
Finite-Difference Schemes for Anisotropic Diffusion

Bram van Es ∗†, Barry Koren ‡and Hugo J. de Blank †

Abstract

In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large

magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effec-

tively be aligned with the magnetic field lines. This alignment leads to different values for the respective

diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that

heat diffusion coefficients can be up to 1012 times larger in the parallel direction than in the perpendicular

direction. This anisotropy puts stringent requirements on the numerical methods used to approximate

the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be pol-

luted by the numerical error in approximating the parallel diffusion. Currently the common approach

is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the direc-

tionality of the diffusive coefficients. This approach runs into problems at x-points and at points where

there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider

numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both

to improve existing methods and to help open the possibility of applying regular non-aligned grids. To

investigate this, in this paper several discretisation schemes are developed and applied to the anisotropic

heat diffusion equation on a non-aligned grid.

Keywords: anisotropic diffusion, finite differences

1 Introduction

Anisotropic diffusion is a common physical phenomenon and describes processes where the diffusion of some
scalar quantity is direction dependent. Anisotropic diffusive processes are for instance transport in porous
media, large-scale turbulence where turbulence scales are anisotropic in size, and of interest to us: heat
conduction and momentum dissipation in fusion plasmas.
In tokamak fusion plasmas the viscosity and heat conduction coefficient parallel to the magnetic field may
be in the order of 106 and 1012 times larger, respectively, than perpendicular conduction coefficients. This
is caused by the fact that the heat conductivity parallel and perpendicular to the magnetic field lines are
determined by different physical processes; along the field lines particles can travel relatively large distances
without collision whereas perpendicular to the field lines the mean free path is in the order of the gyroradius,
see e.g. Hölzl [37].
Numerically, high anisotropy may lead to the situation that errors in the direction of the largest diffusion
coefficient may significantly influence the diffusion in the perpendicular direction. This necessitates a high-
order approximation in the direction of the largest coefficient value (see e.g. Sovinec et al. [65], Meier et
al. [54]). Given the high level of anisotropy in tokamak plasmas, a numerical approximation may introduce
large perpendicular errors if the magnetic field direction is strongly misaligned with the grid. Problems that
may arise with highly anisotropic diffusion problems on non-aligned meshes are in general:
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• significant numerical diffusion perpendicular to the magnetic field lines due to grid misalignment, see
e.g. Umansky et al. [66],

• non-positivity near high gradients, see e.g. Sharma et al. [63],

• mesh locking, stagnation of convergence dependent on anisotropy, see e.g. Babuška and Suri [9],

• convergence loss in case of variable diffusion tensor, see e.g. Günter et al. [31].

It is possible to use a field-aligned coordinate system. However this cannot be maintained throughout the
plasma; problems arise at x-points and in regions of highly fluctuating magnetic field directions (for instance
in case of edge turbulence). To confidently perform simulations of phenomena that rely heavily on the reso-
lution of the perpendicular temperature gradient we must apply a scheme that maintains sufficient accuracy
in case of varying anisotropy and misalignment.

The bulk of the present methods are designed with discontinuous diffusion tensors in mind, and often
on general and distorted non-uniform grids. We give an (inexhaustive) overview of methods used today, for
details the reader is referred to the specific papers.

We start with the Multi-Point Flux Approximation (MPFA), a cell-centered finite volume method com-
monly used for approximating anisotropic diffusion with discontinuous tensors on distorted meshes, see e.g.
Aavatsmarket et al. [3–6], and Edwards and Rogers [25]. The MPFA uses cell-centered unknowns and con-
nects the volumes using shared subcells with a local low-order interpolation of the primary unknowns. The
method is robust in terms of diffusion tensor discontinuity as it is locally conservative, but the resulting
diffusion operator is often non-symmetric and formal accuracy can not be maintained for higher levels of
anisotropy. The MPFA method comes in various flavors, depending on how the fluxes are approximated,
for instance the original MPFA-O and MPFA-U methods by Aavatsmark et al [3, 4] and more recent by
Aavatsmark et al. [2] and Agelas et al. [7] respectively, the symmetric MPFA-L and MPFA-G methods.
Potier [43] devised a cell-centered finite-volume method where the gradients are solved on each vertex by im-
posing flux continuity conditions, similar to the MPFA approach. Eymard et al. [26] devised a cell-centered
finite-volume scheme using a special discrete gradient operator. Downside is the use of a parameter de-
pendent on the lowest eigenvalue of the diffusion tensor, a parameter which is not anisotropy-independent.
Maire and Breil [12, 52] apply a MPFA-like finite-volume method with cell-centered unknowns and a local
variational formulation to obtain the fluxes in their Cell-Centered Lagrangian Diffusion (CCLAD) approach,
with the requirement that temperature and sub-face normal fluxes are continuous. Maire and Breil [53]
also constructed a CCLAD method where the fluxes are constructed using finite differences. Jacq et al. [40]
expanded the method to three dimensions.

Le Potier and Ong [45] and Ong [59] devised a cell-centered method which makes use of a dual grid. The
dual grid unknowns are chosen to be linear combinations of cell unknowns. This so-called Finite Element
Cell-Centered (FECC) method uses less unknowns per cell compared to other dual grid methods which apply
both cell-centered unknowns and cell-face or vertex unknowns. Another difference is the use of a third grid
which is a sub-grid of the dual grid. The formal convergence of the FECC method seems to be maintained
for discontinuous diffusion tensors with large values for the anisotropy [45].

Shashkov and Steinberg [64] constructed the Support Operator Method (SOM), also known as Mimetic
Finite Difference (MFD) methods. Hyman et al. [38, 39] and Brezzi et al. [13, 14] apply and categorize the
MFD methods. The MFD methods are mimetic to the extent that they preserve the self-adjointness of the
divergence and the flux operator. Key to the MFD methods is the use of a dual grid, where flux values and
temperature values are placed on separate grid points, and the application of a variational formulation to
find the flux values, such that the self-adjointness between the discrete divergence operator and the discrete
gradient operator is guaranteed. Downside of the original MFD schemes is the use of non-local operators.
Formal convergence is robust for high levels of anisotropy, grid non-uniformity and discontinous diffusion
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tensors. Further, the diffusion operator is symmetric positive definite. Günter et al. [31] apply the MFD
method to fusion plasma relevant test cases and maintain the order of accuracy for non-aligned (regular,
rectangular) meshes. Günter et al. [30] apply the support-operator approach from Hyman et al. [39] to a
finite-element method. The method is adapted to have a local flux description by Morel et al. [56], which
requires both cell-centered and face-centered unknowns. The MFD method is finally made local and cell-
centered by Lipnikov et al. [50] and Lipnikov and Shashkov [48].

Hermeline [33, 34] uses a dual grid, solving the diffusion equation on each grid where the temperature
and the diffusion tensor values are defined in the same nodes. This is termed the Discrete Duality Finite-
Volume (DDFV) method. The DDFV method requires the solution of the diffusion equation on two meshes
and as such requires more unknowns. The resulting matrices are positive definite. Formal convergence for
highly anisotropic problems (with the ratio between parallel and perpendicular diffusion coefficient 1012) is
close to second order for higher resolutions but not anisotropy-independent for coarser grids, see Potier and
Ong [45]. The FECC method bares resemblance to the DDFV method where the former uses a third subgrid
and cell-centered unknowns.

Other methods involving the use of dual grids are the Hybrid Finite Volume method (HFV) and the Mixed
Finite Volume (MFV) method, see Eymard et al [27] and Droniou and Eymard [23] respectively. Droniou et
al. [24] formally proved the similarity of the MFD scheme, the HFV scheme and the MFV scheme. The MFD,
MFV, HFV and the DDFV methods can be placed within the concept of Compatible Discrete Operators
(CDO) where the mathematical operators are treated exactly and the constitutive relations are approxi-
mated. Recent examples are the mimetic spectral element method developed by Kreeft et al. [42], applied
to approximate Darcy flow with arbitrary order by Rebelo et al. [62]. Another example of a CDO method
applied to anistropic diffusion, similar to the work by Kreeft et al. is given by Bonelle and Ern [11]. Another
approach is developed by Hirani [35], Desbrun et al [1] and is called Discrete Exterior Calculus, it is applied
to scalar Darcy flow by Hirani et al [36].

Discontinuous Galerkin (DG) methods for elliptic problems have been developed that treat the diffusion
equation as a system of first order equations, see Cockburn and Shu [15], Oden et al [58], and Peraire and
Persson [61]. Discontinuous Galerkin applied to the original diffusion equation is performed using an interior
penalty function by Douglas et al. [21] and through a mixed formulation of the diffusion terms by Bassi and
Rebay [10]. A recovery based DG method for diffusion was developed by Van Leer and Nomura [68] and
Van Leer et al [67]. Gassner et al. [29] approximate the numerical fluxes by solving the generalized Riemann
problem.

