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Abstract

We present an Immersed Boundary method for interactions between elastic boundaries and

mixtures of two fluids. Each fluid has its own velocity field and volume-fraction. A penalty

method is used to enforce the condition that both fluids’ velocities agree with that of the elastic

boundaries. The method is applied to several problems: Taylor’s swimming sheet problem for a

mixture of two viscous fluids, peristaltic pumping of a mixture of two viscous fluids, with and

without immersed particles, and peristaltic pumping of a mixture of a viscous fluid and a

viscoelastic fluid. The swimming sheet and peristalsis problems have received much attention

recently in the context of a single viscoelastic fluid. Numerical results demonstrate that the method

converges and show its capability to handle a number of flow problems of substantial current

interest. They illustrate that for each of these problems, the relative motion between the two fluids

changes the observed behaviors profoundly compared to the single fluid case.

Keywords

Immersed boundary method; Two-fluid model; Penalty method; Swimming sheet; Peristaltic
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1. Introduction

Interactions between elastic structures and a surrounding fluid medium are ubiquitous in

biological processes, from the locomotion of E. coli in intestinal fluid to the swimming of

sperm through cervical mucus. A powerful computational approach for handling this type of

dynamic fluid structure interaction, in the case of single, incompressible fluids, is the

Immersed Boundary (IB) method originally developed by Peskin [1]. The robustness of the
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IB method has led to its application in many different biofluid applications. For example, it

has been used to study cardiac dynamics [2, 3, 4], platelet aggregation [5, 6], aquatic

locomotion by small [7, 8] and large [9] organisms, cellular locomotion [10], peristalsis [11,

12] insect flight [13, 14], biofilms [15] and feeding by marine invertebrates [16, 17, 18]. It

has also been used in a wide-range of engineering applications including, for example,

electrohydrodynamics [19, 20] and reaction diffusion systems [21, 22]. In all of this work,

the fluid environment is treated as a single continuous medium. However, many biological

fluids such as mucus as well as many engineering and industrial fluids are mixtures of a

solvent and a polymer network. There may be relative motion between the different

components of the mixture and then describing the material as a single continuous medium

is inappropriate. The two-fluid model is an often-used approach to describe gel mechanics,

where both network and solvent coexist at each point of space, and each phase is modeled as

a continuum with its own velocity field and constitutive law. Recently, analytical studies of

G. I. Taylor’s classical swimming-sheet problem with two-fluid models have yielded

interesting and unexpected results [23]. The analytical studies have been limited to simple

geometries and small amplitude motions. In this paper, we present an extension of the

classical immersed boundary method to a mixture of two fluids, in which both fluids satisfy

the no-slip condition on the immersed structures. Enforcing this condition is one of the

challenges in a two-fluid IB method. In the classic single-fluid IB method, the no-slip

condition between the immersed boundary and the fluid is used to define the velocity of

each point on the immersed structure as being the same as that of the adjacent fluid. In

developing a two-fluid IB method, the question that arises is at which fluid’s velocity (or

some average of them) points on the immersed boundary should move. Unless the two fluids

have the same velocity at each point of the immersed structure, any of these choices for the

velocity of the IB point is problematic and allows one or both fluids to move relative to the

immersed structure. The key idea in our two-fluid IB method is to introduce two sets of

immersed boundaries to represent the same elastic structure. Penalty forces are introduced to

keep the boundaries moving at approximately the same velocity.

We apply the new method to three problems that illustrate its capabilities and demonstrate

that accounting for relative motion between the two fluids can profoundly change the overall

motion compared to the case of a single fluid. The first problem is that of determining the

swimming speed of the classical Taylor’s undulating sheet in a mixture of two viscous

fluids. For this problem, the motion of the undulating sheet is (approximately) imposed and

the resulting fluid velocities, pressure, and volume-fractions are determined. As described in

detail in [31], our simulations show that for two viscous fluids with different viscosities, the

swimming speed is always less than for a single viscous fluid. Here we show the computed

velocity fields and volume-fraction evolution, and we use this problem to numerically assess

the convergence of the new method. For the second problem, we look at peristaltically-

driven motion of a mixture of two viscous fluids. We see that the total flux driven by the

peristalsis is greater for the mixture of fluids by an amount that depends on the ratio of the

viscosities and on the composition (volume fractions) of the mixture. The flux is further

altered by the presence of suspended elastic-walled particles. We also see two new aspects

of the method’s performance: (i) the motion of the fluid (and suspended particles) within the

tube is not sensitive to the composition of the fluid mixture outside of the tube, and (ii) the
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penalty forces are effective in ensuring that the network and solvent velocities are equal on

the surfaces of the freely-moving suspended particles. For the third problem, we again look

at peristalsis, but this time the network is viscoelastic and has time- and space-varying

material properties that change as the system evolves. In this example, we see that network

viscoelasticity and the possibility of relative motion between the solvent and the network

have opposing effects on the net flux driven by the peristaltic motion.

