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A Robust Multilevel Method for Hybridizable Discontinuous

Galerkin Method for the Helmholtz Equation

Huangxin Chen∗, Peipei Lu†, and Xuejun Xu†

Abstract

A robust multilevel preconditioner based on the hybridizable discontinuous Galerkin method
for the Helmholtz equation with high wave number is presented in this paper. There are two
keys in our algorithm, one is how to choose a suitable intergrid transfer operator, and the
other is using GMRES smoothing on coarse grids. The multilevel method is performed as a
preconditioner in the outer GMRES iteration. To give a quantitative insight of our algorithm,
we use local Fourier analysis to analyze the convergence property of the proposed multilevel
method. Numerical results show that for fixed wave number, the convergence of the algorithm
is mesh independent. Moreover, the performance of the algorithm depends relatively mildly on
wave number.

Key words. Multilevel method, Helmholtz equation, high wave number, hybridizable discon-
tinuous Galerkin method, GMRES method, local Fourier analysis

1 Introduction

In this paper we consider the Helmholtz equation with Robin boundary condition which is the first
order approximation of the radiation condition. The equation is written in a mixed form as follows:
Find (q, u) such that

iκq +∇u = 0 in Ω, (1.1)

iκu+ div q = f in Ω, (1.2)

−q · n+ u = g on ∂Ω, (1.3)

where Ω ⊂ R
d, d = 2, 3, is a polygonal or polyhedral domain, κ > 0 is known as the wave

number, i =
√
−1 denotes the imaginary unit, and n denotes the unit outward normal to ∂Ω.

Helmholtz equation finds applications in many important fields, e.g., in acoustics, seismic inversion
and electromagnetic, but how to solve the Helmholtz equation efficiently is still of great challenge.

The strong indefiniteness has prevented the standard multigrid methods from being directly
applied to the discrete Helmholtz equation. In [9], Elman, Ernst and O’Leary modified the standard
multigrid algorithm by adding GMRES iterations as corrections on coarse grids and using it as an
outer iteration. But in order to obtain a satisfactory convergence behavior, a relatively large number
of GMRES smoothing should be performed on coarse grids which leads to relatively large memory
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requirement, so the optimality of the multigrid algorithm cannot be guaranteed. In [6], the authors
utilized the continuous interior penalty finite element methods [23,24] to construct the stable coarse
grid correction problems, which reduces the steps of GMRES smoothing on coarse grids. Based
on the fact that the error components which cannot be reduced by the standard multigrid can
be factorized by representing it as the product of a certain high-frequency Fourier component
and a ray function, Brandt and Livshits introduced so-called wave-ray multigrid methods in [3,
20]. Although this method exhibits high convergence rate with increasing wave number, it does
not easily generalize to unstructured grids and complicated Helmholtz problems. Besides, shifted
Laplacian preconditioners [13, 14] and sweeping preconditioners [10, 11] based on an approximate
LDLt factorization were introduced to solve the Helmholtz equation with high wave number. A
survey of the development of fast iterative solvers can be found in [12,15].

Hybridizable discontinuous Galerkin (HDG) method has two main advantages in the discretiza-
tion of Helmholtz equation. First, it is a stable method, which means that the discrete system is
always well-posed without any mesh constraint. Rigorous convergence analysis of the HDG method
for Helmholtz equation can be found in [5]. Second, comparing to standard discontinuous Galerkin
method, HDG method results in significantly reducing the degrees of freedom, especially when the
polynomial degree p is large. However, to the best of our knowledge, no efficient iterative method
or preconditioner for HDG discretization system for the Hemholtz equation in the literature has
been proposed.

The hybridized system is a linear equation for Lagrange multipliers which is obtained by elim-
inating the flux as well as the primal variable. For the second-order elliptic problems, a Schwarz
preconditioner for the algebraic system was presented in [18]. In [19], the authors consider the appli-
cation of a variable V-cycle multigrid algorithm for the hybridized mixed method for second-order
elliptic boundary value problems. In their multigrid algorithm, both smoothing and correction on
coarse grids are based on standard piecewise linear continuous finite element discretization system.
The convergence of the multigrid algorithm is dependent on an assumption that the number of
smoothings increases in a specific way (see Theorem 3.1 in [19] for details). The critical ingredient
in the algorithm is how to choose a suitable intergrid transfer operator. Numerical experiments
in [19] show that certain ‘obvious’ transfer operators lead to slow convergence.

The objective of this paper is to propose a robust multilevel method for the HDG method
approximation of the Helmholtz equation. The main ingredients in multilevel method are how
to construct coarse grid correction problem and perform efficient smoothing. Since strong indef-
initeness arises for Helmholtz equation with large wave number, standard Jacobi or Gauss-Seidel
smoothers become unstable on the coarse grids. Motivated by the idea in [9], we use GMRES
smoothing for those coarse grids. Unlike the smoothing strategy in [9], the number of GMRES
smoothing steps in our algorithm is much smaller, even if one smoothing step may guarantee the
convergence of our multilevel algorithm. Moreover, both smoothing on fine and coarse grids in our
multilevel method are based on hybridized system of Lagrange multiplier on each level.

Local Fourier analysis (LFA) has been introduced for multigrid analysis by Achi Brandt in
1977 (cf. [2]). We mainly utilize the LFA to analyze smoothing properties of relaxations and
convergence properties of two and three level methods in the one dimensional case. This may
provide quantitative insights into the proposed multilevel method for Helmholtz problem (1.1)-
(1.3). A survey for LFA can be found in [22].

The remainder of this paper is organized as follows: In section 2, we firstly review the formula-
tion of HDG method for the Helmholtz equation and present our multilevel algorithm. The stability
estimate of the intergrid transfer operator will be carried out in section 3. Section 4 is devoted to
the LFA of the multilevel method in one dimensional case. Finally, we give some numerical results
to demonstrate the performance of our multilevel method.
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2 HDG method and its multilevel algorithm

Let Th be a quasi-uniform subdivision of Ω, and denote the collection of edges (faces) by Eh, while the
set of interior edges (faces) by E0

h and the collection of element boundaries by ∂Th := {∂T |T ∈ Th}.
We define hT := diam(T ) and let h := maxT∈ThhT . Throughout this paper we use the standard
notations and definitions for Sobolev spaces (see, e.g., Adams [1]).

On each element T and each edge (face) F , we define the local spaces of polynomials of degree
p ≥ 1:

V (T ) := (Pp(T ))
d, W (T ) := Pp(T ), M(F ) := Pp(F ),

where Pp(S), S = T or F , denotes the space of polynomials of total degree at most p on S. The
corresponding global finite element spaces are given by

V
p
h : = {v ∈ L2(Ω) | v|T ∈ V (T ) for all T ∈ Th},

W p
h : = {w ∈ L2(Ω) | w|T ∈ W (T ) for all T ∈ Th},

Mp
h : = {µ ∈ L2(Eh) | µ|F ∈ M(F ) for all F ∈ Eh},

where L2(Ω) := (L2(Ω))d, L2(Eh) := ΠF∈EhL
2(F ). On these spaces we define the bilinear forms

(v,w)Th :=
∑

T∈Th

(v,w)T , (v,w)Th :=
∑

T∈Th

(v,w)T , and 〈v,w〉∂Th :=
∑

T∈Th

〈v,w〉∂T ,

with (v,w)T :=
∫
T v ·wdx, (v,w)T :=

∫
T vwdx and 〈v,w〉∂T :=

∫
∂T vwds.