Pasdunkorale and Turner [60] devised a Control Volume Finite Element method (CVFEM), which maintains
the local flux continuity at the control volume faces for extreme anisotropy. Here the cross diffusion fluxes
are partly resolved implicitly using least squares. This is not demonstrated for a full diffusion tensor with
extreme anisotropy. The Vandermonde matrices for the least squares solution are based on the grid geome-
try, with no guarantee for well-posedness.

MPFA, MFD, CVFEM and other methods are somehow related, through flux-continuity requirement and
a weak continuity requirement of the temperature over the edges, see Klausen and Russell [41]. Reference
results for a variety of test cases can be found in Herbin and Hubert [32] and Eymard et al. [28]. For a more
detailed overview of finite-volume methods the reader is referred to the review paper by Droniou [22].

All the methods discussed above leave the analytic formulation untouched and focus on the numerical
procedure. In Degond et al. [16–18] and Mentrelli and Negulescu [55], the diffusion equation itself is split in
two parts, a limit problem for infinite anisotropy and the original singular perturbation problem. Degond et
al. [17] also provide a means for continuous transition between the two problems. This splitting is done to
prevent ill-posedness which arises for Neumann boundary conditions and periodic boundary conditions. The
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two formulations are obtained by discriminating between a mean part and a fluctuating part of the singular
perturbation problem. These Asymptotic Preserving (AP) schemes have difficulties preserving accuracy and
stability in case of closed field lines. Narski and Ottaviani [57] introduce a penalty stabilization term in the
weak formulation of the AP-scheme to conserve accuracy in case of closed field lines. The downsides of this
approach are that the penalty stabilization has a tuning parameter, it requires an L-stable time integration
scheme and it requires the solution of two systems instead of one. An important benefit of AP-schemes is
that the condition number does not scale with the anisotropy, without the use of a preconditioner.
Del-Castillo and Chacón [19, 20] apply a Lagrangian Green’s function approach that does not require any
algorithmic inversion and thus prevents issues with ill-conditioning. However, this method is limited to a
constant value for the parallel diffusion coefficient. Also the field lines are assumed to be time-invariant and
it assumes a particular scaling for the variation of the magnetic field line strength.

None of the schemes is monotonous without special treatment of the linear operator or the mesh. Sharma et
al. [63] apply a flux limiter to enforce the monotonicity locally but this is only applicable to relatively small
levels of anisotropy not relevant for fusion plasma and it increases the perpendicular numerical diffusion and
lowers the global accuracy. Methods that rely on changing the mesh basically change the elements based on
the local values of the anisotropic diffusion to enforce that the local mass-matrices are M−matrices, see for
instance Li and Huang [46], Aricò and Tucciarelli [8]. These methods are limited to low anisotropy. Mono-
tonicity preserving methods that maintain the accuracy have been devised. These methods put restraints
on the diffusion tensor and often require a nonlinear approach, see for instance Potier et al. [44], Lipnikov
et al. [47, 49, 51].

In the present work the focus is on applying a co-located finite-difference discretisation in the direction
of the strongest diffusion by means of interpolation. This can be applied to the flux operator only or to
the entire operator. In this paper we try to live up to the accuracy properties of Günter et al.’s symmetric
scheme by applying an interpolation scheme based on the direction of diffusion while still using a Cartesian
grid. Furthermore we introduce a test case with elliptic closed field lines and we interpret the large difference
in accuracy. We do not put any requirement on the diffusion tensor other than that it is symmetric. As we
treat the singularly perturbed diffusion problem the scheme is not asymptotic preserving. For comparison
we apply the asymmetric and symmetric finite-difference schemes given in Günter et al. [31].

We look at the order of convergence and the perpendicular numerical diffusion for extremely high levels
of anisotropy.

2 Diffusion equation

Anisotropic thermal diffusion is described by the following model

q = −D · ∇T,
∂T

∂t
= −∇ · q+ f, (1)

where T represents temperature, b the unit vector of the magnetic field line, f some source term and D the
diffusion tensor. For a two-dimensional problem the diffusion tensor is given by

unit direction vector: b = (cosα, sinα)
T
,

D = (D‖ −D⊥)bb
T +D⊥I,

D =

(

D‖b
2
1 +D⊥b

2
2 (D‖ −D⊥)b1b2

(D‖ −D⊥)b1b2 D⊥b
2
1 +D‖b

2
2

)

,

where D‖ and D⊥ represent the parallel and the perpendicular diffusion coefficient respectively. We de-
fine x, y as the non-aligned coordinate system and s, n as the aligned coordinate system, see figure 1. The
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boundary conditions are of Dirichlet type unless mentioned otherwise, they are discussed per test case. The
diffusion equation is approximated on a uniform Cartesian grid, with ∆x = ∆y = h.

We define the anisotropy as

ς =
D‖

D⊥
.

In tokamak fusion plasma simulations the diffusion coefficients are often taken temperature-dependent. The

Figure 1: Explanation of symbols

parallel and perpendicular diffusion coefficient are assumed to be proportional to T 5/2 and T−1/2 respectively.
I.e. the anisotropy varies strongly with temperature. Note that the perpendicular diffusion coefficients are
often assumed zero for fusion plasmas simulations, as the plasma is considered to be collisionless. For ς → ∞,
the problem reduces to

∂T

∂t
= ∇ ·

(

D‖(b · ∇T )b
)

= 0.

This limit problem has infinitely many solutions if b · ∇T = 0 and no temperature boundary conditions are
prescribed for the field lines. So in the limit of the anisotropy going to infinity the diffusion equation may be
ill-posed. This may occur when there are closed magnetic field lines. This is noticeable in the discretisation
through a higher condition number of the linear operator for increasing anisotropy, see Degond et al. [16,17].

3 Finite-difference schemes

We limit the discussion to finite-difference schemes. Given a uniform grid this can be directly translated
to a finite-volume approach. We consider several second-order accurate finite-difference schemes for the
approximation of model equation (1). The first two schemes are described in Günter et al. [31]. The
difference between these schemes lies in the treatment of the flux, particularly the location of the flux. The
term co-located is used to indicate that the variables T,b are defined in coinciding points. The asymmetric
and symmetric schemes, discussed in the following sections, have the field direction b defined in the flux
points and may be referred to as staggered schemes. The new schemes, to be presented here, aim to improve
the accuracy of co-located schemes by applying a stencil that lies on an approximation of the field line. We
use sub-indices x, y, s, n to denote the respective derivatives.

3.1 Asymmetric finite differences

The first finite-difference scheme for heat diffusion we discuss is depicted in figure 2. For a spatially constant
diffusion tensor this scheme reduces to the standard second-order accurate scheme for diffusion. The label
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Figure 2: Asymmetric scheme, temperature T is defined on the full indices and the diffusion tensor D on
the half-indices

asymmetry is coined because of the different treatment of the x- and y-differential in each point. The different
treatment is a direct result of taking the flux values in i± 1

2
, j and i, j ± 1

2
,

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j

=
Ti+1,j − Ti,j

∆x
,

∂T

∂y

∣

∣

∣

∣

i+ 1

2
,j

=
Ti+1,j+1 + Ti,j+1 − Ti,j−1 − Ti+1,j−1

4∆y
,

∂T

∂x

∣

∣

∣

∣

i,j+ 1

2

=
Ti+1,j+1 + Ti+1,j − Ti−1,j+1 − Ti−1,j

4∆x
,

∂T

∂y

∣

∣

∣

∣

i,j+ 1

2

=
Ti,j+1 − Ti,j

∆y
,

and similar formulas for ∂T
∂x

∣

∣

i− 1

2
,j
, ∂T

∂y

∣

∣

∣

i− 1

2
,j
, ∂T

∂x

∣

∣

i,j− 1

2

, ∂T
∂y

∣

∣

∣

i,j− 1

2

. For the heat conduction term we have

qi+ 1

2
,j = −Di+ 1

2
,j ·

(

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j

,
∂T

∂y

∣

∣

∣

∣

i+ 1

2
,j

)T

.

Finally, the diffusion follows from

∇ · q =
(q1)i+ 1

2
,j − (q1)i− 1

2
,j

∆x
+

(q2)i,j+ 1

2

− (q2)i,j− 1

2

∆y
.

The scheme is denoted by asymmetric scheme, G. et al..

