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Abstract

We propose the complex-plane generalization of a powerful algebraic sequence acceleration algorithm, the Method
of Weighted Averages (MWA), to guarantee exponential-cum-algebraic convergence of Fourier and Fourier-Hankel
(F-H) integral transforms. This “complex-plane” MWA, effected via a linear-path detour in the complex plane, results
in rapid, absolute convergence of field/potential solutions in multi-layered environments regardless of the source-
observer geometry and anisotropy/loss of the media present. In this work, we first introduce a new integration path
used to evaluate the field contribution arising from the radiation spectra. Subsequently, we (1) exhibit the foundational
relations behind the complex-plane extension to a general Levin-type sequence convergence accelerator, (2) special-
ize this analysis to one member of the Levin transform family (the MWA), (3) address and circumvent restrictions,
arising for two-dimensional integrals associated with wave dynamics problems, through minimal complex-plane de-
tour restrictions and a novel partition of the integration domain, (4) develop and compare two formulations based on
standard/real-axis MWA variants, and (5) present validation results and convergence characteristics for one of these
two formulations.

Keywords: Sommerfeld integral, Fourier integral, anisotropic media, integral convergence acceleration, Method of
Weighted Averages, multi-layered environment

1. Introduction

In many application areas concerning time-harmonic electromagnetic (EM) fields, one encounters environments
containing media of varying and arbitrary anisotropy1 whose inhomogeneity can be approximated as multi-layered
in nature. Examples include geophysical prospection [1–7], plasma physics [8], antenna design [9, 10], optical field
control [11], microwave remote sensing [12], ground-penetrating radar [13, 14], and microwave circuits [15], among
others. Such applications regularly encounter integrals of the form2

f (r) ∼

+∞∫∫
−∞

f̃ (kx, ky)eikx(x−x′)+iky(y−y′)+ik̃z(z−z′) d kx d ky (1.1)

and/or

f (r) ∼

+∞∫
−∞

f̃ (kρ)H(1)
n (kρ|ρ − ρ′|)eik̃z(z−z′) d kρ (1.2)

∗Corresponding author
Email addresses: sainath.1@osu.edu (Kamalesh Sainath), teixeira@ece.osu.edu (Fernando L. Teixeira),

Burkay.Donderici@Halliburton.com (Burkay Donderici)
1We assume each medium’s anisotropy manifests in diagonalizable constitutive material tensors to ensure completeness of the plane wave basis.

Since all naturally-occurring media possess diagonalizable material tensors, in practical applications this assumption is always true.
2Appendix A summarizes the notation, terminology, and conventions used here.
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which express space-domain field/potential functions as Fourier and Fourier-Hankel (F-H) integral transforms (resp.).
In many practical applications, these integrals must often be rapidly evaluated for a wide range of longitudinal

and transverse source-observer separation geometries r − r′ 6= 0 (e.g. for potential or field profile reconstruction).
However, when using standard integration paths that run on/close to the real axis such as (1) the classic Sommerfeld
Integration Path (SIP) [16] and (2) paths detouring around the branch points, branch cuts, and poles followed by
real-axis integration [17–19], the convergence rate of these integrals is strongly dependent upon the transverse (rt −

r′t) and longitudinal (z − z′) separations. rt − r′t determines the rapidity of the integrand’s oscillation due to the
Fourier and/or Hankel kernels in (1.1)-(1.2), with rising |ρ − ρ′| leading to an integrand that traditionally requires
increasingly finer sampling to limit spatial aliasing and thus leads to undesirably long computation times. Furthermore,
the longitudinal separation z − z′ governs the rate at which the evanescent spectrum’s field contribution decays with
increasing transverse wave number magnitudes3, with rising |z − z′| effecting more rapid decay (and hence faster
convergence) [20]. On the other hand, as |z − z′|→ 0 the convergence rate lessens, with the limiting case z − z′ = 0
yielding integrals of the form

f (r) ∼

+∞∫∫
−∞

f̃ (kx, ky)eikx(x−x′)+iky(y−y′) d kx d ky (1.3)

and

f (r) ∼

+∞∫
−∞

f̃ (kρ)H(1)
n (kρ|ρ − ρ′|) d kρ (1.4)

that lead to divergent results when numerically evaluated, using these standard paths, without convergence accelera-
tion.

See Figure 1 for typical application scenarios wherein these standard paths either succeed or fail to deliver accurate
field results. Observing Figure 1, one immediately realizes that devising an evaluation method for these integrals
exhibiting robustness with respect to all ranges of r − r′ 6= 0 and medium classes (e.g. isotropic, uniaxial, biaxial)
is highly desirable. This robustness criterion inherently excludes fundamentally approximate methods such as image
and asymptotic methods due to their geometry-specific applicability and lack of rigorous error control [16, 17, 21–23].
As a result, to reliably ensure accurate field results for arbitrary environmental medium composition/source-observer
geometry combinations, we choose a direct numerical integration method.

In this vein, one option involves pairing standard integration methods with (real-axis path based) algebraic conver-
gence acceleration techniques such as the standard MWA which, based on published numerical results, successfully
imparts algebraic convergence acceleration even when |z − z′|= 0 [18, 20]. However, it is desirable to (1) guarantee
absolute, exponential convergence in the classical/Riemann sense for any r − r′ 6= 0 separation geometry (in contrast
to only guaranteeing algebraic convergence in the Abel sense when |z − z′|= 0 [20]) and (2) endow error control to
the evanescent-zone field contribution associated with the tail integral, whose relative importance (compared to the
radiation-zone contribution) to the field solution grows as |r − r′| decreases, to ensure that both the radiation-zone
and evanescent-zone contributions are accurately evaluated4. To this end, we propose a novel numerical integra-
tion method, representing a complex-plane generalization of a specific member of the “scalar Levin-type sequence
transform” (SLST) family [24] (i.e. the MWA), that:

1. bends the “extrapolation region”/tail [19] integration path sections to guarantee absolute, exponential conver-
gence of integrals like (1.1)-(1.4),

2. imparts added, robust algebraic convergence acceleration to the tail integrals, which compounds with the expo-
nential convergence acceleration to effect absolute, exponential-cum-algebraic convergence, via use of a linear
path bend combined with our novel, complex-plane generalization of the MWA [18, 20],

3. adjusts the detour bend angles to account for the presence of branch points, branch cuts, and poles (summarily
referred to here as “critical points”), and

4. addresses the added challenges associated with evaluating two-dimensional integral transforms arising as solu-
tions to the wave equation in planar-stratified environments lacking azimuthal symmetry.

3i.e. |kx | and |ky | for Fourier double-integrals, or |kρ | for F-H integrals.
4One cannot rely upon a-posteriori error checking, as was done in [18, 20], for general environment/source-observer scenarios.
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We note that other path deformation techniques, such as the Steepest Descent Path (SDP) and one comprising the
enclosure of the first/fourth quadrants of the kρ plane involving an imaginary-axis integration, have been investigated
and used [16, 25–27]. However, we seek a robust integration method, valid for all r − r′ 6= 0 geometries, that
obviates having to separately account for discrete poles while possessing applicability to multi-layered environments
containing media with arbitrary anisotropy and loss. Thus while our method may result in longer solution times versus
above-mentioned methods, it touts general applicability and minimal necessary book-keeping as its defining virtues.

Furthermore, a robust detour path within the pre-extrapolation region [19] maintaining a near-constant separation
between the path and critical points near/on the real axis would be preferred over more traditional paths used with
the MWA [17, 19]. To address this, the paper’s second contribution entails a trapezoidal integration path paired with
adaptive hp refinement5.

