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Abstract

The complex transverse water proton magnetization subject to diffusion-encoding magnetic field
gradient pulses in a heterogeneous medium can be modeled by the multiple compartment Bloch-
Torrey partial differential equation (PDE). In addition, steady-state Laplace PDEs can be formu-
lated to produce the homogenized diffusion tensor that describes the diffusion characteristics of
the medium in the long time limit. In spatial domains that model biological tissues at the cellular
level, these two types of PDEs have to be completed with permeability conditions on the cellular
interfaces. To solve these PDEs, we implemented a finite elements method that allows jumps in the
solution at the cell interfaces by using double nodes. Using a transformation of the Bloch-Torrey
PDE we reduced oscillations in the searched-for solution and simplified the implementation of the
boundary conditions. The spatial discretization was then coupled to the adaptive explict Runge-
Kutta-Chebychev time-stepping method. Our proposed method is second order accurate in space
and second order accurate in time. We implemented this method on the FEniCS C++ platform and
show time and spatial convergence results. Finally, this method is applied to study some relevant
questions in diffusion MRI.

Keywords: Bloch-Torrey equation, diffusion magnetic resonance imaging, finite elements, RKC,
pseudo-periodic, double-node, interface problem.

1. Introduction

Biological tissue is a heterogeneous medium, consisting of cells of various sizes and shapes distributed
in the extra-cellular space. The cells are separated from each other and from the extra-cellular space
by the cell membranes. Diffusion magnetic resonance imaging (dMRI) is an imaging modality that
uses magnetic field gradient pulses in order to access the diffusion characteristics of water molecules
over a time period on the order of tens of milliseconds (see a recent review in [1]).
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While there have been numerous works on the analysis of the dMRI signal under simplifying as-
sumptions (on the geometry, membrane permeability, pulse sequence), see, e.g., [2, 3, 4, 5, 6, 7, 8],
in this paper, we focus on a more complete model of the water proton magnetization called the
multiple compartment Bloch-Torrey partial differential equation (PDE), that allows the inclusion
of general tissue geometries, permeable cell membranes, and arbitrary diffusion-encoding gradient
sequences. This numerical model is a generalization of the Bloch-Torrey equation [9] to heteroge-
neous domains [5, 10] and it models the complex transverse water proton magnetization subject to
diffusion-encoding magnetic field gradient pulses. The dMRI signal is given as the integral of the
magnetization.

Some previous works that solved the diffusion equation to obtain the dMRI signal in the narrow
gradient pulse limit (the duration of the pulses is small compared to the measured diffusion time)
are [11, 12, 8], where the spatial discretization is finite elements. To account for the short gradient
pulses, the magnetization is pre- and post multiplied by a spatially-dependent complex factor.
The initial condition to the PDE is either the delta function distribution (to obtain the diffusion
propagator) or a complex-valued initial distribution describing the magnetization just after the first
applied gradient pulse. The PDE solved is the pure diffusion equation (obtained when setting the
gradient to zero in the Bloch-Torrey equation), and the simulation starts after the application of
the first gradient pulse and ends before the application of the next gradient pulse.

The focus of the work in [11, 12, 8] is on simulating diffraction patterns of restrictive (or lowly
permeable) porous systems, to determine pore size, for example. To produce such diffraction
patterns, high gradient amplitudes and long diffusion times (as long as 1 second) are used to probe
restrictive geometries. In [8] a second order implicit time-stepping method called the generalized α
method[13], which was developed for dissipating high frequencies, was used. Because of the choice of
this implicit time-stepping method, the matrix solve at each time step involves the stiffness matrix,
whose condition number increases as O(h−2), where h is the spatial discretization size. There was
also an early work on solving the Bloch-Torrey equation where the pulse duration is not short[14]
where the computational domain is one dimensional (restricted diffusion between parallel plates).

The focus of this current paper is not porous systems. Rather, it is biological tissue dMRI, where
the diffusion time is much shorter, on the order of tens of milliseconds, and the gradient amplitudes
are moderate. Numerical solutions of the multiple compartment Bloch-Torrey PDE for general
gradient sequences (no narrow pulse restriction) were reported in [15, 16, 17, 18], in which the finite
difference method on a Cartesian grid was coupled to the explicit Forward Euler time-stepping
method, resulting in first order accuracy in space and time. We found that an explicit and adaptive
second order convergent time-stepping method called the Runge-Kutta Chebyshev (RKC) method
[19] is a much better choice for our application. The RKC method was especially formulated for
diffusive PDEs (of which the Bloch-Torrey PDE is an example) to allow for much larger time
steps than alternative explicit time-stepping methods such as the Forward Euler method. Explicit
stepping methods have an advantage over implicit methods in that the solution of linear systems
with the stiffness matrix is not required. Instead, linear systems solves involve only the mass matrix,
whose condition number is O(1), and hence the linear systems are easy to solve. The RKC method
is adaptive, in that it allows error control on the ODE solution and adapts the time step size to
satisfy the error tolerance during the course of the simulation.

Now we summarize some important requirements of a numerical code for the simulation of biological
tissue dMRI:
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1. Allows arbitrary diffusion-encoding pulse shapes and sequences, including, for example, pulses
that are square (idealized pulsed-gradient spin echo (PGSE) [20]), trapezoid (more realistic
PGSE with non-zero rise time), oscilating sine and cosine [21, 22], or a yet-determined shape
to be optimized [23].

2. Allows generally-shaped cell membranes that are permeable to water passage.
3. Allows the periodic extension of the computational domain so that water can enter and exit

the computational domain in a physically reasonable manner, as was done in [16, 18].
4. Efficient for large-scale simulations in two and three dimensions.

We tried to satisfy the above requirements by the following choices:

1. The complex-valued Bloch-Torrey PDE (not the diffusion equation) is solved for arbitrary
pulse shapes and sequences.

2. Linear finite elements discretization is used to allow generally-shaped compartment interfaces
(modeling cell membranes).

3. Additional degrees of freedom are added on the compartment interfaces to allow permeability
conditions on generally-shaped interfaces.

4. The periodic extension of the computational domain is an allowed option. To impose this
condition the Bloch-Torrey PDE is transformed so that the boundary condition becomes more
computationally efficient to implement.

5. The time-stepping method is chosen to be the explicit and adaptive Runge-Kutta Chebyshev
(RKC) method [19].

The combination of linear finite elements and the RKC method makes our approach second order
accurate in space and time. For an efficient implementation of finite elements we chose to base
our code on the FEniCS Finite Elements platform [24]. The Bloch-Torrey PDE has several uncon-
ventional features that cause implementation issues for a standard PDE platform such as FEniCS.
We describe these issues and how we resolved them. First, we allowed jumps in the finite elements
solution at the compartment interfaces by implementing double-nodes at the interfaces. Second,
the pseudo-periodic boundary conditions resulting from the periodic extension of the computational
domain are reduced to standard periodic boundary conditions by transforming the Bloch-Torrey
PDE, as in [18]. We note, however, that in [18], the discretized PDE using centered finite difference
did not take into account first order terms. To obtain second order convergence in space, we had
to include all the appropriate first order terms in our discretization. Third, we reformulated the
Bloch-Torrey PDE so that the real and imaginary parts of the magnetization are decoupled to allow
the solution of two systems of half the number of unknowns compared to a naive implementation.
We show accuracy and timing results for our method and use our code to simulate and gain insight
into the diffusion characteristics of some complex geometries.