The paper is organized as follows. In Section 2, we introduce the model equations and the

numerical method. In Section 3.1, 3.2, and 3.3, we present, respectively, numerical

simulations of Taylor’s swimming sheet problem for a mixture of two viscous fluids,

simulations of peristaltic pumping of a mixture of two viscous fluids (both with and without

immersed elastic particles), and simulations of peristaltic pumping of a fluid mixture

composed of a viscoelastic network and a viscous solvent. Finally, in Section 4 we offer

concluding remarks.

2. Model Equations and Numerical Method

Our development of a two-material immersed boundary method draws on our previous work

on numerical methods for two-material mixtures [24] and on the immersed boundary

methodology for a single fluid [1], so we begin this section by introducing the two-material

model and reviewing the classical immersed boundary method.

2.1. Two-Material Mixture Model

We consider a mixture of two materials, which we denote ”solvent” and ”network”, in

which both materials may be present at any spatial point x. While for some applications in

this paper, the two materials are treated as immiscible viscous fluids, we use the solvent/

network terminology throughout the paper for simplicity. The relative amounts of the two

materials are given by the volume-fractions, θs(x, t) and θn(x, t) for the solvent and network,

respectively. We assume that the total amount of each material remains constant. The two

volume-fractions evolve according to the continuity equations

(1)

(2)

where 0 < θn < 1, θs = 1 – θn and un(x, t) and us(x, t) are the network and solvent velocity

respectively. Since θs + θn = 1, adding these two equations gives an incompressibility

constraint

(3)

on the volume-fraction averaged velocity θnun + θsus.

The two velocity fields are determined from the momentum equations for the two materials.

For this paper, we restrict our attention to the viscous-dominated situation in which inertial
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terms are ignored (similar to zero-Reynolds number flow) and in which the velocities and

pressure respond instantaneously to applied forces. Under these conditions, the momentum

equations reduce to the force-balance equations

(4)

(5)

Here, τ is the viscoelastic stress tensor for the polymer network. σn and σs are the viscous

stress tensors for the network and solvent, respectively, ξθnθs(un – us) describes the

frictional drag between the two phases (where ξ > 0 is the drag coefficient), and p is the

pressure. The network and solvent force densities fn and fs are generated by the immersed

elastic structures as described in detail below. The viscous stress tensors σn and σs are taken

to be those for Newtonian fluids:

(6)

(7)

Here I is the identity tensor, μn,s are the shear viscosities and λn,s + 2μn,s/d are the bulk

viscosities of the network and solvent (d is the dimension), and I is the identity tensor. We

choose λn,s = –μn,s so that the bulk viscosities in both phases are zero.

For the example with a viscoelastic network, we have in mind a transient network in which

the elastic links comprising the network form and break dynamically. We describe the

strength of the network at any time t and location x by the quantity z(x, t), which satisfies the

equation

(8)

where α and β are the link formation and breaking rates, respectively. The variable z is

proportional to the density of crosslinks present. The network viscoelastic stress tensor

evolves according to the constitutive equations

(9)

We define the polymer relaxation time κ

(10)

and polymer viscosity μp

(11)
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The elastic modulus of the network μp/κ is a function of z. We are modeling the network as

an Oldroyd-B fluid with spatially and temporally varying elastic modulus. See [24] for a

more detailed discussion of the model.

2.2. Classical Immersed Boundary Method

The “classical” Immersed Boundary method deals with the coupled motion of a single

viscous incompressible fluid and one or more elastic objects in contact with the fluid. An

Eulerian description is used for the fluid and the fluid dynamics are described by the

incompressible Navier-Stokes equations with a force density contribution from each of the

elastic objects

(12)

Here, u(x, t), p(x, t) are the unknown fluid velocity and pressure, μ and ρ are the fluid’s

viscosity and density, and f is the total force density generated by the immersed elastic

objects.

A Lagrangian description is used for each immersed elastic object. For the case of a single

one-dimensional object in a two-dimensional fluid, the locations of points on the object at

time t are given by X(q, t) where q parameterizes material points on the object. Using a

prescribed constitutive relation, a force (per unit q) is computed at each point of the elastic

object from the function X(q, t)

(13)

The coupling between the fluid and the object is accomplished through two integral relations

(14)

and

(15)

in which δ denotes a two-dimensional Dirac delta function. The first of these equations

describes how the force F at each point of the object is transmitted to the fluid, and the

second expresses the assumption that each point of the immersed object moves at the local

fluid velocity (this is the no-slip condition).

In calculations, discrete versions of Equations (12)-(15) are used. Typically, a Cartesian grid

and finite-difference approximation are used for the fluid dynamics equations (12), the

integrals in equations (14)-(15) are approximated by discrete sums in which the Dirac delta

function is replaced by a regularized “approximate” delta function of finite support, and the

Lagrangian point locations are updated using a discrete-time approximation to Equation

(15). Detailed discussion of the immersed boundary method including the approximate

delta-functions can be found in [1]. We note that in some applications of the method in
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which the viscosity is dominant, the Navier-Stokes equations (12) are replaced by the Stokes

equations [5, 25].