3.2 Symmetric finite differences

Still another approach is taken by Günter et al. [31]. They use a symmetric scheme (with a symmetric linear
operator) that is mimetic by maintaining the self-adjointness of the differential operator. The approach goes
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as follows. First, the divergence terms are determined at the center points, see figure 3:

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

=
Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2∆x
,

∂T

∂y

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

=
Ti,j+1 + Ti+1,j+1 − Ti+1,j − Ti,j

2∆y
.

Next, the diffusion tensor is applied to obtain the heat flux

Figure 3: Symmetric scheme, temperature T is defined on the full indices and the diffusion tensor D on the
half-indices

q = −D · ∇T, qi+ 1

2
,j+ 1

2

= −Di+ 1

2
,j+ 1

2

·

(

∂T

∂x

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

,
∂T

∂y

∣

∣

∣

∣

i+ 1

2
,j+ 1

2

)T

.

Finally, the divergence is taken over the heat flux

∇ · q =
(q1)i+ 1

2
,j+ 1

2

+ (q1)i+ 1

2
,j− 1

2

− (q1)i− 1

2
,j+ 1

2

− (q1)i− 1

2
,j− 1

2

2∆x

+
(q2)i+ 1

2
,j+ 1

2

+ (q2)i− 1

2
,j+ 1

2

− (q2)i− 1

2
,j− 1

2

− (q2)i+ 1

2
,j− 1

2

2∆y
.

The scheme is denoted by symmetric scheme, G. et al..

3.3 Treatment of fluxes

For the values of the diffusion coefficients D‖, D⊥ in the flux points we have to apply averaging since they
are dependent on the temperature which is known only in the surrounding points.

We use either arithmetic averaging or harmonic averaging. Harmonic averaging is relevant for plasma
physics simulations if the density varies strongly. This may be the case if we consider turbulence at the edge
for instance, see Sharma and Hammett [63]. For the asymmetric scheme by Günter et al we have, for flux
point i+ 1

2
, j:

Arithmetic: Ti+ 1

2
,j =

Ti+1,j +Ti,j

2
, Harmonic:

2

Ti+ 1

2
,j

=
1

Ti+1,j
+

1

Ti,j
.
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Analogous to the asymmetric scheme by Günter et al, for the symmetric scheme the diffusion tensor is
either taken as the arithmetic mean or as the harmonic mean of the four surrounding points, e.g. for point
i+ 1

2
, j + 1

2
:

Arithmetic: Ti+ 1

2
,j+ 1

2

=
Ti+1,j+1 +Ti+1,j +Ti,j+1 +Ti,j

4
,

Harmonic:
4

Ti+ 1

2
,j+ 1

2

=
1

Ti+1,j+1

+
1

Ti+1,j
+

1

Ti,j+1

+
1

Ti,j
.

3.4 Aligned finite differences

The idea is that differencing along the field line yields an approximation less prone to large false perpendicular
diffusion. To do this we have to use interpolation to find the values of T and D on the field line. The field
line trajectory itself is approximated by tracing. In the current implementation, T,b and D are assumed to
be coinciding. Using the definition for the diffusion tensor we can write the diffusion operator as

∇ · (D · ∇T ) = ∇ ·
[(

D‖ −D⊥

)

b · ∇Tb
]

+∇ ·D⊥∇T.

By now applying the product rule and some vector identities we can write the diffusion operator in parts:

∇ · (D · ∇T ) = A1 +A2 +A3 +A4, (2)

where the parts are given by

field line curvature: A1 =
(

D‖ −D⊥

)

(b · ∇b) · ∇T,

field strength gradient: A2 =
(

D‖ −D⊥

)

(∇ · b) (b · ∇T ) ,

standard diffusion: A3 =
(

D‖ −D⊥

)

bbT : ∇∇T +D⊥∇
2T,

diffusion gradient: A4 = b · ∇
(

D‖ −D⊥

)

(b · ∇T ) +∇T · ∇D⊥.

The field line curvature term results from field line curvature in the presence of a temperature gradient and
does not require a variation in the strength of the magnetic field. The field strength variation comes from
the fact that we impose the constraint ∇ ·B = 0 on the MHD-equations so that

|B|∇ · b = −b · ∇|B|,

and thus ∇ · b 6= 0 if ∇|B| 6= 0. The standard diffusion is caused by the second-order derivative of the
temperature and is the only diffusion in case the field lines are non-curved, the magnetic field is constant
and the diffusion coefficients are constant. The diffusion variation term corresponds to the diffusion resulting
from a gradient of the diffusion coefficients in the presence of a temperature gradient.
Rewriting the above formulation in s, n coordinates yields

A1 =− (D‖ −D⊥)F1Tn,

A2 =(D‖ −D⊥)F2Ts,

A3 =D‖Tss +D⊥Tnn,

A4 =D‖s
Ts +D⊥n

Tn,

(3)

where

F1 = −b1b2s + b2b1s , F2 = −b2b1n + b1b2n .

So we can write

∇ · (D · ∇T ) = −(D‖ −D⊥)F1Tn + (D‖ −D⊥)F2Ts +D‖Tss +D⊥Tnn +D‖s
Ts +D⊥n

Tn.
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Note that F1 = −αs and F2 = αn, where α is defined in figure 1.
When applying the equations of magnetohydrodynamics to nuclear fusion plasmas, an assumption often
made is that the temperature is diffused instantaneously along the field line, i.e. D‖ = 0. This means that
the variation of the temperature in the direction of the field line is zero, i.e., b · ∇T = 0, Ts = 0. The terms
F1,F2 in parts A1,A2 can be approximated in three different ways: I) use an aligned stencil to approximate
b1s , b1n , b2s , b2n , II) estimation of xss, xnn, yss, ynn by following the field line track, III) apply interpolation
of b1, b2 to obtain b1s , b1n , b2s , b2n directly. We will describe these approaches in sections 3.4.2, 3.4.3 and 3.5
respectively.

3.4.1 Interpolation scheme

We continue by applying an aligned stencil to approximate equation (3) using field-aligned stencil points. The
stencil points r, l, u, d, c are given in figure 4. We consider x, y as local coordinates, where the origin is located
in the stencil point i, j. The values at the locations r, l, u, d are determined by bi-quadratic interpolation:

Figure 4: Locally transformed grid, 5-point stencil

v(x, y) = c1x
2y2 + c2x

2y + c3y
2x+ c4x

2 + c5y
2 + c6xy + c7x+ c8y + c9, x, y ∈ [−h, h], (4)

where v can represent T, b1, b2, D‖ or D⊥. For convenience we assume that we have a uniform Cartesian grid
with ∆x = ∆y = h. Then, for T , the coefficients c1, . . . c9 follow from
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























.
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The identical relations hold for the coefficients c1, . . . c9 for b1, b2, D‖ and D⊥. The matrix V contains the
polynomial terms for each node, see figure 4. The coefficients c1, · · · , c9 are now given by

cV1 =
1

h4

(

Ti,j −
Ti,j−1

2
−

Ti−1,j

2
−

Ti+1,j

2
−

Ti,j+1

2
+

Ti−1,j−1

4
+

Ti+1,j−1

4
+

Ti+1,j+1

4
+

Ti−1,j+1

4

)

,

cV2 =
1

4h3
(2Ti,j−1 − 2Ti,j+1 + Ti−1,j+1 + Ti+1,j+1 − Ti−1,j−1 − Ti+1,j−1) ,

cV3 =
1

4h3
(2Ti−1,j − 2Ti+1,j + Ti+1,j−1 + Ti+1,j+1 − Ti−1,j−1 − Ti−1,j+1) ,

cV4 =
1

2h2
(Ti−1,j − 2Ti,j + Ti+1,j) , cV5 =

1

2h2
(Ti,j−1 − 2Ti,j + Ti,j+1) ,

cV6 =
1

4h2
(Ti−1,j−1 + Ti+1,j+1 − Ti+1,j−1 − Ti−1,j+1) ,

cV7 =
Ti+1,j − Ti−1,j

2h
, cV8 =

Ti,j+1 − Ti,j−1

2h
,

cV9 = Ti,j ,

where the superscript V denotes V andermonde. Note that the coefficients c1, . . . c8 are all approximations
of differential terms in point i, j,

c1 = 1

4
Txxyy +O(h2), c2 = 1

2
Txxy +O(h2), c3 = 1

2
Tyyx +O(h2),

c4 = 1

2
Txx +O(h2), c5 = 1

2
Tyy +O(h2), c6 = Txy +O(h2),

c7 = Tx +O(h2), c8 = Ty +O(h2).