In addition to the complex-valued Bloch-Torrey PDE, we also solved steady-state (real-valued)
Laplace PDEs that produce the homogenized diffusion tensor that describes the diffusion in a
heterogeneous medium in the long time limit. We used the formulation where the computational
domain is assumed to be periodically extended to infinity in all three coordinate directions. Using
the same finite elements discretization as for the time-dependent Bloch-Torrey PDE, we will show
the convergence of the apparent diffusion coefficient of the time-dependent problem to the result
produced by the steady-state problem.
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The paper is organized as follows. In Section 2, we introduce two types of PDEs occurring in
diffusion MRI: the time-dependent Bloch-Torrey PDE and the steady-state Laplace equations that
lead to the homogenized diffusion tensor. In Section 3, we explain our numerical method, including
the double-node formulation to allow jumps in the finite elements solution on the compartment
interfaces, the transformation of the PDE to replace pseudo-periodic by standard periodic boundary
conditions, the decoupling of the real and imaginary parts, as well as the coupling of the finite
elements discretization to the RKC time integration method. In Section 4 we briefly describe the
implementation of the proposed method on the FEniCS C++ platform as well as the use of the
mesh generator Salome[25]. In Section 5, we show accuracy and timing results for this method. In
Section 6 we study the diffusion characteristics of some complex domains applicable to biological
imaging. Section 7 contains our conclusions.

2. PDEs of diffusion MRI

The effect of water diffusion in biological tissue on the water proton magnetization under the
influence of magnetic field gradient pulses can be modelled by a multiple compartment Bloch-Torrey
PDE [9, 5]. In the long time limit, the diffusion in a heterogeneous domain can be simply described
by the homogenized diffusion tensor. Under the assumption of the infinite periodic extension of the
domain, the homogenized diffusion tensor can be obtained by solving three steady-state Laplace
PDEs. In this section we describe these two types of PDEs.

2.1. Multiple compartments Bloch-Torrey PDE

First, we define a simplified geometrical model of tissue, made up of an extra-cellular space, Ω0, and
M non-overlapping biological cells defined by open sets: Ωl ∈ Rd, l = 1, . . . ,M , where Ωl ∩Ωn = ∅
for l 6= n, and d is the space dimension (typically d = 2 or d = 3). We also allow the possibility of
adding a membrane compartment around each biological cell. In this case, there would be additional
M membrane compartments: Ωl, l = M + 2, . . . , 2M + 1. If the membrane compartments are not
included in the tissue model, then they are approximated by the appropriate interface conditions
between the cell compartments and the extra-cellular space. We denote the interface between Ωl

and Ωn by Γln = Ωl ∩ Ωn. When we do not need to distinguish between the individual cells, we
will group all the cell interiors into one intra-cellular compartment Ωc, and all the membranes into
one membrane compartment Ωm, and the extra-cellular space will be denoted by Ωe.

Ideally, the total computational volume ∪l=1Ωl would be on the scale of the diffusion MRI resolution,
usually on the order of one millimeter. However, due to the fact that cell features are on the scale
of microns, typically a small portion of the tissue contributing to the signal in an imaging pixel
is simulated. We denote this portion of tissue by C for the computational domain. Usually,
C = [−L/2, L/2]d is a box and contains a “representative volume” of the tissue in the voxel under
study.

The boundary condition to impose on ∂C can be homogeneous Neumann if the support of the initial
data is far enough away from ∂C. The buffer zone needed between the support of the initial data
and ∂C grows with the diffusion distance, which, in a homogeneous medium, is O(

√
Dt), where D

is the diffusion coefficient, and t is time. Thus, the needed buffer zone is larger when the simulated
diffusion time is longer.

4



Another choice of the boundary condition comes from the assumption that C is periodically repeated
in all three coordinate directions. In this case, there would be no need for a buffer zone between the
initial data and ∂C. Water will be allowed to enter and leave C. This is the choice made in [16, 18]
and we make the same choice here when simulating tissue geometries that contain the extra-cellular
space.

To simplify the notation, we will assume that any parts of biological cells that are outside of C
will be removed so that C =

⋃
Ωl. In addition, we will define Γ =

⋃
Γln\∂C to be the union

of the interfaces minus the boundary of C. We note that to study the dMRI signal inside an
impermeable connected domain, there is no need for a computational box. In that case, we can
impose homogeneous Neumann boundary conditions on the boundary of the connected domain.

In diffusion MRI, a time-varying linear spatial magnetic field gradient is applied to the tissue sample
to encode water diffusion. Denoting the time profile of the diffusion-encoding magnetic field gradient
by f(t), its linear spatial dependence by G(r) = g · r, where the vector g contains the amplitude
and direction information of the magnetic field gradient, the water proton magnetization M(r, t)
satisfies the Bloch-Torrey PDE:

∂

∂t
M(r, t) = −Iγf(t)G(r) M(r, t) +∇ · (D(r)∇M(r, t)), r ∈ ∪Ωl, (1)

where γ = 2.67513×108 rad s−1T−1 is the gyromagnetic ratio of the water proton, I is the imaginary
unit, D(r) is the (possibly discontinuous) intrinsic diffusion tensor. See Fig 1a for an illustration
of a piecewise continuous D(r) in three compartments. The magnetization M(r, t) is a function of
position r and time t, and depends on the diffusion gradient vector g and the time profile f(t).

There are two commonly used time profiles (diffusion-encoding sequences):

1. The pulsed-gradient spin echo (PGSE) [20] sequence, with two rectangular pulses of duration
δ, separated by a time interval ∆− δ, for which the profile f(t) is

f(t) =


1, t1 ≤ t ≤ t1 + δ,

−1, t1 + ∆ < t ≤ t1 + ∆ + δ,

0, otherwise,
(2)

where t1 is the starting time of the first gradient pulse with t1 + ∆ > TE/2, TE is the echo
time at which the signal is measured (see Fig. 1b).

2. The oscillating gradient spin echo (OGSE) sequence [21, 22] was introduced to reach short
diffusion times. An OGSE sequence usually consists of two oscillating pulses of duration σ,
each containing n periods, hence the frequency is ω = n 2π

σ , separated by a time interval τ −σ
(see Fig. 1c). For a cosine OGSE, the profile f(t) is

f(t) =


cos (n 2π

σ t), t1 < t ≤ t1 + σ,

− cos (n 2π
σ (t− τ)), τ + t1 < t ≤ t1 + τ + σ,

0, otherwise,
(3)

where τ = TE/2.

The PDE in (1) needs to be supplemented by interface conditions at the interfaces Γln, and by
boundary conditions on ∂C. Let Mk and Dk be restrictions of M and D onto the kth compartment
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(a) (b) (c)

Figure 1: a) a multiple compartment domain for the Bloch-Torrey PDE; b) a PGSE sequence; c) a
cos-OGSE sequence with t1 = 0.

that take on the appropriate limiting values in case M and D are discontinuous, the two interface
conditions are the flux continuity:

Dl(r)∇M l(r, t) · nl = −Dn(r)∇Mn(r, t) · nn, r ∈ Γln, ∀ l, n, (4)

and a condition that incorporates a permeability coefficient κln across Γln:

Dl(r)∇M l(r, t) · nl = κln
(
Mn(r, t)−M l(r, t)

)
, r ∈ Γln,∀ l, n, (5)

where nk is a normal vector pointing outward from Ωk (k = l, n). If the permeability coefficient is
the same at all the interfaces, then we will simply use the notation κ.

