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Abstract

For many real systems, several computer models may exist with different physics and predictive abilities.

To achieve more accurate simulations/predictions, it is desirable for these models to be properly combined

and calibrated. We propose the Bayesian calibration of computer model mixture method which relies on

the idea of representing the real system output as a mixture of the available computer model outputs with

unknown input dependent weight functions. The method builds a fully Bayesian predictive model as an

emulator for the real system output by combining, weighting, and calibrating the available models in the

Bayesian framework. Moreover, it fits a mixture of calibrated computer models that can be used by the

domain scientist as a mean to combine the available computer models, in a flexible and principled manner,

and perform reliable simulations. It can address realistic cases where one model may be more accurate than

the others at different input values because the mixture weights, indicating the contribution of each model,

are functions of the input. Inference on the calibration parameters can consider multiple computer models

associated with different physics. The method does not require knowledge of the fidelity order of the models.

We provide a technique able to mitigate the computational overhead due to the consideration of multiple

computer models that is suitable to the mixture model framework. We implement the proposed method in

a real world application involving the Weather Research and Forecasting large-scale climate model.

Keywords: Uncertainty quantification, computer experiments, Gaussian process, polynomial bases,

multinomial logistic model, MCMC

1. Introduction

Computer experiments often use computer models (simulators) to simulate the behavior of a complex

real system under consideration. These models are usually designed according to theories believed to govern

the real system. They usually include calibration parameters, that is unknown parameters that regulate the

behavior of the computer model; hence we wish to tune (calibrate) them in order for the computer model to
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represent the real system accurately. Often, calibration of a computer model is performed in the presence of

experimental data in order to find optimal values for the unknown calibration parameters. In cases that the

computer models are expensive to run, there is interest in building inexpensive predictive statistical models.

Kennedy and O’Hagan [1] proposed an effective Bayesian computer model calibration to address such

cases. Briefly, the experimental observations are represented as a sum of three functional terms: the computer

model output, a systematic discrepancy, and an observational error. These functional terms are modeled as

Gaussian processes [1, 2, 3, 4], because computer models are often computationally expensive, and available

training data are limited. Literature includes several variations of computer model calibration which can

handle different issues; e.g. discontinuity/non-stationarity in the outputs [5], discrete inputs [6], calibration in

the frequentest context [7], high-dimensional outputs [8], dynamic discrepancy [9], large number of inputs and

outputs [10], etc. However, these works are restricted in cases where a single computer model is available.

Nowadays, there is a plethora of computer models that aim at simulating the same real system. These

models may differ either in precision (multi-fidelity case) of the solvers involved, or in the theories based

on which they are designed (multi-physics case). Recently, Goh et al. [11] proposed a procedure to perform

Bayesian calibration of computer models available at different levels of fidelity. It combines the models in

a nested structure according to a given fidelity order. However, this approach is restricted to address only

multi-fidelity cases where the fidelity order of the computer models is known.

Often, there are available several computer models, based on different theories, that represent the same

real system. Each single computer model may have its own unique properties and predictive capabilities

in representing the real system. Therefore, there is not a commonly acceptable way to order such models.

Possible reasons for example can be: (i) incomplete knowledge of the complex real system, (ii) different

computational capabilities of research groups, (iii) different scientific theories or perspectives describing the

same real system, etc. In such cases, using only a single computer model may lead to misleading inferences

and predictions and ignore the physics considered by other computer models only. Furthermore, traditional

multi-fidelity calibration methods, such as [11], are not suitable to address such cases because the fidelity

order of the models is not available a priori, or because nesting one model to another could possibly impose

unrealistic relations among the models. Moreover, in the presence of moderately large number of models,

the direct implementation of standard multi-fidelity calibration method becomes very expensive. Here, the

question of interest is how to properly combine and calibrate such computer models in order to represent

the real system output accurately.

In this study, the motivation for addressing the aforesaid problem raises from the Weather Research and

Forecasting (WRF) regional climate model [12]. WRF allows for different configurations (sub-models), e.g.

different parametrization suits, physics schemes, or resolutions, which in principle can constitute different

models. Briefly, here the available computer models consist of different combinations of radiation schemes,
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(the Rapid Radiative Transfer Model for General Circulation Models [13], and the Community Atmosphere

Model 3.0 [14]) that describe different physics, and different resolutions (25km and 50km grid spacing) that

describe different fidelity levels. It is uncertain which radiation scheme leads to better simulations. Moreover,

higher grid spacing does not necessarily lead to more accurate simulations because WRF is sensitive to

other physical parametrizations which is uncertain how they are affected by the grid spacing. Combination

of physics variability is expected to result better predictions in climate models [15]; hence interest lies in

combining suitably these computer models in order to integrate the associated physics and fidelity variations.

WRF is employed with the Kain Fritsch (KF) convective parametrization scheme (CPS) [16]. For climate

models, it is important to better understand and constrain the convective parametrization, and hence interest

lies in quantifying and reducing the uncertainties regarding of those parameters. The computational cost

of running WRF is prohibitively high, and an exhausted direct simulation study is not possible in practice;

hence there is interest in a predictive model.

In this article, we propose the Bayesian calibration of computer model mixture method, as an extension

to the traditional Bayesian (single) model calibration [1, 2]. Central to the proposed methodology is the

idea of (i) representing the output function of the complex real system as a mixture of output functions

of the available computer models with unknown input dependent weight functions, and (ii) specifying a

fully Bayesian model to quantify the associated uncertainties. The proposed method allows one to build a

predictive model (emulator) for the output of a real system by properly calibrating, weighting, and combining

the available computer models in the Bayesian framework. Additionally, it allows the design of a calibrated

mixture of computer models (simulators) by evaluating the associated weight functions and the calibration

parameters. The resulting computer model mixture, as well as the predictive model, aim at representing

the real system output more accurately than the single ones by aggregating the unique features of different

models. We introduce the concept of shared calibration parameters that allows inference on calibration

parameters to be based on multiple computer models (and hence different physics), however, the method

allows different models to have different calibration parameters. The Bayesian computations are performed

via Markov chain Monte Carlo methods. A computational highlight of the procedure is that it builds the

unknown mixture weight functions via a stochastic bases selection from a pool of basis functions in a data-

driven manner.

The method is suitable to address realistic problems that one model may be more accurate than the

other at different (unspecified) input sub-regions. In particular, through the weight functions, it allows the

determination of the input sub-region at which a individual computer model is more preferable to be used

than the rest individual ones. The method is particularly suitable to address applications where the outputs

of the available computer models tend to differ from the output of the real system at different directions.

This is because the weight functions can adjust the outputs of contributing models in the mixture, in a
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manner that the overall discrepancy of the mixture will be less that the individual ones. Therefore, in such

cases, the resulting calibrated computer model mixture is able to produce more accurate simulations than

the single ones. This covers a large range of important real world applications [15], such as the WRF one

analyzed here.

The article is organized as follows. In Section 2, we present the proposed method. In Section 3.1, we

validate the proposed method with that of Goh et al. [11] in a validation example. In Section 3.2, we

assess the good performance of the method and compare it with that of Kennedy and O’Hagan [1] in a

more challenging benchmark example. In Section 3.3, we implement the method on a real world large-scale

climate modeling application that involves the WRF with the KF CPS. In Section 4, we conclude and propose

possible extensions. In AppendixB, we provide a technique that mitigates the computational overhead of

the procedure which is caused by the consideration of multiple computer models.

2. The method

The proposed method extends the standard Bayesian calibration of a single computer model [1, 2] to the

multiple computer model framework.

2.1. Basic formulation

Set-up. We assume there is available a set of K different computer models tS pkq; k P Ku where K “

t1, ...,Ku. Each computer model S pkq aims at simulating the same real system Z .

We consider training data which consist of a collection of experimental data tpyi, xiq; i “ 1, ..., nu gen-

erated from the real system Z after n realizations, and K designs of simulated data tpηpkqi , x
pkq
i , t

pkq
i q; i “

n`
ř

jăkm
pjq`1, ..., n`

ř

jďkm
pjqu generated from the computer model S pkq aftermpkq runs for k “ 1, ...,K.

Let z�K “ pyᵀ, ηp1q,ᵀ, ..., ηpKq,ᵀq denotes the complete training data outputs, and n�K “ n`
řK
k“1m

pkq de-

notes the size of z�K . Here, yi P R, xi P X , xpkqi P X , and t
pkq
i P Θpkq, for any i,k, where X is the input

domain, and Θpkq is the calibration parameter domain of computer model S pkq .

Regarding the real system Z , the experimental observations yi :“ ypxiq are generated for a given xi via

yi “ ζpxiq ` εy,i,

where the εy,i denotes the observation error, and ζpxiq denotes the expected output of the real system at

input xi for i “ 1, ..., n.

Regarding the computer model S pkq, the simulated data ηpkqi :“ ηpkqpx
pkq
i , t

pkq
i q are generated for a given

x
pkq
i , and calibration parameters tpkqi via

η
pkq
i “ Spkqpx

pkq
i , t

pkq
i q ` ε

pkq
η,i ,

4



where εpkqη,i denotes the random error, and Spkqpxpkqi , t
pkq
i q denotes the expected output of the computer model

S pkq at pxpkqi , t
pkq
i q, for i “ n`

ř

jăkm
pjq ` 1, ..., n`

ř

jďkm
pjq. The inclusion of term ε

pkq
η as random error

is necessary when S pkq is stochastic, as well as beneficial, in terms of the stability of the statistical model,

when S pkq is deterministic as discussed by Gramacy and Lee [17].