The HDG method yields finite element approximations (qh, uh, ûh) ∈ V
p
h × W p

h × Mp
h which

satisfy

(iκqh, r)Th − (uh,div r)Th + 〈ûh, r · n〉∂Th = 0, (2.1)

(iκuh, w)Th − (qh,∇w)Th + 〈q̂h · n, w〉∂Th = (f,w)Th , (2.2)

〈−q̂h · n+ ûh, µ〉∂Ω = 〈g, µ〉∂Ω, (2.3)

〈q̂h · n, µ〉∂Th\∂Ω = 0, (2.4)

for all r ∈ V
p
h, w ∈ W p

h , and µ ∈ Mp
h , where the overbar denotes complex conjugation. The

numerical flux q̂h is given by

q̂h = qh + τh(uh − ûh)n on ∂Th, (2.5)

where the parameter τh is the so-called local stabilization parameter which has an important effect
on both the stability of the solution and the accuracy of the HDG scheme. Let τh,T be the value of
τh on the element T . We always choose τh,T = p

κhT
. One of the advantages of HDG methods is the

elimination of both qh and uh from the equation, and then we may obtain a formulation in terms
of ûh only. Next we define the discrete solutions of the local problems: For each function λ ∈ Mp

h ,
(Qλ,Uλ) ∈ V (T )×W (T ) satisfies the following formulation

(iκQλ, r)T − (Uλ,div r)T = −〈λ, r · n〉∂T , ∀r ∈ V (T ), (2.6)

(iκUλ, w)T − (Qλ,∇w)T + 〈Q̂λ · n, w〉∂T = 0, ∀w ∈ W (T ), (2.7)

where Q̂λ ·n = Qλ ·n+ τh(Uλ −λ). For f ∈ L2(Ω), (Qf ,Uf ) ∈ V (T )×W (T ) is defined as follows:

(iκQf , r)T − (Uf ,div r)T = 0, ∀r ∈ V (T ), (2.8)

(iκUf , w)T − (Qf ,∇w)T + 〈Q̂f · n, w〉∂T = (f,w)T , ∀w ∈ W (T ), (2.9)
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where Q̂f · n = Qf · n+ τhUf . Then ûh is the solution of the following equation

ah(ûh, µ) = bh(µ), ∀µ ∈ Mp
h , (2.10)

where

ah(λ, µ) := −〈Q̂λ, µ〉∂Th + 〈λ, µ〉∂Ω, (2.11)

bh(µ) := 〈Q̂f , µ〉∂Th + 〈g, µ〉∂Ω.

We focus on designing a multilevel method for the linear algebraic system (2.10).
Let {Tl}Ll=0 be a shape regular family of nested conforming triangulations of Ω, which means

that T0 is a quasi-uniform initial mesh and Tl is obtained by quasi-uniform refinement of Tl−1, l ≥ 1.
For simplicity, we denote by al(·, ·) the bilinear form ahl

(·, ·) on Ml, where hl is the mesh size of
Tl, meanwhile we denote by Ml for the hp-HDG approximation space Mp

hl
on Tl, the collection of

edges of Tl is denoted by El. Let Il : Ml → ML be the intergrid transform operator, which will be
specified later. Define projections Pl, Ql : ML → Ml as

al(Plv,w) = aL(v, Ilw), 〈Qlv,w〉∂Tl = 〈v, Ilw〉∂TL , v ∈ ML, w ∈ Ml.

The existence and uniqueness solution of problem (2.10) imply the well-posedness of the above
definition. For 0 ≤ l ≤ L, define Al : Ml → Ml, Fl ∈ Ml by means of

〈Alv,w〉∂Tl = al(v,w), 〈Fl, w〉∂Tl = bl(w), v, w ∈ Ml. (2.12)

Let Rl : Ml → Ml be the smoothing operator on Ml which is chosen as weighted Jacobi or Gauss-
Seidel relaxation. In fact, both weighted Jacobi and Gauss-Seidel relaxation can be used on the fine
grids. Otherwise, we choose GMRES relaxation as a smoother, and we will give some illustration
in Section 4. Now we state our multilevel method.

Algorithm 2.1. Given an arbitrarily chosen initial iterate u0 ∈ ML, we seek un ∈ ML as follows:

Let v0 = un−1. For l = 0, 1, · · · , L, compute vl+1 by

1) When l = 0, v1 = v0 + µ0I0(A0)
−1Q0(FL − ALv0). For l = 1, · · · , L, if κhl/p ≥ α, perform

m1 steps GMRES smoothing for the correction problem Alwl = Ql(FL −ALvl), and set

vl+1 = vl + µlIlwl,

else perform m2 steps of weighted Jacobi relaxation RJ
l or Gauss-Seidel relaxation RGS

l ,

vl+1 = vl + µlIl(Rl)
m2Ql(FL −ALvl),

where Rl = RJ
l or RGS

l . We will always choose the parameters α and {µl}Ll=0 as 0.5 in this paper.

2) For l = L, · · · , 1, if κhl/p < α, perform m3 steps of Rl = RJ
l or RGS

l to obtain v2L+2−l,

v2L+2−l = v2L+1−l + µlIl(Rl)
m3Ql(FL −ALv2L+1−l);

else perform m4 steps of GMRES smoothing for the correction problem Alwl = Ql(FL−ALv2L+1−l),
and set

v2L+2−l = v2L+1−l + µlIlwl.

When l = 0, v2L+2 = v2L+1 + µ0I0(A0)
−1Q0(FL −ALv2L+1).

3) Set un = v2L+2.
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At the end of this section, we give the definition of the transfer operator Il : Ml → ML, 0 ≤
l ≤ L − 1. Note that IL : ML → ML is the identity operator. Denote W c

l := {v ∈ C(Ω) | v|T ∈
W (T ), ∀T ∈ Tl}. We first define an auxiliary operator IWl : Ml → W c

l , 0 ≤ l ≤ L− 1.
Case 1: p = 1. Let

IWl λ(zn) =

∑
e⊂El(zn)

λe(zn)

|El(zn)|
∀zn ∈ Vl,

where Vl is the collection of the vertices of Tl. For any zn ∈ Vl, El(zn) is the collection of edges in
El which contain zn, while |El(zn)| is the number of edges in El(zn).

Case 2: p = 2. Let

IWl λ(zn) =

{ ∑
e⊂El(zn) λe(zn)

|El(zn)|
zn ∈ Vl;

λ(zn) zn ∈ Nl\Vl,

where Nl is the degree of freedom of the space W c
l .

Case 3: p ≥ 3. Let

IWl λ(zn) =





∑
e⊂El(zn) λe(zn)

|El(zn)|
zn ∈ Vl;

λ(zn) zn ∈ Nl\(Vl ∪ N 0
l );

Uλ(zn) zn ∈ N 0
l ,

where N 0
l is the degree of freedom in the interior of every element T ∈ Tl. For the p ≥ 3 case,

N 0
l is not an empty set, but the space Ml dose not provide any information for the degree of

freedom in the interior of T . Hence we use the solution of the local problem (2.6-2.7) to define it.
Note that this procedure only involves the computation of the local problems and can be parallel
implemented.