In the limit κln = ∞, Eq. (5) reduces to the simple continuity condition on M(r, t):

M l(r, t) = Mn(r, t).

Following [16], we extend C by periodic copies of itself to handle the diffusion of water molecules
close to the boundary of C. According to [16], the two boundary conditions on ∂C are:

M(r, t)|ri=−L/2 = M(r, t)|ri=L/2 eI θi(t), i = 1, · · · , d, (6)

D(r)
∂M(r, t)

∂ri

∣∣∣∣
ri=−L/2

= D(r)
∂M(r, t)

∂ri

∣∣∣∣
ri=L/2

eI θi(t), i = 1, · · · , d, (7)

where r = (r1, · · · , rd),

θi(t) := γ gi L

t∫
0

f(s) ds, (8)

and g = (g1, · · · , gd). The PDE in Eq. (1) also needs an initial condition:

M l(r, 0) = ρl, r ∈ Ωl, ∀ l, (9)

where ρl is the spin density in Ωl.

The complete multiple compartments Bloch-Torrey PDE problem to be solved involves the PDE
Eq. (1), the two interface conditions Eq. (4-5), the two boundary conditions Eq. (6-7), and the
initial condition Eq. (9).
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2.2. Analytical solution in a homogeneous domain for the PGSE sequence

For the PGSE sequence, there exists an analytical solution of the Bloch-Torrey PDE [26]. On
the computational box C = [−L/2, L/2]d, if the initial condition is the Dirac delta distribution at
x0 = (x0

1, . . . , x
0
d) ∈ C, with the gradient vector g = (g1, . . . , gd) and constant diffusion coefficient

D, then

M(x1, . . . , xd, t) =
∞∑

n1=−∞
· · ·

∞∑
nd=−∞

d∏
i=1

M̃(xi, x
0
i + niL, gi, t),

where,

• if 0 < t ≤ δ:

M̃(x, x0, g, t) =
1

2
√

πtD
exp

(
−I

2
t g γ(x0 + x)− t4 D2 g2γ2 + 3 (x− x0)2

12 D t

)
,

• if δ ≤ t ≤ ∆:

M̃(x, x0, g, t) =
1

2
√

π D t
exp

(
−D g2γ2δ3 (−3 δ + 4 t)

12 t

)

× exp

−I gγ δ
(
(2 t− δ) x0 + δ x

)
2 t

− (−x0 + x)2

4 D t


• if ∆ ≤ t ≤ ∆ + δ:

M̃(x, x0, g, t) =
1

2
√

π D t
exp

(
I gγ

(
−δ2 + t2 −∆2

)
(x + x0)

2 t
− (x− x0 )2

4 D t

)

× exp

(
−I gγ

(
−δ2 −∆2 + tδ + t∆

)
(x0 )

t
+

D g2γ2
(
δ2 + ∆2

)2
4 t

)

× exp

(
− 1

12
D g2γ2t3 +

1
2

D g2γ2
(
δ2 + ∆2

)
t−

D g2γ2
(
δ3 + 2 ∆3 + 3 δ2∆

)
3

)
,

• if t > ∆ + δ:

M̃(x, x0, g, t) =
1

2
√

π tD
exp

(
D g2γ2δ3 (−δ + 2 ∆)

3 t
+

I gγ (x− x0 ) ∆ δ

t

)
× exp

(
−D g2γ2δ2 (−δ + 3 ∆) (t−∆− δ)

3 t
− (x− x0 )2

4 t D

)
.

is a solution of Eq. (1) and also satisfies the pseudo-periodic boundary conditions. We will use it
in later sections as a reference solution.
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2.3. DMRI signal

The dMRI signal is measured at echo time t = TE > ∆+ δ for PGSE and TE > 2σ for OGSE. This
signal is the integral of M(r, TE):

S(g) :=

∫
r∈C

M(r, TE) dr∑
l ρ

lvol(Ωl)
, (10)

where we normalized the signal to 1 at g = 0. We have explicitly included the dependence of the sig-
nal on the magnetic field direction and strength even though we removed it from the magnetization
M to shorten the notation.

Now we describe some quantities derived from the signal that are important for MR physicists and
medical researchers. In a dMRI experiment, the pulse sequence (time profile f(t)) is usually fixed,
while g is varied in amplitude (and possibly also in direction). When g varies only in amplitude
(while staying in the same direction), S(g) is plotted against a quantity called the b-value. The
b-value depends on g and f(t) and is defined as

b(g) = γ2‖g‖2

∫ TE

0

du

(∫ u

0

f(s)ds

)2

.

For PGSE, the b-value is [20]:

b(g, δ, ∆) = γ2‖g‖2δ2 (∆− δ/3) . (11)

For the cosine OGSE with integer number of periods n in each of the two durations σ, the corre-
sponding b-value is [16]:

b(g, σ) = γ2‖g‖2 σ3

4n2π2
= γ2‖g‖2 σ

ω2
. (12)

The reason for these definitions is that in a homogeneous medium, the signal attenuation is e−Db,
where D is the intrinsic diffusion coefficient.

To analyze the signal attenuation as a function of the b-values for a chosen pulse sequence, we
will change the independent variable g of the signal to b and compute the first derivative of the
logarithm of the signal attenuation curve with respect to the b-value at b = 0:

DA := − ∂

∂b
log

S(b)
S(0)

∣∣∣∣
b=0

, (13)

where the DA, in the terminology used by physicists and medical researchers, is the “Apparent
Diffusion Coefficient”, and gives an indication of the root mean squared distance travelled by water
molecules in the gradient direction g/‖g‖, averaged over all starting positions. Unless δ � ∆, the
notion of diffusion time and diffusion distance, though useful, is not rigorously defined. But we
follow the terminology from physics and call ∆− δ/3 the “diffusion time” for the PGSE sequence.
The “diffusion distance” is then given by

√
2 DA (∆− δ/3). When δ � ∆, these definitions are

rigorous. (For the OGSE sequence, the “diffusion time” is even harder to define and we do not use
this notion for the OGSE sequence in this paper). We numerically compute the DA by a polynomial
fit of log S(b)

S(0) . In Section 6 we will study some properties of the DA in complex domains, including
its dependence on the gradient direction, g/‖g‖, and on ∆, the duration between pulses of the
PGSE sequence.
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2.4. Steady-state Laplace PDE for the homogenized diffusion tensor

In the long time limit, supposing an infinite periodic extension of the computational domain C,
the diffusion characteristics can be described by an effective diffusion tensor[27]. In the presence
of permeable interfaces, the homogenized diffusion tensor Dhom can be obtained by solving the
following d steady-state Laplace equations for Wi(r), i = 1, . . . , d, over C [28]:

∇ ·

(
D(r)∇Wi(r)

)
= 0, r ∈ ∪Ωl, (14)

with the same interface conditions in Eqs. (4-5) as for the Bloch-Torrey equation, and two simpler
boundary conditions on ∂C:

Wi(r)|rk=−L/2 = Wi(r)|rk=L/2 − δi,k L, k = 1, · · · , d, (15)

D(r)
∂

∂rk
Wi(r)

∣∣∣∣
rk=−L/2

= D(r)
∂

∂rk
Wi(r)

∣∣∣∣
rk=L/2

, k = 1, · · · , d, (16)

where δi,k = 1 for k = i, and 0 otherwise. The problem to be solved consists of Eqs. (14,4-5,15,16),
for i = 1, · · · , d. The entries of the homogenized tensor Dhom are then given by:

{Dhom}i,k =
∫
C

D(r)∇Wi(r) · ek dr, i, k = 1, . . . , d,

where ek is the unit vector in the kth direction. We expect that

DA → gT

‖g‖
Dhom g

‖g‖
.

