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Abstract

A vertex centred Finite Volume algorithm is presented for the numerical
simulation of fast transient dynamics problems involving large deformations.
A mixed formulation based upon the use of the linear momentum, the defor-
mation gradient tensor and the total energy as conservation variables is dis-
cretised in space using linear triangles and tetrahedra in two-dimensional and
three-dimensional computations, respectively. The scheme is implemented
using central differences for the evaluation of the interface fluxes in conjunc-
tion with the Jameson-Schmidt-Turkel (JST) artificial dissipation term. The
discretisation in time is performed by using a Total Variational Diminish-
ing (TVD) two-stage Runge-Kutta time integrator. The JST algorithm is
adapted in order to ensure the preservation of linear and angular momenta.
The framework results in a low order computationally efficient solver for
solid dynamics, which proves to be very competitive in nearly incompressible
scenarios and bending dominated applications.

Keywords: Fast dynamics, mixed formulation, conservation laws,
Mie-Gruneisen, Finite Volume Method, vertex centred,
Jameson-Schmidt-Turkel

1. Introduction

A new Lagrangian mixed formulation [1–4] has been recently developed
for the simulation of fast transient dynamics problems. The methodology is
presented in the form of a system of first order conservation laws where the
linear momentum and the deformation gradient tensor are regarded as the
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two main conservation variables. An additional conservation equation can
also be formulated for the total energy of the system which, in the case of
reversible elastodynamics, decouples from the rest of the conservation equa-
tions. The use of physical equations written in the form of conservation laws
enables the use of traditional Computational Fluid Dynamics (CFD) discreti-
sations within the solid dynamics context and, ultimately, an implementation
into a Finite Volume framework.

Early attempts at applying the Finite Volume Method (FVM) in the
context of solid dynamics date to references [5–9], using displacement based
formulations for linear elasticity. Eulerian Finite Volume Godunov methods,
classically used for modelling compressible gas dynamics, have been also
adapted to model plastic flows in solid dynamics [10–13]. Subsequently, and
perhaps more significantly to the current paper, this work was adapted to
a Lagrangian framework by several authors [13–15]. Specifically, in [14], a
Lagrangian Godunov method was presented for hyperelastic materials.

In contrast to displacement based formulations, references [1–3] have
demonstrated that the same order of accuracy can be obtained for both
strains (or stresses) and velocities (or displacements once integrated in time)
if the new mixed formulation is employed. This formulation enables the use
of low order elements without exhibiting volumetric locking in nearly incom-
pressible situations [16] and, therefore, it is proposed as an alternative to
nodal Finite Element formulations [17–27].

The use of low order elements is regarded as very advantageous in solid
dynamics due to its lower computational cost (usually related to the evalu-
ation of the constitutive model) and simplicity in the simulation of contact
problems. Furthermore, by using CFD discretisations, a large wealth of shock
capturing techniques becomes available. In reference [1], the proposed formu-
lation was implemented using a two-dimensional Finite Volume cell centred
upwind technique, where Riemann Solvers use the wave characteristics infor-
mation in order to advance the solution in time (see for example references
[28–30]). The solution was obtained with second order accuracy by using
linear reconstruction and limiters, which preserve the solution monotonicity
in the vicinity of sharp gradients.

In reference [3], the authors present an alternative two-dimensional imple-
mentation of the mixed formulation in the form a Two-Stage Taylor-Galerkin
algorithm, where results are compared against those of [1] for a series of
benchmark examples. Reference [2] introduces a new Petrov Galerkin (PG)
Finite Element Method [31] as an alternative form of stabilisation for the
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set of mixed conservation equations. Moreover, in the same work [2] the
stabilised spatial discretisation is also re-written in the form of the Varia-
tional Multiscale Method (VMS) initially introduced in [32]. Both references
[2, 3] provide two- and three-dimensional results where velocities and strains
(stresses) converge at the same rate with excellent behaviour in bending
dominated scenarios. Finally, since the formulation is written in the form
of a system of conservation laws, it is very suitable for spatial discretisation
using Discontinuous Galerkin Methods, such as in reference [4] where the
Hybridizable Discontinuous Galerkin (HDG) version is preferred.

The current paper introduces an alternative two- and three-dimensional
implementation within the vertex centred Finite Volume context, which pro-
vides a general low cost framework for large scale problems. To do so, the well
known Jameson-Schmidt-Turkel (JST) scheme [33] is used. The scheme was
first introduced in reference [33] for the solution of the Euler equations for
rectangular structured meshes, and later extended to unstructured meshes in
references [34–37]. The scheme uses a central differences approach, equivalent
to a Galerkin Finite Element discretisation with linear elements [34, 38–41]
plus a blend of a non divided Laplacian and a biharmornic operator in order
to add artificial diffusion [33–35, 42–45].

The attractiveness of this scheme relies mainly on computational cost
aspects. First of all, it is a nodal based Finite Volume scheme and there-
fore, the number of evaluations of the stress tensor (constitutive model) is
reduced drastically as compared to a cell centred scheme since, as stated in
[45, 46], the number of elements is from 5 to 7 times the number of nodes in
a tetrahedral mesh. Secondly, the computational effort when computing the
flux gradients is reduced by half in a vertex centred scheme since the loops
are performed on edges instead of faces (as in a cell centred scheme), being
the ratio between the number of faces and the number of edges of around
2 to 1 [46]. Furthermore, the combination of the artificial dissipation term
and the shock capturing switch gives a second order monotonicity preserving
algorithm without the use of linear reconstruction and slope limiters. Fi-
nally, since the JST scheme is present in a large amount of available CFD
software [47, 48], its implementation into a solid dynamics framework can
ease the adaptation of existing codes. Nevertheless, it is well known that
the JST scheme suffers from excessive dissipative solutions [39] since it does
not use wave information to advance the solution in time. Therefore, mesh
refinements have to be performed in order to obtain accuracies comparable
to those of other methodologies (such as PG or upwind FVM with linear

3



reconstruction).
The current paper aims to establish a robust framework for adapting

the JST formulation to solid dynamics. In order to adapt the original JST
scheme to the problem at hand, dissipation will only be added to the linear
momentum equation. The update of the deformation gradient tensor will be
left as a numerical gradient of the velocities with the use of no additional
dissipation. This will enable the discrete satisfaction of the compatibility
conditions of the deformation mapping (i.e. curl-free)[1, 3]. Special attention
must be paid to the numerical quadrature of the boundary fluxes through
the use of a weighted nodal flux average carried out at the boundary faces.
The spatial discretisation will be combined with a two-stage Total Variation
Diminishing (TVD) Runge-Kutta time integrator [49]. The displacements
are integrated in time using a trapezoidal rule which is combined with a
Lagrange multiplier minimisation procedure to ensure the conservation of
angular momentum. An additional correction of the numerical dissipation
to ensure the conservation of the linear momentum, whilst preserving the
accuracy order, is also presented.

In the following sections, the implementation of the method will be ex-
plained. Section 2 will introduce the general governing equations of the
problem. Section 3 will summarise the JST spatial discretisation scheme and
explain its adaptation to the solid dynamics framework. Section 4 intro-
duces the Runge-Kutta time integrator used for the problem variables and
the trapezoidal rule employed for the advancement of the displacements in
time. Section 5 explains the numerical corrections introduced in order to
satisfy conservation of linear and angular momentum. Section 6 summarises
the solution procedure. In section 7 a set of numerical examples is presented
in order to prove the performance of the method both in two- and three-
dimensional scenarios. Finally, section 8 summarises a series of concluding
remarks and points out some lines of further research.