(5)

For a spatially constant diffusion tensor the Vandermonde coefficients are similar to the approximation of
the respective differential terms for the asymmetric scheme by Günter et al. For comparison purposes we
change the coefficients so that they have similar approximation as the symmetric scheme by Günter et al in
case of constant diffusion coefficients. Effectively we change the approximations for Tx, Ty, Txx and Tyy to
involve more nodes to approximate the respective differentials,

cS4 =
1

8h2
(Ti−1,j+1 + Ti−1,j−1 − 2Ti,j−1 + 2Ti−1,j − 4Ti,j + 2Ti+1,j − 2Ti,j+1 + Ti+1,j+1 + Ti+1,j−1) ,

cS5 =
1

8h2
(Ti−1,j+1 + Ti−1,j−1 − 2Ti−1,j + 2Ti,j−1 − 4Ti,j + 2Ti,j+1 − 2Ti+1,j + Ti+1,j+1 + Ti+1,j−1) ,

cS7 =
1

8h
(2Ti+1,j + Ti+1,j+1 + Ti+1,j−1 − 2Ti−1,j − Ti−1,j+1 − Ti−1,j−1) ,

cS8 =
1

8h
(2Ti,j+1 + Ti−1,j+1 + Ti+1,j+1 − 2Ti,j−1 − Ti−1,i−1 − Ti+1,j−1) .

These are second-order accurate approximations of Txx, Tyy, Tx, Ty respectively. This is equivalent to

cS4 = cV4 + cV1
1

2
h2, cS5 = cV5 + cV1

1

2
h2, cS7 = cV7 + cV3

1

2
h2, cS8 = cV8 + cV2

1

2
h2,

where the superscript S denotes symmetric. However, when using these coefficients in the bi-quadratic
interpolation they do not exactly yield all nodal values for the given locations.
The locations of r, l, u, d are based on the field line, a first estimate is to apply a single step in the direction
of the field line. With s the coordinate in field line direction, n the coordinate normal to it and with ∆s and
∆n the steps in both directions, and defining b = (b1, b2)

T , b⊥ = (−b2, b1)
T the locations are given by

(xr, yr) = bT∆s, (xl, yl) = −bT∆s, (xu, yu) = b⊥∆n, (xd, yd) = −b⊥∆n. (6)

Now we apply these coordinates (6) to construct discrete schemes in s, n-coordinates for the individual parts
A1,A2,A3 and A4.
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3.4.2 Accuracy analysis

In the previous section we established two sets of coefficients for a bi-quadratic interpolation scheme. The
following analysis holds for a general set of these coefficients, provided the coefficients are second-order
accurate approximations of the differential terms given by (5). The superscripts of the coefficients denote
the respective variables that are interpolated. We remark that although the accuracy requirement holds for
the sum A1 +A2 +A3 +A4, we choose to impose it on A1,A2,A3 and A4 individually because we wish to
identify the specific terms that cause numerical issues.
For the approximation of A4 we have the following expression:

A4 ≈
D‖r

−D‖l

2∆s

Tr − Tl

2∆s
+

D⊥u
−D⊥d

2∆n

Tu − Td

2∆n
. (7)

To verify that this scheme approximates part A4 second-order accurately we substitute the interpolation
functions in equation (7) and we collect the coefficients for zeroth and first-order terms of h. Noting that
xl,r,u,d, yl,r,u,d, s, n are of order h we get

0th-order:
1

4∆s2

(

c
D‖

7 (xr − xl) + c
D‖

8 (yr − yl)
)

(

cT7 (xr − xl) + cT8 (yr − yl)
)

,

1

4∆n2

(

cD⊥
7 (xu − xd) + cD⊥

8 (yu − yd)
)

(

cT7 (xu − xd) + cT8 (yu − yd)
)

,

1st-order:
1

4∆s2

(

c
D‖

7 (xr − xl) + c
D‖

8 (yr − yl)
)

(

cT4
(

x2
r − x2

l

)

+ cT5
(

y2r − y2l
)

+ cT6 (xryr − xlyl)
)

,

1

4∆n2

(

cD⊥
7 (xu − xd) + cD⊥

8 (yu − yd)
)

(

cT4
(

x2
u − x2

d

)

+ cT5
(

y2u − y2d
)

+ cT6 (xuyd − xuyd)
)

.

Now the zeroth-order expression must be equal to A4 and the first-order expression must be zero. The
requirements that can be distilled from this are

(xr − xl)
2 = 4b21∆s2, (yr − yl)

2 = 4b22∆s2, (xr − xl)(yr − yl) = 4b1b2∆s2,

(xu − xd)
2 = 4b22∆n2, (yu − yd)

2 = 4b21∆n2, (xu − xd)(yu − yd) = −4b1b2∆n2,

x2
r,u − x2

l,d = 0, y2r,u − y2l,d = 0, xr,uyr.u − xl,dyl,d = 0.

This holds for the locations given by equation (6). From this it appears that the termA4 can be approximated
with second-order accuracy.
For the terms A3,A2,A1 we apply the following finite-difference formulae

A3 ≈D‖
Tr − 2Tc + Tl

∆s2
+D⊥

Tu − 2Tc + Td

∆n2
, (8)

A2 ≈
(

D‖ −D⊥

)

(

−b2
b1u − b1d
2∆n

+ b1
b2u − b2d
2∆n

)

Tr − Tl

2∆s
, (9)

A1 ≈−
(

D‖ −D⊥

)

(

−b1
b2r − b2l
2∆s

+ b2
b1r − b1l
2∆s

)

Tu − Td

2∆n
. (10)

Following a similar logic as for A4, substituting the interpolation values in equations (8), (9), (10) and
collecting terms of equal order in h gives second-order accuracy for all terms. We call this method aligned
Vandermonde or aligned symmetric depending on the coefficients. In practice we decrease ∆s and ∆n with
increasing anisotropy, and we may simply and safely take ∆s = ∆n. The construction of the linear operator
is described in appendix B.

3.4.3 Curvature terms

The aligned schemes presented before assume that the direction does not change from the interpolation point
l up to the interpolation r, and likewise from interpolation point u to point d. Now we consider a numerical
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treatment of the terms b1s , b1n , b2s , b2n based on field line curvature, so we explicitly allow for curvature to
approximate these terms. First we write the terms as

b1s = xss, b1n = ynn, b2s = yss, b2n = −xnn.

This leads to the following equations for F1,F2:

F1 = −b1yss + b2xss, F2 = −b2ynn − b1xnn.

The curvature terms can be approximated by

xss =
xr + xl

∆s2
, yss =

yr + yl
∆s2

, xnn =
xu + xd

∆n2
, ynn =

yu + yd
∆n2

, (11)

where the positions r, l, u, d are not to be confused with the positions we used for the aligned stencil depicted
in figure 4. Given an interpolation function for b1 and b2 within the stencil area we can apply tracing to
find subsequent points. We go from the center point to the interpolation points r, l, u, d by applying the
(second-order accurate) modified Euler scheme (Heun):

tangential direction:

x∗
k = xk−1 ±∆s∗b(xk−1, yk−1),

xk = xk−1 ±
1

2
∆s∗ (b(xk−1, yk−1) + b(x∗

k, y
∗
k)) , k = 1, · · ·K,

normal direction:

x∗
k = xk−1 ±∆n∗b⊥(xk−1, yk−1),

xk = xk−1 ±
1

2
∆n∗ (b⊥(xk−1, yk−1) + b⊥(xk, yk)) , k = 1, · · ·K,

where K is the number of sub-steps ∆s∗,∆n∗, and where x0 = y0 = 0 (see figure 5). The values ∆s =
K∆s∗ and ∆n = K∆n∗ are used in equation (11). Repeatedly stepping in s, n-direction and applying the

Figure 5: Approximate track of field line and perpendicular curve

interpolation of b increases the computational cost. The benefit is that we can easily control the accuracy
with which we follow the field line, simply by changing the number of tracing steps.
The current tracing method is expected to be more accurate in determining the curvature terms than the
aligned stencil since it follows the actual field line more closely.