In Section 2 we present and discuss our revision to the radiation-zone integration path6. In Sections 3 and 4
we develop the detoured linear integration path and complex-plane generalization to SLST for efficiently evaluating
the tail sections of (1.1)-(1.4), as well as exhibit and compare two possible candidate formulations to implement the
resulting modified-MWA. These developments are formulated in the context of two-dimensional integrals such as
(1.1) to simultaneously address herein their additional issues versus one-dimensional integrals. However, the formu-
lation applies equally to one-dimensional F-H transforms like (1.2) appearing in field/potential computations within
cylindrically- and (azimuthal-symmetric) planar-stratified environments and, after converting the Fourier-Bessel (F-B)
transform to a F-H transform [16, 28, 29], to F-B transforms as well7. Section 5 presents validation results using one
of the two new formulations. In Section 6 we present a study on the convergence characteristics of our algorithm as
concerning the same formulation used to generate the results in Section 5. Finally, Section 7 contains our concluding
remarks.

In the ensuing discussion, we assume appropriate transformations to the material tensors and source vector have
already been performed to effect a coordinate rotation such that in the resultant (azimuthal-rotated) coordinate frame,
within which all integration is performed, one has x − x′ = y − y′ ≥ 0 8. Discussed in detail at the end of Section 3,
this is done to guarantee absolute convergence and maximize exponential decay of both the kx and ky integrals.

5The adaptive hp refinement integration methodology is the same as in [19], and thus is not discussed further here.
6We present this secondary contribution first for fluidity in the narrative.
7One can accommodate the logarithmic branch-cut, manifest on the -Re[kρ] axis for F-H transforms [16], through a slight perturbation of the

Re[kρ] < 0 half-plane path into the second quadrant.
8More generally, if |x − x′ |= |y − y′ | in the rotated frame the method will work. Of course, rotating such that x − x′ ≤ 0 forces one to alter the kx

plane extrapolation region path such that it now incurs into the Im[kx] < 0 half-plane (and similarly for ky, y − y′).
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Figure 1: Figure 1a depicts a “triaxial” hydrocarbon sensor system [5] of three loop antenna transmitters {MT } and three loop
antenna receivers {MR} traversing a vertical/moderately-inclined logging path bounded by a borehole (dark gold lines). Here, one
typically finds |z − z′| large enough to use standard numerical integration methods, based on real-/near real-axis paths, without
convergence acceleration. On the other hand, Figure 1b shows the same sensor system traversing a horizontal path while Figure
1c exhibits a micro-strip geometry in which the user requests the field distribution at the air-substrate interface. The two latter
geometries exhibit 0 ≤ |z − z′|� 1 and represent scenarios for which these standard methods typically yield divergent results due
to the oscillatory-divergent nature of integrals like (1.3)-(1.4).
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2. Pre-Extrapolation Region Path Revision

First we discuss the parameterization and initial sub-division of the kx plane pre-extrapolation region; discussion
of the ky plane follows identically due to our assuming x− x′ = y− y′ ≥ 0. Applying a parameterization similar to that
in [17, 19], define ±Pk as the points on the Re[kx] axis within which one detours, dx as the maximum height of the
trapezoid-shaped detour, and ±ξ1 as the points on the Re[kx] axis within which one adaptively integrates (see Figure
2).

To compute ±Pk, first define n+ as the magnitude of the real part of the global “effective” refractive index among
all the layers (see [19] on computing n+). One then computes Pk analogously to [17] and sets Pk = loko(n+ +1), where
lo ≥ 1 is a user-defined pre-extrapolation region magnification constant9. Next, define ∆x = |x − x′|= ∆y = |y − y′|,
∆z = |z − z′|, a′, and b′, where 0 < a′ < 1/2 and b′ > 1. Now compute the following pre-extrapolation region
integration path parameters [17, 19]10:

Qk = a′ko(n+ + 1) (2.1)
dx = Ln(b′)/max(T0,∆x) (2.2)

βx = tan−1 dx

Qk
, 0 < βx < π/2 (2.3)

∆ξx = π/max(T0,∆x) (2.4)
ξ1 = (Int (Pk/∆ξx) + 1) ∆ξx (2.5)

where Int(·) converts its argument to an integer via fractional truncation. Now parameterize the pre-extrapolation
region integration path, for Re[kx] > 0, as

kx =


r (cos βx − i sin βx) , 0 < r < |Qk + idx|

r − idx ,Qk < r < Pk − Qk

Pk − Qk − idx + r (cos βx + i sin βx) , 0 < r < |Qk + idx|

(2.6)

∂kx

∂r
=


cos βx − i sin βx , 0 < r < |Qk + idx|

1 ,Qk < r < Pk − Qk

cos βx + i sin βx , 0 < r < |Qk + idx|

(2.7)

for the trapezoidal contour (used to integrate up to kx = Pk) combined with a real-axis path to integrate within the
section Pk ≤ kx ≤ ξ1. An analogous parameterization holds for the Re[kx] < 0 pre-extrapolation region path. Note
that ∂kx/∂r is independent of kx and thus can be computed prior to integration, unlike other commonly used detours11.
This is the trapezoidal path’s second benefit in addition to that mentioned in footnote 9.

Now we splice the regions (0, Pk) and (−Pk, 0) each into P regions, where P is calculated as follows. First define

d′ = abs
(
∂eikx∆x

∂r

∣∣∣∣
r=|Qk+idx |

)
= sin(βx)∆xedx∆x (2.8)

as the largest magnitude assumed by ∂eikx∆x/∂r along the trapezoidal path, c′ as the user-defined maximum allowed
magnitude change of eikx∆x between two sampling points, and T1 and T2 as two user-defined parameters. Subsequently,
define the quantities

∆k1 = min
(
π/(T1max(∆x,∆z)), c′/d′

)
(2.9)

∆k2 = π/(T1max(∆x,∆z)) (2.10)
Nnode,1 = Int (|Qk + idx|/∆k1) + 1 (2.11)
Nnode,2 = Int ((Pk − 2Qk)/∆k2) + 1 (2.12)

9This detour allows magnification of Pk without compromising the detour height near critical points, which represents one of two primary
benefits compared to the half-sine-shaped contour [17, 19].

10T0 > 0 limits the extrapolation region sub-interval length ∆ξx when ∆x � 1 to ensure the extrapolation intervals (see Sections 2-3) are
adequately sampled, thereby limiting spatial aliasing.

11such as e.g. the half-sine-shaped detour [17, 19]

5



which are used to yield Pm=Int(1+Nnode,m/T2) (m=1,2) with the corresponding final result P = 2P1 + P2. Note that
this method of parameterizing the pre-extrapolation region path is empirical in nature and based on the pessimistic
assumption of equidistant sampling [19].
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BC Map

Slab Mode
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Re( )

BP
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Program
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ξ

(a)
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Radiation
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Program
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(b)

Figure 2: Figures 2a and 2b depict the new and old integration kx plane integration paths used in this paper and [19] (resp.).
“Radiation BC Map” and “Program BC Map” refer to the branch cuts associated with the radiation/boundedness condition at
infinity (Im[k̃2

z ] = 0, Re[k̃2
z ] > 0) and the computer program’s square root convention (Im[k̃2

z ] = 0, Re[k̃2
z ] < 0) (resp.). The encircled

“X” symbols represent branch points and the red “X” symbols represent guided mode poles. For K extrapolation intervals used in
the bottom or top method, the red contour represents the integration path connecting the end-points kx = (−ξ1 − K∆ξx, ξ1 + K∆ξx)
or kx = (−ξ1 − t−o K∆ξ−

′

, ξ1 + t+
o K∆ξ+′ ) (resp.); see Sections 2-3 for definitions of ∆ξx, ∆ξ+′

x , ∆ξ−
′

x , t+
o , and t−o .

