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1. Introduction

The numerical Cherenkov instability [1] is the most serious numerical insta-
bility affecting multidimensional particle-in-cell (PIC) simulations of relativistic
particle beams and streaming plasmas [2, 3, 4]. It arises from coupling between
numerically distorted electromagnetic modes and spurious beam modes, the lat-
ter due to the mismatch between the Lagrangian treatment of particles and the
Eulerian treatment of fields [5].

In recent papers we derived and solved electromagnetic dispersion relations
for the numerical Cherenkov instability for both finite difference time-domain
(FDTD) [6] and pseudo-spectral time-domain (PSTD) [7, 8] algorithms and suc-
cessfully compared results with those of the Warp simulation code [9]. From the
FDTD analysis we developed approximate analytical growth rate expressions
for the numerical Cherenkov instability and from them explained the previously
observed “magic time-steps” [2, 4] at which instability growth rates decreased
significantly. Our PSTD analysis, focused on Haber’s Pseudo-Spectral Analyt-
ical Time-Domain (PSATD) algorithm [10, 11], provided several methods for
suppressing the numerical Cherenkov instability. This was accomplished by a
combination of digital filtering at large wave-numbers and improved numerical
balancing of transverse electric and magnetic fields at smaller wave numbers.
Doing either or both is, of course, mechanically straightforward for PSTD algo-
rithms, because the currents and fields are known in Fourier space and, therefore,
can be rescaled easily by the desired k-dependent factors.

In this brief paper we demonstrate that the same can be done economically
and with acceptable accuracy for FDTD algorithms without resorting to Fourier
transforms. The stabilization process is described in Sec. 2, numerical solutions
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presented in Sec. 3, and sample simulation results given in Sec. 4. Sec. 5
summarizes the paper and suggests further investigations.

2. Stabilization procedure

Ref. [6] derives the FDTD dispersion relation for multidimensional PIC
codes employing the Esirkepov current-conserving algorithm [12]. In the high
energy limit it can be written as
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[
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with coefficients C0, C1, C2 defined in Eqs. (29) - (31) of [6]. Eq. (1) involves
sums over numerical aliases, k′z = kz + mz 2π/∆z , for wave numbers aligned
with the direction, z, of beam propagation. In the limit of vanishingly small
time-steps and cell-sizes, Eq. (1) simplifies to C0 = n, as expected. Thus,
all beam resonances in Eq. (1) are numerical artifacts, even mz = 0. Their
interaction with the light modes represented by C0 gives rise to the numerical
Cherenkov instability. Almost always, the mz = 0, −1 modes dominate. As
noted in the Introduction, instabilities are fastest growing at resonances, which
typically occur at large wave numbers (see Figs. 2 and 6 of [6]), where they can
be eliminated by digital filtering of the sort described in [2].

The non-resonant form of the numerical Cherenkov instability, although
slower growing, is more troublesome, because it often occurs at smaller wave
numbers where physical phenomena of interest also occur. We found when ana-
lyzing PSATD algorithms that multiplying the fields as seen by the particles at
small wave-numbers by k-dependent factors differing from unity by only a few
percent was sufficient to cancel the numerical mismatch in C2 between trans-
verse electric and magnetic fields and, thereby, nearly eliminate the numerical
Cherenkov instability [8]. In principle, the same can be done for FDTD PIC
codes. For instance, choosing the multiplier for Ex to equal
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causes C2 for mz = 0 to vanish at ω = kz. Various quantities in Eq. (2) are
defined in [6]. Inserting those definitions into Eq. (2) yields
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for the Galerkin interpolation scheme in [6],
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for the Uniform interpolation scheme, and
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for a “momentum-conserving” interpolation scheme in which fields are averaged
from the usual Yee staggered mesh [13] to a non-staggered mesh before inter-
polation to the particles.