One reason that the IB method has found wide applicability is the freedom in choosing the

force-generating rules used in Equation (13). Various rules have been used to give the

objects desired resistance to stretch or bending [7, 26]. Using elastic springs to “tether” IB

points to target points whose motion is specified, a desired motion can be defined for each

immersed boundary while still allowing it to respond appropriately to the hydrodynamics

[14, 18, 16]. By allowing the connections between IB points to form and break dynamically,

transient cell-cell adhesion and viscoelastic network dynamics have been studied [10, 5].

This flexibility extends to the two-fluid Immersed Boundary method we introduce in this

paper.

2.3. Two-fluid Immersed Boundary Method

In thinking about extending the classical Immersed Boundary method to a two-material

mixture, one faces two new issues. At what velocity should the points on an immersed

object move? How should the Immersed Boundary forces generated at the IB points be

distributed to the two materials? The answers to these questions depend on what physical

conditions one is trying to capture. In this paper, we consider the case where both materials

are to satisfy the no-slip condition at each point of the immersed object. In the classical IB

method the way the no-slip condition is enforced is through Equation (15), which defines the

velocity at each IB point so that the no-slip condition is satisfied by definition. In the present

two-fluid case, if the solvent and network velocities were equal at each point of an immersed

object, then this approach would work here as well. However, it is not obvious how to

enforce this equality of the velocities in the IB context. If the solvent and network velocities

differ at an IB point, then, clearly, one cannot make both fluids satisfy the no-slip condition

at that point. Our approach to overcoming this challenge is to use two immersed boundaries

for each immersed object, one of which “communicates” with each of the two fluids. Points

on the “solvent” immersed boundary move according to the analog of Equation (15) with the

solvent velocity us used in the integral, and, similarly, points on the “network” immersed

boundary move according to the analog of Equation (15) with the network velocity un used

in the integral. By definition then, each fluid satisfies a no-slip condition with respect to the

corresponding immersed boundary. The second component of this approach is to introduce

penalty forces that act on the corresponding points of the two immersed boundaries to

oppose motions that move them apart. The details of our two-fluid IB method follow.

As in the standard IB method, we use an Eulerian description of the fluid variables, in this

case for each of the two fluids, and we use a Lagrangian description for each of the

immersed boundaries. For each immersed structure, we introduce two immersed boundaries,

which we denote Γn and Γs, as shown in Fig. 1. The locations of points on the solvent and

network immersed boundaries are given, respectively, by the vector functions Xn(q, t) and

Xs(q, t), with Xn(q, 0) = Xs(q, 0). Each Lagrangian point on Γn communicates only with the

network and each Lagrangian point on Γs communicates only with the solvent. In particular,

the velocity of an IB point on Γn is determined by the local network velocity field un, while
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the velocity of an IB point on Γs is determined by the local solvent velocity us. These

velocities are specified by formulas similar to Equation (15) as described below.

The forces at each Lagrangian point are of several types. Each point is connected by linear

springs to its two neighboring points on the same immersed boundary. These spring forces

specify the immersed boundary’s internal elastic properties. Each point on Γn is connected

by a stiff spring to the corresponding point on Γs. These springs generate “penalty forces”

when the points they connect are at different locations. Each point on Γn is also connected

by a stiff spring to a corresponding “tether” point. By imposing the motion of the tether

points, we can drive the motion of Γn. Similarly, each point on Γs is connected to a tether

point whose motion we impose.

Each force on Γn is distributed to the surrounding network fluid as in the classical IB

method using an analog of Equation (14), and similarly forces on Γs are transmitted to the

solvent. However, the different distributed forces are weighted differently so it is convenient

to distinguish the penalty force  on the two immersed boundaries from the other forces

, that is, the sum of the elastic and tether forces. After they are transmitted to the fluid,

the penalty forces are scaled by the product of the volume-fractions θnθs. This ensures that

there is no interphase penalty force if either of the volume fractions goes to zero, and it

ensures that equal and opposite penalty forces are applied to the solvent and the network

since . The forces within each phase are scaled by that phase’s volume-fraction.

With these understandings, the momentum equations for the network and solvent,

respectively, are:

(16)

(17)

As in Section 2.1, the variable τ is the viscoelastic stress tensor. σn and σs are the viscous

stress tensors for the network and solvent, ξθnθs(un – us) describes the friction drag between

the two phases, and p is the pressure. The new quantities in these equations are the

contributions θnθs  and θnθs  to the force densities from the penalty forces, and the

contributions  and  from the elastic and tether forces. The force densities in the

momentum equations are defined from the Lagrangian force densities by the integral

relations

(18)

where j = n, s and i = o, p. The final equations which close the system are

(19)

for j = n, s. In Eqs.(18)-(19), x = (x, y) denotes spatial coordinates and δ(x) = δ(x)δ(y) is the

two-dimensional Dirac delta function.
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From Eq.(19), we see that even if the locations of the two boundaries Γn and Γs coincide,

differences in the two velocities at corresponding points of the boundaries will cause them to

separate. In this case, penalty forces will be generated and will act to drive the boundaries

back together.