3.4.4 Bi-linear interpolation per quadrant

For the aligned method we use a bi-quadratic interpolation scheme where we apply all nine stencil points for
the determination of the values in aligned stencil points. Here we shortly consider a quadrant-wise bi-linear
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interpolation with the location of the central node set to the center point (i, j). This gives

Tl,r,u,d = axl,r,u,dyl,r,u,d + bxl,r,u,d + cyl,r,u,d + d,

Tr : d = Ti,j , c =
Ti,j+1 − Ti,j

yi,j+1 − yi,j
, b =

Ti+1,j − Ti,j

xi+1,j − xi,j
, a =

Ti+1,j+1 − bdx− cdy − d

(xi+1,j − xi,j)(yi,j+1 − yi,j)
,

Tl : d = Ti,j , c =
Ti,j − Ti,j−1

yi,j − yi,j−1

, b =
Ti,j − Ti−1,j

xi,j − xi−1,j
, a =

Ti−1,j−1 − bdx− cdy − d

(xi,j − xi−1,j)(yi,j − yi,j−1)
,

Tu : d = Ti,j , c =
Ti,j+1 − Ti,j

yi,j+1 − yi,j
, b =

Ti,j − Ti−1,j

xi,j − xi−1,j
, a = −

Ti−1,j+1 − bdx− cdy − d

(xi,j − xi−1,j)(yi,j+1 − yi,j)
,

Td : d = Ti,j , c =
Ti,j − Ti,j−1

yi,j − yi,j−1

, b =
Ti+1,j − Ti,j

xi+1,j − xi,j
, a = −

Ti+1,j−1 − bdx− cdy − d

(xi+1,j − xi,j)(yi,j − yi,j−1)
.

Just considering the differentiation of the second-order terms in parallel direction we get

uss ≈
1

h2
[−2ui,j(b1 + b2 − b1b2) + ui+1,j(b1 − b1b2) + ui−1,j(b1 − b1b2) + ui,j+1(b2 − b1b2)

+ui,j−1(b2 − b1b2) + (ui+1,j+1 + ui−1,j−1)b1b2] .

Writing out the fourth-order Taylor expansion of the parallel diffusion uss, assuming constant diffusion
coefficients, gives

uss = b1uxx + b2uyy + 2b1b2uxy +O
(

h2
)

.

This is not consistent with the analytic form; we have b1 and b2 instead of b21 and b22 respectively. This
inconsistency is due to the fact that bi-linear interpolation is used and so the directions are only inserted
with first-order accuracy. The downside of quadrant-wise bi-linear interpolation is that one has to track in
which quadrant the stencil point is to apply the appropriate interpolation.

3.5 Exact differentiation after interpolation

We can also find a direct approximation of the various spatial derivatives involved in the anisotropic diffusion
operator, by writing the interpolation function (4) in terms of s, n and by taking the appropriate derivatives
of this rewritten function. Then, the interpolation functions for b1 and b2 need to be applied to find the final
form of the approximation. We use the non-conservative form

Tt = D‖v
T
ss +D⊥v

T
nn + v

D‖
s vTs + vD⊥

n vTn +
(

D‖ −D⊥

) (

SvTs −NvTn
)

,

where the terms with v represent the derivatives of the bi-quadratic interpolation functions for the quanti-
ties denoted by the superscript, i.e., vT is the interpolation function for the temperature. The first-order
differentials are written as

v
D‖
s vTs + vD⊥

n vTn = (cT7 b1 + cT8 b2)(c
D‖

7 b1 + c
D‖

8 b2) + (−cT7 b2 + cT8 b1)(−cD⊥
7 b2 + cD⊥

8 b1).

The diffusive terms are given by

D‖v
T
ss +D⊥v

T
nn = 2D‖

(

c4b
2
1 + c5b

2
2 + c6b1b2

)

+ 2D⊥

(

c4b
2
2 + c5b

2
1 − c6b1b2

)

,

and the curvature-dependent terms by

(

D‖ −D⊥

) (

SvTs −NvTn
)

= 2D‖

[

c7

(

b1c
b1
7 +

1

2
b1c

b2
8 +

1

2
b2c

b1
8

)

+ c8

(

b2c
b2
8 +

1

2
b2c

b1
7 +

1

2
b1c

b2
7

)]

+

2D⊥

[

c7

(

b2c
b2
7 −

1

2
b1c

b2
8 −

1

2
b2c

b1
8

)

+ c8

(

b1c
b1
8 −

1

2
b2c

b1
7 −

1

2
b1c

b2
7

)]

.
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The geometric term is recursive since b1, b2 depend on x, y which in turn depend on b1, b2. The aligned
finite-difference scheme is identical to the interpolation scheme for ∆s,∆n → 0, see appendix A.

We call these methods interp. Vandermonde or interp. symmetric, depending on the coefficients that
are used. Summarizing, we apply the following methods

• asymmetric scheme, G. et al.,

• symmetric scheme, G. et al.,

• aligned Vandermonde/symmetric scheme,

• interp. Vandermonde/symmetric scheme.

4 Numerical results

In this section we show the results for several steady test cases. For all the test cases, we have ∂T
∂t = 0 and

the source function f is such that it produces the exact solution which is given for each test case. We use
Dirichlet boundary conditions with the boundary value determined by the assumed solution. As we assume
that the time derivative is zero we can assume that in all the test cases b · ∇T = 0.

4.1 Constant angle of misalignment

As an initial test we consider a simple steady diffusion problem. The imposed exact solution reads:

T (x, y) = xy [sin (πx) sin (πy)]γ , x, y ∈ [0, 1],

where γ is large and where the angle of misalignment α is set to a constant value. The solution simulates a
temperature peak. Computational results for this test case are given in figure 6. The error norm is defined
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symmetric, G. et al, interp. symmetric, aligned symmetric

asymmetric, G. et al, interp. Vandermonde, aligned Vandermonde
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symmetric, G. et al, interp. symmetric, aligned symmetric

asymmetric, G. et al, interp. Vandermonde, aligned Vandermonde

(b)

Figure 6: Error ǫ∞ for test cases with constant angles of misalignment, γ = 10, ς = 109, at varying mesh
width, (a) α = 5◦, (b) α = 30◦. In the plots all symmetric schemes overlap and likewise do all asymmetric
schemes
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by

ǫ∞ =
|T̃ − T |max

Tmax
,

where T̃ is the approximate temperature. It is clear from the figure that the symmetric schemes conserve
the order of accuracy independent of the anisotropy and angle of misalignment. The co-located schemes are
only slightly less accurate than the staggered schemes. For larger values, the asymmetric schemes are less
than second-order convergent on coarse grids, but they regain second-order convergence on finer grids.

4.2 Varying angle of misalignment

Again the problem is considered on a square domain, this time described by −0.5 ≤ x, y ≤ 0.5. The following
steady-state solution is assumed on the domain

T (x, y) = 1−
[

(x − xc)
2 + (y − yc)

2
]3/2

,

with xc = yc = 0 for the closed field line case and xc = yc = 0.5 for the open field line case. The direction
of the parallel diffusion is given by

b =
1

√

(x− xc)2 + (y − yc)2

(

−(y − yc)

x− xc

)

. (12)

Note that both ∇·b and b ·∇T are zero, this means that the term A2 comes into play only due to numerical
errors, term A4 is zero exactly since ∇D‖, ∇D⊥ are zero. So test case 2 stresses terms A1 and A3, with
added contribution due to numerical errors in term A2.
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Figure 7: Error ǫ∞ for test cases with varying misalignment, (a) ς = 103, (b) ς = 109

We study the accuracy of the various schemes for two anisotropic cases, one being extremely anisotropic,
ς = 109, both with xc = yc = 0. We observe from figure 7 that for the extremely anisotropic case our aligned
symmetric scheme and our interpolated symmetric scheme preserve their second-order of accuracy. All other
schemes fail completely; they are all inconsistent for the ς = 109 test case.
A detail to be observed from figure 7 is that for extremely high levels of anisotropy the symmetric scheme
of Günter et al and the current symmetric schemes show a wiggle in the error convergence. This is partly
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caused by the fact that the linear operator becomes ill-conditioned for h → 0 with a condition number of
order 1013 and partly by the fact that in the origin b is undefined for this particular test problem, shifting
the origin by a small value ǫ of order 10−16 removes the wiggle. Günter et al. [30] had problems with
number representation for a fourth-order mimetic finite-difference scheme. They resolved this by increasing
the number representation accuracy. Further, it can be shown that the analytic problem becomes ill-posed
for ς → ∞ (see Degond et al. [16]). The asymmetric scheme is not suffering from number representation
errors here. However this is probably due to the solution not being close enough to the limit solution.