To apply the multipliers without resorting to Fourier transforms, they are
approximated by ratios of fourth-order polynomials in sin2 (kz∆z/2), i.e., by
rational interpolation functions [14]. The variable sin2 (kz∆z/2) is chosen for
its simple (1, -2, 1) stencil in z, and fourth-order is chosen as a reasonable
compromise between accuracy and economy. The nine interpolation points from
which the polynomial coefficients are determined are spaced uniformly between
0 and 1 in sin2 (kz∆z/2) . Better choices for the interpolation points may
exist. As in the earlier papers, Mathematica [15] is used to solve the dispersion
relation; its RationalInterpolation function conveniently provides the desired
polynomial coefficients.1 Fig. 1 displays ΨE , the numerator polynomial, ΨB ,
the denominator polynomial, and the ratio of the two, the rational interpolation
function for, in this case, Eq. 4 with ∆t/∆z = 0.9 and βz = 1/8 (i.e., with the
Cole-Karkkainen field-solver [17, 18, 19]). The rational interpolation function
is accurate to 10−6 except for the largest values of kz∆z shown in the figure,
where the accuracy still is better than 10−5.

The numerator, ΨE , of the rational interpolation function can be applied to
Ex before interpolation to the particles by repeated applications of the (1, -2, 1)
stencil, and the denominator,ΨB , by repeated application of its inverse, in other
words, by tri-diagonal matrix inversion. However, because some digital filtering
is needed anyway, it is simplier to apply only the numerator polynomial to Ex,
and the denominator polynomial to By and Ez, in effect using the denominator
as a digital filter. (In three dimensiions ΨE is applied to both transverse E -
fields, and ΨB to all other fields.) This approach is implemented in WARP.

3. Numerical solutions

This section presents solutions of the complete FDTD-Esirkepov linear dis-
persion relation, Eq. (11) of [6] with interpolation function SEx multiplied by
ΨE , and SBy and SEz multiplied by ΨB . Digital filtering is as in Eq. (37) of
[6] but with the exponent “16” replaced by “4”,
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1Software to calculate these coefficients is available in Computable Document Format [16]
at http://hifweb.lbl.gov/public/BLAST/Godfrey/.

3

http://hifweb.lbl.gov/public/BLAST/Godfrey/


equivalent to two passes each of a bilinear filter and a compensation filter [2].
Thus, much less digital filtering is applied. Cubic interpolation is employed
on a two-dimension, rectangular, periodic, 128x128 mesh with cell size 0.3868.
Linear interpolation also was tried but did not produce uniformly good stability
results.

Maximum numerical instability growth rates for a beam of energy γ = 130
are shown as a function of v∆t/∆z in Fig. 2. (Note that the determination
of ΨE and ΨB breaks down at 0.756 < v∆t/∆z < 0.764, and this narrow
region has been excised from the Figs. 2 and 3.) Also shown are growth rates
obtained from WARP simulations; agreement is good. These growth rates are
much smaller than those obtained without the rational interpolation factors
but with otherwise identical parameters, given by the curves labeled “Galerkin-
CK” and “Uniform-CK” in Fig. 16 of [7]. In fact, the growth rates in Fig. 2
are comparable to those labeled “PSATD (c)” in Fig. 16 of [7], which is not
surprising: Both are based on zeroing C2 at ω = kz. Although not shown
here, the dispersion relation also has been solved for variants of the Fig. 2
parameters with (1) no digital filtering (apart from ΨB), which roughly doubles
growth rates at large v∆t/∆z; (2) ΨE/ΨB applied to Ex only, which roughly
triples growth rates at large v∆t/∆z; and (c) not employing the compensation
filter, which moderately reduces growth rates, especially at large v∆t/∆z. Of
course, physical results at small wave numbers also may be filtered modestly in
this last case [2].

Because the scaling procedure described in this paper is tuned for infinite
γ, it works less well at only modestly relativistic beams, as illustrated in Fig. 3
for γ = 3. Based on this and other computations, peak growth rates appear to
scale here very roughly as γ−1/2. Tuning the procedure for moderate γ is more
difficult, because the dispersion relation is more complicated. Nonetheless, the
numerical instability growth rates depicted in Fig. 3 probably are acceptable for
most purposes. At still smaller beam energies, the well known mz = −1 quasi-
one-dimensional, electrostatic numerical instability [20, 21] dominates. It can be
suppressed by using any field interpolation algorithm that offsets Ez by 4z/2
relative to the charge density % (or W in the Esirkepov current algorithm) and
interpolates it with a spline one order lower in z relative to % or to W [22, 23],
such as the Galerkin algorithm.