With the help of the above operator IWl , we may define Il : Ml → ML, 0 ≤ l ≤ L− 1 as follows:

Ilµ|EL := IWl µ|EL . (2.13)

Throughout this paper, we use notations A . B and A & B for the inequalities A ≤ CB and
A ≥ CB, where C is a positive number independent of the mesh sizes and mesh levels.

3 The stability of the intergrid transfer operator

The design of the stable intergrid transfer operator is critical for the success of the nonnested
multilevel method. The failure of certain ‘obvious’ transfer operators in [19] is due to the fact that
the energy error increases by using these operators. In the following, we will analyze the stability
estimate of our intergrid transfer operator in the energy norm. From the numerical results, we may
find that this intergrid transfer operator works well in our multilevel method for the Helmholtz
problem. Consider the Possion equation:

−△U = f in Ω, (3.1)

U = g on ∂Ω, (3.2)

where f ∈ L2(Ω) and g ∈ L2(∂Ω). Clearly, (3.1-3.2) can be rewritten in a mixed form as finding
(Q, U) such that

Q = −∇U in Ω, (3.3)

div Q = f in Ω, (3.4)

U = g on ∂Ω. (3.5)
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The corresponding HDG method yields finite element approximations (Qh, Uh, Ûh) ∈ V
p
h ×

W p
h ×Mp,0

h which satisfy

(Qh, r)Th − (Uh,div r)Th + 〈Ûh, r · n〉∂Th = −〈g, r · n〉∂Ω, (3.6)

−(Qh,∇w)Th + 〈Q̂h · n, w〉∂Th = (f,w)Th , (3.7)

〈Q̂h · n, µ〉∂Th = 0, (3.8)

for all r ∈ V
p
h, w ∈ W p

h , and µ ∈ Mp,0
h , where

Mp,0
h := {µ ∈ Mp

h | µ|∂Ω = 0},

and

Q̂h · n =

{
Qh · n+ τh(Uh − Ûh) e ∈ ∂Th\∂Ω;
Qh · n+ τh(Uh − g) e ∈ ∂Th ∩ ∂Ω.

For fixed p, we choose τh = O(h−1) for the Possion equation.
For any m ∈ L2(∂T ) and f ∈ L2(T ), define (Qm, Um), (Qf , Uf ) ∈ V (T )×W (T ) as follows:

(Qm,v)T − (Um,div v)T = −〈m,v · n〉∂T , (3.9)

−(Qm,∇w)T + 〈Q̂m · n, w〉∂T = 0, (3.10)

(Qf ,v)T − (Uf ,div v)T = 0, (3.11)

−(Qf ,∇w)T + 〈Q̂f · n, w〉∂T = (f,w)T , (3.12)

for all (v, w) ∈ V (T )×W (T ), where

Q̂m · n = Qm · n+ τh(Um −m),

Q̂f · n = Qf · n+ τhUf .

It is shown in Theorem 2.1 in [7] that Ûh ∈ Mp,0
h is the solution of the following equation

âh(Ûh, µ) = b̂h(µ), ∀ µ ∈ Mp,0
h ,

where

âh(λ, µ) := (Qλ,Qµ)Th + τh〈Uλ − λ,Uµ − µ〉∂Th , (3.13)

b̂h(µ) := (f, Uµ)Th + 〈g, Q̂µ · n〉∂Ω. (3.14)

Let the space W p
hl

and Mp,0
hl

on Tl be denoted by Wl and M0
l repectively, while the local

stabilization parameter is denoted by τl, which is of order O(h−1
l ). Define the average operator

ĨWl : Wl → W c
l , 0 ≤ l ≤ L− 1 as follows:

ĨWl u(zn) =

{ ∑
T⊂Tl(zn) uT (zn)

|Tl(zn)|
zn ∈ Nl\N 0

l ;

u(zn) zn ∈ N 0
l ,

where Tl(zn) is the collection of elements in Tl which contain zn. |Tl(zn)| is the number of elements
in Tl(zn). Note that the average operator ĨWl coincides with Ios in [4], we refer to [4] for the
properties of ĨWl .
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Lemma 3.1. For all µ ∈ M0
l , T ∈ Tl, let Uµ be the solution of (3.9-3.10). Then

|ĨWl Uµ − IWl µ|1,T . h
−1/2
l ‖Uµ − µ‖0,∂Tl(Ωl(T )), (3.15)

where Ωl(T ) := {T ′ ∈ Tl, T ′ ∩ T 6= ∅}, ∂Tl(Ωl(T )) :=
⋃

T ′∈Ωl(T ) ∂T
′. Furthermore, summing up for

all T ∈ Tl, we have

|ĨWl Uµ − IWl µ|1,Ω . h
−1/2
l ‖Uµ − µ‖0,∂Tl . (3.16)

Proof. For all T1 ∈ Tl, if ∂T1 ∩ ∂Ω = ∅, suppose {ai, i = 1, . . . , Np} are the degrees of freedom in
W (T1). It is obvious that

|ĨWl Uµ − IWl µ|21,T1
.

Np∑

i=1

(
(ĨWl Uµ − IWl µ)(ai)

)2
. (3.17)

According to the definition of ĨWl and IWl , we have (see Figure 1)

Figure 1: An illustration of the triangles containing a1.

(ĨWl Uµ − IWl µ)(a1) =
UT1
µ (a1) + . . . + U

Tna1
µ (a1)

|Tl(a1)|
− µe1(a1) + . . . + µena1 (a1)

|Tl(a1)|

=
(UT1

µ (a1)− µe1(a1)) + . . .+ (U
Tna1
µ (a1)− µena1 (a1))

|Tl(a1)|
,

where UTi
µ and µei , i = 1, . . . , na1 , are the values of Uµ in Ti and µ in ei respectively. na1 is the

number of elements which share the vertex a1, specially for the case in Figure 1, na1 = 6.
Since Tl is a sharp regular mesh,

(
(ĨWl Uµ − IWl µ)(a1)

)2
.
(
(UT1

µ (a1)− µe1(a1))
)2

+ . . .+
(
(U

Tna1
µ (a1)− µena1 (a1))

)2

. h−1
l ‖Uµ − µ‖20,∂Tl(Ωl(a1))

,

where Ωl(a1) := {T ′ ∈ Tl, T ′ contains a1}, ∂Tl(Ωl(a1)) :=
⋃

T ′∈Ωl(a1)
∂T ′. Similarly we can get

(
(ĨWl Uµ − IWl µ)(a2)

)2
. h−1

l ‖Uµ − µ‖20,∂Tl(Ωl(a2))
,

7



and

(
(ĨWl Uµ − IWl µ)(a3)

)2
. h−1

l ‖Uµ − µ‖20,∂Tl(Ωl(a3))
.

Then for the case p = 1, (3.15) is proved. Suppose a4 is the degree of freedom of W (T1) in the edge
[a1, a3], by the definition of ĨWl and IWl , we have

(ĨWl Uµ − IWl µ)(a4) =
(UT1

µ (a4)− µ(a4)) + (UT2
µ (a4)− µ(a4))

2
,

which means

(
(ĨWl Uµ − IWl µ)(a4)

)2
. h−1

l ‖Uµ − µ‖20,∂Tl(Ωl(a4))
.