Computer model mixture. Although each computer model aims at simulating the same real system, it may

be designed based on different theoretical background and present different properties. In order to aggregate

different properties associated with different computer models, we model the output function of the real

system Z as a mixture of the output functions of the available computer models plus a discrepancy. He

define the computer model mixture representation of the real system, as

S�Kp¨, θ�Kq “

K
ÿ

k“1

$kp¨qS
pkqp¨, θpkqq; ζp¨q “ S�Kp¨, θ�Kq ` δp¨q. (2.1)

Note that in our framework, the components of mixture (2.1) are computer models (simulators), unlike other

works [18, 19, 20] in the literature where the components are different statistical models referring to the same

computer model.

The main role of the weight functions t$kp¨qu is to adjust the contribution of the corresponding computer

models tSpkqu in the mixture tS�Ku as functions of the input in a principled manner; for this reason we

consider them as a probability vector that depends on the inputs. Precisely, $p¨q :“ p$kp¨q; k P 1, ...,Kq is the

unknown vector of weight functions such that t$kp¨q : X Ñ p0, 1q; k “ 1, ...,K ´ 1u, and $Kp¨q : X Ñ p0, 1q

with $Kp¨q “ 1 ´
řK´1
k“1 $kp¨q. This allows differently weighted combinations of the computer models to

represent the real system at different inputs. Hence, (2.1) is suitable to model realistic problems where

the unknown fidelity order of the computer models may change over the input space X . Moreover, δp¨q

is a discrepancy function, and it refers to a potential systematic disagreement between the real system

output ζp¨q and the computer model mixture output S�Kp¨, θ�Kq, e.g. due to ‘missed’ or ‘missrepresented’

physical properties. We highlight that different computer models tS pkqu may have calibration parameters

different in value, or dimensionality. As a result, there is need to evaluate the set of calibration parameters

tθpkq P Θpkq; k P Ku, (or θ�K “ pθp1q, ..., θpKqq).

The computer model mixture calibration problem can be summarized as

C �K :

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ypxiq “
řK
k“1$kpxiqS

pkqpxi, θ
pkqq ` δpxiq ` εy,i, i “ 1, ..., n

η
p1q
i “ Sp1qpx

p1q
i , t

p1q
i q ` ε

p1q
η,i , i “ n` 1, ..., n`mp1q

...
...

η
pKq
i “ SpKqpx

pKq
i , t

pKq
i q ` ε

pKq
η,i , i “ n`

ř

kăK m
pkq ` 1, ..., n�K

. (2.2)
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Weight functions parametrization . The unknown weight functions t$kp¨qu are modeled a polynomial ex-

pansion in the multivariate logistic space, as

logp
$kp¨q

$Kp¨q
q “ gkp¨q; (2.3)

gkp¨q “
ÿ

aPΛp$,dx

hpkq$,ap¨qωk,a, (2.4)

for k “ 1, ...,K ´ 1, where $Kp¨q “ 1 ´
řK´1
k“1 $kp¨q, and gkp¨q is a polynomial expansion of degree p$.

Specifically, thpkq$,ap¨qu are multi-dimensional basis functions properly specified, for example from Askey family

[21], tωk,au are unknown coefficients, and Λp$,dx is a set of multi-indices indicating the available bases up to a

degree p$. The rational in (2.3) is that the additive logistic transformation is suitable to provide a monotonic

mapping between RK´1 and the simplex of K-dimensional probability vector. Moreover, regarding (2.4), the

polynomial expansions are able to accurately represent unknown functions under certain regularity conditions

[22].

Often, only a subset Ik P Λp,dx of bases significantly contributes to the expansion (2.4), while the rest

bases can be omitted without serious loss of accuracy [23]. Here, we consider that given a set of available

bases Λp,dx , there is an unknown subset of significant bases with indices Ik Ă Λp,dx , for k “ 1, ...,K.

Therefore, given (2.4) using only the subset of bases with indices Ik Ă Λp,dx , the unknown weight functions

result from the inversion of (2.3) as

$kp¨q “
expph

pkq
$,Ikp¨q

ᵀωk,Ikq

1`
řK´1
j“1 expph

pkq
$,Ikp¨q

ᵀωj,Ikq
, (2.5)

where h
pkq
$,Ikp¨q :“ ph

pkq
$,ap¨q; a P Ikq and ωk,Ik :“ pωk,a; a P Ikq for k “ 1, ...,K ´ 1, and $Kp¨q “

1 ´
řK´1
k“1 $kp¨q. The consideration of smaller sets of bases thpkq$,ap¨q; a P Iku may have computational

benefits as it reduces the number of the unknown coefficients tωk,a; a P Iku to be estimated [23, 24, 25, 26].

Parametrization (2.5) leads to convenient computations, as well as reliable inferences and predictions. In

the current framework, the use of Gaussian process priors [20] or an allocation model [27] for the repre-

sentation of the weight functions would lead to expensive computations due to the introduction of many

extra latent/nuisance variables. The special case where the weights are assumed to be constant values

th
pkq
$,Ikp¨q “ 1u implies that the fidelity of the computer models is constant across the input space, and hence

it can be too restrictive in real world problems.

Surrogate modeling. We consider the realistic scenario where the available computer models tS pkqu are

computationally expensive, and hence they cannot be used directly in Bayesian computations that require a

vast number of direct computer runs. The ‘uncertain’ functions tSpkqp¨, ¨qu and δp¨q are modeled as Gaussian

processes (GP) [1, 4], that allow the design of an emulator for the output function in a mathematically

convenient manner. For k P K, we assign independent Gaussian processes priors on the functions Spkqp¨, ¨q
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and δp¨q as Spkqp¨, ¨q „ GPpµpkqS p¨, ¨q, c
pkq
S pp¨, ¨q, p¨, ¨qqq, and δp¨q „ GPpµδp¨q, cδp¨, ¨qq, where µ

pkq
S : XˆΘpkq Ñ R,

µδ : X Ñ R are the mean functions of the GPs, and cpkqS : X ˆΘpkq ˆX ˆΘpkq Ñ R`, cδ : X ˆX Ñ R` are

the covariance functions of the GPs. For presentation purpose, we consider a traditional parametrization

for µpkqS p¨, ¨q, µδp¨q, c
pkq
S pp¨, ¨q, p¨, ¨qq, and cδp¨, ¨q, however more intricate ones can be used in our framework.

The mean functions are specified as linear expansions µδp¨q “ hδp¨q
ᵀβδ and µ

pkq
S p¨, ¨q “ h

pkq
S p¨, ¨qβ

pkq
S where

hδ : X Ñ Rdβ,δ and hpkqS : X ˆΘpkq Ñ Rd
pkq
β,S are vectors of basis functions, such as polynomial bases [21], or

wavelets [28], and βδ, β
pkq
S are vectors of unknown coefficients with βpkqS P Rd

pkq
β,S , βδ P Rdβ,δ . The covariance

functions can be specified according to the separable covariance function family [29, 30] as

c
pkq
S ppx, tq, px1, t1qq “ τ

pkq
S

q
ź

l“1

pφ
pkq
S,x,lq

p2|xl´x
1
l|q

2
ppkq
ź

l“1

pφ
pkq
S,t,lq

p2|tl´t
1
l|q

2

q; (2.6)

cδpx, x
1q “ τδ

q
ź

l“1

pφδ,x,lq
p2|xl´x

1
l|q

2

, (2.7)

where τ pkqS ą 0, τδ ą 0 control the marginal variances; tφpkqS,x,l P p0, 1qu, tφ
pkq
S,t,l P p0, 1q; u, tφδ,x,l P p0, 1qu

control the dependence strength in each of the component directions of x and t. More intricate covariance

functions, such as the stationary ones from the Matérn family [31, 4], the non-stationary ones of Paciorek

and Schervish [32], or the compact support (combined via tapering) ones [33, Chapter 9] can also be used in

this set-up. Here, εy and εpkqη are modeled as random noises with unknown variances σ2
y ą 0 and σpkq,2η ą 0

respectively. We caution that some applications may require εyp¨q and tε
pkq
η p¨, ¨qu to be treated as functions;

such a case is out of the scope of this article.

2.2. The Bayesian model

To facilitate the presentation we make the notation more compact, and define unknown random param-

eters: θ�K :“ pθp1q, ..., θpKqq on space Θ�K , β�K :“ pβ
p1q
S , ...β

pKq
S , β

pkq
δ q on space B�K :“ R

řK
k“1 d

pkq
β,S`dβ,δ ,

ϕ�K :“ ppφ
pkq
S,x, φ

pkq
S,t , τ

pkq
S , σ

pkq,2
η ; k “ 1, ...,Kq, φδ,x, τδ, σ

2
yq on space Φ�K , and I “ pI1, ..., IKq.

Statistical model. The (marginal) likelihood function of z�K , marginalized with respect to the GP priors

of tSpkqp¨qu and δp¨q, is a multivariate Normal distribution with n�K-dimensional mean vector µ�K
z :“

µ�K
z pI, $, β�K , θ�Kq and covariance matrix Σ�K

z :“ Σ�K
z pI, $, ϕ�K , θ�Kq of size n�K ˆ n�K such that

µ�K
z “

H�K
z “

hkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkj

»

—

—

—

—

—

—

—

—

—

–

H
p1q
S H

p2q
S ¨ ¨ ¨ H

pKq
S Hδ

9H
p1q
S 0 ¨ ¨ ¨ 0 0

0 9H
p2q
S

. . .
...

...
...

. . . . . . 0 0

0 ¨ ¨ ¨ 0 9H
pKq
S 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

β�K
“

hkkkikkkj

»

—

—

—

—

—

—

—

—

—

–

β
p1q
S

β
p1q
S

...