2. Governing equations

2.1. Conservation law formulation

Consider the motion of a continuum from a reference domain (configura-
tion) V to a spatial or deformed domain (configuration) v. The deformation
is defined by a mapping x = x(X, t), where X denotes the material position
of a particle and x its position in the deformed configuration (see Figure 1).
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A mixed system of conservation laws was presented in [1] in order to describe
the motion of the continuum as,

∂p

∂t
−DIVP = ρ0b (1)

∂F

∂t
−DIV (v ⊗ I) = 0 (2)

where p = ρ0v is the linear momentum, ρ0 is the initial material density, v
is the velocity field, b is a body force per unit of mass, F is the deformation
gradient tensor and P is the first Piola-Kirchhoff stress tensor. In addition,
I stands for the identity tensor and DIV describes the material divergence
operator in undeformed configuration. The evolution equation (2) must be
advanced in time satisfying a set of compatibility conditions (also known as
involutions) for the deformation gradient F [10, 50] which ensure that F

corresponds to the gradient of a real mapping, that is

CURL(F ) = 0 (3)

where CURL symsolises the material curl operator in undeformed configura-
tion. Furthermore, since a Lagrangian description of the motion is used, the
conservation of mass reduces to

ρ = ρ0J (4)

where J = det(F ) is the Jacobian of the deformation, which enables the
explicit computation of the current density ρ at any stage of the deformation
process. The system of equations (1)-(2) complemented with an adequate
constitutive model can describe the motion of any isothermal hyperelastic
material. However, for the case of thermo-mechanical materials, the energy
equation (or first law of thermodynamics) must also be used to close the
system, namely

∂ET

∂t
−DIV

(
P Tv −Q

)
= r (5)

where ET is the total energy per unit of undeformed volume, Q is the heat
flux and r is a possible heat source. Finally, equations (1), (2) and (5) can be
rewritten in a more compact form, describing a first order hyperbolic system
as
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Figure 1: Deformation mapping

∂U

∂t
+
∑

I

∂F I

∂XI

= S (6)

where in indicial notation

U =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1
p2
p3
F11

F12

F13

F21

F22

F23

F31

F32

F33

ET

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, F I =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−P1I(F )
−P2I(F )
−P3I(F )
−δI1v1
−δI2v1
−δI3v1
−δI1v2
−δI2v2
−δI3v2
−δI1v3
−δI2v3
−δI3v3

QI − PiIvi

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρ0b1
ρ0b2
ρ0b3
0
0
0
0
0
0
0
0
0
r

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, ∀I = 1, 2, 3 (7)
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2.2. Constitutive model: hyperelastic isothermal materials

The system of conservation laws (6) reduces, in the isothermal three di-
mensional case, to 12 equations and 21 unknowns. Therefore, additional
relations are needed, in the form of a constitutive model, for the closure of
the system. In the case of reversible isothermal elasticity, the first Piola-
Kirchhoff tensor is defined as a function of the deformation gradient derived
from an elastic energy potential ψ(F ) as (see for example [51–53])

P (F ) =
∂ψ

∂F

where ψ(F ) has to satisfy objectivity and thermodynamic consistency (see
for example [53]). Furthermore, the rank one convexity of the energy po-
tential ψ(F ) ensures the hyperbolicity of the system (6) [51]. For nearly
incompressible applications, it is often convenient to split this strain energy
ψ(F ) into isochoric and volumetric components ψ(F ) = ψiso(F̂ ) + ψvol(J),
with F̂ = J−1/3F , which in turn leads to the deviatoric and pressure com-
ponents of P as,

P = P dev + P vol; P dev =
∂ψiso

∂F
, P vol =

∂ψvol

∂F

In particular, the volumetric term can be further developed by introducing
the pressure p as

P vol = pJF−T ; p =
dψvol(J)

dJ

Note that the sign convention used here is p positive in tension and neg-
ative in compression. The simplest example of a constitutive model which
satisfies the above form is given by the nearly incompressible extension of
the neo-Hookean model defined by

ψdev = µ
[
J−2/3(F : F )− 3

]
; ψvol =

1

2
κ(J − 1)2

where µ and κ are the shear and bulk modulus, respectively. The resulting
components of the first Piola-Kirchhoff stress tensor read

P = µJ−2/3

[
F − 1

3
(F : F )F−T

]
+ pJF−T , p = κ(J − 1) (8)
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Combining this constitutive model with system (6) results in a hyperbolic
system of equations with eigenvalues [1]

Up = ±

√
β +

(
α
Λ2 + 2γ

)

ρ0
; Us = ±

√
β

ρ0
(9)

which are the volumetric and shear wave speeds, Up and Us respectively, and

α = κJ2 +
5

9
µJ−2/3 (F : F ) , β = µJ−2/3, γ = −2

3
µJ−2/3 (10)

Λ =
1

‖F−TN‖
(11)

2.3. Constitutive model: hyperelastic-plastic material

In order to model plastic behaviour, a rate-independent von Mises plas-
ticity model with isotropic hardening, such as that presented in [53, 54], is
used. The deformation gradient tensor F is multiplicatively decomposed into
an elastic component F e and a plastic component F p as

F = F eF p; be = FC−1
p F T ; Cp = F T

pF p (12)

In addition, a strain energy functional in terms of the elastic principal
stretches (λe,1, λe,2, λe,3) is defined as

ψ(λe,1, λe,2, λe,3) = ψdev(J
−1/3λe,1, J

−1/3λe,2, J
−1/3λe,3) + ψvol(J) (13)

where

ψdev = µ
[
(lnλe,1)

2 + (lnλe,2)
2 + (lnλe,3)

2
]
− 1

3
µ(ln J)2 (14)

and

ψvol =
1

2
κ(ln J)2; ln J = lnλe,1 + lnλe,2 + lnλe,3 (15)
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The algorithm to update the plastic strainCp is summarised in Algorithm
2.1 [53].

�

�

�

�

Algorithm 2.1: Evaluation of P n+1(F n+1,C
−1
p,n, ε̄p,n)

(1)Given F n+1, C
−1
p,n and ε̄p,n

(2) Initiate ∆γ = νn+1
α = 0

(3) Evaluate Jn+1 = det F n+1

(4) Solve pressure p = κ ln Jn+1

Jn+1

(5) Compute trial left strain tensor btriale,n+1 = F n+1C
−1
p,nF

T
n+1

(6) Spectral decomposition: btriale,n+1 =
∑3

α=1(λ
trial
e,α )2 ntrial

α ⊗ ntrial
α

(7) Set nn+1
α = ntrial

α

(8) Trial Kirchhoff stress: τ ′ trialαα = 2µ lnλtrial
e,α − 2

3
µ ln Jn+1

if (f(τ ′ trial, ε̄p,n) > 0)

then

⎧
⎨
⎩
(9)Direction vector: νn+1

α = τ ′ trialαα√
2

3
‖τ ′ trial‖

(10) Incremental plastic multiplier: ∆γ = f(τ ′ trial,ε̄p,n)

3µ+H

(11) Elastic stretch: λn+1
e,α = Exp ( lnλtrial

e,α −∆γνn+1
α )

(12)Return map: τ ′αα =

(
1− 2µ∆γ√

2/3‖τ ′ trial‖

)
τ ′ trialαα

(13)Update stress: ταα = τ ′αα + Jp; τ =
∑3

α=1 τααn
n+1
α ⊗ nn+1

α

(14) First Piola-Kirchhoff stress tensor: P = τF−T

(15)Update be,n+1 =
∑3

α=1(λ
n+1
e,α )2 nn+1

α ⊗ nn+1
α

(16)Update C−1
p,n+1 = F−1

n+1be,n+1F
−T
n+1; ε̄p,n+1 = ε̄p,n +∆γ

return (P n+1)

2.4. Equation of state: Mie-Gruneisen

In order to take into account thermo-mechanical interaction, an equation
of state needs to be provided for the closure of the system (1), (2), (5). In
this paper, the Mie-Gruneisen equation of state is used, where the pressure
p is defined in terms of the internal energy density e and the Jacobian J as
(see for example [55] or [11]),

p(e, J) =
κ(J − 1)