3. Extrapolation Region Path Revision

The MWA, initially constructed in [15, 30] with further variants developed in [18] and [20], has also demonstrated
the ability to accelerate convergence of infinite-range Fourier double-integrals in high-loss, planar-stratified environ-
ments containing anisotropic media [19]. However, due to the highly oscillatory behavior of the mixed-domain inte-
grand in integrals such as (1.1) arising from the Fourier kernels eikx∆x and eiky∆y when one has large ∆x and ∆y (resp.),
the solution times (in our experience) became inordinately long. Therefore, it would be desirable to also deform the
kx and ky plane “extrapolation” region contours to lend additional exponential decay via these two kernels, thereby
dramatically accelerating convergence of the Fourier tail integrals and guaranteeing their absolute convergence even
in the “worst-case” scenario z − z′ = 0. A cursory analysis reveals an apparent severe drawback, however: one can no
longer employ the MWA, which was derived assuming a real axis integration path [15, 18, 20, 30]. However, choosing
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a linear deformed path retains the MWA’s algebraic convergence acceleration, as we show below12. For this analysis,
take kx (ky) as the inner (outer) integration variable.

We first exhibit the foundational relations needed to implement the complex-plane extension to a general SLST
followed by exhibiting the specific case arising from modeling the tail integral truncation error using the function fam-
ily stipulated in the “Mosig-Michalski Algorithm” (MMA) [18, 24]. Subsequently, we naively compute the optimal
extrapolation region path detour angles without consideration for

1. the presence of critical points in the kx and ky planes and
2. two-dimensional integrals, associated with wave propagation phenomena, imparting a transitory nature to these

critical points in the kx plane (i.e. their locations now depend on the fixed ky value for which the kx integral is
evaluated).

To address the first concern, we pessimistically estimate the locations of critical points and reduce the kx plane depar-
ture angle of the deformed paths to ensure these features are not crossed. To address the latter concern, we (1) adjust
the departure angles of the ky plane integration path and (2) partition the kx − ky integration domain to ensure that the
critical points

1. possess real parts with magnitude decaying as |ky| increases, leading to a bounded pre-extrapolation region, and
2. do not extend into the second/fourth quadrants, as this would require a) tracking their locations and b) adjusting

the kx integration path, both of which would become functions of ky and lead to a non-robust integration path.

For simplicity, the analysis developing the complex-plane SLST generalization assumes isotropic planar layers13. Fix
ky at some (generally complex) value ky0 and assume z− z′ ≥ 0 14; we see then that the inner integral of (1.1) writes as∫ ∞

−∞

f̃ (kx, ky0)eikx∆xeiky0∆yeik̃+
z ∆zdkx (3.1)

where k̃+
z is the up-going mode propagation constant, which for our time convention has positive imaginary part. As-

suming N extrapolation intervals are used [18, 19], the linear path detour used in the kx integration path’s extrapolation
region is parameterized as

kx =

ξ1 + rx (cos γ+ + i sin γ+) , 0 ≤ rx ≤ N∆ξ+′

x ,Re[kx] > 0
−ξ1 + rx (cos γ− − i sin γ−) ,−N∆ξ−

′

x ≤ rx ≤ 0,Re[kx] < 0
(3.2)

∂kx

∂rx
=

cos γ+ + i sin γ+ , 0 ≤ rx ≤ N∆ξ+′

x ,Re[kx] > 0
cos γ− − i sin γ− ,−N∆ξ−

′

x ≤ rx ≤ 0,Re[kx] < 0
(3.3)

where one defines ∆ξ+′

x = ∆ξx/cos γ+, ∆ξ−
′

x = ∆ξx/cos γ−, {γ+, γ−} ≥ 0, and rx as real-valued. ξ1 is assumed large
enough to ensure that we have sufficiently detoured past any critical points near the real axis [20]. Now recall that
plane wave propagation in a homogeneous, unbounded, isotropic medium with wave number k is governed by the
dispersion relation (k̃+

z )2 = (k̃−z )2 = (k′ + ik′′)2 − k2
x − k2

y0 [31]. For large |kx| this relation becomes15

k̃+
z → i

ξ1 + rx (cos γ+ + i sin γ+) ,Re[kx] > 0
ξ1 − rx (cos γ− − i sin γ−) ,Re[kx] < 0

(3.4)

Next, assuming that (asymptotically) f̃ (kx, ky0) → kq
x
∑∞

m=0 ãm(ky0)φ̃m(kx) [18, 24], one can substitute this series ex-
pression into the extrapolation region section of (3.1) to obtain∫

ext
kq

x

∞∑
m=0

ãmφ̃m(kx)eikx∆xeiky0∆yeik̃+
z ∆zdkx (3.5)

12The MWA is retained for robustness in field solution acceleration; the mathematical and environmental constraints present typically prevent
one from integrating along the ideal Constant Phase Path, as discussed below.

13We justify this assumption based on previous analysis and results [19].
14In Sections 5-6 we demonstrate that the linear detour assures rapid convergence even in the regime 0 ≤ |z − z′ |� 1.
15In arriving at (3.4), the large-|kx | form of the dispersion relation, the proper square root sign is taken to assure exponential decay of the Fourier

kernel eik̃+
z ∆z in accordance with the radiation condition.
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where “ext” denotes the kx plane extrapolation region integration path section and the {φ̃m} comprise a family of
functions used to asymptotically model f̃ (kx, ky0) and the truncation error (discussed below) [24]. Setting t+o = cos γ++

i sin γ+, t−o = cos γ− − i sin γ−, l+ = t+o eiky0∆yeξ1(i∆x−∆z), and l− = t−o eiky0∆ye−ξ1(i∆x+∆z), (3.5) becomes the union of (3.6)
and (3.7):

I+
ext = l+

∞∑
m=0

∫ ∞

0
ãmφ̃m(ξ1 + rxt+o )(ξ1 + rxt+o )qerxt+o (i∆x−∆z)drx (3.6)

I−ext = l−
∞∑

m=0

∫ 0

−∞

ãmφ̃m(−ξ1 + rxt−o )(−ξ1 + rxt−o )qerxt−o (i∆x+∆z)drx (3.7)

with the respective truncation error integrals of 3.6-3.7 manifesting as

I+
tr = l+

∞∑
m=0

∫ ∞

N∆ξ+′
x

ãmφ̃m(ξ1 + rxt+o )(ξ1 + rxt+o )qerxt+o (i∆x−∆z)drx (3.8)

I−tr = l−
∞∑

m=0

∫ −N∆ξ−
′

x

−∞

ãmφ̃m(−ξ1 + rxt−o )(−ξ1 + rxt−o )qerxt−o (i∆x+∆z)drx (3.9)

Performing a change of variables on (3.8)-(3.9) subsequently yields the following relations

I+
tr = l+

∞∑
m=0

∫ ∞

0
ãmφ̃m(ξ1 + (s + N∆ξ+′

x )t+o )(ξ1 + (s + N∆ξ+′

x )t+o )qe(s+N∆ξ+′

x )t+o (i∆x−∆z)ds (3.10)

I−tr = l−
∞∑

m=0

∫ ∞

0
ãmφ̃m(−ξ1 − (s + N∆ξ−

′

x )t−o )(−ξ1 − (s + N∆ξ−
′

x )t−o )qe−(s+N∆ξ−
′

x )t−o (i∆x+∆z)ds (3.11)

Next, one evaluates (3.10)-(3.11) for M + 1 different values of N (e.g. N = 1, 2, ...,M + 1), truncates these M + 1
relations after the m = (M − 1) error series term (i.e. retain the first M series terms), defines the mth truncation error
series coefficient pair as {c̃+

m, c̃
−
m} (e.g. see (3.12)-(3.13) below), and solves the corresponding (M + 1)-order system to

estimate I+
ext and I−ext. This procedure represents the complex-plane SLST generalization, applicable to the sequence

of M + 1 successive “cumulative tail integral” estimates [19], to accelerate evaluation of I+
ext and I−ext.