β
pKq
S

βδ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; Σ�K
z “

»

—

—

—

—

—

—

—

—

—

–

Σz Σ
p1q,ᵀ
z Σ

p2q,ᵀ
z ¨ ¨ ¨ Σ

pKq,ᵀ
z

Σ
p1q
z Σ

p1,1q
z 0 ¨ ¨ ¨ 0

Σ
p2q
z 0 Σ

p2,2q
z

. . .
...

...
...

. . . . . . 0

Σ
pKq
z 0 ¨ ¨ ¨ 0 Σ

pK,Kq
z

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

7



respectively. Here, trHpkqS si,: “ $kpxiqh
pkq,ᵀ
S pxi, θ

pkqq; i “ 1, ..., n, k “ 1, ...,Ku, trHδsi,: “ hᵀδ pxiq; i “

1, ..., nu, tr 9H
pkq
S si,: “ h

pkq,ᵀ
S pxi, t

pkq
i q; i “ n`

ř

j1ăkm
pj1q ` 1, ..., n`

ř

j1ďkm
pj1q, k “ 1, ...,Ku, and

rΣzsi,j “
K
ÿ

k“1

$kpxiq$kpxjqc
pkq
S ppxi, θ

pkqq, pxj , θ
pkqqq ` cδpxi, xjq ` σ

2
y10pi´ jq,

i “ 1, ..., n; j “ 1, ..., n;

rΣpkqz si,j “$kpxjqc
pkq
S ppxi, t

pkq
i q, pxj , θ

pkqqq,

i “ n`
ÿ

j1ăk

mpj
1
q ` 1, ..., n`

ÿ

j1ďk

mpj
1
q; j “ 1, ..., n;

rΣpk,kqz si,j “c
pkq
S ppxi, t

pkq
i q, pxj , t

pkq
j qq ` σpkq,2η 10pi´ jq,

i “ n`
ÿ

j1ăk

mpj
1
q ` 1, ..., n`

ÿ

j1ďk

mpj
1
q; j “ n`

ÿ

j1ăk

mpj
1
q ` 1, ..., n`

ÿ

j1ďk

mpj
1
q,

according to (2.6) and (2.7).

The proposed framework allows the introduction of shared calibration parameters, namely calibration

parameters which are common to different computer models, have the same interpretation, and have the

same values across different models. Different computer models, e.g. S pkq and S pk1q, may share a set of

common calibration parameters, e.g. θpkqj and θ
pk1q
j1 , that describe the same quantity. In many cases, it is

desirable for some calibration parameters to be calibrated jointly across different models. Technically, this

can be achieved by setting appropriate constrains on the space Θ�K , e.g. θpkqj “ θ
pk1q
j1 . This allows inference

on those parameters to be based on multiple computer models and hence possibly different physics. In the

context of computer model mixture (2.2), the weight functions control the ‘contribution’ of each computer

model in the calibration procedure through (2.1). Therefore, the training of shared calibration parameters

is primary influenced by computer models with larger weights and hence those which represent the system

output more accurately.

Prior model. We specify a prior model for the unknown parameters πpI, ω, β�K , ϕ�K , θ�Kq.

Regarding the weight functions, we assign priors on Ik „ PrpIkq in order to account uncertainty about

the unknown set of the significant bases functions, and Normal priors on ωk „ Npbω, ξ´1
ω q in order to account

uncertainty about the unknown coefficients, for k “ 1, ...,K ´ 1. A priori information, for example related

to the fidelity of the computer models, can be included in the prior model by adjusting the prior hyper-

parameters. Otherwise, weakly informative priors of the weight functions parameters can be used; e.g.

bω “ 0, ξω small, and PrpIkq91 for k “ 1, ...,K ´ 1.
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A priori independent priors can be assigned on tβ�K , ϕ�Ku such that

φ
pkq
S,x,l „ Bepaφ,S,x, bφ,S,xq, l “ 1, ..., q; β

pkq
S „ NpbpkqS , ξ´1

β Σ
pkq
β,Sq;

φ
pkq
S,t,l „ Bepaφ,S,x, bφ,S,xq, l “ 1, ..., ppkq; βδ „ Np0, ξ´1

β Σβ,δq;

φδ,x,l „ Bepaφ,δ,x, bφ,δ,xq, l “ 1, ..., q;

τ
pkq
S „ IGpaτ,S , bτ,Sq; σ2

y „ IGpaσ,y, bσ,yq;

τδ „ IGpaτ,δ, bτ,δq; σ
pkq,2
η „ IGpaσ,η, bσ,ηq,

(2.8)

for k “ 1, ...,K, where Be and IG denote the Beta and inverse Gamma distributions. The fixed hyper-

parameters in (2.8) are defined by the researcher. If no a priori information for tβpkqS u and βδ is available,

one can let ξβ Ñ 0, so that ultimately tβpkqS u and βδ are a priori completely unknown [3]. This limiting prior

‘distribution’ is improper, non-informative, and independent of the values of tbpkqS u, tΣpkqβ,Su, bδ, and Σβ,δ.

The priors assigned on φpkq,´1
S,x,l , φpkq,´1

δ,x,l , and φpkq,´1
S,t,l are standard choices and suggested in [30]. The proposed

methodology can be used even if different priors for the parameters of the covariance are specified.

Prior distribution on the calibration parameters πpθ�Kq is specified according to the available a priori

information. Available prior information about the dependency of calibration parameters, e.g. θpkq and

θpk
1
q, between different computer models, e.g. S pkq and S pk1q, can be included in the priors. Usually, the

researcher is confident that the ideal values of the calibration parameters lie in a specific range, and hence

the associated priors have positive mass over a bounded region of Θ�K . In such cases, if a priori information

is available about a calibration parameter, one can assign truncated multivariate Normal prior distributions,

otherwise one can assign uniform prior distributions.

Posterior model. The joint posterior distribution πpI, ω, β�Kϕ�K , θ�K |z�Kq according to the Bayes theo-

rem admits density

πpI, ω, θ�K , β�K , ϕ�K |z�Kq9fpz�K |ω, β�K , ϕ�K , θ�KqPrpIqπpω|Iqπpβ�Kqπpϕ�Kqπpθ�Kq. (2.9)

It can be factorized as

πpI, ω, β�K , ϕ�K , θ�K |z�Kq “ πpβ�K |z�K , I, ω, ϕ�K , θ�KqπpI, ω, ϕ�K , θ�K |z�Kq (2.10)

where, on the right hand side of (2.10), the first distribution is a multivariate normal distribution

β�K |z�K , I, ω, ϕ�K , θ�K „ Npβ̂�K , Ŵ�Kq with mean and covariance matrix

β̂�K “ Ŵ�KpH�K,ᵀ
z Σ�K,´1

z z�K ` ξβΣ´1
β bβq; (2.11)

Ŵ�K “ pH�K,ᵀ
z Σ�K,´1

z H�K
z ` ξβΣ´1

β q
´1, (2.12)
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Algorithm 1 MCMC sweep.
[BL-1] Update pI, ωq: Simulate from πpIk, ωk|z�K , ϕ�K , θ�Kq via RJ algorithm, for k “ 1, ...,K ´ 1.

[BL-2] Update ω: Simulate from πpωk|z
�K , ϕ�K , θ�Kq via HRMH algorithm, for k “ 1, ...,K ´ 1.

[BL-3] Update θ�K : Simulate from πpθ�K |z�K , $, ϕ�Kq via a mixture of HRMH kernels.

[BL-4] Update ϕ�K : Simulate from πpϕ�K |z�K , $, θ�Kq via a mixture of MH kernels.

respectively and Σ�K
β “ diagpdiagpΣpkqβ,S ; k “ 1, ...,Kq,Σβ,δq, while the second one admits density

πpI, ω, ϕ�K , θ�K |z�Kq9fpz�K |I, ω, ϕ�K , θ�KqPrpIqπpω|Iqπpϕ�Kqπpθ�Kq, (2.13)

fpz�K |I, ω, ϕ�K , θ�Kq9|detpŴ�Kq|
1
2 |detpΣ�K

z q|´
1
2

ˆ expp´
1

2
z�K,ᵀΣ�K,´1

z z�K `
1

2
β̂�K,ᵀŴ�K,´1β̂�Kq. (2.14)

The joint posterior density (2.9) is intractable and known up to a normalizing constant in realistic scenarios;

hence one can resort to Markov chain Monte Carlo (MCMC) in order to perform the computations.

2.3. Computations

We consider MCMC methods in order to facilitate the Bayesian computations. This requires to generate

sample from joint posterior (2.10), which can be performed in two steps: (i.) simulate πpI, ω, ϕ�K , θ�K |z�Kq;

and (ii.) sample from πpβ�K |z�K , I, ω, ϕ�K , θ�Kq given the values drawn at step (i.).

The conditional distribution πpβ�K |z�K , I, ω, ϕ�K , θ�Kq is a multivariate normal Npβ̂�K , Ŵ�Kq and

can be sampled directly. To simulate from distribution πpI, ω, ϕ�K , θ�K |z�Kq, we design a MCMC sampler

with four blocks updating πpI, $|z�K , ϕ�K , θ�Kq, πp$|z�K , I, ϕ�K , θ�Kq, πpθ�K |z�K , I, $, ϕ�Kq, and

πpϕ�K |z�K , I, $, θ�Kq. The MCMC sweep is presented in Algorithm 1 as a pseudo-code, and the associated

blocks are discussed briefly in what follows.