(1− s(1− J))2
− Γ(J)

J

[
e− 1

2
κ

(
(J − 1)

1− s(1− J)

)2
]

(16)
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where

Γ(J) = Γ0J
q (17)

with Γ0, q and s material parameters obtained from experimental results and
e the internal energy density which, in the absence of body forces, is defined
as,

e = ET − 1

2ρ0
p · p (18)

3. JST Space discretisation

3.1. Dual mesh and area vectors

The JST scheme is a vertex centred Finite Volume Method and, as such,
requires the use of a dual mesh for the definition of control volumes. In
this paper, the median dual approach for triangular and tetrahedral meshes,
as presented in [44] or [45], has been chosen. This approach constructs the
dual mesh by connecting edge midpoints with element centroids in two di-
mensions (see Figure 2) and edge midpoints with face centroids and element
centroids in three dimensions (see Figure 3). Such a configuration ensures no
overlapping of the control volumes and, combined with central differences,
is equivalent to standard Galerkin FEM discretisations when using linear el-
ements (see References [34, 38–41]). For a given node a, the set of nodes
connected to it through an edge is denoted by Λa and the subset of nodes
connected to a through a boundary edge is written as ΛB

a (see figure 2). For
a given edge connecting nodes a and b, an area vector is then defined as

Cab =
∑

k∈Γab

AkNk (19)

where Γab is the set of facets belonging to edge ab, Ak is the area of a given
facet k and Nk its normal. Due to the definition of the dual mesh, the area
vectors satisfyCab = −Cba. These area vectors enable a substantial reduction
in the computational cost when computing the boundary integral used in
the Green Gauss divergence theorem (classical in FVM), since they save an
additional loop on facets. In the case of a boundary edge, the contribution
of the boundary faces to which it belongs, has to be taken into account as
well. This set of faces will be defined as ΓB

a (see Figures 2b and 3b).
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aV

a

1b

2b

3b

4b

5b

6b

Ω∂

aΛ∈4b,...,1b

(a)

aΛ∈4b,3b,2b,1b

Ω∂

V
a1b

2b

3b

4b

a
BΛ∈4b,1b

(b)

Figure 2: Control volume for an interior node (a) and boundary node (b)
using the median dual approach in a triangular mesh. The red shaded area
is the control volume associated to node a. The blue lines are the edges con-
necting node a to its neighbouring nodes bi, that is, the set Λa. The magenta
lines in (b) are the boundary edges connecting node a to its neighbouring
nodes bi, that is, the set ΛB

a .
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Ii
ab

a

b

(a)

•Y

a

b

Ii
ab

γA1/3

1γ

2γ

1c

2c

(b)

Figure 3: Set of facets related to an interior edge (a) and boundary edge (b)
in three dimensions. The green surfaces correspond to the interior faces to
which the edge belongs, whereas the dark yellow surfaces correspond to the
boundary faces γ1 = âbc1 and γ2 = âbc2. The red surfaces are the set of
interior facets Γab corresponding to edge ab. The bright yellow zone is the
tributary area of faces γ1 and γ2 to node a.
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3.2. General JST scheme

Consider a hyperbolic system of conservation laws generally written as

∂U

∂t
+
∑

I

∂F I

∂XI

= 0 (20)

where U is the vector of conservation variables and F I the flux vector asso-
ciated to the spatial direction I. By using a standard Finite Volume discreti-
sation, the equations are integrated within a given control volume a followed
by the divergence theorem to give,

dUa

dt
= − 1

Va

∫

∂Va

FN dA (21)

where Ua is the average value of the variable within the control volume and
N is the normal vector of the control volume boundary. Equation (21) can be
discretised in space by using central differences and JST type of stabilisation
(see [44] and [45]) to give, for a given node a,

dUa

dt
=

−1

Va

⎛
⎝∑

b∈Λa

Fa +F b

2
Cab +

∑

γ∈ΓB
a

F
γ
aN

γA
γ

3

⎞
⎠+

1

Va

D(Ua) (22)

where F is a matrix gathering the flux vectors in the three spatial directions
as F = [F1,F2,F3] and D(Ua) is a dissipative operator. The terms within
the parenthesis in (22) correspond to the actual Green-Gauss evaluation of
the control volume boundary fluxes, which is second order in space. This eval-
uation is composed of a summation over edges (first term in the parenthesis)
and a summation over boundary faces (second term in the parenthesis). In
this second term, the weighted average stencil proposed by [56] is employed,
computing the flux over a face γ in three dimensions as

F
γ
a =

6Fa +F b +F c

8
(23)

where b, c are the two nodes that together with node a define face γ. For
the two dimensional case the above expression reads

F
γ
a =

5Fa +F b

6
(24)
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The dissipative operator is composed of a blend of second order differences
(Laplacian operator) and fourth order differences (biharmonic operator). The
fourth order differences avoid the appearance of the odd-even decoupling of
the solution (that would result from using averaged fluxes) whilst maintaining
the second order accuracy of the scheme. The second order differences are
introduced to smear out the solution in the vicinity of a shock whilst reducing
the solution to first order locally. This dissipative operator reads

D(Ua) =
∑

b∈Λa

ε
(2)
ab Ψabθab (U b − Ua)− ε

(4)
ab Ψabθab (L(U b)−L(Ua)) (25)

where ε
(2)
ab and ε

(4)
ab are discontinuity switches which activate either the second

or fourth order differences, Ψab is a coefficient (defined below) computed on
the basis of the spectral radius of the flux Jacobian matrix and θab denote
geometrical weights which approximate the non divided Laplacian, L, as,

L(Ua) =
∑

b∈Λa

θab(U b − Ua) (26)

The geometrical weights θab are used to preserve the second order accu-
racy, given by the central differences, when adding the numerical dissipation.
In the current paper, the geometrical weights as proposed by [37] are used,
these are defined as

θab = 1− λab ·
(
Xb −Xa

)
(27)

where λab is the solution to the following system of equations

Kabλab = bab

where

Kab =
∑

b∈Λa

(
Xb −Xa

)
⊗
(
Xb −Xa

)

bab =
∑

b∈Λa

(
Xb −Xa

)

It is clear from (27) that θab �= θba and, therefore, this will affect the conser-
vation of the variables when adding the artificial dissipation. This issue will
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be addressed later in the paper, by using a modified dissipation term such
that satisfaction of the conservation of the primary variables is ensured. The
pressure switches ε

(2)
ab and ε

(4)
ab are written as

ε
(2)
ab = κ(2) max(Υa,Υb) (28)

ε
(4)
ab = max

[
0, (κ(4) − ε

(2)
ab )
]

(29)

where κ(2) and κ(4) are the dissipation factors and Υ is a normalized second
order difference of some conserved variable. For the discretisation of the
Euler equations as in [33, 34], these differences are computed using the fluid
pressure, p, as

Υa =
|∑b∈Λa

θab(pb − pa)|∑
b∈Λa

(pb + pa)
(30)

Finally, the artificial dissipation requires a scaling, which is obtained by using
the spectral radius. The spectral radius is defined as

Ψab =
1

2
[Ψa +Ψb] , Ψa =

∑

k∈∂Ωa

|λ|Ak (31)

where |λ| is the maximum eigenvalue of the flux Jacobian matrix of the
system of conservation equations (20). In the particular case of the Euler
equations, this corresponds to |λ| = |c + u| where c and u are, respectively,
the speed of the sound and the velocity of the fluid. In our case, this is simply
Up, the speed of the pressure wave.