Let us now examine the specific case of modeling f̃ (kx, ky0) using the family of (N,m)-parameterized functions
φ̃m = φ̃+

m(N, s) = (ξ1 + (s + N∆ξ+′

x )t+o )−m for Re[kx] > 0 and φ̃m = φ̃−m(N, s) = (−ξ1 − (s + N∆ξ−
′

x )t−o )−m for Re[kx] < 0.
Performing Maclaurin expansions of the {φ̃+

m−q} and {φ̃−m−q}, retaining only their respective zeroth-order expansion
terms, setting ω+

N = exp(−N∆ξ+′

x (cos γ+∆x + sin γ+∆z)) and ω−N = exp(−N∆ξ−
′

x (cos γ−∆x + sin γ−∆z)), and defining

ω+′

N = ω+
N φ̃

+
−q(N, 0), c̃+

m ∼ l+
∫ ∞

0
ãmest+o (i∆x−∆z)eiN∆ξ+′

x (cos γ+∆x−sin γ+∆z)ds (3.12)

ω−
′

N = ω−N φ̃
−
−q(N, 0), c̃−m ∼ l−

∫ ∞

0
ãme−st−o (i∆x+∆z)e−iN∆ξ−

′

x (cos γ−∆x−sin γ−∆z)ds (3.13)

yields a pair of expressions capturing the dominant behavior of the truncation error I+
tr ∪ I−tr :

I+
tr ∼ ω

+′

N

∞∑
m=0

c̃+
mφ̃

+
m(N, 0) (3.14)

I−tr ∼ ω
−′

N

∞∑
m=0

c̃−mφ̃
−
m(N, 0) (3.15)

which comprises the complex-path generalization, as concerning infinite-range Fourier integrals, to the error expres-
sion developed in Section 2 of [18]. The corresponding truncation error expressions associated with F-H transforms
like (1.2) follow in analogous fashion.
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With the foundational expressions available, we now seek to maximize exponential convergence acceleration
of (3.5) through a suitable choice of the detour departure angles γ+ and γ−. Differentiating the exponent expressions
(cos γ+∆x + sin γ+∆z) and (cos γ−∆x + sin γ−∆z) with respect to γ+ and γ− (resp.) and setting the resulting expressions
equal to zero leads us to initially (naively) choose γ+ = γ− = tan−1 (∆x/∆z)16, which (asymptotically) corresponds
to the path of most rapid exponential decay17 or (equivalently) the Constant Phase Path (CPP). This detour angle
choice can be likened to a compromise between the so-called “z-transmission representation” and “radial transmission
representation” [26] of the space-domain field, which were discussed therein in the context of F-H and F-B transforms.
Identical expressions hold for the ky plane detour departure angles α+ and α−. Next we consider the detour constraints
imposed by these two phenomena.

To this end, first define the branch point as k2
a = k2 − k2

y0 and temporarily assume that the ky path was chosen
so that kx plane critical points neither manifest in the second/fourth quadrants nor migrate towards Re[kx]= ±∞
with increasing |ky|. Recalling the effective refractive indices {

√
εpmµpn } (m, n = 1, 2, 3) for layer p18 and how we

subsequently computed ξ1 [19], set γm,n,p equal to either (1) the angle between ξ1 and the pth layer’s (m, n)th “effective
wave number”19 km,n,p = ko

√
εpmµpn, if Re[km,n,p] ≥ ξ1, or (2) π/2 if 0 ≤ Re[km,n,p] < ξ1. Then, γ+ is updated as

γ+ = min(γ+, {γm,n,p}). No critical points are located in the second/fourth quadrants by assuming (for simplicity)
the absence of “double-negative”/meta-material and active/gain media. Therefore, we do not have to constrain γ−.
However, these calculations can be readily adjusted to appropriately constrain both γ+ and γ− if such media are
present so that our assuming their absence represents a trivial constraint in our methodology.

Now we justify the assumptions above about the ky path, and constrain it to avoid the two issues stated earlier
regarding two-dimensional integral transforms arising as the solution to wave-dynamics problems in planar-stratified
environments lacking azimuthal symmetry. To this end, for some arbitrary ky value along the ky plane integration path
first expand the branch point k2

a as20

k2
a =

[
(k
′2 − k

′′2) − (k
′2
y − k

′′2
y )

]
+ 2i

[
k′k′′ − k′yk′′y

]
(3.16)

and recall that the radiation branch cut is jointly defined by the conditions Im[k̃2
z ] = 0 and Re[k̃2

z ] > 0 [16]. To ensure
that critical points in the first (third) quadrant of the kx plane do not migrate towards Re[kx]=+∞ (Re[kx]=−∞) for
large |ry|

21, one must ensure that asymptotically Re[k2
a] → −∞ as |ry|→ ∞. Observing the real part of (3.16), we see

that one must constrain α− and α+ to the interval 0 ≤ {α−, α+} ≤ π/4. Furthermore, to prevent critical points from
migrating into the second/fourth kx plane quadrants, we require that Im[k2

a] ≥ 0 as |ry|→ ∞. Observing the imaginary
part of (3.16) and noting in the region {k′y > 0 ∪ k′′y > 0} that k′yk′′y > 0, a cursory analysis suggests that one cannot
safely choose a non-zero value of α+ without risking this migration, which would force one to dynamically re-define
the kx integral’s pre-extrapolation region path, now a function of ky, to ensure that one (1) encloses all the quadrant one
critical points that migrated into quadrant four while (2) avoiding the encirclement of quadrant three critical points
that migrated into quadrant two.

As a result, it appears that one must set the additional, more restrictive constraint α+ = min(0, π/4) = 0, which in
theory may lead to an outer integral exhibiting monotonic-divergent behavior when 0 ≤ |z − z′|� 1 [20]. However,
this limitation can be overcome via clever partition of the two-dimensional integration domain; see Figure 3, which
summarizes the proposed partition. Integrating first over Regions I, IIa, and IIb in Figure 3 followed by integrating
in Region III, which encompasses the intersection of the kx and ky plane extrapolation regions, renders the Region III
integration’s result immune to the migration of critical points into the second/fourth quadrants. This is because one
had already stipulated a domain partitioning and completed integration over Regions I, IIa, and IIb.

We conclude that so long as one conforms to the restrictions 0 ≤ {α−, α+} ≤ π/4 and γ+ = min(tan−1 (∆x/∆z) ,
{γm,n,p}), one can detour in all four spectral “quadrants” {k′x > 0 ∪ k′y > 0}, {k′x < 0 ∪ k′y > 0}, {k′x > 0 ∪ k′y < 0},

16For F-H integrals, use the asymptotic form of the Hankel function and replace ∆x with |ρ − ρ′ | when computing γ+ = γ−.
17For reasons discussed in [32], this path appears similar to, but is not always necessarily, the SDP.
18These are used to compute, but are not the same as, the global effective refractive index n+ mentioned above (see [19]).
19After coercing the wave number’s real part to be positive, if need be.
20One can verify that the kx plane discrete poles will exhibit similar behavior as the branch points [16]. Therefore, our analysis based on

examining the branch point’s behavior sheds analogous insight into the behavior of the poles.
21ry is the ky plane dual of rx, exhibited earlier.
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and {k′x < 0 ∪ k′y < 0} (see Figure 3) through which the stipulated integration path proceeds22. Indeed, our proposed
partition of the kx − ky integration domain ensures that for any r − r′ 6= 0 geometry, the double-integral (1.1) exhibits
absolute-convergent behavior in the classical/Riemann sense and thus, by Fubini’s theorem [33], can be evaluated
using an iterated integral whose solution is independent of the order of integration.

This discussion also brings to light the benefit of our starting assumption in this analysis, made at the end of
Section 1, that |x − x′|= |y − y′|≥ 0: a compromise is reached that ensures exponential-cum-algebraic convergence
of both the kx and ky integrals throughout the integration domain. As an alternative we could have, for example,
performed an azimuthal rotation such that |x − x′|= 0 and |y − y′|= |ρ − ρ′| to maximize convergence acceleration of
the ky integral. However, when 0 ≤ |z − z′|� 1, the kx integral may exhibit monotonic-divergent behavior. In contrast
to oscillatory-divergent behavior [20], the MWA variants (including the generalized version developed herein) cannot
curb monotonic-divergent behavior due to the lack of oscillations that must be present for the MWA to “average out”
the oscillatory-divergent sequence of cumulative tail integral estimates to obtain a final, convergent result.