Block BL-1 performs structural changes in the parametrization of the weight functions by changing the

bases composition of the expansion in (2.5). Because it proposes changes in the dimensionality of the sampling

space, it can be performed through the reversible jump (RJ) algorithm [34]. Here, we design local birth &

death RJ moves. Briefly, we randomly select to perform a Birth move with probability Pbirth, or a Death

move with probability Pdeath. According to the Birth move, a currently non-significant base is randomly

proposed to be included in the weight function $kp¨q. According to the Death move: a significant base is

randomly proposed to be removed from the weight function $kp¨q. The RJ transitions are presented as a

pseudo-code in Algorithm 2. The specification of probabilities Pbirth, Pdeath is problem dependent. A random

choice between the two moves usually leads to acceptable mixing. Here, we use: pPbirth “ 1, Pdeath “ 0q if

only one basis is currently used for the weight function; pPbirth “ 0, Pdeath “ 1q if all the available bases are

10



Algorithm 2 RJ moves proposing changes to the parameters pIk, ωkq .

Notation: ck denotes the size of Ik, c denotes the carnality of Λp$,dx , � denotes adding an element to a

vector, � denotes removing an element from a vector, and Np¨|¨, ¨q denotes the normal density.
Randomly choose to perform either a birth or a death move with probabilities Pbirth, Pdeath, respectfully.

Birth move: pI, ω, ϕ�K , θ�Kq Ñ pI`, ω`, ϕ�K , θ�Kq

1. randomly select a currently non-significant base with index j0 P Λp,dx ´ Ik to include in the

expansion.

2. compute the candidate pI`, ω`q by appending as I`k Ð Ik � j0 and ω`k Ð ωk � wj0 ,

where wj0 is generated from distribution Qpd¨q

3. accept the move, and the proposed values pI`, ω`, ϕ�K , θ�Kq with probability

minp1,
fpz�K |I`, ω`, ϕ�K , θ�Kq PrpI`k q Npwj0 |bω, ξ´1

ω q Pdeath 1{pck ` 1q

fpz�K |I, ω, ϕ�K , θ�Kq PrpIkq Pbirth 1{pc´ ckq Qpwj0q
q.

Death move: pI, ω, ϕ�K , θ�Kq Ñ pI´, ω´, ϕ�K , θ�Kq

1. randomly select a currently significant base with index j0 P Ik to remove from the expansion

2. compute the candidate pI´, ω´q by removing I´k Ð Ik � j0 and ω´k Ð ωk � wj0

3. accept the move, and the proposed value pI´, ω´, ϕ�K , θ�Kq with probability

minp1,
fpz�K |I´, ω´, ϕ�K , θ�Kq PrpI´k q Pbirth 1{pc´ ck ` 1q Qpwj0q

fpz�K |I, ω, ϕ�K , θ�Kq PrpIkq Npwj0 |bω, ξ´1
ω q Pdeath 1{ck

q.

currently used for the weight function; and pPbirth “ 0.5, Pdeath “ 0.5q otherwise. A particular choice of the

proposal distribution Qpd¨q that leads to simpler acceptance probability ratio is the prior, i.e. the Normal

distribution with mean bω and variance ξω, however other distributions can be used.

In block BL-2, parameters tωku can be updated via Metropolis-Hastings (MH) algorithm [35] targeting

πpωk|z
�K , ϕ�K , θ�Kq. In block BL-3, the calibration parameters θ�K can be updated via a hit-and-run MH

(HRMH) algorithms [36, 37] targeting the conditional distributions of πpθ�K |z�K , $, ϕ�Kq. HRMH can

be useful to facilitate the MCMC updates in this block, because θ�K may have dimensions with different

ranges, or sharply constraint parameter space. In Block BL-4, the parameters ϕ�K are updated via random

walk Metropolis (RWM) algorithm targeting the full conditional distributions of ttφpkqS,x, φ
pkq
S,t , τ

pkq
S , σ

pkq,2
η ; k “

1, ...,Ku, φδ,x, τδ, σ
2
yu. The conditional posterior distributions required in Algorithm 1 can be easily derived

from (2.13).

The proposed MCMC sampler is valid, i.e. irreducible, aperiodic, and reversible. The Metropolis-Hastings

updates in blocks BL-2, 3, and 4 can be tuned via an adaptive scheme [38]; these updates are presented
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briefly in AppendixA. In the presence of moderately large number of computer models, the computational

overhead can be mitigated by using a convenient technique we provide in AppendixB.

At each iteration, the MCMC sampler requires the evaluation of the likelihood (2.14) involving the

inversion of ΣbKz . Because of the consideration of multiple computer models the size of ΣbKz may become

large, and hence the direct inversion of ΣbKz via Cholesky decomposition (which scales Op¨3q with the

matrix size) is computationally prohibitive. In AppendixB, we suggest a tailored technique to invert ΣbKz

via Cholesky which can mitigate the computational overhead caused by the consideration of multiple models.

It takes advantage of the block-sparse structure of ΣbKz .

2.4. Inference, calibration, and prediction

The specification of the Bayesian model and design of the MCMC sampler allows one to perform in-

ference, calibration, and prediction based on the proposed computer model calibration framework. Let

SN “ tpIt, ωt, β�K
t ϕ�K

t , θ�K
t q; t “ 1, ..., Nu be a MCMC sample generated according to Algorithm 1.

The posterior distributions of the statistical parameters pI, ω, β�K , ϕ�Kq, calibration parameters θ�K ,

and their functions can be recovered from SN via standard MCMC methods [39]. Inference on the weight

functions provides a mean to ‘rank’ the available computer models at different input values in cases that the

fidelity order is a priori unknown. This is because they indicate the contribution of each individual model

in the mixture for the representation of the real system output. Posterior estimates for the weight functions

t$kp¨qu can be computed as

$̂kp¨q «
1

N

N
ÿ

t“1

expph
pkq
$,Itp¨q

ᵀωk,Itq

1`
řK´1
j“1 expph

pkq
$,Itp¨q

ᵀωj,Itq
, (2.15)

along with the associated standard errors according to the Markov chain CLT [40]. Moreover, the weight

functions allow the determination of a reasonable input space partition tXkuKk“1 where each sub-region

Xk “ tx P X |$kpxq “ maxp$1pxq, ..., $Kpxqqu includes the input values that model S pkq is more preferable

to be used than the rest. Let as define the integrated posterior weight over input sub-region A Ď X as

t$kpAq “
ş

9X $kpxqdxu. Then t$kpAqu can be used as an indicator of the total contribution of computer

model tS pkqu to the representation of Z throughout an input sub-region A. The estimation of t$kpAqu

can be performed numerically by using (2.15). Bayesian point estimates of the calibration parameter θ�K ,

can be computed, for example, such as as the maximum a posteriori (MAP) estimate or the posterior mean.

For C �K , the full conditional predictive distribution of ζpxq|z�K , I, $, β�Kϕ�K , θ�K integrated out

with respect to πpβ�K |z�K , I, $, ϕ�K , θ�Kq is denoted as fpζp¨q|z�K , I, ω, ϕ�K , θ�Kq. It is a Gaussian
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process, with mean and covariance functions

µ�K
ζ px|z�K , I, ω, ϕ�K , θ�Kq “h�Kpx, θ�Kqβ̂�K ` v�Kpx, θ�KqᵀΣ�K,´1

z pz�K ´H�K β̂�Kq; (2.16)

c�Kζ px, x1|z�K , I, ω, ϕ�K , θ�Kq “

K
ÿ

k“1

$kpxq$kpx
1qc
pkq
S ppx, θpkqq, px1, θpkqqq

` cδpx, x
1q ´ v�Kpx, θ�KqᵀΣ�K,´1

z v�Kpx1, θ�Kq

` rh�Kpx, θ�Kq ´H�K,ᵀ
z Σ�K,´1

z v�Kpx, θ�KqsᵀŴ�K

ˆ rh�Kpx1, θ�Kq ´H�K,ᵀ
z Σ�K,´1

z v�Kpx1, θ�Kqs, (2.17)

correspondingly, where

h�Kpx, θ�Kq “ r$1pxqh
p1q
S px, θ

p1qq, ..., $Kpxqh
pKq
S px, θpKqq, hδpxqs

ᵀ; and

v�Kpx, θ�Kq “

»

—

—

—

—

—

—

–

p
řK
k“1$kpxq$kpxiqc

pkq
S ppx, θpkqq, pxi, θ

pkqqq ` cδpx, xiq; i “ 1 : nqᵀ

p$1pxqc
p1q
S ppx, θ

p1qq, pxi, t
p1q
i qq; i “ n` 1 : n`mp1qqᵀ

...

p$Kpxqc
pKq
S ppx, θpKqq, pxi, t

pKq
i qq; i “ n`

ř

kăK m
pkq ` 1 : n�Kqᵀ

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The marginal predictive distribution density, needed to perform predictions,

fpζpxq|z�Kq “
ÿ

I

ż

fpζpxq|z�K , I, ω, ϕ�K , θ�KqπpI, ω, ϕ�K , θ�K |z�Kqdpω, ϕ�K , θ�Kq (2.18)

is not available in closed form, however it can be approximated via MCMC integration as

f̂pζpxq|z�Kq “
1

N

N
ÿ

t“1

fpζpxq|z�K , It, ωt, ϕ�K
t , θ�K

t q. (2.19)

A common choice that leads to reliable, as well as mathematically convenient, surrogate models for ζpxq

is based on the expectation µ�K
ζ px|z�K , I, ω, ϕ�K , θ�Kq with respect to the joint posterior, which can be

approximated in a
?
N -CLT fashion as

µ̂�K
ζ px|z�Kq “

1

N

N
ÿ

t“1

µ�K
ζ px|z�K , It, ωt, ϕ�K

t , θ�K
t q, (2.20)

for a given x P X . Note that for the computation of (2.19) and (2.20) we do not need to generate values

tβ�K
t u and hence the associated sampling step can be omitted.

Suppose we wish to predict the real system output in the context that one or more of the inputs is subject

to parametric variability. Here, uncertainty analysis can be performed along the same lines of [1, 41, 42] by

using the surrogate model estimate (2.20) and marginal predictive density estimate (2.19).