In summary, the model system for our two-fluid Immersed Boundary method consists of the

network continuity equation (1), the relation θs = 1 – θn, the incompressibility constraint

equation (3), the momentum equations (16)-(17), z and τ equations (8)-(9), rules for

calculating the IB elastic, tether, and penalty forces , the force transmission

expressions (18) and the IB motion equations (19). These must be supplemented by initial

conditions for θn and the IB point locations, and boundary conditions for us and un on the

domain boundary.

2.4. Two-fluid Immersed Boundary Method Discretization

As is typical in Immersed Boundary calculations, the fluid quantities (un, us, p, θn, θs) are

discretized using a Cartesian grid, with mesh-space h. Each Immersed Boundary object is

represented using a discrete set of IB points indexed by the integer q. Time is discretized

into steps of size Δt, and the locations of the IB points at time tk = kΔt are denoted by Xj(q,

tk) for j = n, s. Fluid quantities at an Eulerian grid point xlm at this time are identified by

 and similar expressions. For communication between the Eulerian grid and the IB

point locations, we use discrete versions of Eqs.(18)-(19). More specifically, we use

(20)

(21)

where δh is an approximation to the two-dimensional Dirac delta function. For this paper, δh

is the tensor product of two of Peskin’s cosine-based discrete delta functions [1].

Suppose that at time tk we have the current network volume-fraction , viscoelastic

stress τlm(tk) and link density zlm(tk), and the two sets of Immersed Boundary configurations

Xs(q, tk) and Xn(q, tk). Then we advance the state variables of the model system as follows:

1. Compute the boundary forces  for i = p, o from the boundary

configurations Xn,s(q, tk). Compute the corresponding Eulerian functions

 for i = p, o using Eq. (20).

2. Solve discrete versions of Eq. (3), (16) and (17) for  and p(tk).

Compute the values of  at time tk+1/2 by extrapolating from their values at tk and

tk−1.

3.
Solve a discrete version of Eq. (1) with the velocity field  for

.
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4. Solve for τlm(tk+1) and zlm(tk+1) using a discrete analog of (9) and (8), with the

velocity field  and volume-fraction distribution .

5. Update the location of the IB points using Xj(q, tk+1) = Xj(q, tk) + ΔtUj(Xj(q, tk), tk)

for j = n, s.

We discretize Eq. (3), (16) and (17) as described in detail in [24]. We write the equations in

matrix-vector form as:

(22)

where

αn,s = (2μn,s + λn,s).  for j = n, s. We use a MAC-type staggered

computational grid where scalars are located at the grid centers and vectors are located at the

grid edges. All values of the viscoelastic stress tensor τ are placed at the cell centers. All

equations in the above system are discretized using second-order, centered finite differences.

When discretized, these equations lead to a large, sparse linear system of saddle point type.

A multigrid preconditioned GMRES solver is used to solve the system of equations [33, 24].

The transport equation (1) is then solved by the second-order corner transport upwind (CTU)

scheme as described in [27]. Finally, we solve the equations (8) and (9) together, with a

CTU-type explicit approximation of the advection terms and Crank-Nicolson approximation

to the remaining terms. For each Eulerian grid point xlm, a 4 × 4 linear system is solved to

get the time updated values for τlm(tk+1) and zlm(tk+1). See [24] for the detailed algorithm.

3. Numerical Results

Several model problems are used to illustrate the capabilities and performance of our new

two-fluid IB method. The numerical tests presented in this paper are two-dimensional.

However, our method extends naturally to three dimensions. These tests include Taylor’s

classical swimming sheet problem but for a mixture of two viscous fluids, peristaltic

propulsion of a mixture of two viscous fluids with and without immersed particles, and

peristaltic propulsion of a mixture of a viscous fluid solvent phase and a viscoelastic fluid

network phase. For all simulations, the boundary condition in the x-direction was periodic

and that in the y-direction was no-slip.

3.1. Taylor’s swimming sheet problem

In this section we present numerical simulations of the swimming in a two-fluid mixture of

an infinite sheet whose undulatory motion is (approximately) prescribed. A similar problem

was studied first by G.I. Taylor for a single Stokes fluid in an infinite domain [28] and later

Du et al. Page 9

J Comput Phys. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



by Reynolds in a finite domain [29]. Taylor and Reynolds found the swimming speed to be

independent of the fluid’s viscosity because the force required to drive the undulating sheet

and the resistance to motion both scaled with the viscosity. In recent years, this and similar

problems have generated renewed interest. The swimming sheet and peristalsis problem

(essentially two coordinated undulating sheets) have been explored in the context of single-

phase viscoelastic fluids [11, 30] and mixtures of a fluid and viscoelastic material [23]. In

these studies, the swimming speed was found to depend on the constitutive properties of the

fluid, whether the swimming object was of infinite or finite extent, and on the boundary

conditions imposed on the materials at the sheet. The mixture studies were limited by their

analysis techniques to the case of very small viscoelastic material volume-fraction [23].