Note that for integration in Regions IIa, IIb, and III in Figure 3, one performs a separate integration and extrap-
olation of the individual kx and/or ky half-tail integral sections. This is in contrast to the method developed in [19]
wherein we folded the half-tail integrals in the ±Re[kx] half-planes to yield a cosine or sine oscillatory kernel, based
on assuming spectral symmetry in the environment’s plane wave reflection/transmission properties, prior to perform-
ing tail integral extrapolation along the positive Re[kx] axis (and similarly for the ky plane). Our present method,
in bending both half-tail kx paths into the upper-half kx plane, forbids such folding due to the now-absent lack of
reflection symmetry (about the Im[kx] axis) with respect to the two halves of the extrapolation region path. The re-
sulting penalty paid in using the complex-plane MWA manifests in having to use twice the number of weight sets
versus when one can perform half-tail integral folding followed by cumulative tail integral sequence extrapolation,
leading to increased memory requirement and computation time in regards to procuring the MWA weight sets. As
a practical consideration, then, we wish to reduce the number of extrapolation weight sets that must be evaluated23.
To this end, we take two steps to halve this number to the six weight sets originally required when performing fold-
ing followed by extrapolation. First, we set α+ = γ+ and α− = γ−. Second, we make the approximation (for each
field component) that the asymptotic monomial power dependence on both |kx| and |ky| [31, 34] equals the average
monomial power dependencies on kx and ky. For example, if we determine the integrand for one field component has
asymptotic monomial dependencies of O(kq1

x ) and O(kq2
y ), then we take (as both our kx and ky monomial dependence

factors) qo = Nint((q1 + q2)/2), where Nint(·) converts its argument to an integer via rounding. Furthermore, to ensure
stability of the accelerator weight expressions and minimize aliasing effects due to inordinately long extrapolation
region intervals, we neglect the integrand oscillation due to ∆z in the exponential kernels of (3.12)-(3.13)24. This
allows one to update the truncation error estimates {ω+′

N , ω
−′

N } as ω±
′

N = (−1)Nω±
′

N when ∆x > T0 [18].
Beyond the concern of weight computation stability, we also ignore the phase variation associated with ∆z due to

∆z, in general, being ill-defined. Indeed, in (1) an anisotropic homogeneous environment or (2) a stratified environ-
ment containing isotropic and/or anisotropic media, several phenomena typically obfuscate a univocal, clear definition
for the effective longitudinal distance traversed by the characteristic plane wave fields when traveling from r′ in layer
M to r in layer L. These are (1) multi-bounce within slab layers, (2) the layer and (for anisotropic media) mode
dependence of the longitudinal propagation constants, (3) interface reflections in layer L causing both up-going and
down-going modal fields (four total modes in general) to contribute to the observed field at r, and (4) inter-mode
coupling at the interfaces. In fact these four considerations, along with the inherently asymptotic nature of the CPP
parameterization and the constraints associated with critical points/two-dimensional integrals addressed above, lead
one in practice to not integrate exactly along the CPP. As a result, one typically finds the integrands of extrapolation-
region integrals still exhibiting undesirable residual oscillation due to the complex exponential factors. While, for
∆x ≥ 0, one still always has a non-zero detour angle for both the kx and ky extrapolation region paths25, these practical

22Due to our assuming x− x′ = y− y′ ≥ 0, it is implicitly understood that in all four “quadrants” Im[kx] ≥ 0 and Im[ky] ≥ 0 (excepting the minor
pre-extrapolation region detour made into quadrant four).

23Nominally, there are twelve weight sets one must pre-compute and store to implement the complex-plane MWA: three field components,
each with differing combinations of (kx, ky) monomial power dependencies, multiplied by up to four distinct extrapolation region detour angles
α+, α−, γ+, and γ−.

24Stability and aliasing considerations also motivated our choice of the break-point spacings ∆ξx, ∆ξ+′

x , and ∆ξ−
′

x .
25Recall from [19] that the pre-extrapolation region serves to detour around those critical points within a certain distance from the real axis.

Therefore, the presence of critical points cannot force γ+ and γ− to equal zero exactly.
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considerations are what demand the inclusion of an algebraic convergence accelerator like the MWA that exactly acts
upon the very types of oscillatory integrals that will typically result. Therefore, while one does not typically realize the
ideal situation of maximized exponential convergence acceleration (the strongest acceleration theoretically available
here outside of the SDP), we largely mitigate this pitfall with the robust algebraic acceleration afforded by the MWA,
which is agnostic to the environment/source-observer scenario (so long as ∆x > 0). Indeed, for an order-N MWA
method used (see below) one realizes a reduction in truncation error between O(k−N

x ) and O(k−2N
x ) [18].

Region III

Region III

Region III

Region III

Region IIb

Region I

Region IIa

Figure 3: Depiction of the proposed integration domain partition scheme to ensure absolute convergence of Fourier double-
integrals such as (1.1) and (1.3). kout and kin represent the outer and inner integration variables (resp.).

4. Revised Accelerator Weight Computation

The MWA, both in its form as the MMA [18, 24] and its more recent variant the new/“revisited” MWA [20],
each offer different, desirable attributes. The latter version offers a straightforward methodology to unambiguously
define arbitrary-order accelerator weight sets and recursively compute higher-order weight sets upon demand. While
we showed previously [19] for the MMA how one can reduce the FLOP26 count involving the cumulative integrals
themselves, the weight computations (1) depended on whether the series of successive extrapolation region sub-
interval integrals exhibited oscillating or monotone behavior [18, 19], and (2) the FLOP count to compute the weight
sets rapidly grows for successive weight sets, placing a practical limit on obtainable accuracy in the weights (and
thus the estimated tail integral) due to roundoff error accumulation in the computed weights. On the other hand, the
computation of the new MWA weight sets is (1) a numerically unstable process rapidly leading to numerical overflow
(when using the form exhibited in [20]) and (2) directly linked to procuring the estimated tail integral [20], which is
the solution to a highly ill-conditioned linear system (shown in Section 4.2), which previously led us to use the MMA
in [19]. Nevertheless, both flavors of MWA offer useful mathematical developments for the weights that are couched
in the framework of SLST, using a family of functions in a series representation to model the spectral portion of the

26Floating Point Operations
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mixed-domain Green’s Function27 and resulting tail integral truncation error. For the MMA, the proposed series [18]

f̃ (kx, ky0) ∼ kq
x

∞∑
m=0

ãm(ky0)
km

x
(4.1)

is intuitive in its form, and we confirm below the validity (and in fact optimality) of using this approximating series by
a straightforward mathematical analysis28. It will be shown that this optimality arises due to the error modeling series
(see (3.14)-(3.15) above and [18]) being entirely consistent with the closed-form expression of the truncation error
both in the absence and (via linear superposition) presence of stratified inhomogeneity. The practical consequence of
this function family’s modeling optimality manifests in minimizing the number of cumulative tail integral estimates
required to accurately estimate I+

ext and I−ext, as demonstrated in Section 6.
In summary, we seek a revised, complex-plane MWA that combines the best aspects of both the MMA [18]

and more recent MWA variant [20], in tandem with incorporating the added exponential convergence acceleration
afforded by bending the extrapolation region integration path, to effect robust and powerful field solution convergence
acceleration. To this end, in this section we (1) analyze and justify using (4.1) as the approximating series for f̃ (kx, ky0)
and (2) exhibit and compare two proposed formulations for implementing the complex-plane generalization of the
MWA, using the new “remainder estimates” {ω+′

N , ω
−′

N } [18] and the asymptotic series expansion (4.1).