Similarly we can obtain the estimates for the degrees of freedom of W (T1) in the edges [a1, a2] and
[a2, a3]. Then for the case p = 2, (3.15) is proved. Suppose ai is the degree of freedom of W (T1) in
the interior of T1, since ĨWl Uµ(ai) = Uµ(ai), according to the definition of IWl µ, we can get

ĨWl Uµ(ai) = IWl µ(ai).

Hence for the case p ≥ 3, (3.15) is proved.
If ∂T1 ∩ ∂Ω 6= ∅, due to the fact that µ ∈ M0

l , (3.15) can be derived similarly.

Remark 3.2. From the proof of Lemma 3.1, we may see why we should define the degree of freedom
in the interior of T1 by Uλ in the case p ≥ 3. Actually, this definition may ensure (3.16), which is
important in our analysis for the stability estimate of Il.

Lemma 3.3. For all T ∈ Tl, m ∈ L2(∂T ), let (Qm, Um) be the solution of the local problem
(3.9-3.10). Then

‖Qm +∇Um‖0,T . h
−1/2
l ‖Um −m‖0,∂T . (3.18)

Proof. Applying the Green’s formula and using (3.9), we have

(Qm +∇Um,v)T = 〈Um −m,v · n〉∂T , ∀v ∈ V (T ).

Taking v = Qm +∇Um, and using Lemma 3.2 in [16], we get

‖Qm +∇Um‖20,T ≤ ‖Um −m‖0,∂T ‖Qm +∇Um‖0,∂T
. h

−1/2
l ‖Um −m‖0,∂T ‖Qm +∇Um‖0,T ,

Eliminating ‖Qm +∇Um‖0,T from both side of the above inequality concludes the proof.

Lemma 3.4. For all µ ∈ M0
l , we have

|IWl µ|21,Ω . âl(µ, µ).

Proof. By the triangle inequality and Lemma 3.1, we obtain

|IWl µ|1,Ω ≤ |IWl µ− ĨWl Uµ|1,Ω + |ĨWl Uµ|1,Ω,
. h

−1/2
l ‖Uµ − µ‖0,∂Tl + |ĨWl Uµ|1,Ω.

8



The property of the operator ĨWl (see Remark 3.2 of [4]) implies

|ĨWl Uµ|1,Ω . |Uµ|1,Ωl
+ h

−1/2
l ‖JUµK‖0,E0

l

. |Uµ|1,Ωl
+ h

−1/2
l ‖Uµ − µ‖0,∂Tl ,

where |v|21,Ωl
:=
∑

T∈Tl
|v|21,T , ∀v ∈ Wl. Then using Lemma 3.3, we have

|Uµ|1,Ωl
. ‖Qµ‖0,Ω + h

−1/2
l ‖Uµ − µ‖0,∂Tl .

Hence

|IWl µ|21,Ω . ‖Qµ‖20,Ω + h−1
l ‖Uµ − µ‖20,∂Tl . âl(µ, µ).

Next, we prove the stability estimate of the intergrid transfer operator for the case p = 1.

Lemma 3.5. For the case p = 1, let (QIlµ, UIlµ) ∈ V (K) × W (K) be the solution of the local
problem (3.9-3.10) for any K ∈ TL, Ilµ ∈ L2(∂K), where µ ∈ Ml. Then

QIlµ
= −∇IWl µ, UIlµ = IWl µ. (3.19)

Proof. The Green’s formula and (2.13) implies

(−∇IWl µ,v)K − (IWl µ,div v)K = −〈IWl µ,v · n〉∂K = −〈Ilµ,v · n〉∂K ,

for all v ∈ V (K). Since IWl µ is piecewise linear, then we have

div (−∇IWl µ) = −∆IWl µ = 0, (3.20)

which together with (2.13) yields

(div (−∇IWl µ), w)K + τL〈IWl µ− Ilµ,w〉∂K = 0, ∀w ∈ W (K).

Because the local problem (3.9-3.10) is uniquely solvable, we derive

QIlµ
= −∇IWl µ, UIlµ = IWl µ.

Theorem 3.6. When p = 1, the intergrid transfer operator Il : Ml → ML satisfies

âL(Ilµ, Ilµ) . âl(µ, µ), ∀µ ∈ M0
l .

Proof. The definition of the bilinear form âL(·, ·), Lemma 3.5 and (2.13) yield

âL(Ilµ, Ilµ) =
∑

K∈TL

‖QIlµ‖
2
0,K = |IWl µ|21,Ω,

which, together with Lemma 3.4, implies the conclusion.

For the case p ≥ 2, since for all v ∈ Pp(T ), ∆v no longer equals to 0, which means Lemma 3.5
doesn’t hold any more. We will prove the stability estimate for Il through the estimation of terms
‖QIlµ

+∇IWl µ‖0,Ω and ‖UIlµ − IWl µ‖0,∂Tl .
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Lemma 3.7. For all T ∈ Tl, f ∈ L2(T ), let (Qf , Uf ) ∈ V (T ) ×W (T ) be the solution of the local
problem (3.11-3.12). Then

‖Qf‖0,T . hl‖f‖0,T , (3.21)

‖Uf‖0,T . h2l ‖f‖0,T , ‖Uf‖0,∂T . h
3/2
l ‖f‖0,T . (3.22)

Proof. Using the Green’s formula, we know there exists a (Qf , Uf ) ∈ V (T )×W (T ) such that

(Qf ,v)T − (Uf ,div v)T = 0, (3.23)

(div Qf , w)T + τl〈Uf , w〉∂T = (f,w)T , (3.24)

for all (v, w) ∈ V (T )×W (T ).
Next we prove that for all w ∈ Pp(T ), there holds

‖w‖0,T . hl
supv∈V (T ) |

∫
T wdiv v|

‖v‖0,T
+ h

1/2
l ‖w‖0,∂T . (3.25)

Supposing T̂ is the standard triangle element, and FT : T̂ → T is a linear map which is defined by
x = FT (x̂) := BT x̂ + b. A scalar function w on T is transformed to a scalar function ŵ on T̂ by
ŵ := w◦FT (x̂), while for the vector function v, we transform v to v̂ via v̂ := det(BT )B

−1
T v◦FT (x̂).

We note that this is a divergence conserving transformation (see Lemma 3.59 in [21]), i.e.

div v̂ = det(BT )div v.

Define

‖ŵ‖ :=
sup

v̂∈(Pp(T̂ ))2 |
∫
T̂ ŵdiv v̂|

‖v̂‖0,T̂
+ ‖ŵ‖0,∂T̂ .

Now we prove that ‖ · ‖ is a norm in the space Pp(T̂ ). Apparently we have

‖cŵ‖ = |c| ‖ŵ‖,
‖ŵ + û‖ ≤ ‖ŵ‖+ ‖û‖,

for all ŵ, û ∈ Pp(T̂ ) and c ∈ R. Hence we only need to verify that if ‖ŵ‖ = 0, then w = 0.
If ‖ŵ‖ = 0, by the definition of ‖ · ‖, we have

∫

T̂
ŵûp−1 = 0, ∀ûp−1 ∈ Pp−1(T̂ ).