Remark 1. The procedure builds the unknown weight functions by selecting significant bases and evaluating

the corresponding coefficients in a stochastic data-driven manner. This bases selection mechanism can

provide parsimonious bases representations for the weight functions.
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3. Numerical examples

We provide a validation study of the proposed method with that of Goh et al. [11] in a simple benchmark

example (Sec. 3.1). We demonstrate the performance of the method and compare it with that of Kennedy

and O’Hagan [1] in a more challenging example with PDEs where the fidelity order of the models is unknown

and changes over the spatial space (Sec. 3.2). We use the proposed method to address a challenging real

world large-scale climate application involving multiple computer models with different physics (Sec. 3.3).

3.1. Validation example: a simple multi-fidelity case

We consider there are available two computer models S p1q, S p2q that aim at simulating the real system

Z with different levels of fidelity, and there is interest in designing a predictive model for Z . To validate

the performance of our method, we pretend that we do not know which model is more accurate; although

S p2q has higher fidelity than S p1q by construction. Moreover, we validate our method with respect to the

multi-fidelity method of Goh et al. [11] which is exclusively designed to address only cases with known fidelity

order; hence for method of Goh et al. [11] we use the extra information that S p2q is of higher fidelity than

S p1q.

Let us consider 2D elliptic PDEs

´∇ ¨ pcpx, pϑ1, ϑ2qq∇up1qpx, pϑ1, ϑ2qq “ fpxq, x P X ´ BX

up1qpx, pϑ1, ϑ2qq “ 0, x P BX

,

.

-

; (3.1)

´∇ ¨ pcpx, pϑ1, ϑ2qq∇up2qpx, pϑ1, ϑ2, ϑ3qq

`apx, ϑ3qu
p2qpx, pϑ1, ϑ2, ϑ3qq “ fpxq, x P X ´ BX

up2qpx, pϑ1, ϑ2, ϑ3qq “ 0, x P BX

,

/

/

/

.

/

/

/

-

, (3.2)

where x “ px1, x2q, X “ r0, 1s2, ϑ1 P p0, 1q, ϑ2 P p0, 1q, and ϑ3 P p0, 1q. Let fpxq “ ´100 cospπ2 p1´x1`x2qq,

cpx, pϑ1, ϑ2qq “ expp
ř2
j“1p

1
j q

2 sinp2jπx1q cosp2p3´ jqπx2qϑjq, and apx, ϑ3q “ 5 exppϑ3x1 ` p1´ ϑ3qx2q.

We assume that the real system Z under study has output function ζpxq “ up2qpx, pθ1, θ2, θ3qq ` δpxq,

where δpxq “ 2px1´0.5q2px2´0.5q2, and noise scale σy “ 0.01. The computer model S p1q has output function

Sp1qpx, tp1qq “ up1qpx, pt
p1q
1 , t

p1q
2 qq, where tp1q “ ptp1q1 , t

p1q
2 q P r0, 1s2, and uses a FEM solver with the domain

X discretized in 177 nodes and 317 triangles by the Delaunay triangulation algorithm. Computer model

S p2q has output function Sp2qpx, tp2qq “ up2qpx, pt
p2q
1 , θ2, t

p2q
2 qq, where tp2q “ ptp2q1 , t

p2q
2 q P r0, 1s2, and uses a

FEM solver with the domain X discretized in 665 nodes and 1248 triangles by the Delaunay triangulation

algorithm. Due to the more accurate PDE solver involved, it is clear to see that computer model S p2q has

higher fidelity level than S p2q with respect to Z , by contraction. For the calibration parameters of S p1q and

S p2q we consider ideal values θp1q “ pθ1, θ2q
ᵀ and θp2q “ pθ1, θ3q

ᵀ respectively, with θ1 “ 0.3, θ2 “ 0.6, and

θ3 “ 0.5. Here, the calibration parameters θp1q1 and θp2q1 are assumed to have the same physical meaning, and

hence are treated as shared calibration parameters; therefore θp1q1 “ θ
p2q
1 . Calibration parameters θp1q2 and
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θ
p2q
2 belong to models S p1q and S p2q correspondingly, and affect different parts of the corresponding PDEs;

hence they are treated as separate parameters. We use the Bayesian calibration mixture model set-up. The

means of the Gaussian process priors were modeled as constants. On the free calibration parameters, i.e. θ1,

θ2, and θ3, we assigned independent uniform priors. To make the challenge bigger, we pretend that we do

not know a priori the fidelity order of the models, and we assign weakly-informative priors on the weights;

i.e. bω “ 0, ξ´1
ω “ 102. On the rest statistical parameters, we assign weakly-informative priors; specifically

aτ,S “ bτ,S “ 10´3, aτ,δ “ bτ,δ “ 10´3, aσ,y “ bσ,y “ 10´3, and aσ,η “ bσ,η “ 10´3.

We assume there are available 10 experimental data, which in reality are generated by drawing randomly

the input values, and computing the corresponding output contaminated with noise. The involved PDE

was solved by using an acceptably accurate FEM solver with the domain X discretized in 2577 nodes and

4992 triangles by the Delaunay triangulation algorithm. For the computer models S p1q and S p2q, we use a

40-run, and 25-run LHS to generate the input values and compute the corresponding outputs. We generate

a validation data set at 150 randomly selected input points. The join posterior distribution is simulated via

MCMC sampler with 11000 iterations where the first 1000 where discarded as burn in.

Regarding the weights, in Figures 3.1a and 3.1b, the trace plots of the generated weights suggest that the

MCMC mixing was adequate, and that the ergodic average (and hence the MCMC estimate) of the weights

converges. Precisely, the MCMC estimates (posterior expectations) of the weights $1 and $2 are 0.11 and

0.89 with standard errors 3 ¨ 10´4 and 3 ¨ 10´4 correspondingly, (Figure 3.1c). The estimates of the associate

marginal posterior densities, provided as histograms in Figures 3.1a and 3.1b, have the main mass around

the posterior expectation estimate which indicates a clear evidence that the weights associated with S p2q are

more likely to have higher values than those of S p1q. This result is consistent with the fact that S p2q is more

accurate than S p1q with respect to Z , and hence it suggests that the mixture weights can give an indication

about the fidelity order of the computer models. Regarding inference on the calibration parameters, Figure

3.2 presents the estimated posterior densities of the calibration parameters. The MAP estimates of the

calibration parameters are θ̂MAP
1 “ 0.36, θ̂MAP

2 “ 0.41, and θ̂MAP
3 “ 0.43. We observe that our method

produced unimodal posterior densities for the ‘ideal’ calibration parameters θ1 and θ3, while the main mass

is above the area around the corresponding ideal calibration values. Regarding θ2, our method produces a

rather uniform marginal posterior density which suggests that this parameter might not significantly affect

the response of S p2q.

We compare our method with the Bayesian multi-fidelity calibration (BMFC) procedure of Goh et al. [11]

in terms of predictive ability (Figure 3.3). For BMFC, we use the default Gaussian processes and prior model

specifications suggested in [11], which actually resemble to those specified for our method. Additionally, for

BMFC, we consider the extra information that the fidelity order is a priori known (i.e., S p2q more accurate
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Figure 3.1: (a-b): Histograms and trace-plots of the MCMC sample of weights t$k; k “ 1, 2u. (c): The estimated

posterior expectation is $̂ “ p0.11, 0.89q (Section 3.1)

Figure 3.2: Estimated marginal posterior distribution densities of the calibration parameters. The ‘ideal’ values of

the parameters are pointed by red arrows and red crosses. (Section 3.1)
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than S p1q). As performance measures, we consider the root mean squared predictive error (RMSPE)1, and

the integrated RMSPE (IRMSPE)2. Figures 3.3a and 3.3d suggest that both procedures present adequate

predictive ability. Figures 3.3c, 3.3f, 3.3c, 3.3f were produced based on 32 realizations of the training

data sets. We observe that our method has successfully managed to produce predictions as accurate as

those produced by the problem specific BMFC procedure, throughout the input domain (Figures 3.3c and

3.3f). In Figures 3.3c and 3.3f, we observe that both methods produced comparable IRMSPE. It is quite

encouraging to observe that our method, which has a more general scope, can present comparable predictive

ability with the problem specific BMFC procedure. This is because our method can address problems that

the fidelity order is unknown and hence has a more general scope. Hence, this validation study suggests that

the proposed method can be a reliable counterpart to the BMFC.

3.2. Numerical example: a case of computer models with unknown fidelity order

A simulation study is conducted to assess the performance of the proposed method, and compare it with

that of the standard Bayesian single model calibration (BSMC) method of Kennedy and O’Hagan [1]. We

consider there are available computer models S p1q, S p2q aiming at simulating the real system Z , with

unknown fidelity order that changes across the input. Here, S p1q, S p2q have their own unique abilities to

represent Z and hence combining them can lead to better predictions and simulations.

Let us consider two 2D elliptic PDEs, differing on the diffusion coefficients and source terms,

´∇ ¨ pcpkqpx, ϑpkqq∇upkqpx, ϑpkqq “ f pkqpxq; x P X ´ BX ,

upkqpx, ϑpkqq “ 0; x P BX ,

,

.

-

(3.3)

for k “ 1, 2, where f p1qpxq “ 102, f p2qpxq “ ´102,

cp1qpx, ϑp1qq “2 expp
2
ÿ

i“1

1

i
sinp2πx1iq cosp2πx2p3´ iqqϑ

p1q
i qp1p´8,0.5qpx1q ` expp4x1q1p0.5,`8qpx1qq;

cp2qpx, ϑp2qq “2 expp
3
ÿ

i“1

1

i
sinp2πpx1 ´ x2qiq cosp2πpx1 ´ x2qp4´ iqqϑ

p2q
i qp1p´8,0.5qpx2q ` expp4x1q1p0.5,`8qpx2qq

with x P X , X “ p0, 1q2, ϑp1q P p0, 1q2, and ϑp2q P p0, 1q3.