It is worthwhile mentioning that the JST scheme is a well known artifi-
cial dissipation scheme, with properties that have been extensively studied
by previous authors in the CFD community [33, 57, 58]. Specifically, refer-
ence [59], proves that the JST scheme is Local Extremum Diminishing (LED)
provided that the artificial dissipation is scaled with the average of the max-
imum eigenvalue of the flux Jacobian matrix (see spectral radius in equation
(31)) and that a pressure switch is used (see equation (25)) in the presence of
shocks. Satisfaction of the LED condition ensures that numerical dissipation
is added into the solution with the subsequent increase in entropy.
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3.3. Discretisation of the governing equations

For the discretisation of the governing equations (1,2,5), it transpires
that dissipation only needs to be added to the first equation. The discretised
equations read

dpa

dt
=

1

Va

⎛
⎝∑

α∈Λa

1

2
(P a + P b)C

ab +
∑

γ∈ΓB
a

t̂
γ

a

Aγ

3

⎞
⎠+

1

Va

D(pa) (32)

dF a

dt
=

1

Va

⎛
⎝∑

α∈Λa

va + vb

2
⊗Cab +

∑

γ∈ΓB
a

(v̂γ
a ⊗N γ)

Aγ

3

⎞
⎠ (33)

dETa

dt
=

1

Va

⎛
⎝∑

a∈Λa

1

2

(
P T

a va + P T
b vb

)
·Cab +

∑

γ∈ΓB
a

(
v̂γ
a · t̂

γ

a

) Aγ

3

⎞
⎠ (34)

where t̂
γ

a and v̂γ
a are the corrected face tractions and velocities that will lead

to the imposition of the weak boundary conditions.
The time evolution of the deformation gradient F in equation (33) is

carried out without the introduction of numerical dissipation. This discrete
space-time evolution equation yields a discrete update of F which is curl-
free at a discrete level, as the right hand side of equation (33) represents
a central difference stencil. With this update and provided that the initial
conditions are curl free, it is then possible to guarantee the existence of a
discrete deformation gradient tensor which satisfies the necessary involutions
[1, 10, 60].

Due to the absence of physical shocks in the examples presented in this
paper, the dissipation operator will be reduced to the fourth order dissipation
term (see equation (25))

D(pa) = −
∑

b∈Λa

κ(4)Ψabθab (L(pb)−L(pa)) (35)

3.4. Boundary conditions

The boundary conditions will be imposed weakly using the discretised
equations (32) and (33). Four different types of boundary conditions will be
considered: free boundary, tangentially sliding boundary, normally sliding
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boundary and clamped boundary (see Figure 4). Given a boundary face γ,
the non-corrected velocity and traction at the boundary are defined as

tγa =
6P a + P b + P c

8
N γ (36)

vγ
a =

6va + vb + vc

8
(37)

The velocities and tractions are corrected as follows,

Clamped boundary

t̂
γ

a = tγa (38a)

v̂γ
a = 0 (38b)

Free boundary

t̂
γ

a = tB (39a)

v̂γ
a = vγ

a (39b)

Normally sliding boundary

t̂
γ

a = (I −N ⊗N )tγa + (N ⊗N )tB (40a)

v̂γ
a = (N ⊗N )vγ

a (40b)

Tangentially sliding boundary

t̂
γ

a = (N ⊗N )tγa + (I −N ⊗N )tB (41a)

v̂γ
a = (I −N ⊗N )vγ

a (41b)

4. Time integration

The time discretisation is performed using a Total Variation Diminishing
(TVD) Runge-Kutta time integrator as proposed by Shu and Osher [49, 61].
For a set of equations discretised in space, but left continuous in time (method
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v,V

Figure 4: The boundary conditions are imposed at the reference configura-
tion. The continuous line represents the body at the reference (undeformed)
configuration, while the discontinuous line the body at the spatial (deformed)
configuration. Four different types of boundary conditions are considered:
clamped boundary (condition 1), free boundary (condition 2), normally slid-
ing boundary (condition 3) and tangentially sliding boundary (condition 4).
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of lines) at a given node a, the following system of ordinary differential equa-
tions (ODEs) is defined

dUa

dt
= −Ra(Ua, t) (42)

The Runge-Kutta method computes the solution at time step tn+1 from
the solution at time step tn as

U
∗
a = U

n
a −∆tRa(U

n
a , t

n)

U
∗∗
a = U

∗
a −∆tRa(U

∗
a, t

n+1)

U
n+1
a =

1

2
(Un

a + U
∗∗
a ) (43)

where the time step is governed by a standard Courant—-Friedrichs—-Lewy
(CFL) condition (see for example [28, 41, 45]),

∆t ≤ αCFL min
a

(
ha

(Up)na

)
(44)

where ha is the minimum length across the control volume of node a at the
reference domain, (Up)

n
a is the volumetric wave speed as presented in equation

(9) and αCFL is the CFL stability number.
In addition, the displacements are integrated in time using the trapezoidal

rule as,

xn+1
a = xn

a +
∆t

2

(
vn
a + vn+1

a

)
(45)

5. Discrete angular and linear momentum conserving algorithm

Since the conservation variables are linear momentum, deformation gra-
dient and total energy, the proposed scheme does not necessarily preserve the
angular momentum of the system. Furthermore, as stated in section 3, the
artificial dissipation term prevents the exact conservation of linear momen-
tum due to the lack of symmetry of the geometrical weights. The current
section presents an adaptation of the angular momentum conservation algo-
rithm presented in [1] that will modify the internal tractions and dissipation
in order to preserve both linear and angular momentum.
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In the absence of external tractions, the conservation of the discrete an-
gular momentum after a time step can be written as

Nnodes∑

a=1

xn+1
a ×mav

n+1
a −

Nnodes∑

a=1

xn
a ×mav

n
a = 0 (46)

By taking into account the trapezoidal rule for the time integration of the
positions (see equation (45)), the above equation can be rewritten as

Nnodes∑

a=1

xn+1/2
a ×ma∆va = 0; ∆va = vn+1

a −vn
a ; xn+1/2

a = xn
a+

∆t

2
vn
a (47)

Considering the TVD Runge-Kutta time integration as presented in the
previous section, the velocity reads

∆va = −∆t

2ρ0
(Rn

a(p
n
a , t

n) +R
∗
a(p

∗
a, t

∗)) (48)

where Ra(pa, t) corresponds to the right hand side of equation (32). Substi-
tuting equation (48) into (47), the following equation is obtained

Nnodes∑

e=1

xn+1/2
a ×ma

(
−∆t

2ρ0
(Rn

a(p
n
a , t

n) +R
∗
a(p

∗
a, t

∗))

)
= 0. (49)

A sufficient condition to satisfy the above equation is given when the
following equation

Nnodes∑

a=1

xn+1/2
a ×maR

α
a (p

α
a , t

α) = 0 (50)

is satisfied at the two time stages of the Runge-Kutta time integrator (i.e.,
∀α ∈ {n, ∗}). Replacing the right hand side of equation (32) into (50) and
omitting the time superindex for simplicity, the following equation is obtained

Nnodes∑

a=1

xa ×
ma

ρ0Va

⎛
⎝∑

α∈Λa

1

2
(P a + P b)C

ab +
∑

γ∈ΓB
a

t̂
γ

a

Aγ

3
+D(pa)

⎞
⎠ = 0 (51)
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Assuming a free boundary traction (that could otherwise contribute to an
external torque) and rearranging the first term into a summation over edges,
the equation above is simplified to

Nedint∑

k=1

fk × (xb − xa) +

Nnodes∑

a=1

D(pa)× xa = 0 (52)

where the fact that Cab = −Cba has been considered and where f k =
1
2
(P a + P b)C

ab is the force related to edge k. A sufficient condition for
fulfilling the above equation is satisfied when both terms separately vanish.
For the internal forces, this reads

Nedint∑

k=1

fk ×∆x = 0 (53)

where ∆x = x
n+1/2
b − x

n+1/2
a . As explained in section 3 the geometrical

weights are not symmetric and, therefore, the conservation of linear momen-
tum would not be satisfied. An extra condition has to be added for the
satisfaction of such condition which, together with the angular momentum
preservation condition, reads