By Lemma A.1 in [8], we know

‖ŵ‖0,T̂ . ‖ŵ‖0,F̂ , ∀F̂ ∈ ∂T̂ .

which implies ŵ = 0. The scaling argument and the equivalence of the norms ‖ · ‖0,T̂ and ‖ · ‖ in

the finite dimensional space Pp(T̂ ) yield

h−1
l ‖w‖0,T . ‖ŵ‖0,T̂ .

sup
v̂∈(Pp(T̂ ))2 |

∫
T̂ ŵdiv v̂|

‖v̂‖0,T̂
+ ‖ŵ‖0,∂T̂

.
supv∈V (T ) |

∫
T wdiv v|

‖v‖0,T
+ h

−1/2
l ‖w‖0,∂T ,
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which results in (3.25). Taking v = Qf in (3.23) and w = Uf in (3.24), we can deduce

‖Qf‖20,T + τl‖Uf‖20,∂T = (f, Uf )T . (3.26)

By (3.25) and (3.23), we get

‖Uf‖0,T . hl
supv∈V (T ) |

∫
T Ufdiv v|

‖v‖0,T
+ h

1/2
l ‖Uf‖0,∂T

. hl
supv∈V (T ) |

∫
T Qfv|

‖v‖0,T
+ h

1/2
l ‖Uf‖0,∂T

. hl‖Qf‖0,T + h
1/2
l ‖Uf‖0,∂T . (3.27)

Taking (3.27) to (3.26), and utilizing the Young’s inequality gives

‖Qf‖20,T + τl‖Uf‖20,∂T . ‖f‖0,T (hl‖Qf‖0,T + h
1/2
l ‖Uf‖0,∂T )

≤ Cδh
2
l ‖f‖20,T + δ‖Qf‖20,T + δh−1

l ‖Uf‖20,∂T .

Choosing δ < min {1
2 ,

1
2τlhl}, we obtain

‖Qf‖20,T + τl‖Uf‖20,∂T . h2l ‖f‖20,T .

Hence

‖Qf‖0,T . hl‖f‖0,T , ‖Uf‖0,∂T . h
3/2
l ‖f‖0,T .

By (3.27), we derive

‖Uf‖0,T . h2l ‖f‖0,T .

Now we are ready to prove the stability of the intergrid transfer operator for the case p ≥ 2.

Theorem 3.8. When p ≥ 2, the intergrid transfer operator Il : Ml → ML satisfies

âL(Ilµ, Ilµ) . âl(µ, µ), ∀µ ∈ M0
l .

Proof. Let (QIlµ
, UIlµ) ∈ V (K) × W (K) be the solution of the local problem (3.9-3.10) for any

K ∈ TL, Ilµ ∈ L2(∂K). Then using the Green’s formula, we know that there exists a (QIlµ
, UIlµ) ∈

V (K)×W (K) such that

(QIlµ
,v)K − (UIlµ,div v)T = −〈Ilµ,v · n〉∂K , (3.28)

(div QIlµ
, w)K + τL〈UIlµ − Ilµ,w〉∂K = 0, (3.29)

for all (v, w) ∈ V (K)×W (K). The Green’s formula and (2.13) imply

(−∇IWl µ,v)K − (IWl µ,div v)K = −〈IWl µ,v · n〉∂K = −〈Ilµ,v · n〉∂K , (3.30)

(div (−∇IWl µ), w)K + τL〈IWl µ− Ilµ,w〉∂K = (−∆IWl µ,w)K , (3.31)
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for all (v, w) ∈ V (K) × W (K). Denote eQ = QIlµ + ∇IWl µ and eU = UIlµ − IWl µ. Then
(eQ, eU ) ∈ V (K)×W (K) satisfy

(eQ,v)K − (eU ,div v)K = 0, (3.32)

(div eQ, w)K + τL〈eU , w〉∂K = (∆IWl µ,w)K , (3.33)

for all (v, w) ∈ V (K)×W (K). By Lemma 3.7, we get

‖eQ‖0,K . hL‖∆IWl µ‖0,K ,

‖eU‖0,K . h2L‖∆IWl µ‖0,K ,

‖eU‖0,∂K . h
3/2
L ‖∆IWl µ‖0,K .

Summing up for all K ∈ TL and utilizing the inverse inequality, we have

‖eQ‖0,Ω .
hL
hl

|IWl µ|1,Ω . |IWl µ|1,Ω, (3.34)

‖eU‖0,Ω .
h2L
hl

|IWl µ|1,Ω . hL|IWl µ|1,Ω, (3.35)

‖eU‖0,∂TL .
h
3/2
L

hl
|IWl µ|1,Ω . h

1/2
L |IWl µ|1,Ω. (3.36)

Then we can deduce
‖QIlµ

‖0,Ω . |IWl µ|1,Ω + ‖eQ‖0,Ω . |IWl µ|1,Ω
and

‖UIlµ − Ilµ‖0,∂TL = ‖eU‖0,∂TL .
Hence

âL(Ilµ, Ilµ) = ‖QIlµ
‖20,Ω + τL‖UIlµ − Ilµ‖20,∂TL

. |IWl µ|21,Ω + τLhL|IWl µ|21,Ω

. |IWl µ|21,Ω,

which, together with Lemma 3.4, complete the proof.

Remark 3.9. In this paper, the proof of the stability estimate of the intergrid transfer operator is
specified in meshes consisting of triangles, but we should mention that it can be extended to the
meshes constituted with rectangles, tetrahedra or hexahedra.

4 Local Fourier analysis (LFA)

In this section, LFA will be used to give a quantitative insight of the convergence of Algorithm 2.1
in 1D case. For simplicity, in this section we focus on the analysis for the HDG discretization based
on linear polynomial (P1) approximation (HDG-P1). We mainly consider the analysis of two level
method of Algorithm 2.1. The LFA of three level method is also mentioned. The analysis imply
the efficiency of Algorithm 2.1. We adopt the notations and philosophy in [22].

There are some necessary simplifications in the framework of LFA: the boundary conditions are
neglected and the problem is considered on regular indefinite grids Gh = {x : x = xj = jh, j ∈ Z}.
It seems to be very restrictive and very unrealistic since the Robin boundary condition (1.3) and
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other absorbing boundary conditions are often applied in realistic Helmholtz problem, the neglect
of boundary conditions does usually not affect the validity of LFA (cf. [22]).

For a fixed point x ∈ Gh and any infinite grid function uh, we can define an operator Lh on the
space of infinite grid functions by

Lhuh(x) =
∑

j∈J

ljuh(x+ jh),

with stencil coefficients lj and a certain finite subset J ⊂ Z. Lh = [lj ]h, j ∈ J is a stencil represen-
tation of Lh. This formulation is particularly convenient in the context of LFA. It can be easily
seen that the eigenfunctions of Lh are given by ϕh(θ, x) = eiθx/h with x ∈ Gh and θ ∈ R. In fact,
the frequency θ can be restricted to the interval (−π, π] as a fact that ϕh(θ + 2π, x) = ϕh(θ, x).
These eigenfunctions are called Fourier components associated with a Fourier frequency θ. The
corresponding eigenvalues of Lh which are called Fourier symbols read as L̃h(θ) =

∑
j∈J lje

iθj, and
satisfy the following equality

Lhϕh(θ, x) = L̃h(θ)ϕh(θ, x), x ∈ Gh, θ ∈ (−π, π]. (4.1)

Given a so-called low frequency θ0 ∈ Θlow := (−π/2, π/2], its complementary frequency θ1 is defined
as

θ1 = θ0 − sign(θ0)π. (4.2)

It is appropriate to divide the Fourier space into the following two dimensional subspace

Eθ0

2h := span{ϕh(θ
0, x), ϕh(θ

1, x)}, (4.3)

where the Fourier components ϕh(θ
0, x) and ϕh(θ

1, x) are called 2h-harmonics. The definition of
the 2h-harmonics is motivated by the fact that each low frequency θ0 ∈ Θlow is coupled with θ1 in
the transition from Gh to G2h. Indeed they coincide with each other on the coarse grid. Interpreting
the Fourier components as coarse grid functions yields

ϕh(θ
0, x) = ϕ2h(2θ

0, x) = ϕ2h(2θ
1, x) = ϕh(θ

1, x), θ0 ∈ Θlow, x ∈ G2h.