3. Method

In this section we describe our method to solve the Bloch-Torrey PDE (1,4-5,6-7,9) and the steady-
state Laplace PDEs (14,4-5,15,16).

The standard Galerkin formulation for the Bloch-Torrey PDE in the weak form is

∂

∂t

∫
Ωl

M v dr = −Iγf(t)
∫
Ωl

GMvdr−
∫
Ωl

D∇M ·∇vdr+
∫

∂Ωl∩Γ

D∇M ·nlv ds+
∫

∂Ωl∩∂C

D∇M ·nlv ds,

(17)
for each compartment Ωl, where nl is the outward pointing normal and v is a test function. We
separated the two surface integrals into one involving the interface conditions and the other involv-
ing the boundary conditions and we will describe how to enforce them in the following sections.
Similarly, the weak form for the steady-state Laplace PDE is∫

Ωl

D∇W · ∇v dr−
∫

∂Ωl∩Γ

D∇W · nl v ds−
∫

∂Ωl∩∂C

D∇W · nl v ds = 0. (18)
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We will use linear elements and write our code using the finite elements platform FEniCS [24].

There are some numerical issues in the spatial discretization that will be addressed in this section.
They concern several non-standard aspects of these two types of PDEs that require special handling
when using a general finite elements platform like FEniCS.

3.1. Interface conditions: allowing jumps in the finite elements solution

Standard finite elements discretization enforces that the solution is continuous across elements.
Discontinuous Galerkin discretization allows the solution to be fully discontinuous across all the
elements [24]. In our case, the solution is continuous in each compartment Ωl, and possibly dis-
continuous on the compartment interfaces Γ = ∪Γln. For this reason, the discontinuous Galerkin
discretization, which would have approximately double the number of nodes as a finite element
discretization (for linear elements), is not efficient and we do not use it. Instead, we keep the finite
elements formulation in order to use the matrix assembly routines in FEniCS. To do so, we need to
find a way to incorporate jumps in the solution on the interface Γ while still keeping the solution
‘continuous’, at least formally.

To achieve this goal, we looped through the finite elements mesh and repeated nodes that lie on
the interfaces Γ and created elements of zero volume there. We call these additional elements
interface elements: an element consists of d distinct vertices, each repeated once. Standard finite
elements are triangles in 2D and tetrahedrons in 3D. Interface elements are “fake” elements that
are segments in 2D and triangles in 3D. In this way, the solution is formally continuous across
the interface elements, but it is physically discontinuous because the interface elements have zero
volume. We will then associate a local stiffness matrix to the interface elements even though this
stiffness matrix represents a surface integral and not a volume integral.

We explain this discretization in detail for the steady-state Laplace PDE in Eq. (18). We write the

solution as W (r) =
N∑

i=1

ξiϕi(r), where ϕi(r) is the linear basis function that is equal to 1 at the ith

vertex, vi, zero at all other vertices, and whose support lies in the elements containing vi; ξi is the
unknown value of the solution at vi; N is the total number of nodes in a discretized mesh of C.
We consider a standard (non-interface) element Ei ∈ Ωl containing the vertices {vk}, with

W (r) =
∑

{k,vk∈Ei}

ξkϕk(r), r ∈ Ei.

We set v = ϕj and consider the quantity∫
Ei

D∇W · ∇ϕj dr−
∫

∂Ei∩Γ

D∇W · ni ϕj ds

=
∑

{k,vk∈Ei}

ξk

∫
Ei

D∇ϕk · ∇ϕj dr

−
∫

∂Ei∩Γ

D∇W · ni ϕj ds,

(19)

for j where vj ∈ Ei. (For other j, this quantity is zero.) The stiffness matrix associated with the

10



element Ei is the first term on the right hand side and that has entries

Sjk =
∫
Ei

D∇ϕk · ∇ϕj dr. (20)

The second term on the right hand side,

−
∫

∂Ei∩Γ

(
D∇W · ni

)
ϕj ds, (21)

is zero if {vj} /∈ ∂Ei ∩ Γ. So for this term, we only need to consider vertices on a compartment
interface. Because we have doubled nodes on Γ, as described earlier, we know these same vertices are
repeated. See Figure 2 for the two pairs of repeated nodes: {A1,A2}, {B1,B2}, in two dimensions
and the three pairs of repeated nodes {B1,B2}, {C1,C2}, {E1,E2} in three dimensions. For the

(a) (b)

Figure 2: a) in two dimensions, neighboring elements A1B1C1 and A2C2B2, and the interface
element A2B2B1A1; b) in three dimensions, neighboring elements A1B1C1E1 and A2B2E2C2

and the interface element B2C2E2E1C1B1.

ease of the global assembly routines, we define an interface element from these repeated nodes: in
two dimensions, the interface element is A2B2B1A1, in three dimensions, it is B2C2E2E1C1B1.
We can then define the local “stiffness” matrix, Sloc, associated with the interface elements, by
collect the terms associated with Eq. (21):Sloc ≡ κ ck

6


2 1 −1 −2
1 2 −2 −1
−1 −2 2 1
−2 −1 1 2





ξA2

ξB2

ξB1

ξA1

 ,
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in two dimensions, andSloc ≡ κ ck

12


2 1 1 −1 −1 −2
1 2 1 −1 −2 −1
1 1 2 −2 −1 −1
−1 −1 −2 2 1 1
−1 −2 −1 1 2 1
−2 −1 −1 1 1 2






ξB2

ξC2

ξE2

ξE1

ξC1

ξB1 ,

 , (22)

and in three dimensions, where ck is the length of the interface segment in 2D and the area of the
interface triangle in 3D. A derivation can be found in [29].

3.2. Boundary conditions: transformation of the Bloch-Torrey PDE

The pseudo-periodic boundary conditions for the Bloch-Torrey PDE in Eqs. (6-7) and the steady-
state Laplace PDE in Eqs. (15-16) differ slightly from standard periodic boundary conditions. In
addition, the boundary conditions for the Bloch-Torrey PDE involve complex numbers and are time-
dependent. We limit our discussion to the Bloch-Torrey PDE because it is the more complicated
case.

We assume the mesh of C is generated in such a way so that the nodes are mirror reflected on
the opposite faces of C. Let {Ek} be the elements that touch ∂C. They give rise to the non-zero
entry

∫
∂Ek∩∂C

D∇M ·n v ds. Since ∇M ·n is unknown on ∂C, this quantity has to be eliminated by

using the pseudo-periodic relation (7) on the normal derivative. For example, in the x-direction,
this means replacing the rows of the global finite elements matrices associated to the face of C,
r1 = b1, by new rows that are obtained by multiplying the original rows by eIθ1(t) and subtracting
them from the rows associated to the opposite face, r1 = a1. Then one replaces the rows associated
to the face, r1 = a1, by the pseudo-periodic relation on the function value in Eq. (6).

This naive way of implementing pseudo-periodic boundary conditions introduces complex arithmetic
and time dependence into the global finite elements matrices. This is a very undesired character-
istic for the mass matrix, since many linear systems involving the mass matrix have to be solved
repeatedly.