In our present study of the motion of the sheet in a mixture of two fluids of different

viscosity, we do not take into account viscoelastic forces within the materials. Hence, we

omit equations (8) and (9) and set the Δ · (θnτ) term in (22) to zero. Our numerical

simulations show that for a given wave motion of the sheet, the swimming speed is always

less than that in a single fluid of either fluid’s viscosity and that the viscosity ratio μn/μs

influences the swimming speed. This contrasts with the viscosity-independent swimming

speed reported by Taylor and Reynolds for a single fluid. Furthermore, the composition (i.e.,

volume-fraction distribution) of the mixture significantly affects the swimming speed. Our

numerical and analytic study of Taylor’s swimming sheet problem for a two-fluid mixture is

described in detail in [31]. In the current paper, we describe the set-up of this problem and

illustrate the performance, including convergence, of our two-fluid IB method when applied

to this problem.

Our numerical simulations are carried out in the domain [0, 1] × [–L, L] where L is the

distance from the mean plane of the waving sheet to the top wall. Initially we set θn = 0.2

everywhere. In the reference frame moving with its swimming speed, the extensible sheet

has a waving profile

(23)

where ∊k << 1. Our calculations are done in the lab-frame, and the swimming speed is

calculated by averaging the x-velocity over all the immersed boundary points and over one

wave period. For the results presented in this paper, we use ∊ = 0.012, L = 0.5, and k = ω =

2π.

Fig. 2(a-b) show the pressure and velocity distributions at time t = 0.5. The viscosity ratio

μn/μs between the two fluids is 4. Although the velocities un and us have the same maximum

magnitude on the sheet surface, the difference in viscosities causes the two fluids to move

differently away from the sheet. As the fluids are both pushed out of the high pressure

regions and into the low pressure ones, much more vortical motion is evident for the lower

viscosity solvent than for the higher viscosity network. In Fig. 3, we plot θn and the relative

velocity un – us at various times. We see that the relative motion between the two fluids

leads to volume-fraction inhomogeneities that increase in extent up to t = 0.5 and which

essentially disappear at the end of each wave period (the period is 1 for this simulation).
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To test the accuracy of the computed solution, we carry out simulations with a sequence of

grid sizes: 64 × 64, 128 × 128, 256 × 256, and 512 × 512. Because an analytical solution is

not available, the 512 × 512 results are treated as the “exact” solution. Here we show

convergence results for the network volume-fraction θn at time = 0.5 when the two phases

have well separated. Table 1 shows both the L2 norm and L∞ norm of the error. The results

indicate that the method demonstrates about first-order accuracy in network volume-fraction

and between first and second order accuracy for velocity.

3.2. Peristaltic Pumping of a Mixture of Two Viscous Fluids

The transport of a fluid within a tube due to contraction waves is responsible for many

physiological flows. Sometimes particles of appreciable size are transported along with the

fluid. Numerical studies of peristaltic pumping of a Stokesian viscoelastic fluid were done in

[11] and [12] and substantial differences from the much-studied Newtonian Stokes case

were observed. In this section, we present numerical studies on peristaltic transport of a

mixture composed of two viscous fluids. As in the previous example, we omit equations (8)

and (9) , and set Δ · (θnτ) term in (22) to zero. We also illustrate the capabilities of our new

IB method by an example of peristaltic pumping with multiple immersed particles within the

channel. In contrast to the walls of the peristaltic tube, the motion of these particles is not

prescribed.

For this problem, we use the same computational domain as for the swimming sheet and we

again use tether points to drive the motion of the IB walls. In the lab-frame, the prescribed

wall motion is X(q, t) = (q, ±d(q, t)), where , α = 0.4π

and γ = 0.25. With these parameters, the amplitude of the motion of each wall is 0.05.

Because each wall IB point is connected by a stiff spring to a corresponding tether point, the

motion of the IB points is approximately that of the tether points.

Because of the composition-dependent differences in behavior we observed for the

swimming sheet problem, we explored how different volume-fractions affect peristaltic

pumping. But first, we wanted to test whether our method would recover known results for

peristaltic pumping of a single viscous fluid. To this end, we set the viscosities to be equal

(μn = μs), the drag ξ to 0, and we prescribed a spatially-uniform initial network volume-

fraction θn. We defined the peristaltic pump rate at a fixed position x = xc by the formula

(24)

where we choose T2 = T1+1 to average the flow rate over one peristaltic wave period. With

these parameters, we calculate a peristaltic flux of Q0 = 0.416 which agrees well with the

second-order analytical result 0.419 reported in [32]. The calculation was done using a 256

× 256 grid, the same as that used for the other peristalsis simulations described next.