Nnodes∑

a=1

D(pa)× xa = 0 (54a)

Nnodes∑

e=1

D(pa) = 0 (54b)

A Lagrangian minimisation procedure has to be used to obtain a modified
set of internal forces, f̂ k that satisfy equation (53) and a set of modified dis-
sipation D̂(pe) that satisfy both equations (54a) and (54b). This is achieved
by minimising the following two functionals

Πf (f̂k,λf ) =

⎛
⎝1

2

Nedint∑

k=1

(f̂k − fk) · (f̂k − fk)

⎞
⎠+ λf ·

Nedint∑

k=1

f̂k ×∆xk (55)
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ΠD(D̂(pa),λD,µD) =

(
1

2

Nnodes∑

a=1

(D̂(pa)−D(pa)) · (D̂(pa)−D(pa))

)

+ λD ·
Nnodes∑

a=1

D̂(pa)× xa + µD ·
Nnodes∑

a=1

D̂(pa) (56)

After some algebra a modified set of internal forces f̂k is obtained as

f̂k = f k + λf ×∆xk

where λf is the solution to the following system of 3× 3 equations

Kfλf = bf

and where

Kf =

Nedint∑

k=1

(∆xk ·∆xk)I −∆xk ⊗∆xk (57a)

bf =

Nedint∑

k=1

fk ×∆xk (57b)

In a similar fashion, the minimisation of the functional described on equa-
tion (56) gives a modified set of dissipation at nodes

D̂(pa) = D(pa) + λD × xa − µD (58)

where λD is the solution to

KDλD = bD

where

KD =

Nnodes∑

a=1

((xa · xa)I − xa ⊗ xa)−
1

Nnodes

((a · a) I − a⊗ a) (59a)

bD =

Nnodes∑

a=1

D(pa)× xa −
1

Nnodes

c× a (59b)
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and the notation a =
∑Nnodes

a=1 xa and c =
∑Nnodes

a=1 D(pa) has been used.
Finally µD is obtained as

µD =
1

Nnodes

(
Nnodes∑

a=1

D(pa) + λD × a

)
(60)

This correction results into the computation of three global parameters
λf , λD and µD, which can be computed very efficiently within the spatial
discretisation routines, as it will be explained in the next section.

6. Solution procedure

The algorithm 6.1 presents the solution procedure used for the update of
the primary variables after a time step. The algorithm requires a preprocess-
ing step for the computation of the geometrical variables (θab, Cab) related
to the dual mesh. Once this is obtained, the algorithm only requires two

23



loops over edges and one loop over boundary faces per time stage.
�

�

�

�

Algorithm 6.1: Evaluation of Un+1(Un)

(1)GIVEN U
n
a = (pn

a ,F
n
a)

T , xn
a

(2) LOOP over Runge-Kutta stages (to compute U
∗
a, U

∗∗
a )

(2.1)LOOP over edges k(ab)
L(pa

n) := L(pa
n) + θab (p

n
b − pn

a)

L(pb
n) := L(pb

n) + θba (p
n
a − pn

b )

bf := bf + fn
k ×∆x

n+1/2
k

Kf := Kf + (∆x
n+1/2
k ·∆x

n+1/2
k )I −∆x

n+1/2
k ⊗∆x

n+1/2
k

(2.2)COMPUTE λf = K−1
f bf

(2.3)LOOP over edges k(ab)

f̂
n

k = fn
k + λf ×∆x

n+1/2
k

R̂
n

p,a := R̂
n

p,a + f̂k

R
n
F,a := R

n
F,a +

1
2
(va + vb)⊗Cab

D(pa) := D(pa)− κ(4)Ψabθab (L(pb)−L(pa))

(proceed equivalently for node b)

(2.4)LOOP over boundary faces γ(abc)

t̂
γ

a, t̂
γ

b , t̂
γ

c , v̂
γ
a, v̂

γ
b , v̂

γ
c according to B.C.

R̂
n

p,a := R̂
n

p,a + t̂
γ

a
Aγ

3

R
n
F,a := R

n
F,a + (v̂γ

a ⊗N γ) Aγ

3

(proceed equivalently for nodes b, c)

(2.5)COMPUTE λD, µD and modified dissipation

D̂(pa) = D(pa) + λD × xn+1
a − µD

(2.6)UPDATE conservation variables at stage

p∗
a = pn

a +
1
Va

(
R̂

n

p,a + D̂(pa)
)

F ∗
a = F n

a +
1
Va
R

n
F,a

(2.7)EVALUATE P ∗
a = P (F ∗

a) (only after stage 1)

(2.8)APPLY strong BC

(3)UPDATE conservation variables and positions

U
n+1
a = 1

2
(Un

a + U
∗∗
a )

xn+1
a = xn

a +
∆t
2
(vn

a + vn+1
a )

(4) EVALUATE P n+1
a = P (F n+1

a )

(5)APPLY strong BC
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7. Numerical examples

A series of numerical examples are included in this section in order to
demonstrate the robustness, convergence and conservation properties of the
formulation.

7.1. Low dispersion cube

This first example is a test case with an available closed form solution
chosen in order to assess the numerical accuracy of the algorithm in the
linear elastic regime. A cube of 1 m side has symmetric boundary conditions
(constrained normal displacement) at the faces X1 = 0 m, X2 = 0 m and
X3 = 0 m and skew-symmetric boundary conditions (constrained tangential
displacement) at the opposite faces, X1 = 1 m, X2 = 1 m and X3 = 1 m.
For the small strain case, the problem has an analytical solution of the type

u = U0 cos

(√
3

2
cdπt

)⎡
⎣
A sin

(
πX1

2

)
cos

(
πX2

2

)
cos

(
πX3

2

)

B cos
(
πX1

2

)
sin

(
πX2

2

)
cos

(
πX3

2

)

C cos
(
πX1

2

)
cos

(
πX2

2

)
sin

(
πX3

2

)

⎤
⎦

where A, B and C are constants such that A+ B + C = 0 1 and cd =
√

µ
ρ0
.

The problem is considered linear when U0 < 1×10−3 m and, after applying a
linear elastic constitutive model and imposing compatible initial conditions,
the solution both for stresses and displacements can be computed at any time
t. For the current example, a linear elastic material is chosen with a Poisson’s
ratio of ν = (1−µ/κ)/2 = 0.45, Young’s modulus E = 1.7×107Pa and density
ρ0 = 1.1× 103kg/m3. The solution parameters are set as A = 1, B = 1 and
C = −2 and U0 = 5 × 10−4 m. Figure 5 shows the deformed shape of the
cube as it evolves in time, and the values of the off-diagonal components of
the first Piola-Kirchhoff stress tensor P . The convergence error is analysed
at time t = 4× 10−3 s both for the stress and linear momentum components
and for the L1 and L2 norms. Results are shown in Figure 6 and Figure
7. Crucially, it can be seen how the solution tends to asymptotic quadratic
convergence for both stresses and velocities as the mesh is refined.

