities, and numerical solutions of the dispersion
relation corroborate these expectations.

The PSATD-Esirkepovk one-dimensional dispersion relation is obtained sim-
ply by setting kx to zero in Eqs. (40) - (42), yielding

C0 = [ω]
2 − [kz]

2
, (57)

C1 = −ζx
(
SJ
)2

cos

(
k′zv

∆t

2

)
sin (kz∆t)(

sin

(
ω

∆t

2

)
− v tan

(
kz

∆t

2

)
cos

(
ω

∆t

2

))
/kz∆t, (58)

and C2 = 0. Resonant instability occurs when−nC1/ sin (ω∆t) cos
[
(ω − k′zv) ∆t

2

]
>

0, evaluated at the resonance frequency, in which case the growth rate is the
square root of that quantity. Interestingly, for mz = 0 in the limit v → 1, the
Cherenkov resonance drops out, and the dispersion relation simplifies further to

sin2

(
ω

∆t

2

)
− sin2

(
kz

∆t

2

)
− nζx∆t

(
SJ
)2

sin (kz∆t) /4kz = 0. (59)

Nonetheless, an instability still occurs approximately where the resonance would
have been, namely kz just less than an integer multiple of π/∆t. The numerical
solution of Eq. (59) for v∆t/∆z = 3 is provided in Fig. 4. Peak growth for
kx = 0 in this case is only about one-third the peak growth at finite kx.

6. Numerical solutions

Numerical solutions to the complete linear dispersion relations, presented in
Sec. 4, and instability growth rates measurements from corresponding WARP
simulations were performed as described in Sec. 5 of [12]. A typical dispersion
relation growth spectrum, in this case corresponding to the parameters of Fig.
2 with option (a), ζz = (kz4t/2) cot (kz4t/2) and ζx = (kx4t/2) cot (kx4t/2),
is depicted in Fig. 5. Growth is dominated by the mz = 0 numerical instability.
Note that non-resonant growth associated with the mz = 0 mode is bounded
well away from small kz, as predicted in the previous Section. The instability
group velocity is about 0.5 on resonance and 1.0 well off resonance.

Fig. 6 plots maximum growth rates versus v∆t/∆z for options (a), (b),
and (c), as well as for option (d), which is PSATD with conventional current
interpolation. Recall that the option (d) dispersion relation is given by Eqs.
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Table 1: Algorithm options used in Fig. 6, 8, 9, and elsewhere.
Option Current Factors or Equations Comments

(a) ζx = (kx4x/2) cot (kx4x/2)
ζz = (kz4z/2) cot (kz4z/2)

Equivalent to Esirkepov in real space

(b) ζz = ζx = 1 Esirkepov in k -space (base case)
(c) ζx = ζz, as defined in Eq. (55) Reduces order of nonphysical resonances
(d) Eqs. (18), (32) - (37) Conventional current deposition at nodes

(18) and (32) - (37). (A summary of the options is given in Table 1.) Growth
rates for option (a) are noticeably smaller than those for options (b) and (d)
with v∆t/∆z less than about 1.5, in part because ζz introduces smoothing at
large k, which is where the dominant resonances occur in this range of time-
steps. On the other hand, the curves for options (a) and (b) converge for
large v∆t/∆z, because ζz for both options (and indeed for all valid choices
of ζz) approaches unity at small k, which is where the dominant resonances
occur at large time-steps. An inflection occurs in curves (a), (b), and (d) near
v∆t/∆z ≈ 0.9, where the mz = 0 resonant instability begins to dominate the
mz = −1 and other resonances. PSATD option (c), designed to suppress the
the mz = 0 instability, both resonant and non-resonant, is seen to do so quite
effectively. Growth plummets to near zero at v∆t/∆z = 1 and is modestly larger
at larger values of v∆t/∆z due only to residual mz = ±1 resonant instabilities.
Agreement between theory and simulation growth rates is very good in all cases.
The simulation growth rate measurements themselves appear to be accurate to
better than 2%, except perhaps for very small growth rates.