4.1. The Optimal Error-Modeling Function Family
Herein we examine the inner spectral (kx) integral for some fixed ky = ky0 in the region Re[kx] > 0. Furthermore,

assume f̃ (kx, ky0) has an asymptotic kx monomial dependence of kq
x [18, 20]. One then has the asymptotic truncation

error

I+
tr = ω+

N I+′

tr = ω+
N

∫ ∞

0

[
ξ1 + (s + N∆ξ+′

x )t+o
]q

est+o (i∆x−∆z)ds (4.2)

which just equals (3.10) with the asymptotic series expansion for f̃ (kx, ky0) replaced by the dominant series term kq
x.

Next note that I+′

tr has a closed-form, convergent solution for Re[t+o (i∆x − ∆z)] < 0; setting ã = ã(N) = φ̃+
0 (N, 0) =

ξ1 + t+o N∆ξ+′

x and χ = −t+o (i∆x − ∆z), one obtains

I+
tr = ω+

N I+′

tr = ω+
N


1/χ , q = 0
(t+o + ãχ)/χ2 , q = 1
(2t+2

o + 2ãt+oχ + ã2χ2)/χ3 , q = 2
(4.3)

and so on for other values of q 29. Examining the asymptotic limit for these three illustrative cases, we find:

lim
|ã|→∞

I+′

tr =


1/χ , q = 0
ã/χ , q = 1
ã2/χ , q = 2
ãq/χ , q ∈ N+

(4.4)

where N+ represents the set of positive natural numbers. Similarly, one expects that the reflected/transmitted field
terms will also have an asymptotic monomial dependence [20]. For example, consider a two-layer, planar-stratified
environment containing isotropic media. The TEz/TMz reflection and transmission coefficients for a plane wave,
incident from half-space number one upon half-space number two, write as [16]

RTM =
ε2,rk̃+

1,z − ε1,rk̃+
2,z

ε2,rk̃+
1,z + ε1,rk̃+

2,z

, RTE =
µ2,rk̃+

1,z − µ1,rk̃+
2,z

µ2,rk̃+
1,z + µ1,rk̃+

2,z

, TTM = 1 + RTM, TTE = 1 + RTE (4.5)

27i.e. the fundamental spectral kernel embedded in the integrands of (1.1)-(1.4).
28When assuming the spectral portion of the integrands in (1.1)-(1.4) asymptotically behave as monomial powers of kx and ky, the new MWA’s

error-modeling functions reduce to this function family too [20].
29For the multi-layered scenario, use (3.10) and invoke superposition of the closed-form results for different monomial powers q − m (m =

0, 1, 2, ...).
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where
(k̃+

m,z)
2 = (k̃−m,z)

2 = k2
oεm,rµm,r − k2

ρ (m = 1, 2), lim
|kρ |→∞

k̃+
z = ikρ (4.6)

Indeed, we see that for large |kρ| the reflection/transmission coefficients have a monomial power dependence O(k0
ρ).

Pulling out the dominant monomial term ãq in (4.3), setting the Nth cumulative remainder estimate as ω+′

N = ω+
N ãq,

and invoking superposition (see footnote 29), one now has ω+
N I+′

tr = ω+′

N
∑q

m=0 b̃+
m/ã

m, which recovers the dominant
contribution to the complex-path extension (3.14) of the error expression derived (using (4.1)) in [18]30. The same
procedure shown above, using instead t−o , ã = φ̃−0 (N, 0) = −ξ1 − t−o N∆ξ−

′

x , and χ = t−o (i∆x + ∆z), can be repeated
for the Re[kx] < 0 tail integral to obtain a dual set of expressions that recover (3.15). Based on this analysis, when
proposing two revised MWA methods we will use the (N,m)-parameterized function families {φ̃+

m(N) = φ̃+
m(N, 0)} and

{φ̃−m(N) = φ̃−m(N, 0)} to model the tail integral truncation error.

4.2. Two Proposed Formulations
For the first formulation we take inspiration from [20]. To this end, for the Re[kx] > 0 tail integral first define I+′

N
and I+′

N+1 as two input cumulative tail integral estimates and the under-determined linear system, with respect to which
the non-truncated tail integral I+

ext is defined, as [20, 24]

I+
ext = I+′

N + ω+′

N

∞∑
m=0

b̃+
m

ã(N)m (4.7)

I+
ext = I+′

N+1 + ω+′

N+1

∞∑
m=0

b̃+
m

ã(N + 1)m (4.8)

whose equations are subsequently truncated after the m = 0 term [20]. This truncation yields a second-order linear
system solved for an improved estimate I+(2)

N of I+
ext that is free of the ã0 term in its truncation error series [18, 20, 24]:

η+(1)
N = −

ω+′

N

ω+′

N+1

, I+(2)
N =

I+′

N + η+(1)
N I+′

N+1

1 + η+(1)
N

= I+
ext + ω+′

N

∑∞
m=1 b̃+

m
[
ã(N + 1)−m − ã(N)−m]

1 + η+(1)
N

(4.9)

Similarly, using M + 1 (M = 1, 2, ...) cumulative tail integral estimates {I+′

1 , I
+′

2 , ..., I
+′

M+1} to eliminate the first M terms
of

∑∞
m=0 b̃+

m/ã
m, one has for the Pth truncated linear equation (P = 1, 2, ...,M + 1) I+(M+1)

1 = I+′

P +ω+′

P
∑M−1

m=0 b̃+
m/ã(P)m.

Subsequently, one procures the weights via solving the associated order-(M +1) linear system for the best I+
ext estimate

(i.e. I+(M+1)
N ), whose solution implicitly contains the expressions for the weights [20]. However, obtaining all desired

weight tier sets by directly solving the associated linear systems (1) is very costly and (2) possibly exacerbates weight
accuracy degradation due to the poor conditioning of these systems (see below). Instead, one can obtain closed-form
solutions to the weight sets using the methodology outlined in [20] as adapted to our choice of (1) error-modeling
functions {ã(N)−m} and (2) truncation error estimates {ω+′

N }. In [20] it was assumed that f̃ (kx, ky0) asymptotically
exhibited a monomial power dependence of the form Ckq

x (C being some constant), with the obvious consequence that
∂n f̃ (kx, ky0)/∂nkx corresponds to a new function asymptotically behaving as ∼ kq−n

x
31. Rearranging the order-(M + 1)

linear system thus yields a similar (but not yet identical) system to equation (22) in [20]:


−1/ω+′

1 1 ã(1)−1 · · · ã(1)−(M−1)

−1/ω+′

2 1 ã(2)−1 · · · ã(2)−(M−1)

...
...

...
...

...
−1/ω+′

M+1 1 ã(M + 1)−1 · · · ã(M + 1)−(M−1)





I+(M+1)
1

b̃+
o

b̃+
1
...

b̃+
M−1


= −



I+′

1 /ω
+′

1
I+′

2 /ω
+′

2
I+′

3 /ω
+′

3
...

I+′

M+1/ω
+′

M+1


(4.10)

Noting that the weight sets in [20] were computed for arbitrary monomial power dependence kq
x, one can cross-

multiply the ãq factors in the {ω+′

p } across the respective rows of (4.10) to obtain an analogous system, where now the

30The coefficients {b̃+
m}, however, are computed exactly; contrast this to the {c̃+

m} of (3.14).
31Examining [16, 34] confirms the asymptotic monomial power dependence of f̃ (kx, ky0).
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{ã(p)(q−n)} factors in the modified form of (4.10) represent (up to a constant) successive s derivatives of (ξ1 + t+o s)q

evaluated at s = 0 32. Having now matched our linear system to [20], the nth weight (n = 1, 2, ...,M + 1) for the
tier-(M + 1), complex-plane generalization of the new MWA writes as [20]

w(M+1)
n = (−1)n+1

(
M

n − 1

)
ã(n)M−1−q/ω+

n (4.11)

with the expression for our best tail integral estimate given as

I+(M+1)
1 =

∑M+1
n=1 w(M+1)

n I+′

n∑M
n=1 w(M+1)

n

(4.12)

The expressions for the {w(M+1)
n } corresponding to Re[kx] < 0 tail integral follows analogously. Furthermore, one

expects that with a different choice of {φ̃m(N, s)}, this derivation can be repeated to develop complex-plane extensions
to other SLST algorithmic members.