1When A+B + C = 0 the volumetric deformation is zero since ∇2u = 0
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Figure 5: Linear elasticity three dimensional case. Snapshots at different
times of the off diagonal components of the first Piola Kirchhoff stress tensor.
Solution using A = 1, B = 1 and C = −2 and U0 = 5×10−4 m. Linear elastic
material with Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7 × 107Pa
and density ρ0 = 1.1 × 103kg/m3. JST spatial discretisation with h = 1/12
m, κ(4) = 1/128 and αCFL = 0.4. Displacements scaled 100 times.
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Figure 6: Linear elasticity three dimensional case. Convergence error for the
stress components P11, P22 and P33 in L1 and L2 norms at time t = 0.004
s as compared to the analytical solution. Solution using A = 1, B = 1 and
C = −2 and U0 = 5 × 10−4 m. Linear elastic material with Poisson’s ratio
ν = 0.45, Young’s modulus E = 1.7×107Pa and density ρ0 = 1.1×103kg/m3.
JST spatial discretisation with h = 1/12 m, κ(4) = 1/128 and αCFL = 0.4.
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Figure 7: Linear elasticity three dimensional case. Convergence error for
the linear momentum components in L1 and L2 norms at time t = 0.004 s
as compared to the analytical solution. Solution using A = 1, B = 1 and
C = −2 and U0 = 5 × 10−4 m. Linear elastic material with Poisson’s ratio
ν = 0.45, Young’s modulus E = 1.7×107Pa and density ρ0 = 1.1×103kg/m3.
JST spatial discretisation with h = 1/12 m, κ(4) = 1/128 and αCFL = 0.4.
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7.2. Elastic vibration of a Beryllium plate

This example, designed to evaluate the accuracy of the method in the
elastic regime, was previously published in [9, 62]. A Beryllium plate with
no supports or constraints, of 6 cm length and 1 cm width, and material
properties ρ0 = 1845 Kg/m3, E = 3.1827× 1011 Pa and ν = 0.05390 has an
initial velocity of the form (see Figure 8),

v0 = (0, v(X1))
T m/s

v(X1) = Aω[g1 (sinh(Ω(X1 + 0.03)) + sin(Ω(X1 + 0.03)))−
g2 (cosh(Ω(X1 + 0.03)) + cos(Ω(X1 + 0.03)))]

where [9, 62]

g1 = 56.637, g2 = 57.646, ω = 2.3597× 105 s−1, A = 4.3369× 10−5 m

Ω = 78.834 m−1

which excites its first flexural mode [62]. In order to reproduce the same
results as in [9], the material model is chosen as a hyperelastic-plastic (Von
Mises) with yield strength Y 0 = 1× 1011 Pa, which is high enough to avoid
any plastic deformation of the plate. Figure 9 shows the evolution in time
of the norm of the velocity vector. Results compare very well with those
provided in [9].

In Figure 10, the evolution in time of the internal and kinetic energies
are compared against the total energy (solution of equation (5) for three
different mesh refinements). In the absence of plasticity and heat effects,
the difference between the total energy (black discontinuous line) and the
summation of the internal and kinetic energies (green line) is the actual
dissipation introduced by the numerical scheme. In this particular case, it
corresponds to the dissipation of the first flexural mode of the plate, since
it is the one predominantly excited. It can be seen that, as the mesh is
refined, the dissipation is clearly reduced. The results of the 2x(100x25)
mesh compare well against the solution provided in [9]. Finally, Figure 11
shows the evolution in time of the vertical displacement and vertical velocity
at X = (0, 0)T . It can be seen again the predominance of the first flexural
mode, although as the mesh is refined higher modes emerge. Results compare
well in terms of amplitude and frequency with the solution presented in [9].
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Figure 8: Beryllium plate initial configuration

7.3. Punch test

A squared two dimensional flat plate of unit side length is constrained
to move tangentially on the east, west and south sides, whereas it is free on
the north side (see Figure 12). The plate is subjected to an initial uniform
velocity vpunch = 100 m/s on its right half side. The plate is composed of
a neo-Hookean rubber material with Young’s modulus E = 1.7 × 107 Pa,
density ρ0 = 1.1 × 103 Kg/m3 and Poisson’s ratio ν = 0.45. The problem
shows the performance of the method with absence of volumetric locking and
spurious modes (checker board) for the pressure.

Figure 13 compares results obtained using the Mean Dilatation technique
and standard Finite Element Method (FEM) for the standard displacement
based formulation against the JST algorithm using the proposed conservation
mixed formulation. It can be seen how the standard FEM solution suffers
from volumetric locking, while the Mean Dilatation technique is capable of
circumventing it. However, both solutions exhibit spurious oscillations in the
pressure field distribution. The JST alleviates both the volumetric locking
and the appearance of the spurious pressure oscillations.

7.4. Bending column (2D)

A rubber-like column of 1 m width and 6 m height is clamped on its
bottom end and subjected to an initial uniform horizontal velocity of V0 = 10
m/s (see Figure 14). The example shows the performance of the numerical
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(a)

(b)

(c)

Figure 9: Beryllium plate. Material properties ρ0 = 1845 Kg/m3, E =
3.1827 × 1011 Pa, ν = 0.05390s, Y 0 = 1 × 1011 Pa. Evolution in time of
the deformed shaped. The contour plot represents the norm of the velocity
vector. Solution obtained using 2x(100x25) triangular elements and the JST
method with κ(4) = 1/64 and αCFL = 0.4.
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Figure 10: Beryllium plate. Material properties ρ0 = 1845 Kg/m3, E =
3.1827 × 1011 Pa, ν = 0.05390s, Y 0 = 1× 1011 Pa. Evolution in time of the
internal energy (blue lines), kinetic energy (red lines), summation of both
(green lines) against the total conserved energy (black discontinuous line)
for three different meshes of 2x(24x6), 2x(50x12) and 2x(100x25) triangular
elements. JST method with κ(4) = 1/64 and αCFL = 0.4. The difference
between the total conserved energy and the summation of internal and kinetic
energy is the numerical dissipation.
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Figure 11: Beryllium plate. Material properties ρ0 = 1845 Kg/m3, E =
3.1827 × 1011 Pa, ν = 0.05390s, Y 0 = 1× 1011 Pa. Evolution in time of the
vertical displacement (a) and the vertical velocity (b) atX = (0, 0)T for three
different meshes of 2x(24x6), 2x(50x12) and 2x(100x25) triangular elements
(blue, red and green lines, respectively). JST method with κ(4) = 1/64 and
αCFL = 0.4.
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Figure 12: Punch test case initial configuration
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Figure 13: Numerical solution of the punch test case with an initial uniform
velocity at the right hand side vpunch = 100 m/s. Material properties E =
1.7 × 107 Pa, ρ0 = 1.1 × 103Kg/m3, ν = 0.45 for a neo-Hookean material.
The solution is shown at time t = 0.03 s for different discretisations. From
left to right: FEM displacement based, Mean dilatation, and JST. All the
solutions have been obtained using a discretisation of 121 nodes.

technique in bending dominated scenarios. The material is chosen as neo-
Hookean with Young’s modulus E = 1.7 × 107 Pa, density ρ0 = 1.1 × 103

Kg/m3 and Poissonś ratio ν = 0.45. Figure 15 shows the JST solution
(column (c)) at different times as compared to the PG solution (column (b))
and the cell centred Finite Volume solution (column (a)). The same mesh of 8
x 48 quadrilateral elements (∆xmax = 0.125 m) was employed for comparison
purposes. All three solutions exhibit very similar deformation patterns with
smooth pressure distribution and absence of locking. Comparison of the
resolution of the three solutions shows that the JST method offers the most
dissipative solution, whereas the PG method provides the most accurate
solution (but at a greater computational cost).

Figure 16 presents the results for the JST method using a more refined
unstructured mesh with ∆xmax = 0.05 m, which naturally leads to more
accurate results.

7.5. Collapse of a thick-walled cylindrical beryllium shell

This test problem was initially proposed by [13] and later implemented in
[14] and [15] in order to assess the ability of a computational method to model
plastic flows. A thick-walled cylindrical beryllium shell has an initial radial
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Figure 14: Bending column initial configuration

velocity directed towards its centre. Plane strain conditions are assumed for
the shell. After a certain time, all the kinetic energy of the material should
be transformed into plastic dissipation. The final interior and exterior radii
of the shell are called stopping radii, and a closed form solution for both
was provided in [13]. In this paper, the problem presented in [15] will be
modelled.