Finally, in figure 8 we make a more extensive study of the behavior of the different schemes at varying
anisotropy. Here the interpolated symmetric scheme and aligned symmetric scheme perform slightly better
than the symmetric scheme by Günter et al.; their errors do not increase with increasing anisotropy.
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Figure 8: ǫ∞-error norm versus the anisotropy ς for a 100× 100 grid

The aligned scheme and the interpolation scheme perform equally well as the symmetric scheme by
Günter et al in terms of anisotropy independence of the error, see figure 8. Starting from an anisotropy
ratio of ς = 109 the symmetric scheme by Günter et al begins to deteriorate. This is most likely due to
ill-conditioning of the linear operator. The fact that the symmetric scheme by Günter et al suffers from ill-
conditioning for extreme values of the level of anisotropy is an indication that the parallel and perpendicular
components are numerically strictly separated. For ς → ∞ equation (1) in combination with Dirichlet and
Neumann boundary conditions becomes ill-posed due to the fact that ∇ · (D‖b · ∇Tb) = 0 has infinitely
many solutions. Vice versa, the fact that the asymmetric scheme by Günter et al does not suffer from
ill-conditioning of the linear operator is an indication that for ς → ∞ the approximation does not approach
the limit solution of (1).
Setting D‖ to zero enforces that q‖ = 0 in the t → ∞ limit, this restores the accuracy of the aligned meth-
ods. The aligned Vandermonde and the interpolated Vandermonde method are now close to second-order
accuracy. The order of accuracy for the aligned symmetric method and the interpolated symmetric method
are slightly decreased below second order.

Running the test case with xc = yc = 0.5 gives second-order convergence for all schemes. The qualita-
tive difference between xc = yc = 0 and xc = yc = 0.5 is the presence of a singular point in the latter case,
a point where the direction vector b is undefined and over which the vector changes discontinuously.

We suspect that the accuracy of the symmetric scheme by Günter et al. has some dependency on the
symmetry of the problem, this is investigated in section 4.3.
For the following four test cases we dismiss the asymmetric scheme by Günter et al and the aligned and inter-
polated schemes with Vandermonde coefficients, since for this particular test case they show near zeroth-order
convergence for high values of anisotropy.
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4.3 Tilted elliptic temperature distributions

So far we have used forcing functions that are spatially symmetric. Now we apply a forcing function that
gives the solution for a tilted elliptic temperature distribution. This distribution has no symmetry axes
aligned with the coordinate axes. The first tilted elliptic distribution has no closed field lines. Basically, the
field lines go in the same general direction, see figure 9a.
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Figure 9: Tilted test cases, field line direction with (a) non-rotating field lines, a = 25, b = −75, (b) closed
field lines, a = 0.15, b = 0.85

The exact solution is given by

T (x, y) = 1 + (ax+ by)(x2 + y2)3/2, b =
1

√

T 2
x + T 2

y

(

−Ty

Tx

)

, x, y ∈ [−0.5, 0.5].
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Figure 10: a = 25, b = −75, (a) ǫ∞ convergence for ς = 109, (b) ǫ∞-error norm versus the anisotropy ς for a
100× 100 grid

In figure 10 we present numerical results. We see that all three schemes considered are very similar in
performance, maintaining order of convergence and having similar accuracy. In the origin of the domain
both b1 and b2 go to zero. So the unit direction vector is undefined there. However, the unit direction vector
is continuous in all directions through the origin.

The distribution for the second tilted test case is given by

T (x, y) = 1− (a2(x cos θ + y sin θ)2 + b2(x sin θ − y cos θ)2)3/2, x, y ∈ [−0.5, 0.5], (13)

with b as before, Distribution (13) is qualitatively similar to the distribution shown in figure 9b.
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Figure 11: Second tilted test case, convergence plots for several levels of anisotropy with a = 0.15, b =
0.85, θ = π/3, (a) aligned symmetric scheme, (b) symmetric scheme by Günter et al
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Figure 12: Second tilted test case, accuracy plot for several levels of anisotropy with a = 0.15, b = 0.85, θ =
π/3 with a grid size of 100× 100, (a) aligned symmetric scheme, (b) symmetric scheme by Günter et al

The tilted test case shows that none of the investigated second-order schemes is able to approximate
anisotropic diffusion whilst maintaining formal accuracy globally independent of the level of anisotropy. The
last test case has closed field lines.

4.4 Temperature-dependent diffusion coefficients

Until now we have not treated part A4 of the diffusion equation. To do this we describe the coefficients by

D‖ = c‖T
5/2, D⊥ = c⊥T

−1/2.

These expressions are representative of actual MHD-simulations for fusion plasmas except for the absence of
density. We apply temperature dependence of the diffusion coefficients to the test case described in section
4.2. From the results shown in figure 13a we see that the aligned symmetric method and the interpolated
symmetric method maintain second-order convergence independent of the anisotropy whereas the symmetric
method by Günter et al now has reduced convergence. There is no qualitative difference between using a
harmonic mean and an arithmetic mean. This is probably due to the smoothness of the solution.
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Figure 13: Test case 1 with temperature-dependent diffusion coefficients, ǫ∞-error, (a) convergence for
ς = 109, (b) dependence on anisotropy for a 100× 100 grid

The reason for the loss of performance for the symmetric scheme of Günter et al. is that instead of hav-
ing diffusion tensor values exactly on the dual grid we now have to interpolate between the primal grid points.

An obvious way to prevent the need for interpolation is to define the temperature on both the primal and
the dual grid, i.e. favoring the DDFV and the FECC methods in case of temperature dependent diffusion
coefficients.

5 Conservation error

The schemes we present in the current work discretize the non-conservative form of the diffusion equation. To
quantify the effect of non-conservation we apply the current interp. symmetric scheme and the symmetric
scheme of Günter et al., to an unsteady test problem with zero source terms and Neumann boundary
conditions. For the time integration we use the Crank-Nicolson scheme with the time step chosen such
that the time integration error is negligible. In this problem we assume that q⊥ = 0, so any perpendicular
diffusion is numerical. We define the global conservation error at time level n as

ǫT = 1/N

∣

∣

∣

∣

∣

N
∑

k

Tk,n −

N
∑

k

Tk,0

∣

∣

∣

∣

∣

,

where k refers to the k-th component of the solution vector and where N is the number of unknowns. As a
test case we consider the diffusion of a Gaussian initial distribution

T (x, y, t = 0) = exp
(

−r2/2σ2
)

, r2 = (x− d)2 + (y − d)2, x, y ∈ [−0.5, 0.5],

with σ = 0.05. The direction of diffusion b is given by

b =
1

√

(x− x0)2 + (y − y0)2

(

−(y − y0)

x− x0

)

.

The Gaussian distribution is diffused along the circular field lines. We consider a closed field lines case, with
x0 = y0 = 0.
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Regarding the implementation of the boundary conditions: for the symmetric scheme by Günter et al.
the flux points are placed exactly on the boundary. For the current co-located schemes the temperature and
the flux quantities are located in the same points. The implementation of the Neumann boundary conditions
for the current scheme is done by using ghost points.
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Figure 14: ǫT error of the symmetric scheme for two-dimensional diffusion test case with a Gaussian initial
distribution, D⊥ = 0, σ = 0.05, tend = 1, d = 0.25, x, y ∈ [−2, 2], (a) symmetric, G. et al, (b) interp.
symmetric

From the results shown in figures 14a we see that both schemes are not conservative, the interpolation
scheme with symmetric coefficients being most non-conservative.

5.1 Aligned gradient operator

Starting from the symmetric scheme by Günter et al we consider an aligned stencil for each gradient. We
leave the operator for the divergence untouched. Originally in each flux point D∇T is approximated by

D∇T |i+1/2,j+1/2 ≈

[

D11

Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h
D12

Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h

]T

+

[

D21

Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h
D22

Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h

]T

,

and likewise for the other flux points, this can be written as

D∗(b · ∇T ), D∗ =

(

D‖(b1 + b2)−D⊥b2 D⊥(b2 − b1) +D‖b1

D⊥(b2 − b1) +D‖b2 D‖(b1 + b2)−D⊥b1

)

.

Now we approximate b · ∇T by applying an aligned stencil in combination with a bilinear interpolation of
the four surrounding points. The bilinear interpolation T̃ (x, y) for a flux point (i+ 1/2, j + 1/2) is given by

T̃ (x, y)i+1/2,j+1/2 = xy(Txy)i+1/2,j+1/2 + x(Tx)i+1/2,j+1/2 + y(Ty)i+1/2,j+1/2 + T i+1/2,j+1/2,
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and similarly for the other flux points. The coefficients in these bilinear interpolations are given by

(Txy)i+1/2,j+1/2 ≈
Ti+1,j+1 + Ti,j − Ti+1,j − Ti,j+1

h2
,

(Tx)i+1/2,j+1/2 ≈
Ti+1,j+1 + Ti+1,j − Ti,j − Ti,j+1

h2
,

(Ty)i+1/2,j+1/2 ≈
Ti+1,j+1 + Ti,j+1 − Ti,j − Ti+1,j

h2
,

T i+1/2,j+1/2 =
Ti+1,j+1 + Ti+1,j + Ti,j+1 + Ti,j

4
,

and similarly for the other flux points. In each flux point we now step in the direction and counter-direction

Figure 15: Conservative aligned difference

of b with some stepsize ∆s and obtain a central difference approximation for the aligned gradient b · ∇T ,
see figure 15. The resulting approximation is

b · ∇T |i+1/2,j+1/2 = b1(Tx)i+1/2,j+1/2 + b2(Ty)i+1/2,j+1/2,

which is the symmetric scheme by Günter et al. that we started with. So we conclude that the symmetric
scheme is aligned by construction.