From an analytic standpoint, the derivation of the weights for this formulation is complete. However, despite the
analytic form of the new MWA weights shown in (4.11) and [20], in a finite-precision, numerical implementation this
casting leads to arithmetic overflow. This drawback, along with the numerically unstable means to recursively update
the weights to procure higher-order weight sets, can be easily remedied as follows:

1. Starting at some tier-N weight set (e.g. set N = M + 1), multiply all the weights by ω+
N/ã(N)N−2−q. This ensures

that the weights remain bounded for all n and N.
2. To subsequently obtain a tier-(N + 1) weight set from the tier-N set:

(a) Set w(N+1)
N+1 = (−1)N+2/N.

(b) For the remaining N weights, set w(N+1)
n = dn,Nw(N)

n

where

dn,N =
e−∆ξ+′

x (∆x sin γ++∆z cos γ+)

N − n + 1

(
a(N)

a(N + 1)

)N−2−q a(n)
a(N + 1)

(4.13)

The second proposed formulation employs the MMA [18], as extended to facilitate adaptive tail integral evaluation
[19], in conjunction with our complex extension to the truncation error estimates {ω+′

p , ω
−′

p }. The formulae to compute
arbitrary-order weight sets is given in [18], while the method to recursively find higher-order weight sets is exhibited
in [19]. Therefore, the reader is referred to these two references for the elementary details.

Between these two formulations, we opt to implement and show validation results for the second formulation
based on the MMA. This is because of the first formulation’s poor suitability for an adaptive tail integral evaluation
scheme, which in turn is due to increasingly higher-order weight sets being the solutions to increasingly ill-conditioned
linear systems. Even though we now have available the analytically recast, numerically stable, closed-form expres-
sions for the first formulation’s weights and their update scheme (which obviates any potential algorithmic instability
exacerbating computed weight errors), the relative accuracy of the computed weights is still fundamentally capped by
the linear system’s conditioning33. To illustrate the ill-conditioning of the weight computation, we show in Figure 4
below, for four different r− r′ geometries, the two-norm condition number CN [35] of (4.10) as a function of its rank
M′ = M + 1 34:

1. (x − x′, z − z′) = (1, 0)m
2. (x − x′, z − z′) = (1000, 0)m
3. (x − x′, z − z′) = (1, 10)m
4. (x − x′, z − z′) = (1000, 10)m

32One does not have the q-dependent constants in columns three to M + 1 of the matrix in (4.10). However, one can include these constants and
only affect the unneeded coefficients {b̃+

1 , ..., b̃
+
M−1} [35].

33Indeed, as is well-known, for a condition number CN one can expect to lose O(log10[CN]) digits of precision in computing the weights [36].
34We set T0 = 0.25m, q=0, and ξ1 = ∆ξx = cos γ+∆ξ+′

x = π/∆x for all cases in both figures.
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To confirm that the system matrix ill-conditioning is not due to the complex-plane generalization of the new MWA, in
Figure 4a we show the two-norm condition number for γ+ = π/4 while in Figure 4b we show, for the same four r− r′
geometries, the conditioning for γ+ = 0 (i.e. as if we performed the standard, real-axis MWA from [20]).
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Figure 4: Base-10 logarithm of the two-norm system matrix condition number used to compute the new MWA weights, as
specified in (4.11) and [20], for Figures 4a and 4b (resp.). The vertical axis displays the number of digits of precision lost in
the weights, when numerically computing them, due to the conditioning of (4.10). The solid horizontal curve corresponds to
Log10(CN) = 16; weights arising as solutions to a rank-M′ linear system with condition number greater than this are expected to
be just numerical “noise” when computed using IEEE double-precision arithmetic.

One readily observes from Figure 4 that accurate weight computation is unrealistic as M′ increases; in fact, the
situation is downright prohibitive for an adaptive MWA implementation (e.g. [19]). Even for the best-conditioned
geometry (i.e. (x − x′, z − z′) = (1, 0)m), one cannot realistically expect even a single digit of precision in the
weights for M′ equalling or exceeding approximately seven and ten in Figures 4a and 4b (resp.), as can be seen
from the intersection of the corresponding curves in Figures 4a-4b with the solid horizontal curve corresponding to
Log10(CN) = 16. As a result, we choose the second proposed MWA formulation, based on the MMA [18], for
computing validation results in Section 5. Based on our previous work using the standard, real-axis MMA [19] for
environments containing high loss and conductively-uniaxial layers, one can expect its success in again producing
high-precision results. Indeed, the validation results in Section 5 speak to this effect35.

5. Results and Discussion

In this section we exhibit validation results in scenarios involving the modeling of induction sondes for geophysical
prospection of hydrocarbons (i.e. induction well logging [5]). Previously, we demonstrated numerous simulated
resistivity logs pertaining to environments containing a combination of isotropic and reciprocal, electrically uniaxial
media [37] as probed by longitudinally-oriented induction sondes [19]. For those case studies, the adaptive, real-axis
MMA was successfully incorporated into our algorithm to yield high-precision results exhibiting excellent agreement
with data from previous literature [2–4].

Herein, we exhibit a case study involving a near-horizontal tool orientation where the tool axis dip angle α = 89◦,
tool axis strike angle β = 0◦ 36, and source-observer separation Ltool = |r − r′|= 40” = 1.016m, corresponding to

35Due to the intricate, recursively-related nature of the MMA weight set tiers, a straightforward definition and analysis of the conditioning of the
problem related to procuring these weights proves elusive and therefore is not pursued here. Rather, its use herein is strictly based on, and justified
by, its empirically-demonstrated efficacy in [18, 19].

36The tool thus rotates and is confined within the xz plane [7].
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a source-observer depth separation |z − z′|= Ltool cosα ∼ 17.7mm. Consequently, this study serves to validate the
efficacy of our new algorithm and its ability to impart absolute, exponential-cum-algebraic convergence on Fourier
double-integrals like (1.1) even for the traditionally prohibitive regime |z − z′|� 1. Furthermore, to exemplify the
general-purpose nature of our new algorithm in regards to the media present, we generate synthetic resistivity logs
for a two-layer, planar-stratified environment containing reciprocal, electrically biaxial media37. In this scenario,
wherein all four characteristic plane wave modes in the anisotropic layer containing r can (in general) contribute to
the observed field, the definition of an exact “∆z” and thus CPP is ill-defined (see Section 3). Therefore, this set of
results also justifies our retaining the MWA’s robust environment/source-observer geometry convergence acceleration
characteristic, yielding an overall robust and rapid electromagnetic field solution method.

Note that save for Figure 8f, there exists strong agreement across the full logging path in each plot. Even for
Figure 8f, with some discrepancy in the upper half-space D > 0, overall there is strong qualitative agreement and (in
the bottom half-space) quantitative agreement too38.

37For Figures 5-8, the frequency of operation is f =2MHz, the interface is located at zB = 0m, and the resistivity tensor for layer n (with respect
to the standard Earth system) is described in the figure headings by the diagonal matrix Rn = [Rx′ x′ ,Ry′y′ ,Rz′z′ ]=diag[Rx′ x′ ,Ry′y′ ,Rz′z′ ].