The shell is centred at X = (0, 0)T m and has an initial interior radius
Ri = 80 · 10−3 m and an outer radius Ro = 100 · 10−3 m. The material is
modelled using a hyperelastic-plastic constitutive model (see algorithm 2.1)
and a Mie-Gruneisen equation of state (see equation (16). The material
parameters are ρ0 = 1845 Kg/m3, Γ0 = 2, c0 = 12870 m/s and s = 1.124.
The elastic-plastic constitutive law is characterized by the shear modulus
µ = 151.9×109 Pa, yield strength Y 0 = 330×106 Pa and hardening modulus
H = 0 Pa (perfectly plastic material). The initial velocity field is defined by

v(X, t0) = −V0
Ri

‖X2
1 +X2

2‖2
(X1, X2)

T m/s

and the exterior pressure is defined as p = 1×10−6 Pa. The shell is simulated
using relevant boundary conditions. A mesh of 2×(20×8) triangular elements
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(a) (b) (c)

Figure 15: Bending column: Sequence of pressure distribution of deformed
shapes using: column (a) CCFVM imposing piecewise linear reconstruction
(see reference [1]); column (b) PG (consistent mass, τF = ∆t, τp = 0, α =
0.05) (see reference [2]) and column (c) JST (κ(4) = 1/64). Results obtained
with initial horizontal velocity V0 = 10m/s. The nearly incompressible neo-
Hookean constitutive model is used with Poisson’s ratio ν = 0.45, Young’s
modulus E = 1.7 × 107Pa, density ρ0 = 1.1 × 103kg/m3 and αCFL ≈ 0.4.
Discretisation with 8 × 48 quadrilateral elements with ∆xmax = 0.125 m.
Time step ∆t = 1× 10−4s.
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Figure 16: Bending column. Results obtained with initial horizontal velocity
V0 = 10m/s. The nearly incompressible neo-Hookean constitutive model is
used with Poisson’s ratio ν = 0.45, Young’s modulus E = 1.7×107Pa, density
ρ0 = 1.1× 103kg/m3 and αCFL ≈ 0.4. Discretisation using the JST method
with an unstructured mesh and κ(4) = 1/64, ∆t = 2.5× 10−5, ∆xmax = 0.05
m.
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Figure 17: Beryllium shell initial configuration

is used, which has 720 degrees of freedom. The dissipation parameter is set
to κ(4) = 1/1024.

In [13], a closed form solution at the stopping time was obtained con-
sidering an incompressible material and that all the energy of the system is
dissipated through plasticity. This yields a relationship between the initial
velocity v0 and the inner and outer stopping radii. As in [13], the simula-
tion has been performed for three different initial velocities v0 = 417.1 m/s,
v0 = 454.7 m/s and v0 = 490.2 m/s, and the analytical results, as presented
in Table 1, are used for the benchmarking the problem.

Figure 18 shows the results for the three cases at the stopping time, where
the plastic strain (left) and the initial and final meshes (right) are depicted.
The final mesh is compared against the analytical solution. It is confirmed
the good axisymmetry of the three solutions. In Table 2, the inner and outer
stopping radii are compared against the analytical solution. It transpires that
there is a good match against the analytical solution, where the maximum
error is 0.135 %. The table also shows the stopping time of the solutions.
All results are in good agreement with those provided in [13], despite using
a much coarser mesh in this paper.

Next, the axisymmetry of the solutions is quantified as in [13]. Firstly, the
mean radius of the 9 different circumferential rings of the mesh is computed
as R̄i, i = {1, ..9}. Next, the radius deviation is computed per node, com-

37



Table 1: Analytical results for the Beryllium shell problem [13]

v0 Outer stopping Inner stopping
(m/s) radius (mm) radius (mm)
417.1 50 78.10
454.7 45 75.00
490.2 40 72.12

Table 2: Numerical results for the Beryllium shell problem. Table shows
the stopping time, and the error in the inner and outer radius for the three
different solutions

Stopping radius Stopping time Inner radius Outer radius
(mm) (ms) error (%) error (%)
50 125.6 +0.135 +0.022
45 131.6 +0.106 -0.012
40 136.2 +0.030 -0.072

paring the nodal radius against the mean radius of its corresponding layer.
This information is used as well for computing the standard deviation. Table
3 shows the obtained results. It can be seen how the algorithm is capable of
preserving an excellent axisymmetry, giving maximum standard deviation of
the order 10−9.

Finally, in Figure 19, the evolution of the inner and outer radii is shown
and compared against the analytical solution. This shows a good convergence
of both three results as the shell reaches its stopping time.

7.6. L-shaped block

This example was first proposed by Simo et al. in [63] and later im-
plemented by several authors (see for example references [64–66]). In what
follows, the results for the example as proposed in [66] for a neo-Hookean
material will be shown. A three-dimensional L-shaped block is left free in
space and subjected to time varying forces at two of its sides (see Figure 20).
These forces are described by the equations,
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Figure 18: Beryllium shell problem. Hyperelastic-plastic constitutive model
and Mie-Gruneisen equation of state. Material parameters: ρ0 = 1845
Kg/m3, Γ0 = 2, c0 = 12870 m/s, s = 1.124, µ = 151.9 × 109 Pa,
Y 0 = 330 × 106 Pa, H = 0 Pa. Mesh of 2 × (40 × 32) triangular elements
and 1353 degrees of freedom. Dissipation parameter κ(4) = 1/2048. From
top to bottom rows, results are shown for initial velocities v0 = 417.1 m/s,
v0 = 454.7 m/s and v0 = 490.2 m/s at their stopping time. Plastic strain is
shown in the left column. Initial mesh (green) and final mesh (red) against
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Figure 19: Beryllium shell problem. Hyperelastic-plastic constitutive model
and Mie-Gruneisen equation of state. Material parameters: ρ0 = 1845
Kg/m3, Γ0 = 2, c0 = 12870 m/s, s = 1.124, µ = 151.9 × 109 Pa,
Y 0 = 330 × 106 Pa, H = 0 Pa. Mesh of 2 × (40 × 32) triangular elements
and 1353 degrees of freedom. Dissipation parameter κ(4) = 1/2048. The
evolution of the radius is shown for the three test cases: v0 = 417.1 m/s (a),
v0 = 454.7 m/s (b) and v0 = 490.2 m/s (c). The inner radius (continuous
thick red line) and the outer radius (continuous thick blue line) are compared
against the analytical solution (discontinuous lines).
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Table 3: Numerical results for the Beryllium shell problem. The table shows
the standard deviation of the radius for each of the layers of the mesh. The
minimum and maximum deviation among all the nodes is as well presented.

Stopping radius Standard Minimum Maximum
(mm) deviation σ (%) deviation (%) deviation (%)
50 6.74 · 10−10 −2.61 · 10−11 +2.98 · 10−11

45 9.84 · 10−10 −5.10 · 10−11 4.12 · 10−11

40 1.62 · 10−9 −9.00 · 10−11 +7.98 · 10−11

F 1(t) = −F 2(t) = (150, 300, 450)p(t), p(t) =

⎧
⎨
⎩

t, 0 ≤ t < 2.5,
5− t, 2.5 ≤ t < 5,
0, t ≥ 5.

The block is made of a neo-Hookean material, with properties µ = 1.925×
104 Pa, λ = 2.885× 104 Pa and ρ0 = 1.0× 103 kg/m3. Figure 21 shows the
evolution in time of the pressure and deformed shape. Figure 22a demon-
strates the ability of the algorithm to preserve the angular momentum (once
the external forces are released) and linear momentum (the external torque
is applied at the centre of mass of the block). Figure 22b compares the total
energy of the system (red line) and the summation of kinetic and potential
energies (blue lines) when using three different tetrahedral meshes: 388, 1178
and 3546 nodes. It can be seen that, as the mesh is refined, the numerical
dissipation (difference between the total energy of the system and the sum-
mation of kinetic and potential energies) is reduced, obtaining therefore a
more accurate solution.