As explained in the previous Section, PSATD combined with digital filtering
can be very effective at suppressing the numerical Cherenkov instability. Since
filtering can be applied directly in k -space, any suitable filtering profile can
be employed in a straightforward manner. (Digital filtering of the numerical
Cherenkov instabiity in FDTD algorithms is described in [12, 22].) To facilitate
comparison with earlier analysis for WARP-FDTD [12], we use the same ten-
pass (including two compensation passes) bilinear filter used there. The kz- and
kx-dependent factors of the filter function are displayed in Fig. 7. (Also shown
are ζz and ζx for options (a) and (c). Remember, however, that these current
multipliers are not equivalent to digital filters, although they can introduce a
degree of smoothing.) Applying this filter with parameters otherwise identical
to those in Fig. 6 reduces growth rates by a factor of five or so over the range of
v∆t/∆z shown in Fig. 8 (or for v∆t/∆z<1 in the case of option (c), which has
small growth for larger time-steps even without filtering). At larger time-steps
growth rates increase toward their unfiltered values, as the dominant resonant
modes move to progressively smaller kz. (For instance, the option (a) filtered
maximum growth rate increases to 74% of its unfiltered value by v∆t/∆z =
3.) Maximum growth rates oscillate irregularly for options (a) and (c) when
v∆t/∆z is less than about 1.3, and for option (b) when it is less than about
1.0, as higher order resonances move through the weakly filtered region at small
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k. Digital filtering seems less effective for option (d), probably because its
mz = 0 non-resonant growth at small k is larger than in the other options.

The weak instability growth for options (a) and (c) can be further reduced
by higher order interpolation. As illustrated in Fig. 9 and, with slightly less
accuracy, in Fig. 3, cubic interpolation almost completely eliminates numerical
Cherenkov instability growth in option (a) for v∆t/∆z < 1.3. Option (c)
performs almost as well in that same time-step range and much better outside
it. Quadratic interpolation performs almost as well as cubic in this regard.
Incidentally, the residual instability for option (c) is a finite γ effect, dropping
to zero for infinite γ.

One might reasonably ask whether the superior stability properties of option
(c) at larger time steps are due only to the digital filtering of the transverse cur-
rents that it entails. No, is the answer, as can be demonstrated from numerical
solution of the option (b) dispersion relation with the right side of Eq. (55) used
as a digital filter applied to n throughout. Doing so effectively suppresses the
mz = 0 resonant instability but not its non-resonant counterpart, with maxi-
mum growth rates at larger time steps of order one-third those of option (b)
without digital filtering, Fig. 6. And, when digital filtering equal to the right
side of Eq. (55) is combined with the digital filtering already employed in Fig.
8 or 9, the results are practically indistinguishable from those of option (b).

The PSATD algorithm also accommodates field interpolation using the Galerkin
and Uniform schemes discussed in [12]. (Fields are computed at mesh points as
described in Sec. 2 and then averaged to the staggered Yee mesh[1].) Results for
these two schemes with linear interpolation and no digital filtering are provided
in Fig. 11. Both exhibit non-resonant instability growth rates at small k. Con-
sequently, there appears to be no advantage in using these more complicated
field interpolation approaches with PSATD.

Although Figs. 6, 8, and 9 demonstrate clearly the validity of the numerical
dispersion relation in the large γ limit, they indicate little about its validity
more generally. We have, therefore, run comparisons between the dispersion
relation and WARP-PSATD option (b) simulations for γ = 3.0, 1.4, 1.1 with
linear interpolation and no digital filtering. Once again, agreement is excellent;
see Fig. (10). Maximum growth rates for γ as low as 3 are essentially the same
as those for γ = 130. However, the k-space spectrum at γ = 3.0 also shows signs
of the well known mz = −1 quasi-one-dimensional, electrostatic numerical in-
stability [23, 24]. For smaller γ yet, the numerical Cherenkov instability growth
rate decreases modestly, while the electrostatic numerical instability growth rate
increases as 1/γ for fixed n. (Recall that n is defined in this paper as the density
divided by γ.) The two become comparable at γ ≈ 1.4, and the electrostatic in-
stability dominates strongly at γ = 1.1. The electrostatic numerical instability
can be suppressed by using any field interpolation algorithm that offsets Ez by
4z/2 relative to % (or W in the Esirkepov current algorithm) and interpolates
it with a spline one order lower in z relative to % or to W [25, 26], such as the
Galerkin “energy-conserving” algorithm. Even the Uniform algorithm amelio-
rates the electrostatic instability to a degree, stabilizing the strong mz = −1
mode but destabilizing the slower mz = +1 mode. Of course, digital filtering
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plus cubic interpolation also works well.