If we could change the pseudo-periodic boundary conditions to standard periodic boundary condi-
tions, then we can keep the mass matrix real-valued and time-independent. Thus, the same as in
[18], we chose to transform the magnetization to a new unknown m(r, t):

m(r, t) = M(r, t) eI G(r) γ F(t), F(t) =

t∫
0

f(s) ds.

The Bloch-Torrey PDE (1) is then transformed to

∂

∂t
m = −I γ F

(
∇G ·D∇m +∇m ·D∇G

)
−∇G ·D∇Gm

(
γ F
)2

+∇ ·
(
D∇m

)
, r ∈ ∪Ωl, (23)

12



with periodic boundary conditions[
m(x, t)

]
xk=−L/2

=
[
m(x, t)

]
xk=L/2

, k = 1, · · · , d,[
D(r)

∂

∂xk
m(x, t)

]
xk=−L/2

=

[
D(r)

∂

∂xk
m(x, t)

]
xk=L/2

, k = 1, · · · , d.
(24)

The interface conditions (4- 5) are changed to

Dn∇mn · nn =κln
(
ml −mn

)
+I γ mnF Dn∇G · nn, ∀ l, n,

Dl∇ml · nl =κln
(
mn −ml

)
+I γ mlF Dl∇G · nl, ∀ l, n,

(25)

where ml,mn are the limiting values in Ωl and Ωn. We note that Eq. (23) and Eq. (25) are more
complicated than what was used in [18] because we kept all the first order terms in order to obtain
second order accuracy in space.

The weak form of Eq. (23) is then

∂

∂t

∫
Ωl

m v dr =− I γ F
∫
Ωl

(
∇G ·D∇m +∇m ·D∇G

)
v dr−∇G ·D∇G

(
γ F
)2
∫
Ωl

m v dr

−
∫
Ωl

D∇m · ∇vdr +
∫

∂Ωl∩Γ

D∇m · nlv ds +
∫

∂Ωl∩∂C

D∇m · nlv ds.

(26)

The boundary and interface conditions are to be imposed as previously. Ignoring the boundary and
interface conditions, the weak form (26) can be rewritten in matrix form:

M
∂

∂t
ξ = −I J ξ −K ξ − S ξ, (27)

where M and S are the mass matrix and stiffness matrix, respectively, and

J = γ F
∫
Ω

ϕ
(
∇G ·D∇ϕT +∇ϕT ·D∇G

)
dr,

K =
(
γ F
)2
∫
Ω

ϕ
(
∇G ·D∇G ϕT

)
dr,

where ϕ = [ϕj ]j=1..N is the column vector of basis functions.

In particular, we compute the flux term which is now complex-valued and time-dependent,∫
∂Ei∩Γ

(
D∇m · ni

)
ϕ ds =

(
Sloc + I Jloc

)
ξ{kl,kn}, (28)

where

Jloc =
γ F Ck D∇G · ni

6


2 1 0 0
1 2 0 0
0 0 2 1
0 0 1 2

 (2D),
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and

Jloc =
γ F Ck D∇G · ni

12


2 1 1 0 0 0
1 2 1 0 0 0
1 1 2 0 0 0
0 0 0 2 1 1
0 0 0 1 2 1
0 0 0 1 1 2

 (3D).

The matrices of the flux term Jloc and Sloc need to be assembled into the matrix J and the stiffness
matrix S. The periodic boundary conditions will be applied to the remaining term in Eq. (26),
namely

∫
∂Ωl∩∂C

D∇m · nlv ds.

After applying the interface and boundary conditions to Eq. (27), we obtain

M̃
∂

∂t
ξ = −I J̃ ξ − K̃ ξ − S̃ ξ. (29)

This matrix equation will be solved to get ∂
∂tξ, which will be the input of an explicit time-stepping

method described in the next section. We can see that the left-hand side contains the mass matrix,
while the complex-valued terms are all on the right-hand side. The fact that the mass matrix is
real-valued allows one to replace one linear system of size 2N × 2N by two linear systems of size
N ×N :

M̃
∂

∂t
ξR = J̃ ξI − K̃ ξR − S̃ ξR,

M̃
∂

∂t
ξI = −I J̃ ξR − K̃ ξI − S̃ ξI ,

(30)

where ξR and ξI are the real and imaginary parts of ξ, ξ = ξR + I ξI . Moreover, because the mass
matrix is time-independent, it needs only to be assembled once, and not at each time step. If Eq.
(30) is solved directly, M̃ will only need to be inverted once. Besides the numerical advantage related
to having a real-valued and time-independent mass matrix, this transformation also results in a less
oscillatory (both in time and space) unknown function m(r, t) than the original magnetization
M(r, t), and hence, coarser discretizations can be used [18]. Note that m is identical to M at the
initial time (t = 0) and at the final time t = TE since both F(0) and F(TE) vanish.

Because the computational domain C is extended periodically, in some cases the cell interfaces
touch ∂C. In this case, the combination of the interface condition and periodic boundary condition
is necessary. For details see [29].

3.3. Time stepping for the Bloch-Torrey PDE using explicit RKC

We solve the system of ODEs in Eq. (30) using the Runge-Kutta-Chebyshev (RKC) method [19].
We briefly describe this method as it applies to solving ODEs of the form:

d{ξ(t)}
dt

= F (t, {ξ(t)}),

where ξ(t) = {ξijk(t)} contains the unknowns at all the spatial discretization points. Getting ∂
∂tξ(t)

at a given time from Eq. (30) requires solving two linear systems with the same mass matrix M̃.

14



To go from {ξ}n ≈ {ξ(tn)} to {ξ}n+1 ≈ {ξ(tn+1)}, the following s stages are taken as

Y 0 = {ξ}n,

Y 1 = Y 0 + µ1τn+1F (tn, {ξ}n),

Y j = µjY j−1 + νjY j−2 + (1− µj − νj)Y 0 + µ̃ τn+1F (tn + cj−1τn+1, Y j−1)

+ γ̃ τn+1F (tn, Y 0), 2 ≤ j ≤ s,

{ξ}n+1 = Y s,

where τn+1 = (tn+1 − tn), and the coefficients are determined by Chebyshev polynomials.

Note that the local time error, εn+1, of the RKC method at tn+1 can be estimated as

εn+1 ≈ 1
15

(
12({ξ}n − {ξ}n+1) + 6τn+1

(
F (tn, {ξ}n) + F (tn+1, {ξ}n+1)

))
,

and the time step can be made stable no matter how large it is by increasing the number of stages
s. Specifically, the stability criterion is [19]

τn+1
RKC ≤ ∆tmax

RKC :=
0.653s2

λ(J F (t, {ξ}(t)))
≈ 0.653 s2 h2

6D0
, (31)

where λ is the spectral radius and J is the Jacobian operator.

Essentially, the RKC method chooses a tn+1 where the error term above is smaller than the user-
specified tolerance and the number of stages s is increased to ensure that τn+1 is a stable step.
Because the time step can be enlarged as O(s2) whereas the computational time only increases as
O(s), this means that the RKC method with larger time steps computes the solution faster than
taking many smaller steps of the Forward Euler method. The number of stages s is typically 30-50
in our simulations. In addition, because of the existence of a three-term recurrence relation for
Chebyshev polynomials, the storage requirement does not increase with s, it stays constant at 5
times the number of unknowns.