A crucial observation is that the space Eθ0

2h is invariant under both smoothing operators and cor-
rection schemes for general cases by two level method. The invariance property holds for many
well-known smoothing methods (cf. [22]), such as Jacobi relaxation, lexicographical Gauss-Seidel
relaxation, et al.

The main goal of LFA is to estimate the spectral radius or certain norms of the k-level operator.
Let Mh be a discrete two level operator. In the following we will show that a block-diagonal
representation for Mh consists of 2 × 2 blocks M̃h(θ) (cf. [22]), which denotes the representation
of Mh on Eθ0

2h. Then the convergence factor of Mh by the LFA is defined as follows:

ρ(Mh) := sup{ρ(M̃h(θ)) : θ ∈ Θlow},

where ρ(M̃h(θ)) is the spectral radius of the matrix M̃h(θ). The generalizations to k-level analysis
are shown in [22].
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4.1 One dimensional Fourier symbols

In this subsection, we give the Fourier symbols of different operators in multilevel method for the
HDG-P1 discretization for one dimensional Helmholtz equation. Since the boundary condition is
neglected in the LFA, the stencil presentation of discretization operator Ah from (2.12) can be
derived as

Ah = [s1 s0 s1]h,

where

s1 =
1

t

( σ2
tσ1

− σ2(3t
2i+ 18)

(18t − t3)σ1

)
− −2t4i+ 12t2i+ 72 + 136i

t5 − 24t3 + 148t
− 6t2 − 72 + 12i

t5 − 24t3 + 148t
,

and

s0 = −1

t

(σ3
σ4

− −4t7i+ t5(20 + 84i) + t3(−432 − 480i) + t(2736 + 432i)

t(t8 − 24t6 + 184t4 − 864t2 + 5328)
+ 1
)

− −4t4i+ 60t2i+ 72− 160i

t5 − 24t3 + 148t
− σ3

tσ4
,

here t = kh, and

σ1 = t4i+ t2(8− 12i) − 72− 12i, σ2 = 36t− 2t3,

σ3 = 6t2 − 72 + 12i, σ4 = t4 − 24t2 + 148.

Combining the above expression and (4.1) yields the Fourier symbol of Ah as

Ãh(θ) = 2s1 cos θ + s0. (4.4)

For simplicity, we use standard weighted Jacobi (ω-JAC) and lexicographical Gauss-Seidel (GS-
LEX) relaxations as the smoothers in the LFA. It is easy to derive the weighted Jacobi relaxation
matrix as SJ

h = Ih − ωD−1
h Ah, where Ih is indentity matrix, Dh consists of the diagonal of Ah

and ω is a weighted parameter. Due to the fact that Dh = s0Ih, one can easily deduce the Fourier
symbol of weighted Jacobi relaxation as follows:

S̃
J

h(θ) = 1− 2ω

s0
(s1 cos θ +

s0
2
). (4.5)

The GS-LEX relaxation matrix is SGS
h = (Dh−Lh)

−1Uh, where−Lh is the strictly lower triangular
part of Ah and −Uh is the strictly upper triangular part of Ah. The Fourier symbol of SGS

h can
also be directly derived that

S̃
GS

h (θ) = − s1e
iθ

s1e−iθ + s0
. (4.6)

Note that for the restriction matrix I2h
h = [rj ]

2h
h and x ∈ G2h, there holds

(I2h
h ϕh(θ

α, ·))(x) =
∑

j∈J

rje
ijθαϕh(θ

α, x) =
∑

j∈J

rje
ijθαϕ2h(2θ

0, x), α = 0, 1.

By an analogous stencil argument, the stencil presentation of full weighting restriction matrix for
the HDG-P1 discretization system in one dimensional case is derived to be I2h

h = [1/4, 1/2, 1/4]2hh .
Thus, the Fourier symbol of I2h

h can be deduced as

Ĩ
2h

h (θ) =
1

2
(1 + cos θ).
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For the linear prolongation matrix Ih
2h which is defined as

(Ih
2hϕ2h(2θ

0, ·))(x) = ϕ2h(2θ
0, x) = ϕh(θ

0, x), x ∈ G2h, θ
0 ∈ Θlow,

(Ih
2hϕ2h(2θ

0, ·))(x) = 1

2
(ϕh(θ

0, x− h) + ϕh(θ
0, x+ h)), x ∈ Gh \ G2h, θ

0 ∈ Θlow,

one can also obtain its Fourier symbol as follows (cf. [22]):

Ĩ
h

2h(θ) =
1

2
(1 + cos θ).

4.2 Smoothing analysis

Since every two dimensional subspace of 2h-harmonics Eθ0

2h with θ0 ∈ Θlow is left invariant under
the ω-JAC and GS-LEX relaxations, then the Fourier representation of smoother Sh = SJ

h or SGS
h

with respect to Eθ0

2h can be written as

[
S̃h(θ

0) 0

0 S̃h(θ
1)

]
, (4.7)

where S̃h(θ) is the smoother symbol derived in (4.5) and (4.6). The spectral radius of the smoother
operator can be easily calculated since the above matrix is diagonal.

We concern on the LFA for HDG-P1 method. The left graph of Figure 2 shows the Fourier

symbols S̃
J

h(θ) for ω-JAC smoother with ω = 0.6. We find that S̃
J

h(θ) ≥ 1 always occur at the
low frequencies, and small t leads to a better relaxation. Similar phenomenon is also observed for
GS-LEX smoother in the right graph of Figure 2. Thus, for fixed wave number κ, both ω-JAC and
GS-LEX relaxations can be used as smoother on fine grids, but on coarse grids they may amplify the
error. Motivated by the idea in [9], we use GMRES smoothing on coarse grids. Unfortunately, since
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Figure 2: |S̃J

h(θ)| with ω = 0.6 (left) and |S̃GS

h (θ)| (right) over (−π, π] for t = 0.1, 0.5, 1.

the GMRES smoothing is nonlinear in the starting value, its Fourier symbol can not be derived.
In the following, we will give some explanations for the performance of GMRES smoothing from
the numerical point of view.

For the ease of presentation, we restrict ourselves to the one dimensional Helmholtz equation
on an interval (0, 10) with homogeneous Dirichlet boundary conditions. For κ = 200, we apply
the grid with mesh size h = 0.005, i.e., t = 1. Let the vector u0 = eiθx/h be an initial choice for
smoothing, where x = [x1, · · · , xN−1], xk = xk−1 + kh, x0 = 0, k = 1, · · · , N − 1, N = 10/h − 1,
θ ∈ (−π, π]. We assume that Sh is the relaxation iteration matrix and u1 = Shu0 is the new
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Figure 3: Amplification factor of GS, Jacobi and GMRES smoothing for t = 1.

vector after one step of smoothing. Then for fixed θ, we obtain the amplification factor for one
step of smoothing ρs(θ) = ‖u1‖/‖u0‖, where ‖ · ‖ stands for the Euclidean norm. We can see from
Figure 3, the amplification factor of GMRES relaxation is always smaller than that of GS and
Jacobi relaxations. When the other two smoothers fail, the GMRES relaxation can still lead to
convergence. Hence, we replace them with GMRES smoothing on coarse grids.