We assume that the real system Z under study has output function ζpxq “
ř2
k“1$kpxqu

pkqpx, θpkqq`δpxq,

with $1pxq “ p1 ` expp´1 ` 2x2qq
´1, $2pxq “ 1 ´ $1pxq, δpxq “ 0.1px1 ´ 0.5qpx2 ´ 0.5q, and noise scale

σy “ 0.01. The ideal values of the calibration parameters are: θp1q “ p0.8, 0.5qᵀ, and θp2q “ p0.6, 0.7, 0.1qᵀ.

The computer models tS pkq; k “ 1, 2u, have output functions tSkpx, tpkqq “ upkqpx, tpkqq; k “ 1, 2u, where

tp1q P r0, 1s2, and tp2q P r0, 1s3, and use finite element method (FEM) solvers [43] with the domain X is

1RMSPEpxq “
b

1
N

řN
i“1pζ̂ipxq ´ ypxqq

2 computed based on N generated training data-sets
2IRMSPE “ 1

CardpXgridq

ř

xPXgrid
RMSPEpxq, where Xgrid is a set of gridded points in the input domain X
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(d) BMFC: Q-Q plot of the outputs
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Figure 3.3: (a, d): The Q-Q plots present the predicted output of the surrogate against the real output of the

real system. (b, e): The contour plots present the RMSPEs as functions of the input parameter x P X , and (c,

f): the histograms represent the distribution of the IRMSPEs, generated based on 32 realisations of the training

data and fitting the predictive model. Procedures under comparison: the proposed method (Mixture), and Bayesian

multi-fidelity calibration method (BMFC). (Section 3.1)

discretized in 665 nodes and 1248 triangles according to the Delaunay triangulation algorithm. We observe

that the real system Z can be represented by the computer models S p1q, S p2q in a combination; i.e.

ζpxq “
ř2
k“1$kpxqSkpx, t

pkq “ θpkqq ` δpxq.

The training data-set comprises a set of experimental observations at 14 randomly selected points; and

two simulated data-sets for S p1q and S p2q at 30 and 35 input points selected through Latin hypercube

sampling (LHS) [44]. For the generation of the training data, the PDEs in (3.3) were solved by using FEM

solver where the domain X was discretized in 665 nodes and 1248 triangles according to the Delaunay

triangulation algorithm. The validation data-set is generated at 150 randomly selected input points. We

consider the Bayesian calibration of computer mixture set-up in Section 2. The mean of the Gaussian

process priors of the output function of computer models and the discrepancy were modeled as Legendre

polynomial expansion of 2nd degree and 0th degree correspondingly. For the representation of the weight
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functions, we considered a pool of 1st degree multivariate Legendre polynomial bases. We assign non- or

weakly- informative priors on the statistical parameters; specifically aτ,S “ bτ,S “ 10´3, aτ,δ “ bτ,δ “ 10´3,

aσ,y “ bσ,y “ 10´3, and aσ,η “ bσ,η “ 10´3. We assign a priori independent uniform priors on the calibration

parameters. The join posterior distribution was sampled via the proposed MCMC sampler (Algorithm 1)

with 11000 iterations where the first 1000 where discarded as burn in.

We examine inference on the weight functions in Figure 3.4. We observe that the exact $2p¨q in Figure

3.4a is close to the estimated one in Figure 3.4b and inside the 95% credible intervals produced by the

proposed method. In Figure 3.4c, the histogram of the bias of the estimated $2pX q, i.e. biasp$2pX qq “

$̂2pX q ´$2pX q, has the main mass over a narrow area around zero (˘0.05), the associated ergodic average

converges to zero, and the trace plot indicates that the chain has a good mixing. In Figure 3.4d, we observe

that the procedure has successfully determined a sparse representation for the weight functions. Precisely,

it has discovered that $1p¨q, (and hence $2p¨q), can be represented by only one Legendre basis function; i.e.,

h
p1q
$,3px2q “ p´1` 2x2q. This is because the frequency of the bases in the MCMC sample (posterior inclusion

probability estimate) is 0.98 for hp1q$,3px2q, and smaller than 0.07 for hp1q$,1px2q and h
p1q
$,2px2q. Furthermore,

we assess inference on the calibration parameters. In Figure 3.5, we observe that in most of the cases, the

marginal posterior distribution densities of the calibration parameters are unimodal and mainly concentrated

above areas around the corresponding ideal values. In Figure 3.6, we plot the output of the computer

model mixture (weighted and calibrated according to the proposed method), the output of single computer

models (calibrated by the BSMC method), and the output of the real system without noise. We used MAP

estimates for the calibration parameters. We observe that the calibrated computer model mixture, fitted

by the proposed method, successfully represents the real system, while the single models calibrated by the

BSMC method fail. Therefore, the proposed method can successfully address problems where there are

available multiple computer models with unknown fidelity order and there is need to accurately simulate the

real system.

We examine the predictive ability of the proposed method. As performance measures, we consider the

root mean squared predictive error (RMSPE)3, and the integrated RMSPE (IRMSPE)4. In Figure 3.7a, we

observe that the predictions produced by the proposed method are close to the output values generated

by the real system at the same input points. Moreover, we observe that the produced RMSPE in Figure

3.7b has small values throughout the input space. Hence, the proposed method can predict the output of

the real system adequately. We compare the predictive ability of the proposed method with that of the

standard Bayesian single model calibration (BSMC) procedure of Kennedy and O’Hagan [1] with respect

to the IRMSPE. In Figures 3.7c-3.7e, the histograms of the IRMSPE values were generated based on 32

3RMSPEpxq “
b

1
N

řN
i“1pζ̂ipxq ´ ypxqq

2 computed based on N generated training data-sets
4IRMSPE “ 1

CardpXgridq

ř

xPXgrid
RMSPEpxq, where Xgrid is a set of gridded points in the input domain X
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Figure 3.4: (a): Exact weight function $2pxq “ p1 ` expp1 ´ 2x2qq
´1 presented by colored surface. (b): Estimated

weight function $̂2p¨q “ 1´ $̂1p¨q presented by colored surface and 95% credible intervals presented by red bars. (c):

Ergodic estimate of bias of integrated $2p¨q biasp$2pX qq “ $̂2pX q ´ $2pX q. (d): Frequency that each basis was

included in the weight function $p¨q as significant. (Section 3.2)

realizations of the training data and fitting the predictive model. In Figure 3.7c-3.7e, we observe that it is

more likely for the proposed method to produce smaller IRMSPE than the BSMC method. This suggests

that, the proposed method provides more accurate predictions than the BSMC, when multiple computer

models with unknown fidelity order are available.

3.3. Application to large-scale climate modeling

Set-up of the application and computer models . We consider the Advanced Research Weather Research and

Forecasting Version 3.2.1 (WRF Version 3.2.1) climate model [12] constrained in the geographical domain

25˝–44˝N and 112˝–90˝W over the Southern Great Plains (SGP) region, and we concentrate on the average
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Figure 3.5: Estimated marginal posterior distribution densities of the calibration parameters. The ‘ideal’ values of

the parameters are pointed by red arrows and red crosses. (Section 3.2)

monthly precipitation response. WRF is employed with the Kain-Fritsch convective parametrisation scheme

(KF CPS) [16] as in [45]. The KF CPS is a simple 1D mass flux cloud model specifically designed for

mesoscale models [16], including WRF, with a moderate grid spacing 10km-100km. The 5 most critical

parameters [45] of the KF scheme are: the coefficient related to downdraft mass flux rate Pd that takes values

in range r´1, 1s; the coefficient related to entrainment mass flux rate Pe that takes values in range r´1, 1s;

the maximum turbulent kinetic energy in sub-cloud layer (m2s´2) Pt that takes values in range r3, 12s; the

starting height of downdraft above updraft source layer (hPa) Ph that takes values in range r50, 350s; and the

average consumption time of convective available potential energy Pc that takes values in range r900, 7200s.

The ranges of the KF CPS parameters are quite wide and hence cause higher uncertainties in climate

simulations due to the non linear interactions and compensating errors of the parameters [46, 47, 45]. Other

specifications used are the Morrison 2-moment cloud microphysics scheme [48], the Noah land surface model

[49], and the Mellor-Yamada-Janjic [50] planetary boundary layer turbulence scheme. Here, we consider two

different radiation schemes, the Rapid Radiative Transfer Model (RRTMG) for General Circulation Models

[51], and the Community Atmosphere Model 3.0 (CAM) [14]. Moreover, we consider two grid spacing, 25km

and 50km spacing, referring to the horizontal resolutions. Here, higher grid spacing does not necessarily
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Figure 3.6: Output functions of the: (a) real system, (b) the computer mixture model weighted and calibrated with

the proposed method, (c) the S p1q calibrated by BSMC, and (d) the S p2q calibrated by BSMC. (Section 3.2)

lead to more accurate simulations with respect to the precipitation because WRF performance is sensitive

to other physical parametrizations which is uncertain how they are affected to the grid spacing.

The available computer models are three different sub-models of the WRF with physics and fidelity

variations. The first model involves the RRTMG radiation scheme with 25km horizontal grid spacing and

36 sigma levels from the surface to 1000 hPa, and is labeled as RRTMG25; the second model involves the

RRTMG radiation scheme with 50km grid spacing, and is labeled as RRTMG50; and the third one involves

the CAM 3.0 radiation scheme with 25km grid spacing, and is labeled as CAM25. The output is the monthly

average precipitation, the calibration parameters are the parameters of KF CPS, and the input are the

coordinates in SGP.