38For the figures shown below, the material formation parameter labeling is reversed versus the labeling in the reference paper such that the
material scenario {R1 = [100, 200, 500]Ωm, R2 = [1, 2, 5]Ωm} corresponds to {R1 = [100, 50, 500]Ωm, R2 = [1, 0.5, 5]Ωm} in [1] and vice versa.
Due to the strong agreement between the simulation data produced here and by the reference source after this labeling reversal, we suspect this
apparent data discrepancy is attributed to a simple typographical error on the part of the authors of [1].
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Figure 5: Comparison of simulated magnetic field Hx′ x′ with Figure 4 of [1].
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Figure 6: Comparison of simulated magnetic field Hx′z′ with Figure 4 of [1].
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Figure 7: Comparison of simulated magnetic field Hz′ x′ with Figure 4 of [1].
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Figure 8: Comparison of simulated magnetic field Hz′z′ with Figure 4 of [1].
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6. Convergence Characteristics

To characterize our numerical formulation’s ability to converge towards the field solution, we present two case
studies concerning the z-directed electric field component Ez produced by a z-directed electric dipole radiating at
f =2MHz in free space. The first case comprises a benign scenario in which x − x′ = y − y′ = z − z′ = 1m, while
the second case represents a very challenging scenario wherein x − x′ = 500m and y − y′ = z − z′ = 0m. The
latter scenario’s prohibitive challenges, when using a standard numerical integration method, are that the integrand (1)
oscillates on the order of 500/

√
2 times more rapidly than the integrand in case one39 and (2) exhibits absolutely no

exponential decay due to the annihilation of the exp(ik̃+
z |z − z′|)-type factors. If we were to use a traditional numerical

integration methodology, we emphasize that one would obtain a divergent result.
For each case, we present results related to the Region III field contribution (see Figure 3). Since one cannot obtain

a closed-form solution to this field contribution, reference field values from which one measures relative accuracy
must be appropriately chosen; their computation details are provided in Figure 9 below. As in [17–20], we assume
the integrand is well-behaved in Region III and thus do not perform adaptive interval sub-division. Instead, we set the
kx and ky plane extrapolation region interval lengths as per Section 3 and examine the accuracy versus (1) the number
of extrapolation region intervals employed (B) and (2) the Legendre-Gauss quadrature order used (LGQ) to integrate
each interval40.

Our comments on the relative importance of aliasing and truncation error are analogous to [19]: Up to approxi-
mately B = 3 the truncation error dominates the total relative error, while using more than approximately B = 6 or
7 intervals effects no noticeable decrease in the error for a fixed LGQ. Beyond this point aliasing error dominates
the total relative error, which is evidenced by the error decreasing versus increasing LGQ but remaining flat versus
increasing B. However, we notice the following two remarkable characteristics about the algorithm’s convergence for
case two:

1. The LGQ = 30 curve reaches within 25dB of case one’s LGQ = 30 curve despite representing a scenario
wherein the field solution would ordinarily have diverged using standard numerical integration techniques.

2. Despite this case representing a far more prohibitive scenario (if traditionally evaluated) versus case two pre-
sented in [19], wherein r − r′ = (500, 500, 1)m, at B = 10 the LGQ = 30 curve here levels off at an error
approximately 23dB lower than its case two counterpart in [19].

Note that (akin to, and for the same reasons stated in, [19]) relative errors below -150dB were coerced to -150dB.
Since the pre-extrapolation region formulation in this paper is not radically different from that in [19], we expect

similar convergence characteristics when using the trapezoidal detour (versus those presented in [19]) and thus omit
the Region I convergence study for brevity. Furthermore, the Region IIa/IIb convergence studies are omitted as well
since the field convergence results would be affected by the algorithm’s handling of both the pre-extrapolation and
extrapolation region sections of the kx and ky plane integration paths. Equivalently, presenting information on the
Region I and Region III field convergence characteristics sheds insight into the Region IIa/IIb convergence character-
istics. This is because if the respective algorithms handling the Region I and Region III integrations robustly yield
accurate, rapidly convergent results, one can expect similar behavior for the Region IIa/IIb results.

39Recall the azimuthal coordinate rotation performed such that in the rotated basis x − x′ = y − y′ ≥ 0.
40B intervals are used in both the k′x > 0 and k′x < 0 integration path half-tails; the same applies for the ky path half-tails.
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Figure 9: Convergence towards the solution comprising the Ez contribution from Region III. The reference field values are
computed using LGQ=30 and B = 500 for both figures.

7. Conclusion

In this work, we have presented a novel integration scheme composed of (1) a complex-plane, adaptive/error-
controlling extension to the standard real-axis MMA in conjunction with (2) a more robust pre-extrapolation region
integration path to effect fast, absolute, and exponential-cum-algebraic convergence of Fourier- and F-H-type integral
transforms such as (1.1)-(1.4). Due to combining the detour with the MMA and its robust algebraic convergence
acceleration characteristic, this is indeed the case irrespective of the source-observer geometry and loss/anisotropy
characteristics of the stratified media present. Furthermore, this is accomplished without the added complication
of having to separately account for slab/interface mode contributions whose poles may be crossed when otherwise
deforming to more well-known, rapidly-convergent paths such as the SDP [16, 27], resulting in a numerically robust
and easily-implemented integration methodology.

The algorithm’s ability to accurately simulate the observed fields for classically “worst-case” scenarios 0 ≤ |z −
z′|� 1, and that too in complex, planar-stratified environments containing biaxial-conductive media, has been verified
through numerous validation checks against [1]. Finally, the algorithm’s convergence characteristics in the strongly-
evanescent spectral zone have been explored, analyzed, and shown to be superior compared to an older methodology
exhibited in [19] that was based on an adaptive extension to the real-axis MMA.

We conclude that the present algorithm’s robustness with respect to source-observer geometries and medium types
present, as well as its straight-forward nature and ease of implementation, makes it very useful for the analysis of elec-
tromagnetic wave propagation and scattering in multi-layered environments containing media of arbitrary anisotropy
and loss.
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Appendix A. Appendix: Definitions and Conventions

We state the following regarding notation used in this paper:

1. i is the unit-magnitude imaginary number.
2. The time-harmonic field convention used and suppressed throughout this paper is exp(−iωt), where ω is the

angular frequency at which the source distribution radiates.
3. c is the speed of light in free space.
4. ko = ω/c is the characteristic wave number of free space.
5. r = (x, y, z) denotes the observer location, while rt = (x, y) denotes the transverse observer location with

magnitude ρ =

√
x2 + y2.

6. r′ = (x′, y′, z′) denotes the source location, while r′t = (x′, y′) denotes the transverse source location with

magnitude ρ′ =

√
x′2 + y′2.

7. k = (kx, ky, kz) denotes the wave vector, while kt = (kx, ky) denotes the transverse wave vector with complex

amplitude kρ =

√
k2

x + k2
y . It is implicitly understood that one evaluates

√
k2

x + k2
y such that H(1)

n (kρ|ρ − ρ′|) (see
definition 10 below) corresponds to an exponentially decaying function versus increasing |ρ − ρ′|.

8. The axial wave number component for the nth characteristic mode supported in layer M, k̃M,nz, is coupled to the
transverse wave numbers kx and ky via the nth mode’s dispersion relation.

9. The up-going or down-going mode’s axial wave number component in some isotropic layer is denoted by k̃+
z or

k̃−z (resp.) when the particular layer is not critical to understanding the discussion.
10. H(1)

n (kρ|ρ − ρ′|) is the order-n Hankel function of the first kind, corresponding to an out-going cylindrical wave.
11. Quantities dependent only on one or more spectral variables {kx, ky, kz} are denoted spectral quantities and are

distinguished with an over-tilde (e.g. f̃ (kx, ky, kz)).
12. Quantities dependent on kt, z, and z′ are denoted mixed-domain quantities and have no over-symbol.

13. Numbers expressed as
(
A
B

)
correspond to the binomial coefficients.

14. εm,r and µm,r represent the relative electric permittivity (including conductive and polarization losses) and rela-
tive magnetic permeability of isotropic layer m.

15. Re[kx] and Im[kx] are used interchangeably with k′x and k
′′

x (resp.) to denote the real and imaginary part of kx

(resp.). Analogous definitions apply for ky and other complex-valued quantities.
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