7. PSTD stability results

The numerical stability properties of the related PSTD algorithm [2] re-
cently were addressed in [8]. Here, we focus on comparison of PSATD and
PSTD growth rates. The PSTD dispersion relation can be derived following
the procedures used to analyze the PSATD algorithm. Under the assumptions
leading to Eqs. (8), (5), and (3), the corresponding PSTD equations are

En+1 = En − ik×Bn+1/24t− ζ :Jn+1/2
e 4t

+ kk · ζ :Jn+1/2
e 4t/k2 − kk · Jn+1/2

e 4t/k2, (60)

Bn+3/2 = Bn+1/2 + ik×En+14t, (61)

Bn =
(
Bn+1/2 + Bn−1/2

)
/2. (62)

As noted in [7], these equations also can be obtained by expanding their PSATD
counterparts to first order in k.

The dispersion relation again takes the form of (18), but with [k] = k,

ξz,z = −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

] (
k2
z + ζzk

2
x

)
∆t2 [ω] k′z/4k

2kz,

(63)

ξz,x = −n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
ηz∆t k

′
x/2k

2kz, (64)

ξz,y = nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
ηz∆t k

′
x/2k

2kz, (65)

ξx,z = −nγ−2
∑
m

SJSEz csc2

[
(ω − k′zv)

∆t

2

]
(1− ζz) ∆t2 [ω] kxk

′
z/4k

2, (66)

ξx,x = −n
∑
m

SJSEx csc

[
(ω − k′zv)

∆t

2

]
ηx∆t k′x/2k

2kx, (67)

ξx,y = nv
∑
m

SJSBy csc

[
(ω − k′zv)

∆t

2

]
ηx∆t k′x/2k

2kx, (68)

and

ηz = cot

[
(ω − k′zv)

∆t

2

] (
k2
z + ζzk

2
x

)
sin

(
k′zv

∆t

2

)
+ (1− ζx) k2

z cos

(
k′zv

∆t

2

)
,

(69)

ηx = cot

[
(ω − k′zv)

∆t

2

]
(1− ζz) k2

x sin

(
k′zv

∆t

2

)
+
(
k2
x + ζxk

2
z

)
cos

(
k′zv

∆t

2

)
.

(70)

16



Provided that currents and fields are interpolated to or from the same mesh
points, the high-γ dispersion relation again takes the form in Eq. 39 with C0 as
before and

C1 = −
∑
mx

k′x
(
SJ
)2

cos

(
k′zv

∆t

2

)
{

2ζxkz

(
2kz sin

(
ω

∆t

2

)
− k2v∆t cos

(
ω

∆t

2

))
+ k2

x∆t2C0/ sin

(
ω

∆t

2

)}
/4k2kx,

(71)

C2 = kx
∑
mx

k′x
(
SJ
)2

cos

[
(ω − k′zv)

∆t

2

]
sin

(
k′zv

∆t

2

)
{

2ζzkx

(
2kz sin

(
ω

∆t

2

)
− k2v∆t cos

(
ω

∆t

2

))
− kzkx∆t2C0/ sin

(
ω

∆t

2

)}
/4k2kz.

(72)

Vacuum electromagnetic modes are described by C0 = 0,

sin2

(
ω

∆t

2

)
=

(
k

∆t

2

)2

, (73)

which has as a Courant limit, ∆tc = (2/π)
(
∆z−2 + ∆x−2

)−1/2, smaller by a
factor of 2/π than the usual FDTD Courant limit.