Interest lies in combining properly the above computer models and hence their unique features; which

allows to integrate both physics and fidelity variations. The reason is that aggregation of physics variability

is expected to result in better prediction in climate models [15]. E.g., Yang et al. [45] observed that RRTMG

radiation scheme tends to overestimate precipitation, while CAM tends to underestimate precipitation, given

the default calibration values. An inexpensive but accurate surrogate model is of great interest because WRF

requires several days to run. Also, it is of great interest to quantify the uncertainty ranges and identify the
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Figure 3.7: (a): The Q-Q plot presents the predicted output of the surrogate model against the real output of the

real system. (b): The contour plots present the RMSPEs as functions of the input parameter x P X , and (c-e): the

histograms represent the distribution of the IRMSPEs, generated based on 32 realizations of the training data and

fitting the predictive model. Procedures under comparison: the proposed method (Mixture), and BSMC method.

(Section 3.2)

optimal values of the five key calibration parameters in the KF CPS used in WRF. Here, the calibration

parameters have the same physical interpretation, however they may depend on the grid spacing. Therefore,

it is of interest to conduct joint inference on these parameters across the models RRTMG25 and CAM25, and

separately by the model RRTMG50.

Training data. Experimental data consist of 404 measurements from stations in the geographical domain

25˝–44˝N and 112˝–90˝W over the SGP region, and represent monthly average precipitation (in mm) in

June 2007. The dataset is available from the U.S. Historical Climatological Network repository5 [52].

Computer simulations were conducted over the same region by running the computer models: RRTMG25,

CAM25, and RRTMG50 with specific configurations. The designs of RRTMG25, CAM25, and RRTMG50,

consist of 50 simulations at different sets of calibration parameter values for each model, as well as at

5http://www.ncdc.noaa.gov/oa/climate/research/ushcn/
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4848, 4848, and 1211 coordinates on 25km, 25km, and 50km grid spacing correspondingly. Briefly, WRF

simulations for each computer model were driven by the 32km North American Regional Reanalysis (NARR),

and lateral boundary conditions were updated every 3 hours. The first simulation was initialized on May

1st, 2007 and run for 1 month with the standard KF scheme until June 1st. Afterwords, all generated

ensembles ran for another month through June 2007, using identical initial land surface conditions from the

first simulation on June 1st. Atmospheric conditions were reinitialized by using the NARR data every 2 days

in all simulations in order to minimize the potential effects of error in the simulated large-scale circulation

and isolate the impact of convective parametrisation scheme on precipitation. Each simulation was run for 3

days, but the first day was discarded as model spin-up. Since we are interested in the averaged precipitation,

all the ensembles were averaged out with respect to the time. Therefore our analysis represents an average

of 15 two-day ensembles (totaling 1 month).

The validation data-set in order for us to assess the performance of the method consist of the post-

processed University of Washington 1{8 gridded precipitation data [53] which are very accurate.

Uncertainty quantification analysis. We consider the proposed Bayesian calibration computer model mixture

set-up with non informative priors. We transformed the precipitation values to the log scale to compensate

for the positive values. The means of the Gaussian process priors assigned on the computer models output

functions are modeled as 2nd degree multivariate Legendre polynomial bases expansions, while that of the dis-

crepancy function is modeled as a constant. Because the application involves a large data-set, we tapered the

covariance functions by using the Wendland-1 tapering function [54, 33, Chapter 9]. Through try-and-error

runs, we found that an acceptable value for the tapering parameter γW is 0.1 of the range, that do not cause

significant loss in the explanation of the variability. The reason is because small scale variabilities can be

modeled by the compactly supported covariance function, while the larger scale variabilities can be explained

by the bases expansion in the linear term of the Gaussian process [55, 56]. Regarding the weight functions,

we considered a pool of 2nd degree multivariate Legendre polynomial bases. We consider shared calibration

parameters for computer models RRTMG25 and CAM25 as pP p25kmq
d , P

p25kmq
e , P

p25kmq
t , P

p25kmq
h , P

p25kmq
c q, and

separate ones for computer models RRTMG50 as pP p50kmq
d , P

p50kmq
e , P

p50kmq
t , P

p50kmq
h , P

p50kmq
c q. On the cali-

bration parameters, we assign independent truncated normal prior distributions whose hyper-parameters

are specified through moment matching; and precisely by setting the prior means equal to the empir-

ical values of the KF CPS scheme [45], and variances equal to the squared ranges. Namely, P p`qd „

trNp5.5¨10´9, 122.372q, P p`qe „ trNp5.5¨10´9, 122.372q, P p`qt „ trNp6.25, 507.682q, P p`qh „ trNp175, 1.432¨1012q,

and P p`qc „ trNp3.37e ` 3, 7.232 ¨ 1012q, for ` “ 25km, 50km. For comparison reasons, we consider the tra-

ditional Bayesian single model calibration of Higdon et al. [2] using the same specifications. The MCMC

samplers ran for 20000 iterations where the first 10000 where discarded as burn in.

We perform Bayesian inference on the mixture weight function and present the results in Figure 3.8. In
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Figure 3.8: (a-c): Estimate of the posterior weight function t$kp¨q; k “ RRTMG25,RRTMG50,CAM25u. (d-f):

Histograms and trace plots of the integrated posterior weights t$kpX25kmq computer on a 25km space grid X25km.

Samples are generated by Algorithm 1. (Section 3.3)

Figures 3.8a, 3.8b, 3.8c, we observe that the RRTMG25 model tends to outperform the other two models

in most of the regions while CAM25 tends to outperform the other two models around the areas of South

Dakota and Nebraska, in terms of the representation of the precipitation. The overall contribution of the

computer models in the mixture is indicated by the a posteriori integrated weight functions (Figures 3.8d,

3.8e, 3.8f). We observe that the posterior density of $RRTMG25pX q is over larger values than the others and

without any significant overlapping, which indicates that, overally, RRTMG25 outperforms the other two.

The associated trace plots suggest that the MCMC mixing was acceptable.

It is important to better understand the parameters of KF-CPS and constraint their ranges for future

studies. Figure 3.9 presents histogram estimates of marginal calibration parameter posterior densities, and

scatter plots of the generated calibration parameter values. We observe that the calibration parameter

posteriors, in the two grid spacing cases 25km and 50km, do not differ significantly, with the only exception

of Pt. Moreover, we observe that the posterior densities of KF-CPS parameters are concentrated around
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Calibration Posterior average est. MAP est.

parameter ` “ 25km ` “ 50km ` “ 25km ` “ 50km

P
p`q
d 0.8005 (1.28 ¨ 10´5) 0.7560 (1.27 ¨ 10´5) 0.8875 0.9430

P
p`q
e ´0.7620 (1.41 ¨ 10´5) ´0.7746 (1.28 ¨ 10´5) ´0.8120 ´0.9504

P
p`q
t 5.1525 (8.61 ¨ 10´5) 6.5938 (8.11 ¨ 10´5) 4.1234 9.1657

P
p`q
h 274.53 (2.87 ¨ 10´3) 297.18 (2.81 ¨ 10´3) 337.97 300.76

P
p`q
c 3605.00 (3.60 ¨ 10´2) 3848.15 (4.58 ¨ 10´2) 3433.75 3887.49

Table 1: Monte Carlo MAP and posterior mean estimates (with MC standard errors) of the 5 calibration parameters

in the KF-CPS. The estimates are computed based on the MCMC sample generated. (Section 3.3)

narrower ranges than the default ones. In Table 1, we report the Monte Carlo average estimates, their

standard errors and the MAP estimates of the calibration parameters as produced by the proposed method.

We examine the predictive ability of the proposed method and compare it with those of the standard

Bayesian single model calibration (BSMC) method of Kennedy and O’Hagan [1] (Figure 3.10). Figure 3.10a

presents the predicted precipitation computed according to the proposed method. Figure 3.10b presents the

relative absolute error computed as RAEpxq “ |1 ´ ζ̂pxq{yvalid.pxq|, x P X25km, against the validation data

tyvalid.u. We observe that the proposed procedure can provide reliable surrogate models for quick prediction

of the precipitation since the RAE is acceptably low throughout the input domain. In Figure 3.10c, we

provide comparisons with respect to Nash–Sutcliffe model efficiency (NSE)6, against the validation data,

and for a set of different values of the tapering parameter γW. NSE is the average of the NSE produced from

4 independent realizations for each approach. We observe that the proposed method has better predictive

ability compared to the BSMC method that uses only single models, for any value of γW considered, and

that the associated NSE increases with γW. The observed difference in the performance appears to be more

significant for more aggressive tapering (lower values of γW), and in favor of the proposed method.

Figure 3.11 shows the discrepancy function of the calibrated computer model mixture produced by the

proposed method, and those of the single models (RRTM25, RRTM50, and CAM25) produced by the BSMC

method. The discrepancy functions were computed by approximating the computer model output functions

through Kriging. We observe that the discrepancy function associated to the proposed method is smaller

than that of RRTM25 and RRTM50 produced by BSMC, in regions northward 40˝N. This is possibly because

CAM25, which appears to be more accurate in sub-region northward 40˝N, dominates RRTM25 and RRTM50

6NSE “ 1´
ř

xPXgrid
pζ̂ipxq´ypxqq

2{
ř

xPXgrid
pypxq´ ȳq2 where ȳ “

ř

xPXgrid
ypxq{CardpXgridq, and Xgrid is a set of gridded

points in the input domain X . Larger values imply better prediction.
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(a) 25Km case

(b) 50Km case

Figure 3.9: Calibration parameters of the KF-CPS. Estimated posterior densities, and generated MCMC samples of

calibration parameters. (Section 3.3)
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Figure 3.10: (a-b): Response surface of the predicted precipitation, and associate RAE, produced by the proposed

method, against the validation data. (c): NSE of the proposed method (Mixture), and the BSMC on single models

(RRTM25, RRTM50, and CAM25), with respect to the tapering parameter γW. (Section 3.3)

in the mixture in this sub-region. The mean absolute discrepancies, averaged out on the 25km grid, are 1.16

for the computer model mixture (calibrated by our method), 1.18 for RRTM25 (calibrated by BSMC), 1.27

for RRTM50 (calibrated by BSMC), 1.51 for CAM25 (calibrated by BSMC). Therefore, the discrepancy of the

mixture of computer models calibrated by our method is smaller than those of the single computer models

calibrated by BSMC in most of the spatial space. This suggests that the computer model mixture can lead

to more accurate simulations. In WRF application, an important reason that the computer model mixture

outperforms the single models is because outputs from single models tend to differ from the real perspiration

values at different directions. The weighting mechanism of the computer model mixture eliminates such

discrepancies, and allows the mixture to have better predictive performance than the single ones.