In contrast, for the Forward Euler method, the stability criterion for a spatial discretization h is

τn+1
FE ≤ ∆tmax

FE :=
h2

6D0
. (32)

For moderate accuracy requirements, it is usually much more efficient to increase s according to
Eq. (31) to get a time step that is appropriate for the desired accuracy than being limited by the
stability condition (32).

The RKC method has essentially second order time convergence because the error is O(s−3τ +
Cτ2)[30] and usually s is large enough that O(τ2) dominates.

4. Implementation on FEniCS Finite Elements platform and mesh generator Salome

We call the method that we described in the previous section the FEM-RKC method. This method
was implemented on the C++ version of FEniCS 1.0.0. To do so, we had to take the following
steps.
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Because the RKC solver was only available in Fortran, we rewrote it in C++. To define the
computational domain, we need two files: a mesh file and a compartment marker file. Currently, we
use Salome 6.6.0 to generate meshes. It gives a flexible way to generate some complex geometries
with multiple compartments and periodic boundaries. We wrote a C++ subroutine to convert a
Salome format ‘.unv’ to FEniCS format ‘.xml’ and a suboutine to create the compartment marker
file compatible with the ‘CellFunction’ of FEniCS.

We then wrote a subroutine to split the mesh and add double nodes outside the FEniCS library.
Matrices and vectors for standard elements are automatically assembled by FEniCS supplied rou-
tines. We enforced the interface conditions by using subroutines that we wrote outside the FEniCS
library.

Various linear solvers are available in FEniCS platform but we mainly use two. For problems with
a few thousand unknowns, direct solve with the sparse LU decomposition of M̃ was used because
the factorization can be reused after the first iteration. For larger problems, this decomposition
becomes slow and memory demanding, and we use the iterative method GMRES. Unless specified
differently, the absolute tolerance 10−12 and relative tolerance 10−10 were set for GMRES.

All simulations were performed on a Lenovo workstation (Intel(R) Xeon(R) CPU X3430@2.40GB),
running the program as a serial code on Linux Ubuntu 10.04 LTS.

5. Numerical results

In this section we show numerical results on the accuracy and timing of the FEM-RKC method.

Let ε(x, t) = Mh(x, t) − M(x, t) be the difference between the computed magnetization Mh(x, t)
obtained on a mesh with maximum elements size h and the exact solution M(x, t), at some fixed
time t. We will measure the spatial discretization error in three standard norms:

1. The L2 error: ‖ε(x, t)‖L2 =
(∫

Ω

|ε(x, t)|2dx
)1

2 ;

2. The H1 error: ‖ε(x, t)‖H1 =
(∫

Ω

|∇ε(x, t)|2dx
)1

2 ;

3. The L∞ error: ‖ε(x, t)‖L∞ = max
x∈Ω

|ε(x, t)|.

Additionally, for the application to dMRI, since the dMRI signal is the integral of the magnetization
at t = TE , we define the dMRI signal error:

4. The signal error: ‖ε(x, t)‖S =
∣∣∣∣∫
Ω

ε(x, t)dx
∣∣∣∣.

Strictly speaking, the dMRI signal is only experimentally measured at t = TE , but we will show
the convergence of the integral of M at t < TE as well.

The FEM-RKC method will be compared to two other methods:

1. the FEM-BE method, coupling the same finite elements discretization described in the pre-
vious section to Backward Euler time stepping.
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2. the FVM-RKC method [31], coupling a uniform Cartesian finite volume spatial discretization
with RKC time-stepping.

5.1. Spatial discretization

Similar to standard FEM, FEM-RKC with linear basis functions is expected to have the second
order convergence in the L2−norm and the L∞−norm and first order in the H1−norm.

5.1.1. Homogeneous problem

First we consider a homogeneous domain C = [−5µm, 5µm]2, the initial condition is a Dirac
delta distribution at x0 = (0, 0). The constant diffusion coefficient is D = 3 · 10−3 mm2/s,
|g| = 373.8 mT/m, and the time profile is PGSE with δ = 4ms and ∆ = 4ms.

The mesh size was varied from 20 × 20 to 640 × 640 vertices for FVM-RKC and from 10 × 10 to
100 × 100 vertices for FEM-RKC. The results at t = 2ms are shown in Fig. 3a, 3b, 3d. One can
see the second order convergence in the L2−norm and L∞−norm, and the first order convergence
in the H1−norm, as expected for FEM-RKC. For FVM-RKC, the convergence is first order in the
L2−norm and the L∞−norm. The H1−norm is not defined. Then we study the convergence of
the integral of magnetization M . For a homogeneous domain, the mass conservation in both the
FEM and FVM methods implies that the integral of M is exact up to numerical accuracy when
F(t) is zero. So we just verify the spatial convergence of the integral of M at t = δ, δ < t < ∆, and
δ < t < ∆ + δ. Figure 3c shows that the integral of M has second order convergence in space.

The results are similar in 3D. We solve the homogeneous problem on [−5µm; 5µm]3 for the PGSE
sequence: ∆ = δ = 4ms, D = 3 · 10−3 mm2/s and |g| = 373.8 mT/m. Figure 4 illustrates second
order convergence in the L2−norm and the L∞−norm of FEM-RKC.

5.1.2. Impermeable disk and sphere

We consider the convergence of the dMRI signal (integral of the magnetization at echo time t = TE)
inside impermeable circular and spherical cells for the OGSE sequence. Analytical solution for
comparison was obtained using the matrix formalism approach [3, 10].

The dMRI signal obtained by FEM-RKC for cos-OGSE sequence with n = 100 periods, TE =
2σ = 400ms at b-values from 0 to 500 s/mm2 for an impermeable disk of radius R = 4.5µm,
D = 3 · 10−3 mm2/s, converges to the analytical solution at the second order (Fig. 5a). Similarly,
we also obtain second order convergence for a 3-dimensional impermeable sphere (Fig. 5b). The
number of vertices in the various meshes ranged from 50 to 10000 (2D) and 50 to 15000 (3D).

5.1.3. Permeable square cell

For permeable square cells, there is no analytical solution. We will compare our numerical solution
with the reference numerical solution obtained at the finest mesh. One square cell of side length
L = 8µm is placed in the center of the domain C = [−5µm; 5µm]2. The boundary conditions on
∂C imply the periodic repetition of the square cell outside of C. Both intra-cellular and extra-
cellular compartments have the same intrinsic diffusion coefficient D = 3 × 10−3 mm2/s. Setting
the permeability κ = 10−5 m/s for the interface, we consider one case of gradient amplitude |g| =
373.8 mT/m. The mesh size was varied from 253 vertices to 7513 vertices and all obtained solutions
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(a) (b)

(c) (d)

Figure 3: Two-dimensional homogeneous problem on C = [−5µm, 5µm]2. The L2-error (a), L∞-
error (b) and signal error (c) are second order in h for FEM-RKC and of first order for FVM-RKC;
FEM-RKC also gives the first order convergence in H1−error (d).

are compared with the reference solution obtained at 81041 vertices. The time profile is the PGSE
sequence with ∆ = δ = 10ms. The results show that FEM-RKC gives second order convergence in
the L2 and L∞ norms (Fig. 6a) and second order convergence in the dMRI signal (Fig. 6b), where
h is the maximum element size.