PSTD maximum growth rates verses v∆t/∆z are presented for options (a)
and (b) with linear interpolation and no digital filtering in Fig. 12. Not surpris-
ingly, these featureless curves are of the same magnitude as the corresponding
PSATD curves in Fig. 6 over the same time-step range. In contrast, maximum
growth rates for options (a) and (b) with cubic interpolation and the digital
filtering employed for PSATD, shown in Fig. 13, are an order of magnitude
larger than the corresponding PSATD values at v∆t/∆z ≈ 0.4, although still
very small. This difference results from a narrow region (about 8 of 4225 k-space
modes) at small kx of mz = 0 non-resonant instability that does not occur for
PSATD. PSTD maximum growth rates for the same digital filtering and linear
interpolation differ only moderately from the cubic interpolation results.

8. Simulation results

Series of two-dimensional simulations of a 100-MeV-class LPA stage were
performed, focusing on plasma wake formation (similar to those presented in
[12]), using the parameters given in Table 2. With the parameters chosen,
dephasing of the accelerated electron beam and the wake, as well as depletion of
the laser, occur in about 1 mm. However this distance was found to be too short
for any numerical instability to develop with the pseudo-spectral solvers, and
a much longer plasma of 3 cm was used for the sake of stability analysis. The
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velocity of the wake in the plasma corresponds to γ ' 13.2, and the simulations
were performed in a boosted frame of γf = 13.

Reference simulations were run in two dimensions for conditions where no
instability developed, and the final total field energy Wf0 was recorded as a
reference value in each case. Runs then were conducted for the PSATD and
PSTD solvers, using the Esirkepovk current deposition options (a) and (c) for
PSATD, as well as option (a) for PSTD. The final energy Wf was recorded and
divided by the reference energy Wf0. The ratio Wf/Wf0 is plotted versus time-
step in Fig. 14 from simulations using the PSATD solver with linear current
deposition and 4 passes of bilinear smoothing plus compensation of both current
and interpolated fields. (This is equivalent in the linear regime to the filtering
described in previous Sections.) Following theoretical predictions, option (a)
exhibits no instability for v4t/4z . 0.3, v4t/4z ≈ 0.5 and v4t/4z = 1, and
option (c) exhibits an additional null at v4t/4z = 2. Fig. 15 shows results
using cubic current deposition, where the PSATD and PSTD instabilities are
contrasted to those of the FDTD Cole-Karkkainnen (CK) solver with Galerkin
or uniform field interpolation. Still in agreement with theoretical predictions,
the PSATD solver is shown to be stable over a wide range of time-steps for
v4t/4z . 1.2 with option (a) and even as wide as v4t/4z . 2.1 with option
(c). The PSTD solver also exhibits good stability but only on the more restricted
v4t/4z . 0.45, owing to its constraining Courant limit.

Note that conducting the time-step sweeps described in this section would
have been prohibitively expensive for the γ = 130 employed elsewhere in this
article. The smaller γ = 13 used here increases the option (c) growth rates
at larger time-steps, as well as the Uniform-CK growth rates in the vicinity of
v4t/4z = 0.5.

Table 2: List of parameters for simulations of wake propagation in a LPA stage.
plasma density on axis ne 1019 cm−3

plasma longitudinal profile flat
plasma length Lp 3 cm
plasma entrance ramp profile half sine
plasma entrance ramp length 20 µm
laser profile a0 exp

(
−r2/2σ2

)
sin (πz/3L)

normalized vector potential a0 1
laser wavelength λ 0.8 µm
laser spot size (RMS) σ 8.91 µm
laser length (HWHM) L 3.36 µm
normalized laser spot size kpσ 5.3
normalized laser length kpL 2
cell size in x ∆x λ/20
cell size in z ∆z λ/20
# of plasma macro-particles/cell 4 electrons + 4 protons
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9. Conclusions