4. Conclusions and extensions

We proposed the Bayesian calibration of computer model mixture framework that extends the traditional

Bayesian (single) model calibration. It builds a predictive model for the output of a real system by weighting,

combining, and properly calibrating all the available computer models. The method allows to fit a calibrated

mixture of computer models able to represent the real system more accurately since it aggregates unique

features from different models. This allows the domain scientist to combine and weight the available computer

models (simulators) to generate more accurate simulations. The method is suitable to address realistic

problems that one model may be more accurate than the others at different input regions, due to the input

dependent mixture weights. It is a suitable choice for a large number of real applications where the outputs
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(a) Mixture (b) BSMC, RRTM25 (c) BSMC, RRTM50 (d) BSMC, CAM25

Figure 3.11: Discrepancy functions of the mixture model calibrated by the proposed method, and the single models

RRTM25, RRTM50, and CAM25 calibrated by BSMC. The average absolute discrepancy are: 1.16 for Mixture, 1.18

for RRTM25, 1.27 for RRTM50, 1.51 for CAM25 (Section 3.3)

of the available computer models fluctuate around the output of the real system. The procedure recovers the

unknown weight functions by stochastically selecting significant bases from a pool of given bases functions

in a data-driven manner. The estimated weight functions can provide a mean to rank the models at different

inputs. Inference on the calibration parameters can be based on multiple computer models (and hence

different physics) properly weighted. The proposed method does not require any knowledge of the fidelity

order of the available models, however any available information can be taken into account through the prior

model. It allows the use of a simple technique (presented in AppendixB) that mitigates the computational

overhead to invert ΣbKz which is caused by the consideration of multiple computer models.

The proposed method was applied to a large-scale climate modeling application of the Weather Research

and Forecasting with the Kain-Fritsch convective parametrisation scheme that involved multiple computer

models, based on different physical theories and levels of fidelity. Our UQ analysis produced a calibrated

computer mixture model which was observed to lead to more reliable simulations than the single models

calibrated via the traditional Bayesian model calibration of Kennedy and O’Hagan [1]. Yet, it produced an

efficient surrogate model for the average monthly precipitation which outperforms those produced by the

traditional single model calibration method. We observed that the WRF with the RRTMG radiation scheme

and 25km grid spacing outperforms the others in the representation of the real system output in the largest

part of the spatial domain. Our analysis produced valuable information about KF-CPS for future studies,

because the resulted posterior densities for the KF-CPS parameters concentrated on narrower ranges than

the original. Our comparison study showed that the proposed method outperforms the standard Bayesian

model calibration method of Kennedy and O’Hagan [1] if multiple models are available. Moreover, in the

special case that the fidelity order is known, the proposed method can be a reliable counterpart of the

29



multi-fidelity method of Goh et al. [11].

The method can be extended towards the sequential design of experiments with multiple models to

allow the adaptive selection of designs by using the mixture weights as a guide. An interesting extension

would be to consider multi-output computer models by coupling the method with that of Bilionis et al. [57].

Another important extension would be towards the Bayesian optimization by using ideas of Perdikaris and

Karniadakis [58].
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AppendixA. Adaptive Metropolis Hastings transitions

The adaptive RWM and the HRMH algorithms that simulate from distribution πpxq, x P Rd, are given

as a pseudo-codes in Algorithms 3 and 4. The Sampling step simulates a Metropolis transition probability

targeting πpxq. The Adaptive step adjusts the unknown scale parameter of the proposal so that the expected

acceptance probability to be equal to αopt. RWM and HRMH perform well in terms of integrated autocor-

relation time for αopt « 0.234 [59]. Here, we use γt “ p1{tqς , ς “ 0.6 which satisfies the required conditions

for the generated Markov chain to be ergodic [38]. In Algorithm 1, we used log and logit transformations, to

simulate from the full conditional distributions defined on the constrained spaces x P p0,8q, and x P pL,Uq.

Algorithm 3 Random walk Metropolis transition,
with an adaptive scheme
Given that the current state of the Markov chain is
at xt, and the scale of the proposal has value σt:

Sampling step

1. Compute proposed value x1
as x1 “ xt ` σtz, where z „ Np0, Idq .

2. Accept x1 as the next state of the Markov
chain with prob. α “ minp1, πpx

1
q

πpxq q.

Adaptive step

Adjust the scale of the proposal such as
logpσt`1q “ logpσtq ` γtpαt ´ αoptq.

Algorithm 4 Hit & run Metropolis Hastings tran-
sition, with an adaptive scheme
Given that the current state of the Markov chain is
at xt, and the scale of the proposal has value σt:

Sampling step

1. Compute proposed value x1
as x1 “ xt ` σtze, where z „ Np0, 1q, and
e is draw from a unit d-dimensional space.

2. Accept x1 as the next state of the Markov
chain with prob. α “ minp1, πpx

1
q

πpxq q.

Adaptive step

Adjust the scale of the proposal such as
logpσt`1q “ logpσtq ` γtpαt ´ αoptq.

AppendixB. A numerical technique to perform computations under the presence of large
number of computer models

We present a convenient technique, suitable for the proposed mixture model framework, that mitigates the

computational cost caused by the consideration of multiple computer models, when the Cholesky factorization

of Σ�K
z is required in order to evaluate the likelihood. Because of the consideration of multiple computer

models the size of ΣbKz may increase so that matrix operations requiring Cholesky decomposition of ΣbKz

become prohibitively expensive; this is because Cholesky decomposition scales as Op¨3q with the matrix size.

The suggested technique takes advantage of the block-sparse structure of Σ�K
z , in order to perform these

computations faster; hence it is tailored to the proposed method. It is particularly useful in the cases that

the researcher has access only to standard linear algebra libraries.

Inverting a matrix, such as Σ�K
z , directly can be unstable or too expensive, and hence solvers of linear

systems (e.g. Σ�K
z x “ z�K , Σ�K

z x “ H�K
z ) may be used instead. A typical approach to solve Σ�K

z x “ b is

to find an appropriate permutation matrix P and:
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1. compute the lower matrix L̃ of the Cholesky decomposition of PΣ�K
z P ᵀ,

2. solve L̃y “ Pb for y,

3. solve L̃z “ y for z,

4. compute x “ P ᵀz to obtain the solution.

Moreover, detpΣ�K
z q “ detpL̃�K

z q2. Interest lies in finding P that leads to computational savings.

Let P “ antidiagpIn, Im1 , ..., ImK q be the permutation matrix7, Σ̃�K
z “ PΣ�K

z P ᵀ be the rotated covari-

ance matrix, and L̃�K
z be the lower matrix of the Cholesky decomposition of Σ̃�K

z . Then Σ̃�K
z “ PΣ�K

z P ᵀ

is a symmetric and sparse arrowhead matrix such that

Σ̃�K
z “

»

—

—

—

—

—

—

–

Σ
pK,Kq
z Σ

pKq,ᵀ
z

. . .
...

Σ
p1,1q
z Σ

p1q,ᵀ
z

Σ
pKq
z ¨ ¨ ¨ Σ

p1q
z Σz

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

According to the block Cholesky decomposition, the lower matrix L̃�K
z is

L̃�K
z “

»

—

—

—

—

—

—

–

L
pK,Kq
z

. . .

L
p1,1q
z

L
pKq
z ¨ ¨ ¨ L

p1q
z Lz

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where tLpk,kqz u are the lower matrices of the Cholesky decomposition of tΣpk,kqz u, Lz is the lower matrix of

the Cholesky decomposition of Σz ´
řK
k“1 L

pkq,ᵀ
z L

pkq
z , and tLpkqz “ Σ

pkq
z L

pk,kq,´1
z u.

This technique allows the faster computation of Eq. 2.11, 2.12, and 2.14, because computing L̃�K
z

as above can be faster than performing standard Cholesky decomposition directly on Σ�K
z , when K is

large enough. This is because the complexity of the former procedure is Op2 ¨ pK ` 1q ¨ n3
maxq, where

nmax “ maxpn,mp1q, ...,mpKqq while that of the latter one is Opn�K,3q. This can be shown by considering

that the procedure requires K ` 1 Cholesky decompositions with complexity Op¨3q, K forward substitutions

with Op¨2q, and K ` 1 multiplications with Op¨3q. If faster decomposition or multiplication algorithms

are applied, the complexity will be reduced accordingly. Further computational savings can be achieved if

parallel computing environment is available because pairs of sub-matrices tpLpkqz , L
pk,kq
z q; k “ 1, ...,Ku can

be computed in parallel for all k.

7As antidiagpIn, Im1 , ..., ImK q, we denote the matrix with blocks tIn, Im1 , ..., ImK u in the anti-diagonal (row-wise) and zeros
elsewhere.
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