We then set the viscosity ratio μn/μs = 2 and varied the initial network volume-fraction

distribution θn to see how this would affect the behavior of the pump. Fig. 4 shows the

network volume-fraction θn and the network velocity un at various times for a simulation

with a viscosity ratio of 2 and a uniform initial value θn = 0.3. As the peristaltic wave
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progresses to the right, spatial inhomogeneities in θn develop and the profile is pushed along

with the wave. More specifically, θn increases where the walls are closest together and is

depleted where they are furthest apart.

Fig. 5(a) shows the scaled mean flow rate Q/Q0 driven across x = 0.5 by the pump over one

wave period for different initial values of the network volume-fraction. We see that for all

initial volume-fractions examined, the mean flow rate is greater than that for a single fluid

and achieves a maximum for an initial volume-fraction of approximately 0.6 for viscosity

ratio 2. Fig. 5(b) shows that the fractions of the total flow rate that are contributed by the

network and solvent depend nonlinearly on the composition of the mixture. As for the

swimming sheet problem, the flows here vary with the mixture composition in a nontrivial

way. We also note that for fixed initial θn = 0.5, the mean flow rate increased steadily as

μn/μs was increased from 1 to 6 (not shown).

For the examples shown so far, the motion of the immersed boundaries was driven by the

prescribed motion of tether points. In each case the prescribed tether point motion was the

same for Γn and Γs. In Fig. 6(a,b), we show snapshots from simulations of peristaltically-

driven flow of a suspension of (approximately) rigid particles in the two-fluid mixture. The

motion of the particles is determined completely by their interactions with the surrounding

fluid. These simulations demonstrate that the penalty forces are effective in preventing

separation between the network and the solvent immersed boundaries (Γn and Γs) even for

freely moving IB objects.

The simulations also show that the presence of the particles substantially alters the relative

motion of the two fluids and leads to strikingly different patterns of volume-fraction

inhomogeneity. In these simulations, the highest network volume-fraction occurs in front of

the particle cluster. Comparing Fig. 4 and 6, we see that the extent of phase separation is

greater when there are particles than it is without them. At t = 1, θn ranges between 0.15 and

0.5 with the particles and between 0.2 and 0.4 without them. Furthermore, with the particles,

the extent of phase separation grows substantially between times t = 1 and t = 3, while it

stays approximately the same without the particles (not shown).

In the peristalsis problem, we approximately impose the motion of the tube walls. If the

motion were strictly imposed, then one would expect the motion of the fluids inside the tube

to be independent of the conditions outside the tube. In discretizing the PDEs, however, we

use the same stencil for all grid points, as in the classical IB method. For a grid point inside

the tube but close to the tube wall, the discretization involves values both inside and outside

the tube. Thus the composition of the mixture outside of the tube could potentially affect the

calculations within the tube. To assess the extent of this effect on the dynamics inside the

tube, we repeated the peristalsis with particles calculation, but set the initial value of θn to

0.3 inside the tube and to 0.03 outside the tube, rather than to the uniform θn = 0.3 used for

the simulation shown in Fig. 6(a,b). The results of the new simulation are shown in Fig.

6(c,d). We see that, both for times t=1 and t=3, the network velocity un and the network

volume-fraction θn are very similar for the two cases. We plot the position of the rightmost

particle as a function of time in Fig. 6(e) and (f). The results given by the two simulations
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are almost identical. Thus it appears that changing the initial composition of the two-fluid

mixture outside of the tube has a very small effect on the subsequent dynamics.

3.3. Peristaltic Pumping of a Mixture of a Viscous Solvent and a Viscoelastic Network

From the results shown in the previous section, we see that for a peristaltic pump with given

motion, the mean flux generated for a mixture of two viscous fluids with different viscosities

is always larger than that of a single-phase viscous fluid. In this section, we present

simulation results of peristaltic pumping of a mixture of a viscous solvent and a viscoelastic

network. Numerical studies of peristaltic pumping of a single viscoelastic fluid were done in

[11]. Their computational results indicate that viscoelastic effects may significantly decrease

the amount of fluid transported by the pump.

We use the same parameters as in the previous section, and keep the viscosity ratio μn/μs at

4. We choose the link formation term in (8) of the form

(25)

where the link formation constant α0 is set to:

(26)

Here z0 is the maximum initial value of the network link density and α is chosen to reflect

the assumption that each crosslink connects two “pieces” of network and so link formation

should depend on the network volume-fraction squared. The initial value for z is chosen

according to

(27)

which is the steady state solution to (8) when the network velocity is zero. In all the

following tests, we make the initial link density z0 = β. According to (11), this sets the initial

polymer viscosity μp to 1.