5.1.4. Approximation of the interface

Next, we verify that the approximation of the geometry of the interface is more accurate for FEM
than FVM, leading to a more accurate dMRI signal approximation. We consider a periodic domain
with many striped squares and extract two periodic subdomains: domain 1 and domain 2 (Fig. 7).

In theory, the signals computed by solving the Bloch-Torrey equation with pseudo-periodic BCs
on both cases should be identical. We perform two simulations with the parameters D1 = 3 ·
10−3 mm2/s, D2 = 10−3 mm2/s, κ = 5 · 10−5 m/s, using the PGSE sequence with δ = ∆ = 5ms.
The mesh size is 64×64 for FEM-RKC and 300×300 for FVM-RKC. The results for RKC tolerance
tol = 10−6 are summarized in Table 1.
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Figure 4: Spatial convergence of L2-error and L∞-error for a three-dimensional homogeneous
problem on C = [−5µm, 5µm]3 with PGSE sequence: ∆ = δ = 4ms, D = 3 · 10−3 mm2/s and
|g| = 373.8 mT/m for FEM-RKC.

Table 1: The dMRI signals computed on domains 1 and 2 from Fig. 7 with D1 = 3 · 10−3 mm2/s,
D2 = 10−3 mm2/s, κ = 5 · 10−5 m/s, and a PGSE sequence with δ = ∆ = 5ms, RKC tolerance
tol = 10−6.

b-value ( s/mm2) FEM-RKC FVM-RKC
domain 1 domain 2 domain 1 domain 2

0.00 1.0000 1.0000 1.0000 1.0000
92.59 0.8513 0.8514 0.8517 0.8548
370.37 0.5520 0.5526 0.5533 0.5555
833.33 0.3223 0.3226 0.3232 0.3141
1481.48 0.2120 0.2120 0.2123 0.1934
2314.81 0.1680 0.1681 0.1683 0.1456
3333.33 0.1478 0.1480 0.1481 0.1248

One can see that FEM-RKC gives a good approximation of slanted interfaces whereas FVM-RKC
fails at high b-values. In fact, the approximation of the slanted interface on a Cartesian grid by a
zigzag curve leads to significant errors in the surface area, whatever the spatial resolution of the
grid.

5.2. Computational efficiency

The RKC solver for parabolic PDEs has the second order in time convergence [30] and this remains
true for FEM-RKC. On the other hand, the Backward Euler method has the first order convergence
in time.

We numerically show that FEM-RKC is more efficient than FVM-RKC and FEM-BE in running
time. The domain C = [−5µm, 5µm]2 is homogeneous, the initial condition is a Dirac delta dis-
tribution at x0 = (0, 0), the diffusion coefficient is D = 3 · 10−3 mm2/s, and |g| = 373.8 mT/m.
The solution is computed at t = 2ms for a constant gradient, f(t) = 1, t = 0 . . . 2ms. We fix the
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(a) (b)

Figure 5: The convergence of the dMRI signal versus space discretization in impermeable circular
and spherical cells in 2D (a) and in 3D (b) with the same cell radius of R = 4.5µm, D = 3 ·
10−3 mm2/s, TE = 2σ = 400ms.

tolerance of RKC solver at tol = 10−9 and consider different mesh sizes. The mesh size was varied
from 20× 20 to 640× 640 for FVM-RKC and from 10× 10 to 100× 100 for FEM-RKC. We keep
the same time stepping dt = 2µs and vary the mesh size from 10× 10 to 80× 80 for FEM-BE. The
results show that the same accuracy is obtained with FEM-RKC much faster than with FVM-RKC
and FEM-BE (Fig. 8).

5.3. Timing on heterogeneous domain

We simulated both PGSE and OGSE sequences on the computational box C = [−20µm; 20µm]3

containing curved cylindrical cells (Fig. 9) created by Salome. The curved cylinders do not overlap.
They cut the faces of C in such a way that the exit of each cylinder on a face matches the entrance
of a cylinder (the same or a different one) on the opposing face. This was done by creating first
one-eighth of the domain, on [0; 20µm]3, containing a set of 43 curved cylinders. The remaining
part is the extra-cellular space. The radius r of the curved cylinders is set to 1.2 µm to obtain
an intra-cellular volume fraction of vc = 40.3%. Then, this one-eighth domain is mirror reflected
across the three planes, x = 0, y = 0, z = 0, to obtain C.

For the simulations, the same diffusion coefficient D = 10−3 mm2/s was set for both intra-cellular
and extra-cellular compartments. A permeability condition with κ = 10−5 m/s was set between the
cylinders and the extra-cellular compartment. The uniform distribution M(r, 0) = 1 was set as the
initial condition.

Simulations for the PGSE sequence with δ = 2.5ms and ∆ = 10ms were performed on three meshes,
with 109995, 260363, and 389937 vertices, respectively, to estimate the simulation error. For such
a large scale problem, the iterative Krylov solver, the GMRES method, was used. We set RKC
tolerance to 10−4, the GMRES absolute tolerance to 10−10 and the GMRES relative tolerance
to 10−6. The number of GMRES iterations required was around 10 for all the simulations. The
average computational times per b-value for the three meshes were 7, 20 and 40 minutes, and the
memory usage was 0.5GB, 1.4GB and 2GB, respectively.
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(a) (b)

Figure 6: The spatial convergence for permeable square cells is second order in the L2-norm and
the L∞-norm (a) as well as in the dMRI signal (b).

Figure 7: Two different computational boxes derived from a periodic domain

Figure 8: The accuracy of FEM-RKC, FEM-BE and FVM-RKC versus computational time for
different mesh sizes.
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Figure 9: Computational domain containing curved cylinders created by Salome with intra-cellular
volume fraction vc = 40.3%. There are 260363 vertices in the finite elements mesh. The curved
cylinders do not overlap.

One can see in Fig. 10 that as compared to the simulated signal on the finest mesh (389937 ver-
tices), the simulated signals using meshes with 109995 and 260363 vertices have about 12% and 2%
maximum relative error, respectively.

We then chose the mesh of 260363 vertices to simulate the cos-OGSE sequence. The slowest
computation took 3 hours for one b-value of the cos-OGSE sequence with n = 4 periods, compared
to 20 minutes for one b-value (b > 0) for the PGSE sequence. Figure 11a shows the dMRI signals
for the OGSE sequence with two different frequencies and the PGSE sequence. The signal becomes
smaller at higher frequency. The computational time increases monotonically with the gradient
amplitude ‖g‖ (Fig. 11b). Because of the reduction of the oscillations by transforming the unknown
to m(r, t), the computational time only increases slightly with ‖g‖.

6. Numerical study of diffusion

In this section we illustrate the diffusion characteristics of some complex domains.

6.1. Relating the Dhom of the three-compartment model and the two-compartment models of cells

It has been proposed [32] that water diffuses slowly in a physical layer around the cell membranes.
The thickness of this layer is supposed much larger than the actual thickness of cell membranes
(which is in the order of nanometers). Here we study whether this “thick” membrane layer can be
approximated by an infinitely thin interface between the intra-cellular space and the extra-cellular
space. The word “thick” refers to the fact that the width of this layer is much larger than the
physical width of the cell membranes, but it is small compared to the cell radius.