5.2 Aligned divergence operator

If we use a nine point interpolation for the temperature we lose conservation. Instead we consider a weighted
average of the symmetric gradient approximations. We can obtain a suitable description of the local deriva-
tives by defining the approximations for Tx and Ty as

Tx ≈αru
Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h
+ αlu

Ti,j + Ti,j+1 − Ti−1,j+1 − Ti−1,j

2h

+αld
Ti,j + Ti,j−1 − Ti−1,j − Ti−1,j−1

2h
+ αrd

Ti+1,j + Ti+1,j−1 − Ti,j − Ti,j−1

2h
,

Ty ≈αru
Ti+1,j+1 + Ti,j+1 − Ti,j − Ti+1,j

2h
+ αlu

Ti,j+1 + Ti−1,j+1 − Ti−1,j − Ti,j

2h

+αld
Ti,j + Ti−1,j − Ti−1,j−1 − Ti,j−1

2h
+ αrd

Ti+1,j + Ti,j − Ti,j−1 − Ti+1,j−1

2h
,
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with a bilinear description for each α, and with the conditions

αru(
h

2
,
h

2
) = 1, αru(−

h

2
,
h

2
) = 0, αru(

h

2
,−

h

2
) = 0, αru(−

h

2
,−

h

2
) = 0,

αlu(
h

2
,
h

2
) = 0, αlu(−

h

2
,
h

2
) = 1, αlu(

h

2
,−

h

2
) = 0, αlu(−

h

2
,−

h

2
) = 0,

αrd(
h

2
,
h

2
) = 0, αrd(−

h

2
,
h

2
) = 0, αrd(

h

2
,−

h

2
) = 1, αrd(−

h

2
,−

h

2
) = 0,

αld(
h

2
,
h

2
) = 0, αld(−

h

2
,
h

2
) = 0, αld(

h

2
,−

h

2
) = 0, αld(−

h

2
,−

h

2
) = 1.

We get the following bilinear descriptions

αru = 1 +

(

x

h
−

1

2

)

+

(

y

h
−

1

2

)

+

(

x

h
−

1

2

)(

y

h
−

1

2

)

,

αlu = 1−

(

x

h
+

1

2

)

+

(

y

h
−

1

2

)

−

(

x

h
+

1

2

)(

y

h
−

1

2

)

,

αrd = 1 +

(

x

h
−

1

2

)

−

(

y

h
+

1

2

)

−

(

x

h
−

1

2

)(

y

h
+

1

2

)

,

αld = 1−

(

x

h
+

1

2

)

−

(

y

h
+

1

2

)

+

(

x

h
+

1

2

)(

y

h
+

1

2

)

,

(14)

which also fulfills the consistency requirement that
∑

α = 1. Note that we also have the following properties
for the coefficients

αru(
h

2
, 0) = 1/2, αru(0,

h

2
) = 1/2, αru(x,−

h

2
) = 0, αru(−

h

2
, y) = 0,

αlu(
h

2
, y) = 0, αlu(0,

h

2
) = 1/2, αlu(x,−

h

2
) = 0, αlu(−

h

2
, 0) = 1/2,

αrd(
h

2
, 0) = 1/2, αrd(x,

h

2
) = 0, αrd(0,−

h

2
) = 1/2, αrd(−

h

2
, y) = 0,

αld(
h

2
, y) = 0, αld(x,

h

2
) = 0, αld(0,−

h

2
) = 1/2, αld(−

h

2
, 0) = 1/2.

We call these coefficients local symmetric. When using these coefficients in the bi-quadratic interpolation
they do not exactly yield all nodal values for the given locations since it is not an approximation of the
temperature but rather a weighted summation of gradients. In this manner we approximate the diffusion
equation in conservative form with the divergence written in local coordinates

Tt =

(

b1
∂

∂s
− b2

∂

∂n

)

(D11Tx +D21Ty) +

(

b2
∂

∂s
+ b1

∂

∂n

)

(D21Tx +D22Ty) + f ⇒

Tt ≈ b1
(D11Tx +D21Ty)r − (D11Tx +D21Ty)l

2∆s
− b2

(D11Tx +D21Ty)u − (D11Tx +D21Ty)d
2∆n

+ b2
(D21Tx +D22Ty)r − (D21Tx +D22Ty)l

2∆s
+ b1

(D21Tx +D22Ty)u − (D21Tx +D22Ty)d
2∆n

+ f.

For the diffusion tensor values we use the same weighted averaging procedure as before. The diffusion tensor
values are taken both averaged and exact in the dual grid points. The products of the diffusion tensor
components and the gradients can be combined. For instance, for αru(D11Tx)r we have

αru(D11Tx)ru = αru(D11)ru
Ti+1,j+1 + Ti+1,j − Ti,j+1 − Ti,j

2h
.

Note that due to symmetry we will end up with the original symmetric scheme for any set of coordinates
(xr, yr), (xl, yl), (xu, yu), (xd, yd). To create a unique scheme, we introduce a weighting factor ω ∈ [0, 1] for
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the perpendicular part of the divergence approximation. This will increase the conservation errors a bit but
may improve the behavior near high gradients in n-direction. This weighted scheme is not consistent for
D⊥ 6= 0 if ω 6= 1.

For the locations of the stencil we take a step ∆s in the direction and counterdirection of the field line,
and a step ∆n perpendicular to the field line and construct a stencil using the local weights. The unit
direction vector we use to align the stencil is obtained by normalized averaging of the unit direction vectors
in the surrounding points (i± 1/2, j ± 1/2), (i± 1/2, j ∓ 1/2).
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Figure 16: ǫT error of the local symmetric scheme for a two-dimensional diffusion test case with a Gaussian
initial distribution, D⊥ = 0, σ = 0.05, tend = 1, d = 0.25, x, y ∈ [−2, 2] (a) ω = 0.25 (b) ω = 0.5 (c) ω = 0.75
(d) ω = 1

In figure16 we see that indeed the conservation of the total temperature is not maintained to machine
accuracy, but it does converge with second order. Summarizing, the symmetric scheme by Günter et al.
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has a gradient and divergence approximation that is aligned by construction. The local symmetric scheme
introduced here was obtained by adding a weighting term to the perpendicular part of the divergence ap-
proximation. If the level of anisotropy is moderate the weighting term should be set to one for consistency.

6 Conclusion

We have developed and applied a new differencing method on a co-located grid that implements the concept
of following the field line track within the stencil area to obtain the differencing points that are finally used
in the approximation. In terms of accuracy and convergence the aligned methods are similar to exactly
differentiating the interpolation schemes. The symmetric variants of our method are more accurate and less
anisotropy-dependent than the standard asymmetric scheme by Günter et al. The symmetric scheme by
Günter et al works well in maintaining the order of convergence for a wide variety of cases and it exhibits
very low pollution of the perpendicular diffusion but it also seems to be more susceptible to number repre-
sentation problems. This is apparent because the linear operator becomes ill-conditioned for large anisotropy
ratios (noticeable above ς = 109).

We find that preserving continuity of the gradient is of key importance for maintaining the accuracy of
the perpendicular diffusion. We see that in all cases where the aligned symmetric scheme and the symmetric
interpolation scheme do not maintain order of convergence and/or the level of accuracy, the approximation
of the perpendicular flux Tn determines this behavior. For all test cases the temperature gradient tangential
to the field line is zero. For large gradients in magnetic field strength this term should also be considered.
Over almost all the test cases, the symmetric scheme by Günter et al is better able to maintain the order
of accuracy. The symmetric scheme by Günter et al does however show anisotropy-dependent accuracy for
closed elliptic magnetic field line distributions, most likely due to a lack of symmetry in the solution. This
anisotropy dependence is increased if we also make the diffusion-tensor components temperature dependent.
This is caused by the interpolation required to get the temperature values in the flux points. For the tilted
cases with temperature dependent diffusion coefficients our aligned and interpolated symmetric scheme show
comparable and even superior results depending on the test case.