4.3 Two and three level local Fourier analysis

We have briefly characterized the smoothing procedure in the multilevel algorithm, in this sub-
section, the influence of coarse grid correction will be taken into account. We will focus on the
LFA of two level method and concisely mention the three level method. For simplicity, we consider
the two and three level methods without post-smoothing and with one step of smoothing on each
level. Since the Fourier symbol can not be obtained for GMRES smoothing, we only consider the
two and three level methods with ω-JAC or GS-LEX relaxation. Then the iteration operator of
Algorithm 2.1 in this simple case can be derived as (I −TL) · · · (I −T0), where Tl = µlIlRlAlPl, Rl

is smoothing operator.
For the two level method, the iteration matrix is given by

M2 =
(
I1 − µ1(I1 − S1)

)(
I1 − µ0I

1
0(A0)

−1I0
1A1

)
.

Here, for l ≥ 0, Sl = I l − RlAl is smoothing relaxation matrix, I l with the same size as Al is
identity matrix , Is

l (s > l) is prolongation matrix from level l to s, Is
l (s < l) is restriction matrix

from level l to s, and Rl stands for matrix representation of smoother Rl.
Since every two dimensional subspace (4.3) of 2h-harmonics Eθ0

2h1
with θ0 ∈ (−π/2, π/2] is left

invariant under ω-JAC or GS-LEX smoothing operator and correction operator, the representation
of two level iteration matrix of M2 on Eθ0

2h1
is given by a 2× 2 matrix as follows:

M̃2 =

[
Ĩ1 − µ1

(
Ĩ1 −

[
S̃1(θ

0)

S̃1(θ
1)

]

D

)]

·


Ĩ1 − µ0

[
Ĩ
1

0(θ
0)

Ĩ
1

0(θ
1)

]
Ã0(2θ

0)−1

[
Ĩ
0

1(θ
0)

Ĩ
0

1(θ
1)

]t [
Ã1(θ

0)

Ã1(θ
1)

]

D


 . (4.8)

where Ĩ1 is 2× 2 identity matrix and the subscript-D denotes the transformation of a vector into a
diagonal matrix. Then the spectral radius of M̃2 for different θ

0 ∈ Θlow can be obtained analytically
and numerically.
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Figure 4: ρ(M̃ 2) with ω = 0.6 over θ0 ∈ Θlow for t = 1, t = 0.5 and t = 0.1.

Figure 4 shows the spectral radius of M̃2 with ω = 0.6 over θ0 ∈ Θlow under ω-JAC relaxation
for different mesh size t on the finest grid. If no confusion is possible, we will always denote
t =constant for t = κhL on the finest grid. We observe that when t = 1, for most of the frequencies
θ0 ∈ Θlow the amplification factor is smaller than 1. The amplification factor tends to larger than 1
only under a few frequencies. Actually, the appearance of such a resonance is caused by the coarse
grid correction and originates from the inversion of the coarse grid discretization symbol Ã0(2θ

0)
in (4.8). Based on this reason, the coarsest grid is chosen to satisfies the mesh condition κh/p ≤ 2
in our algorithm. The good performance of two level method for t = 0.5 and t = 0.1 indicates
that when the mesh is fine enough to capture the character of solution, standard smoother works
out. We will utilize the GMRES smoothing when κh/p ≥ 0.5 and perform weighted Jacobi or
Gauss-Seidel smoothing on those relatively fine grids.

The main idea of the three level analysis is to recursively apply the previous two level analysis.
First, we define the four dimensional 4h-harmonics by

Eθ0

4h2
:= span{ϕh2(θ

00, x), ϕh2(θ
01, x), ϕh2(θ

10, x), ϕh2(θ
11, x)},

where θα0 = θα

2 , θα1 = θα

2 − sign(θ
α

2 )π, α = 0, 1. Similar to the two level method, the iteration
matrix can be deduced to be

M 3 =
(
I2 − µ2(I2 − S2)

)(
I2 − µ1I

2
1(I1 − S1)(A1)

−1I1
2A2

)(
I2 − µ0I

2
0(A0)

−1I0
2A2

)
.

It is easy to see that the three level operator leaves the space of 4h-harmonics Eθ0

4h2
invariant

(cf. [22]) for any θ0 ∈ Θlow. This yields a block diagonal representation of M3 with the following

4× 4 matrix M̃3:

M̃3 =
[
Ĩ2 − µ2

(
Ĩ2 − S̃2(θ)

)]

·


Ĩ2 − µ1Ĩ

2

1(θ)

(
Ĩ1 −

[
S̃1(θ

0)

S̃1(θ
1)

]

D

)[
Ã1(θ

0)

Ã1(θ
1)

]−1

D

(Ĩ
1

2(θ))
tÃ2(θ)


 (4.9)

·
[
Ĩ2 − µ0Ĩ

2

1(θ)Ĩ
1

0(θ)Ã0(2θ
0)−1(Ĩ

0

1(θ))
t(Ĩ

1

2(θ))
tÃ2(θ)

]
,

where Ĩ2 is 4 × 4 identity matrix, S̃2(θ) =




S̃2(θ
00)

S̃2(θ
01)

S̃2(θ
10)

S̃2(θ
11)



D

, Ã2(θ) =




Ã2(θ
00)

Ã2(θ
01)

Ã2(θ
10)

Ã2(θ
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Figure 5: Case 1 (t=0.5): ρ(M̃2) over θ
0 ∈ Θlow, Case 2 (t=0.5) and Case 3 (t=0.25) denote for ρ(M̃ 3).

It can be seen from Figure 5, when the mesh size on the coarsest grid is determined to be the
same, the performance of two and three level methods behave similarly, although the two level
method has smaller spectral radius. We also observe that a coarser initial grid used for M3 will
deteriorate its convergence.

5 Numerical results

We will present two numerical examples to demonstrate Algorithm 2.1 in two dimension. Our
multilevel algorithm is used as a preconditioner in outer GMRES iterations (PGMRES). The level
l which distinguishes the smoothing strategy satisfies κhl/p ≈ 0.5. We always use Gauss-Seidel
relaxation when κhl/p < 0.5 and GMRES relaxation otherwise in Algorithm 2.1. The smoothing
step {mi}4i=1 is chosen as two if there is no any annotation. At the l-th level, the discrete problem
is Alul = Fl. Let r

n
l = Fl−Alu

n
l be the residual with respect to the n-th iteration. The PGMRES

algorithm stops when
‖rnl ‖/‖r0l ‖ ≤ 10−6,

where ‖v‖ is the L2 norm of the vector v. The number of iteration steps required to achieve the
desired accuracy is denoted by iter.

Example 5.1. We consider a two dimensional Helmholtz equation with the first order absorbing
boundary condition (cf. [17, 23]):

−∆u− κ2u = f :=
sin(κr)

r
in Ω,

∂u

∂n
+ iκu = g on ∂Ω.