4. Application to laser plasma acceleration simulations

In a laser plasma accelerator (LPA), a laser pulse is propagated through a
plasma, creating a wake of very strong electric fields of alternating polarity [24].
An electron beam injected with the appropriate phase thus can be accelerated to
high energy in a distance much shorter than those for conventional acceleration
techniques [25]. As a verification that the theory developed in this paper applies
to the modeling of LPAs, series of three dimensional simulations of a 100 MeV
class LPA stage were performed, focusing on the plasma wake formation. The
velocity of the wake in the plasma corresponds to γ ' 13.2, and the simulations
were performed in a boosted frame of γf = 13. The LPA simulations with
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parameters leading to Figs. 15 and 16 in [6] were repeated using the procedure
discussed in this paper, providing results such as those in Fig. 4. (Note that
both these and the simulation sweeps in [6] used the digital filter with one pass
each of a bilinear filter and a compensation filter, equivalent to the square root
of the expression in Eq. 6, rather than the expression in Eq. (37) of [6].) Energy
conservation was excellent when the rational interpolation multipliers were used.

Additionally, three dimensional γ = 13 LPA simulations of the sort described
in [26] were performed to validate the stabilization procedure. Fig. 5 records
the accelerated electron beam RMS radius. Six simulations used ∆t/∆z = 0.99;
those employing the rational interpolation multipliers behaved as desired, while
those that did not produced meaningless results due to the numerical Cherenkov
instability. An almost instability-free uniform interpolation simulation at the
v∆t/∆z=0.5 “magic time step” is provided for comparison. All four stable sim-
ulations provided essentially identical results, including the evolution of beam
energy (not shown), emittance (not shown), and radius.

5. Conclusion

This paper presents a straightforward approach for greatly reducing numer-
ical Cherenkov instability growth rates in FDTD-Esirkepov PIC simulations of
relativistic beams and streaming plasmas. Moreover, sample simulations indi-
cate that this approach is economical, requires minimal additional digital fil-
tering, and apparently has no adverse effect on physical results at wavelengths
long compare to the simulation axial cell size. Although derived for highly rel-
ativistic flows, it works reasonably well down to γ of order 3, below which the
numerical Cherenkov instability ceases to be the dominant numerical effect.

While this approach seems quite promising, possibly even better procedures
may be possible, including some adaptable from approaches already demon-
strated for PSATD PIC algorithms [7, 8]. We hope to explore such alternatives
in the near future. We also anticipate generalizing these procedures to FDTD
simulations not employing the Esirkepov algorithm, and to a wider range of
Maxwell solvers.
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Figure 1: Field multipliers Ψ for Uniform interpolation scheme with ∆t/∆z = 0.9.
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Figure 2: Maximum numerical instability growth rates observed in WARP and calculated
from the numerical dispersion relation for γ = 130.
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Figure 3: Maximum numerical instability growth rates calculated from the numerical disper-
sion relation for γ = 3.
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Figure 4: Field energy relative to stable reference level vs ∆t/∆z from three dimensional
WARP LPA simulations at γ = 13, using Galerkin, uniform, and momentum-conserving field
interpolation with either standard (“Yee”) or Cole-Karkainnen (“CK”) field solvers. The rel-
ative energy is essentially unity for all instances in which the rational interpolation function
(“p-filter”) is applied.
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Figure 5: Accelerated electron beam RMS radius from γ = 13 LPA simulations. Six runs used
α ≡ ∆t/∆z = 0.99; those employing the rational interplation multipliers (“p-filter”) behaved
well, while those that did not produced meaningless results. An almost instability-free uniform
interpolation simulation at the v∆t/∆z=0.5 “magic time step” is provided for comparison.
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