In this three-compartment model, the physical space is the union of the cell interiors Ωc, the space
exterior to the cells Ωe, and the membrane layer Ωm of thickness ` (see Fig. 12a). Furthermore,
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Figure 10: a) the simulated signals using three meshes, with 109995, 260363, and 389937 vertices;
b) relative signal difference compared to the finest mesh signal. PGSE sequence with δ = 2.5ms
and ∆ = 10ms.

we suppose that the magnetization is continuous across the cell-membrane and the membrane-
extra-cellular space interfaces (infinite permeability coefficient). Each physical compartment is
characterized by its own intrinsic diffusion coefficient Dc, De and Dm respectively. In the two-
compartment model, the membrane layer is replaced by an infinitely thin interface (see Fig. 12b)
which is characterized by a finite permeability κ, that to a first order approximation is:

κ ≈ Dm/`. (33)

The accuracy of this approximation depends on the thickness and the permeability of the mem-
brane. We perform the simulations on the domain C = [−5µm, 5µm]3 containing one spherical cell of
radius R = 4µm. The thickness ` of the membrane layer is decreased from 1.0µm to 0.1µm in order
to check the closeness of the two models. Figure 13a shows the gT

‖g‖D
hom g

‖g‖ , for g/‖g‖ = [1, 0, 0],
computed by solving the steady-state Laplace PDEs for two- and three-compartment domains with
κ = 10−5 m/s. As ` tends to 0, the value from the three-compartment model approaches that of the
two-compartment model. The relative difference is less than 2% when ` ≤ 0.1µm (Fig. 13b). For
` = 0.1µm, the difference between the two signals is less than 2% for κ = 10−5 m/s, δ = ∆ = 10ms
(Fig. 13c).

6.2. The convergence of the DA to gT

‖g‖D
hom g

‖g‖

Not accounting for fitting errors, the apparent diffusion coefficient (DA) is the first derivative of
the logarithm of the normalized dMRI signal with respect to b-value. In this section, we will
numerically show that DA converges to gT

‖g‖D
hom g

‖g‖ , where Dhom is computed by solving the
steady-state Laplace PDEs.

We consider a computational domain C = [−10µm, 10µm]3 containing 100 random Voronoi cells
(Fig. 14a) with intra-cellular volume fraction vc = 61.4% and surface-to-volume ratio 1.03µm−1.
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Figure 11: Signal (a) and computational time (b) for the cos-OGSE sequence with n = 2, 4 periods
and the PGSE sequence, on the random curved cylinders domain with intra-cellular volume fraction
vc = 40.3%.

The same intrinsic diffusion coefficient De = Dc = 10−3 mm2/s is set for both intra-cellular and
extra-cellular compartments. Two permeabilities, κ = 10−5 m/s and κ = 10−4 m/s, were simulated.
The Bloch-Torrey PDE was solved for the PGSE sequences with δ = 2.5ms and several ∆ =
10, 20, 40, 80, 160ms at five b-values 0, 50, 200, 500 and 1000 s/mm2. From each ∆, the DA is obtained
by fitting a cubic polynomial to the curve − log S(b)/ log S(0). The steady-state Laplace PDE was
also solved over C to obtain Dhom according to Eqs. (14, 4- 5, 15, 16).

Figure 14b shows that DA converges to gT

‖g‖D
hom g

‖g‖ in three gradient directions: [1, 0, 0], [0, 1, 0]
and [0, 0, 1], where κ = 10−4 m/s. The convergence is faster at higher permeability (Fig. 14c) and
seems to be linear versus ∆−1 when the diffusion time ∆ − δ/3 is long enough. This agrees with
the result for 1D periodic structure in the long-time regime [33].

For a mesh size with 28688 nodes, each DA is computed in 10 to 20 minutes whereas the computation
of one Dhom takes less than one minute.

6.3. The apparent diffusion coefficient of neurons

Neurons are made of a solid neuronal body to which are attached long protrusions called axons
and dendrites. We consider the apparent diffusion coefficient, DA, due to water molecules diffusing
inside neurons. In this simulation we do not consider the water exchange between the neurons and
the extra-cellular space, thus, we make the neurons impermeable. In this case, there is no need for
a computational box, the domain of simulation is the neuron itself. We construct a neuron with a
spherical neuronal body to which long cylindrical segments (dendrites) are attached (Fig. 15a). The
length of the dendrite segments varies between 400 and 900µm. We consulted [34] for the physical
dimensions. The zero Neumann boundary condition is applied on the surface of the neuron and
the intrinsic diffusion coefficient inside the neuron is set to D = 3 · 10−3 mm2/s. We observe the
behavior of the DA for a PGSE sequence with δ = 2.5ms and ∆ = 2.5, 10, 40, 80, 160, 320, 640ms.
Although realistic dMRI times for brain tissue requires that ∆ ≤ 100ms, longer ∆ were simulated
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Figure 12: In the three-compartment model (a), the physical space is the union of the cell interiors
Ωc, the space exterior to the cells Ωe, and the membrane layer Ωm of thickness `. Each physical
compartment is characterized by its own intrinsic diffusion coefficient Dc, De and Dm respectively.
In the two-compartment model (b), the intermediate layer is replaced by an infinitely thin interface
that is characterized by a finite permeability κ.

here to show the convergence of the DA to a steady-state value.

Figure 15b shows the results for an example where the radius of the spherical neuronal body is
R = 20µm. The volume ratio between the dendrites and the sphere is 6.8. One can see that
the DA monotonically decreases with ∆ and approaches a steady-state value for different diffusion
directions labelled by their angles θ measured from the trunk of the neuron. The DA is the highest
when the gradient direction is parallel to the trunk of the dendrite tree. Figure 15c shows two other
cases: 1) a smaller neuronal body R = 10µm, and 2) no neuronal body, for the gradient direction
parallel to the trunk. One can see that the DA approaches the steady state value faster when the
neuronal body is smaller.

7. Conclusion

We developed an efficient FEM-RKC method combining the RKC time-stepping method with a spe-
cially formulated finite elements spatial discretization to solve two types of PDEs coming from the
field of diffusion MRI. Based on the double-node technique and a body-fitting mesh, FEM-RKC can
give a better approximation at the cell interfaces than a Cartesian spatial discretization. By a trans-
formation of the Bloch-Torrey PDE, the pseudo-periodic boundary conditions were transformed to
periodic ones and the oscillations in the searched-for solution were reduced. The FEM-RKC method
with linear basis functions gives second order convergence in both time and space, compared to the
approach in the exisiting literature which is first order accurate in space and time. Our method
should result in improvements in both the computational time and the accuracy of dMRI signal
simulations.
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Figure 13: Comparison between the three-compartment (Fig. 12a) and two-compartment (Fig.

12b) models, g/‖g‖ = [1, 0, 0], κ = 10−5 m/s. As ` tends to 0, the gT

‖g‖D
hom g

‖g‖ of the three-
compartment model approaches that of the two-compartment model (a). The relative difference is
shown in (b). For ` = 0.1µm, the difference between two signals is less than 2% for δ = ∆ = 10ms
(c).

This efficient method can become a useful tool to investigate the diffusion of water molecules in
complex biological domains and we illustrated this with three examples. One is showing that an
infinitely thin membrane model can be used to approximate a thick membrane model. The second
is that the apparent diffusion coefficient measured by dMRI approaches the value predicted by
mathematical homogenization as diffusion time increases. The third is that when considering the
dMRI signal arising from neurons, the measured DA approaches the steady state value faster when
the neuronal body is smaller. This is a precursor to more quantitative and predictive simulations
of the diffusion MRI signal in biological tissue.

A version of the code described in this paper will be made publicly available in the near future.
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