Here Ω is a unit square with center (0, 0) and g is chosen such that the exact solution is

u =
cos(κr)

κ
− cos κ+ i sinκ

κ(J0(κ) + iJ1(κ))
J0(κr),

where Jν(z) are Bessel functions of the first kind.
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Table 1: Iteration number of PGMRES based on Algorithm 2.1 for the HDG-P1 in the cases κ = 50, 100, 200 with
coarsest grid size κh0/p ≈ 2.

κ = 50

Level 3 4 5
DOFs 98816 394240 1574912

iter (P1) 20 16 15

κ = 100

Level 3 4 5
DOFs 394240 1574912 6295552

iter (P1) 30 20 19

κ = 200

Level 2 3 4
DOFs 394240 1574912 6295552

iter (P1) 76 54 35

Table 2: Iteration number of PGMRES based on Algorithm 2.1 for the HDG-P2 in the cases κ = 50, 200, 360 with
coarsest grid size κh0/p ≈ 2.

κ = 50

Level 3 4 5
DOFs 37248 148224 591360

iter (P1) 11 10 9

κ = 200

Level 2 3 4
DOFs 148224 591360 2362368

iter (P1) 30 29 24

κ = 360

Level 2 3 4
DOFs 591360 2362368 9443328

iter (P1) 30 31 25

Figure 6: Surface plot of imaginary part of discrete HDG-P2 solutions for κ = 100 (left) and κ = 200 (right) on
the grid with mesh condition κh/p ≈ 0.55 (left) and 1.1 (right).

In this example, the coarsest level of multilevel method is chosen to satisfy κh0/p ≈ 2 for
κ ≤ 360. For 400 ≤ κ ≤ 700, we choose the coarsest grid condition with the same mesh size h0
such that κh0/p ≈ 1.1 ∼ 1.9. We can observe from Table 1 and Table 2 that the iteration number
is mesh independent for fixed κ, and it increases mildly with large wave number. We note that
for the piecewise linear polynomial, HDG method does not have the advantage of saving degrees
of freedom, while in the case of piecewise quadratic polynomial, the ratio between the number of
degrees of freedom for HDG and standard DG method is about 3

4 . And the higher the polynomial
degree is, the lower the ratio is. Hence we focus on HDG-P2 for the performance of our algorithm
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in this example.
Figure 6 displays the surface plot of imaginary part of discrete HDG-P2 solutions for κ =

100, 200 on the grid with mesh condition κh/p ≈ 0.55 and 1.1 respectively. Indeed, the discrete
solutions have correct shapes and amplitudes as the exact solutions. We also test the performance
of PGMRES based on Algorithm 2.1 with different smoothing steps. Table 3 shows that when it
takes two steps of smoothing the iteration number is much small with respect to one smoothing
step. But the advantage of reducing the iteration number by adding more smoothing steps is
deteriorating, and more steps of GMRES smoothing requires more memory to store data in the
computation. Hence, in the following we will use two smoothing steps in Algorithm 2.1.

Table 3: Iteration number of PGMRES based on Algorithm 2.1 for HDG-P2 with different smoothing steps (mi =
m, i = 1, · · · , 4, κ = 100).

HDG-P2

Level 3 4 5
DOFs 148224 591360 2362368

iter (m = 1) 30 27 21
iter (m = 2) 18 15 13
iter (m = 3) 15 13 11

Table 4: Iteration number of PGMRES based on Algorithm 2.1 for HDG-P2 in the cases κ = 400, 500, 600, 700.

HDG-P2

Level 2 3
DOFs 2362368 9443328

iter (κ = 400) 11 11
iter (κ = 500) 16 16
iter (κ = 600) 26 27
iter (κ = 700) 45 50

Table 4 shows the iteration number of PGMRES based on Algorithm 2.1 for the cases κ =
400, 500, 600, 700 with the same coarsest grid h0 ≈ 0.00552 such that κh0/p ≈ 1.1 ∼ 1.9, we can
see that the iteration number is still stable and acceptable.

Example 5.2. We consider a cave model in a unit square domain with center (0, 0). Figure 8 shows
the computational domain and the variation of wave number in different subdomains which are
indicated by different colors.

We denote by κ3 = q2κ2 = q1κ1. The Robin boundary condition (1.3) is set to be g = 0 and
the external force f(x) in (1.2) is a narrow Gaussian point source (cf. [11]) located at the center
(0, 0):

f(x1, x2) =
1

iκ
e−( 4κ

π
)2(x2

1+x2
2).

For this problem we firstly test the performance of our multilevel method for HDG method
with different polynomial order approximations. In Table 5, the iteration number for HDG-P1
and HDG-P2 are based on the coarsest grid condition with κ3h0/p ≈ 2.95. We can see that the
multilevel method is more stable when the higher polynomial order approximation is applied. But
for HDG-P3, the iteration number will be more than 200 with the above coarsest grid condition.
Thus, we utilize the coarsest grid condition κ3h0/p ≈ 1.47 for HDG-P3, then the convergence
of PGMRES becomes stable. Comparing the iteration number for HDG-P1 and HDG-P3, one
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Figure 7: The computational domain of cave problem with different wave number indicated.

Table 5: Iteration number of PGMRES based on Algorithm 2.1 for HDG-P1, HDG-P2 and HDG-P3 discretizations
for the case κ3 = 200, q2 = 2, q1 = 3.

HDG-P1

Level 2 3 4
DOFs 221952 886272 3542016
iter 166 129 54

HDG-P2

Level 2 3 4
DOFs 83520 332928 1329408
iter 53 66 54

HDG-P3

Level 2 3 4
DOFs 197632 788480 3149824
iter 23 26 26

can also observe that when the degrees of freedom are similar on each level, the convergence of
PGMRES is more stable for higher polynomial order approximation. In the following, we focus on
the performance of HDG-P2.

Figure 8: Surface plot of imaginary part of discrete HDG-P2 solutions for κ3 = 600, q2 = 2, q1 = 3 (left) and
κ3 = 600, q2 = 2, q1 = 10 (right) on the grid with mesh condition κ3h/p ≈ 0.4.

Figure 8 displays the surface plot of imaginary part of discrete HDG-P2 solutions uh for κ3 = 600
with q2 = 2, q1 = 3 and q1 = 10 on the grid with mesh condition κ3h/p ≈ 0.4. The iteration number
of PGMRES based on Algorithm 2.1 for different κ3, q2 and q1 are listed in Table 6. The larger jump
of wave numbers between different subdomain will deteriorate the convergence of the algorithm.
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For instance, the iteration number for the case q1 = 10 are much more than that for q1 = 3. But
for fixed κ3, q2 and q1, the iteration number are robust on different levels.

Table 6: Iteration number of PGMRES based on Algorithm 2.1 for HDG-P2 discretizations for the cases κ3 = 400
(q2 = 2, q1 = 3, q1 = 10) and κ3 = 600 (q2 = 2, q1 = 3, q1 = 10).

κ = 400

Level 2 3
DOFs 2362368 9443328

iter (q2 = 2, q1 = 3) 14 14
iter (q2 = 2, q1 = 10) 28 27

κ = 600

Level 2 3
DOFs 2362368 9443328

iter (q2 = 2, q1 = 3) 24 26
iter (q2 = 2, q1 = 10) 45 46
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