The numerical stability properties of multidimensional PIC codes employing
the PSATD electromagnetic field algorithm, combined with either the Esirke-
povk or the conventional current deposition algorithm, have been derived. Over-
all, the numerical Cherenkov instability growth rates for the various versions of
the PSATD algorithm are comparable with those of FDTD algorithms. How-
ever, when cubic interpolation and short wavelength digital filtering also are em-
ployed, at least two versions of the PSATD algorithm exhibits excellent stability
over a wide range of time-steps. For comparison purposes, stability properties
of the more commonly used PSTD electromagnetic field algorithm also were
determined. Fig. 16 compares growth rates for the most stable versions of these
two algorithms (options (a) and (c) for PSATD and option (a) for PSTD, as
defined in Sec. 4 and again in Table (1).) with the growth rates of the Galerkin
and Uniform versions of the Cole-Karkkainnen [27, 28, 29] FDTD algorithms
(coupled with the Esirkepov algorithm), studied in [12]. The PSATD options
(a) and (c) exhibit clearly superior stability behavior, with (a) modestly better
at smaller time-steps and (c) substantially better at larger time-steps. Although
the PSTD algorithm also exhibits small growth rates, its range of time-steps is
limited by its relatively small Courant condition. The two FDTD algorithms
have small instability growth rates only over narrow time-step bands. These
findings are corroborated by WARP simulation results in Fig. 15.
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Figure 1: PSATD normal mode diagram for v4t/4z = 1.2 and kx = π/24x, showing
electromagnetic modes (numerically distorted for k > π/4t ) and spurious beam modes,
mz = [−1, 1]. Numerical Cherenkov instabilities are strongest near mode intersections.
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Figure 2: Locations in k -space of PSATD resonances between electromagnetic modes and
spurious beam modes, mz = [−1, +1], for v4t/4z = 1.2. Intersecting resonance curves
occur at different frequencies and, therefore, do not interact.
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Figure 3: Approximate maximum growth rates for PSATD options (a) and (b) with cubic
interpolation and digital filtering. Option (c) exhibits zero growth in this approximation.
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Figure 4: PSATD one-dimensional growth rate for mz = 0 and v4t/4z = 3.
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Figure 5: Growth rates from PSATD dispersion relation for option (a), mz = [−1, +1], and
v4t/4z = 1.2. Superimposed are the resonance curves from Fig. 2
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Figure 6: Maximum growth rates for PSATD options (a), (b), (c), and (d) with linear inter-
polation and no digital filtering. Markers represent corresponding simulation results.
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Figure 7: Left: kz-dependent factor of ten-pass bilinear filter, ζz for option (a) (which depends
only on kz), and ζz = ζx for option (c) evaluated at kx = 0 and 4t/4z = 2. Right: kx-
dependent factor of ten-pass bilinear filter, ζx for option (a) (which depends only on kx), and
ζz = ζx for option (c) evaluated at kz = 0 and 4t/4z = 2.
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Figure 8: Maximum growth rates for PSATD options (a), (b), (c), and (d) with linear inter-
polation and digital filtering. Markers represent corresponding simulation results.
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Figure 9: Maximum growth rates for PSATD options (a), (b), (c), and (d) with cubic inter-
polation and digital filtering. Markers represent corresponding simulation results.
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Figure 10: Maximum growth rates for PSATD option (b) with γ = 130, 3.0, 1.4, 1.1, linear
interpolation, and no filtering. Markers represent corresponding simulation results.
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Figure 11: Maximum growth rates for PSATD Uniform and Galerkin linear interpolation
schemes and no digital filtering.
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Figure 12: Maximum growth rates for PSTD options (a) and (b) with linear interpolation and
no digital filtering.

33



Figure 13: Maximum growth rates for PSTD options (a) and (b) with cubic interpolation and
digital filtering.
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Figure 14: Field energy relative to stable reference level vs v∆t/∆z from two-dimensional
WARP LPA simulations at γ = 13, using the PSATD solver with Esirkepovk current deposition
options (a) and (c), four passes of bilinear plus one compensation step filtering on both current
and gathered fields, and linear interpolation.
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Figure 15: Field energy relative to stable reference level vs v∆t/∆z from two-dimensional
WARP LPA simulations at γ = 13, using the PSATD or PSTD solvers with Esirkepovk
current deposition options (a) and (c), four passes of bilinear plus one compensation step
filtering on both current and gathered fields, and cubic interpolation. Results are contrasted
to simulations using the CK solver with Galerking or Uniform field gather, same filtering and
cubic interpolation.
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Figure 16: Maximum growth rates for PSATD (a), PSATD (c), PSTD (a), Galerkin-CK, and
Uniform-CK with cubic interpolation and digital filtering.
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