In the first set of simulations, the network volume-fraction is set to a spatially uniform value

of θn = 0.98 initially and held at this value for all time. This can be thought of as the effect

of introducing large diffusion terms in Eq. (1) and (2). By doing so, we hope to simulate the

peristaltic pumping of a single-phase viscoelastic fluid. We compute the mean scaled flux

Q/Q0 for the different values of polymer relaxation time κ. Here Q is the peristaltic pump

rate for the mixture as defined in (24). Q0 is the pump rate for a single-phase viscous fluid,

calculated from the analytical formula in [32]. Fig. 7 shows the values of Q/Q0 as a function

of time for different κ values. As the relaxation time increases, the steady mean flow rate

decreases continuously from the Newtonian case, until κ = 2.0. After that, the steady state

flow shows little further change with κ, increasing only slightly with additional increases in

κ. For simulations with larger κ values, it takes longer for the flux to reach a steady value.
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Using the time period of the peristaltic wave T as the time scale of the fluid flow, we can

define the Weissenberg number for the system Wi = κ/T. With T = 1.0 for all the tests, we

have a Weissenberg number of 2 for simulations with κ = 2.0. In this case, the flux is about

75% of that for a single-phase viscous fluid. This result is in close agreement (with about

1% difference) with that reported in [11], for the same Weissenberg number and pumping

parameters.

Next, we set the initial network volume-fraction to θn = 0.3 and carry out two sets of

simulations that differ only in whether θn is held spatially constant in time or changes

according to Eq. (1). As shown in Fig. 8(a), when θn is held spatially constant, the flux is

always smaller than that for a single-phase Newtonian fluid and exhibits similar patterns

with varying κ as in the previous simulations with θn = 0.98. With less network material in

the mixture, there is a smaller reduction in the amount of fluid transport driven by the pump.

When θn evolved according to Eq. (1), substantial spatial inhomogeneities in θn formed, and

a steady flow rate failed to develop. Such strong spatial phase separation is not physical, and

stems from the absence in the equations of a term for the chemical interactions between

polymers, i.e. swelling stress. Hence, we introduced a chemical pressure Ψ(θn) whose

gradient enters on the right hand side of Eq. (4). The specific form of the chemical pressure

used is that from Flory-Huggins polymer theory [34]

(28)

The first two terms are entropic terms and the third is an interaction energy term. The

parameter n is the number of segments in a polymer chain, χ is the “interaction” parameter

whose value is determined from the pairwise interaction energies between two fluid

particles, two network particles, or one fluid and one network particle. The amplitude of the

chemical pressure is scaled by ψ0. For this paper, we set n = 1, χ = 2, and ψ0 = 10, so that the

chemical pressure penalizes strong separation of the network and fluid phases. The

simulation results with variable θn is plotted in Fig. 8(b). The qualitative relation between

the flux and κ remains the same. However, when θn is allowed to vary in space and time, the

total flux is higher than the flux for a single-phase Newtonian fluid.

4. Conclusion

We have introduced a new Immersed Boundary method for two-fluid mixtures. In the

classic IB method, communication of information between the Lagrangian IB points that

represent immersed objects and the fluid (described in Eulerian terms) is done using integral

transforms with delta-function kernels. Forces calculated from the configuration of the IB

points are transmitted to the surrounding fluid, and the velocity at which each IB point

moves is found by interpolating from the velocities at nearby points of that fluid. In

extending this idea to a mixture of two fluids, “solvent” and “network”, one is faced with the

issue of which force information to communicate to each fluid, and with the issue of

deciding at which velocity should IB points move if the fluids have different velocities near

the immersed structures. A reasonable boundary condition for many applications is to
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require that the two fluids have the same velocity at each point on an immersed structure,

but, within the usual IB framework, there does not seem to be a mechanism for enforcing

this condition. Our way of dealing with these issues is to use two immersed boundaries to

represent each immersed structure. Each of these boundaries communicates with only one of

the fluids. The force generated within each immersed boundary is transmitted only to the

corresponding fluid. The velocity of IB points on each of these boundaries is determined by

interpolating velocities from the corresponding fluid. Although the two immersed

boundaries representing an immersed structure do not move at exactly the same velocity,

their velocities and locations can be made to match closely by defining “penalty” forces

between corresponding points of the two boundaries that drive these points together.

One disadvantage of the proposed penalty method is that use of the penalty force imposes an

extra restriction on the time step in order for the calculations to remain stable. In the test

presented in section 3.1, the tether spring stiffnesses were chosen so that maximum

difference between the IB point locations and their target locations was less than 0.02∊,

where ∊ is the amplitude of the wave. For a single-phase fluid, the stiffness of the tether

springs limited the time step to a Courant number of about 0.1. For the two-fluid case, the

stiffness of the penalty spring was selected so that the distance between the two IB

boundaries remained below 0.05h, where h is the size of the computational grid. The

maximum stable time step in these tests corresponded to a Courant number of 0.02, which is

five times smaller than the maximum size step that produced stable calculations when the

method was applied to a single-phase fluid.

An alternative approach to our penalty method, which might allow a larger time step, is a

constraint-based approach in which constraint forces are determined to ensure that the two

fluids have the same velocity on each of the immersed boundaries [35, 36, 37], an approach

which we have found effective in another context [38]. While exploration of these

approaches for the current problem is warranted, their application here is not

straightforward. One issue is that we are solving multi-fluid analogs of time-independent

Stokes equations, and the methods in [37] are based on a fractional-step treatment of the

Navier-Stokes equations. Another complication is that our momentum equations involve

time and space dependent coefficients, so that preprocessing of the matrices involved in

their solution is not an option.