7.7. Bending column (3D)

This example is an extension of the two-dimensional column presented
previously. The problem is shown to demonstrate the performance of the
method in three-dimensional bending dominated scenarios. As in the two-
dimensional case, a rubber-like material column is clamped on its bottom

face (X3 = 0 m). An initial uniform velocity V 0 = 10
(√

3
2
, 1
2
, 0
)T

m/s is
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Figure 20: L-shaped block, initial configuration

imposed and the bar is left oscillating freely in time (see Figure 23). A neo-
Hookean material is chosen with Young’s modulus E = 1.7× 107 Pa, density
ρ0 = 1.1× 103 Kg/m3 and Poisson”s ratio ν = 0.45.

Figure 24 shows the evolution in time of the pressure distribution for
the deformed configuration. The solution exhibits a smooth distribution
of pressure and absence of locking. In addition, figure 25 shows the time
history of the vertical displacement (X3 direction) at point X = (1, 1, 6)T m
and stress component P33 history at point X = (0, 0, 0)T for three different
spatial discretisations, h = 1/3 m, h = 1/6 m and h = 1/12 m. These figures
illustrate the convergence of the solution as the mesh is refined.

Next, the example is extended to show the performance of the method
when plasticity is involved. Figure 26 compares at time step t = 0.45 s
the previous neo-Hookean solution against two solutions using Von-Mises
hyperelastic-plastic material with yield stress τ̄ 0y = 2 GPa and yield stress
τ̄ 0y = 1 GPa, respectively, and isotropic hardening modulus H = 0.5 GPa
(the rest of the material parameters are the same as those of the previous
neo-Hookean example for the three simulated cases). As can be observed, the
pressure distribution is smooth and the occurrence of plasticity is perfectly
depicted in the clamped end of the column. As expected, the column with
lowest yield stress shows a higher deflection.
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Figure 21: L-shaped block, evolution in time of deformation and pressure
distribution. Neo-Hookean material with material properties µ = 1.925×104

Pa, λ = 2.885×104 Pa, ρ0 = 1.0×103kg/m3. JST spatial discretisation using
a tetrahedral mesh of 1178 nodes, κ(4) = 1/128 and αCFL = 0.4.
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Figure 22: L-shaped block neo-Hookean material with material properties
µ = 1.925 × 104 Pa, λ = 2.885 × 104 Pa, ρ0 = 1.0 × 103kg/m3. JST spatial
discretisation using κ(4) = 1/128 and αCFL = 0.4. (a) Conservation of linear
momentum p = [L1, l2, L3]

T and angular momentum A = [A1, A2, A3]
T for a

mesh of 1178 nodes; (b) comparison on the preservation of the total energy
when using three different tetrahedral meshes: 388, 1178 and 3546 nodes.
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Figure 24: Three dimensional bending column. Evolution in time of the
pressure distribution in the deformed configuration. Initial uniform velocity

V 0 = 10
(√

3
2
, 1
2
, 0
)T

m/s. Neohookean material with Young’s modulus E =

1.7 × 107 Pa, density ρ0 = 1.1 × 103 Kg/m3 and Poisson”s ratio ν = 0.45.
JST spatial discretisation with h = 1/6 m, κ(4) = 1/128 and αCFL = 0.4.
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Figure 25: Three dimensional bending column. (a) Time history of the
vertical displacement at node X = (1, 1, 6)T m; (b) time history of the
stress P33 at node X = (1/3, 1/3, 3)T m. Initial uniform velocity V 0 =

10
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)T

m/s. Neohookean material with Young’s modulus E = 1.7 ×
107Pa, density ρ0 = 1.1 × 103 Kg/m3 and Poisson”s ratio ν = 0.45. JST
spatial discretisation with h = 1/3 m (blue), h = 1/6 m (red) and h = 1/12
m (green), κ(4) = 1/128 and αCFL = 0.4.
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Figure 26: Three dimensional bending column. Initial uniform velocity
V 0 = 10(cos(30), sin(30), 0)T m/s. Comparison of the pressure distribution
for two different materials: hyperelastic constitutive model (a), Von-Mises
hyperelastic plastic constitutive models (b), (c) at time t = 0.45 s. Young’s
modulus E = 1.7× 107Pa, density ρ0 = 1.1× 103 Kg/m3 and Poisson’s ratio
ν = 0.45. Yield stress, τ̄ 0y = 2 GPa (b), τ̄ 0y = 1 GPa (c), hardening modulus

H = 0.5 GPa. JST spatial discretisation with h = 1/6 m, κ(4) = 1/128 and
αCFL = 0.4.
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Table 4: Taylor test. Final radius at t = 80µs of the proposed method
compared to other methodologies and experimental results

Method final radius
(mm)

FEM tetrahedrals 5.55
FEM hexahedras 6.95

FEM average nodal pressure 6.99
Proposed approach (JST) 6.98

7.8. Taylor impact case

A copper bar of initial length 0.0324 m and initial radius 0.0032 m has
a velocity of 227 m/s and impacts against a rigid wall at time t = 0 s (see
Figure 27). A Von-Mises hyperelastic-plastic material with isotropic harden-
ing is chosen to simulate the material. The material parameters are Young’s
modulus E = 117 GPa, density ρ0 = 8.930 × 103 Kg/m3, Poisson”s ra-
tio ν = 0.35, yield stress, τ̄ 0y = 0.4 GPa and hardening modulus H = 0.1
GPa. Figure 28 shows the results obtained at four different time instants.
The artificial dissipation can be reduced to κ(4) = 1/4096 due to the pres-
ence of physical plastic dissipation in the material. The final radius at time
t = 80µs is shown in Table 4 as compared to numerical results using other
methodologies [17], while experimental results can be found in [67]. As it is
well known, the FEM solution with linear tetrahedrals suffer from volumetric
locking, which is clearly seen in the results. The proposed formulation is able
to circumvent this issue.

8. Conclusions

An adaptation of the Jameson-Schmidt-Turkel (JST) scheme for two-
dimensional triangular and three-dimensional tetrahedral meshes has been
implemented for a mixed conservation law in fast transient dynamics. The
implementation has been specifically carried out in order to balance numeri-
cal stability, fulfilment of compatibility conditions and treatment of boundary
conditions. This has resulted in an adapted JST scheme, where the numerical
dissipation is only added to the equation of conservation of linear momen-
tum and the boundary conditions are treated using an external loop on faces,
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Figure 27: Setup of the Taylor test problem

where a weighted average of nodal flux evaluations ensures accuracy and ro-
bustness of the solution. In addition, the numerical algorithm is modified to
ensure preservation of linear and angular momenta. Crucially, numerical re-
sults demonstrate second order convergence for both stresses and velocities,
with excellent behaviour in bending dominated scenarios. Implementation
of plasticity, or other constitutive models, proves to be straightforward. The
obtained solutions compare well with other alternative methodologies, such
as cell centred Finite Volume or stabilised Petrov Galerkin, previously pub-
lished by the authors. Despite providing more dissipative solutions, the JST
method constitutes an important alternative, as compared to other schemes,
due to its computational efficiency.

The proposed methodology allows for further research including irre-
versible processes involving shocks, which can be dealt with through more
complex constitutive models and the built-in shock capturing term. In ad-
dition, contact problems can as well be investigated by using alternative
Riemann solvers on the external faces. A further improvement under in-
vestigation is the development of a time integration scheme which does not
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Figure 28: Taylor copper bar impact test. Initial velocity v = 227 m/s.
Comparison of plastic strain at times t = 20µs, t = 40µs, t = 60µs and
t = 80µs. Young’s modulus E = 117GPa, density ρ0 = 8.930 × 103 Kg/m3,
Poisson’s ratio ν = 0.35, Yield stress, τ̄ 0y = 0.4 GPa and hardening modulus

H = 0.1 GPa. JST spatial discretisation with 1361 nodes, κ(4) = 1/4096 and
αCFL = 0.4.
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require the a posteriori correction of the interface tractions in order to satisfy
conservation of angular momentum.
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