We have applied the new method to three problems all involving interactions of one or more

immersed structures with two viscous fluids or with a viscous fluid and a viscoelastic one.

For the first two problems, we solved the momentum and incompressibility equations and

the volume-fraction evolution equation using the methods described in [33]. The first

problem is the two-fluid version of G.I. Taylor’s swimming sheet problem in which an

imposed undulating motion of a sheet results in a net translational motion of the sheet. Using

this as a test problem, we demonstrated that the new method converges and has

approximately first-order accuracy, similar to the classic IB method for a single fluid. We

also explored the effect of the ratio of the two fluids’ viscosities and the composition of the

mixture on the sheet’s swimming speed.
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The second problem involves peristaltic pumping of a two-fluid mixture. We confirmed that

in the case that we set the two fluid’s viscosities equal and began with a spatially-uniform

volume-fraction distribution, the new method produced results in agreement with existing

theories for peristalsis of a single fluid. We then applied the method to peristalsis of a two-

fluid mixture and saw that for a given motion of the tube walls, the total flux in the case of

two fluids with different viscosities exceeds that for a single fluid of either viscosity. We

carried out simulations of peristalsis in which particles were added to the two-fluid mixture.

The presence of the particles substantially altered the relative motion of the two fluids and

led to more pronounced volume-fraction heterogeneities than we observed without particles.

The particle simulations also showed that our new method is able to handle objects whose

motion is “free” and determined only by their interactions with the surrounding fluids. Also

these simulations demonstrated that the calculated behavior of the fluids inside the

peristaltic tubes was affected little by the conditions outside of the tube. To our knowledge,

this is the first time that independence of external conditions has been demonstrated in using

Immersed Boundary methods to study complex fluids.

The third problem we investigated with the new method again involved peristalsis, but this

time the network was modeled as an Oldroyd-B viscoelastic fluid. For this problem, we

solved the momentum and incompressibility equations and the volume-fraction, elastic-link

density, and viscoelastic-stress evolution equations using the methods described in [24]. The

influence of viscoelasticity was to reduce the flux driven by the peristaltic motion, an

observation consistent with that by Teran et al [11] for a single Oldroyd-B fluid. In the two-

fluid case, there is competition between the flux-reducing effect of the viscoelasticity and

the flux-increasing effect of the relative motion and phase separation of the mixture. Thus

for some parameter regimes the net flux was higher than for a single fluid, while for others it

was lower. Further investigation of this competition is ongoing.
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Figure 1.
Dual IB representation of an immersed surface.
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Figure 2.
Pressure distribution and velocity fields, un and us, at time = 0.5. ∥un∥max = ∥us∥max =

0.076. Viscosity ratio μn/μs = 4, uniform initial network volume-fraction θn = 0.2.
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Figure 3.
Snapshots of the θn distribution and the relative velocity un – us at selected times during a

swimming-sheet simulation. The arrows are scaled relative to the maximum relative velocity

∥un – us∥max = 0.033.
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Figure 4.
Snapshots of the θn distribution and the network velocity un at selected times during a

peristalsis simulation. The arrows are scaled relative to the maximum velocity ∥un∥max =

0.319.
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Figure 5.
(a) Time-average scaled flux (across x = 0.5) as a function of the initial value of θn . (b) The

fractions of the total flux due to network motion (circle) and solvent motion (asterisk).

Viscosity ratio μn/μs = 2. Uniform initial volume-fraction θn = 0.3.
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Figure 6.
(a)-(d): θn distribution and network velocity field un at selected times in a simulation of

peristaltic pumping with particles. (a,b): Initially θn = 0.3 throughout the domain. (c,d):

Initially θn = 0.3 for points inside the tube and θn = 0.03 for points outside the tube. (e,f):

Position of the rightmost particle as a function of time. The solid lines are from simulations

shown in (a,b). The dash-dot lines are from simulations in (c,d).
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Figure 7.
The mean scaled flux for different κ values. The initial network volume-fraction is θn = 0.98

and held fixed in time.
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Figure 8.
The mean scaled flux for different κ values. (a) Constant θn. (b) Variable θn.
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Table 1

Errors for various grid sizes relative to a solution on a 512 × 512 grid

Grid Size ∥ e θn ∥ 2 Order ∥ e θn ∥ ∞ Order ∥ e vn ∥ 2 Order ∥ e vn ∥ ∞ Order

64 × 64 5.05e-4 N/A 6.50e-3 N/A 3.25e-3 N/A 1.34e-2 N/A

128 × 128 2.97e-4 0.77 4.18e-3 0.64 1.27e-3 1.36 5.64e-3 1.25

256 × 256 1.14e-4 1.07 2.09e-3 0.82 4.04e-4 1.65 1.86e-3 1.60
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