The non-conservative nature of the current scheme has an effect on the approximation of initial value
problems with a non-aligned anisotropic diffusion tensor due to non-monotonous behavior in the direction
perpendicular to the field line. As an improvement we suggest a local symmetric scheme which is derived
from the symmetric scheme by Günter et al.
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A Taylor expansions

For the asymmetric scheme described in section 3.1 the local truncation errors of the different terms
(D11Tx)x, (D22Ty)y , (D21Ty)x and (D21Tx)y are found by writing out the Taylor expansions

(DTx)x : TxDx + TxxD + h2

[

1

24
TxDxxx +

1

8
TxxDxx +

1

6
TxxxDx +

1

24
TxxxxD

]

+O(h4),

(DTy)x : TyDx + TxyD + h2

[

1

24
TyDxxx +

1

144
TyyyDx +

1

8
TxyDxx +

1

6
TxyyyD

+
1

6
TxxxyD +

1

4
TxxyDx

]

+O(h4),

and similarly for (DTy)y and (DTx)y respectively. Likewise for the symmetric scheme found in section
3.2 the approximations are given by

(DTx)x : TxDx + TxxD + h2

[

Tx

(

1

8
Dxyy +

1

24
Dxxx

)

+ Txx

(

1

8
Dyy +

1

8
Dxx

)

+
1

4
TxyDxy

+
1

4
TxyyDx +

1

4
TyyxDy +

1

6
TxxxDx +

1

4
TxxyyD +

1

12
TxxxxD

]

+O(h4),

(DTy)x : TyDx + TxyD + h2

[

Ty

(

1

8
Dxyy +

1

24
Dxxx

)

+ Txy

(

1

8
Dyy +

1

8
Dxx

)

+
1

4
TyyDxy

+
1

24
TyyyDx +

1

16
TxyyDy +

1

16
TyxxDx +

1

6
TxyyyD +

1

6
TyxxxD

]

+O(h4),

and similarly for (DTy)y and (DTx)y respectively. Similar to section 3.4.2, the approximations for the
aligned finite-difference scheme are given by

A1 = (D‖ −D⊥) (c8b1 − c7b2)
(

b21c
b2
7 − b22c

b1
8 − b1b2c

b1
7 + b1b2c

b2
8

)

+ h2
∗

(

D‖ −D⊥

)

[

(

−c3b
2
1b2 + c2b1b

2
2

)

(

b21c
b2
7 − b22c

b1
8 − b1b2c

b1
7 + b1b2c

b2
8

)

+(c8b1 − c7b2)
(

−b21b
2
2c

b1
2 + b21b

2
2c

b2
3 + b31b2c

b2
2 − b1b

3
2c

b1
3

)]

+O(h4
∗),

A2 = (D‖ −D⊥) (c7b1 + c8b2)
(

b22c
b1
7 + b21c

b2
8 − b1b2c

b2
7 − b1b2c

b1
8

)

+ h2
∗

(

D‖ −D⊥

)

[

(

c2b
2
1b2 + c3b1b

2
2

)

(

b22c
b1
7 + b21c

b2
8 − b1b2c

b2
7 − b1b2c

b1
8

)

+(c7b1 + c8b2)
(

b21b
2
2c

b2
2 + b21b

2
2c

b1
3 − b1b

3
2c

b1
2 − b31b2c

b2
3

)]

+O(h4
∗),

A3 = 2D‖

(

b21c4 + b22c5 + b1b2c6
)

+ 2D⊥

(

b22c4 + b21c5 − b1b2c6
)

+ h2
∗

(

2D‖ + 2D⊥

)

b21b
2
2c1 +O(h4

∗),

A4 = (c7b1 + c8b2)
(

c
D‖

7 b1 + c
D‖

8 b2

)

+ (−c7b2 + c8b1)
(

−cD⊥
7 b2 + cD⊥

8 b1

)

+ h2
∗

[

b31b2

(

c2c
D‖

7 + c7c
D‖

2

)

+ b32b1

(

c3c
D‖

8 + c8c
D‖

3

)

+ b21b
2
2

(

c2c
D‖

8 + c8c
D‖

2 + c3c
D‖

7 + c7c
D‖

3

)]

+ h2
∗

[

−b31b2

(

c3c
D⊥
8 + c8c

D⊥
3

)

− b32b1

(

c2c
D⊥
7 + c7c

D⊥
2

)

+ b21b
2
2

(

c3c
D⊥
7 + c7c

D⊥
3 + c2c

D⊥
8 + c8c

D⊥
2

)]

+O(h4
∗),
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where it should be noted that here h∗ = ∆s = ∆n represents the step size in the aligned stencil. If h∗ goes
to zero we get

A1 = (D‖ −D⊥) (c8b1 − c7b2)
(

b21c
b2
7 − b22c

b1
8 − b1b2c

b1
7 + b1b2c

b2
8

)

,

A2 = (D‖ −D⊥) (c7b1 + c8b2)
(

b22c
b1
7 + b21c

b2
8 − b1b2c

b2
7 − b1b2c

b1
8

)

,

A3 = 2D‖

(

b21c4 + b22c5 + b1b2c6
)

+ 2D⊥

(

b22c4 + b21c5 − b1b2c6
)

,

A4 = (c7b1 + c8b2)
(

c
D‖

7 b1 + c
D‖

8 b2

)

+ (−c7b2 + c8b1)
(

−cD⊥
7 b2 + cD⊥

8 b1

)

,

which is equal to the exact differentation scheme from section 3.5.
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B Linear operator

For the determination of the linear operator it is convenient to collect the factors for each temperature value

T (x, y) = ai,jTi,j + ai+1,jTi+1,j + ai−1,jTi−1,j + ai,j+1Ti,j+1 + ai,j−1Ti,j−1

+ ai+1,j+1Ti+1,j+1 + ai−1,j+1Ti−1,j+1 + ai+1,j−1Ti+1,j−1 + ai−1,j−1Ti−1,j−1,

where for the Vandermonde coefficients we have

ai,j =
x2y2

h4
−

x2

h2
−

y2

h2
+ 1,

ai±1,j =
1

2

(

−
x2y2

h4
∓

y2x

h3
+

x2

h2
±

x

h

)

,

ai,j±1 =
1

2

(

−
x2y2

h4
∓

x2y

h3
+

y2

h2
±

y

h

)

,

ai±1,j+1 =
1

4

(

x2y2

h4
+

x2y

h3
±

y2x

h3
±

xy

h2

)

,

ai±1,j−1 =
1

4

(

x2y2

h4
−

x2y

h3
±

y2x

h3
∓

xy

h2

)

,

(15)

and for the symmetric coefficients

ai,j =
x2y2

h4
−

1

2

x2

h2
−

1

2

y2

h2
+ 1,

ai±1,j =
1

2

(

−
x2y2

h4
∓

y2x

h3
+

1

2

x2

h2
−

1

2

y2

h2
±

1

2

x

h

)

,

ai,j±1 =
1

2

(

−
x2y2

h4
∓

x2y

h3
−

1

2

x2

h2
+

1

2

y2

h2
±

1

2

y

h

)

,

ai±1,j+1 =
1

4

(

x2y2

h4
+

x2y

h3
±

y2x

h3
+

1

2

x2

h2
+

1

2

y2

h2
±

xy

h2
±

1

2

x

h
+

1

2

y

h

)

,

ai±1,j−1 =
1

4

(

x2y2

h4
−

x2y

h3
±

y2x

h3
+

1

2

x2

h2
+

1

2

y2

h2
∓

xy

h2
±

1

2

x

h
−

1

2

y

h

)

.

(16)

The terms in equation (3) can be approximated by the following schemes:

A1 = −(D‖ −D⊥)N
Tu − Td

2∆n
,

A2 = (D‖ −D⊥)S
Tr − Tl

2∆s
,

A3 = D‖
Tr − 2Tc + Tl

∆s2
+D⊥

Tu − 2Tc + Td

∆n2
,

A4 =
D‖r

−D‖l

2∆s

Tr − Tl

2∆s
+

D⊥u
−D⊥d

2∆n

Tu − Td

2∆n
.

Using the previous expressions for ai,j , ai±1,j , ai,j±1, ai±1,j−1 and ai±1,j+1 the linear operator can be written
as

f̃i,j ≈ Ti,jdc +

1
∑

n=−1

1
∑

m=−1

[ai+m,j+n(xr, yr)dr + ai+m,j+n(xl, yl)dl

+ai+m,j+n(xu, yu)du + ai+m,j+n(xd, yd)dd]Ti+m,j+n,
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where f̃i,j is the local source value, including boundary terms. The terms dl,r,u,d,c are described by

dr = (D‖ −D⊥)
S

2∆s
+

D‖

∆s2
+

D‖r
−D‖l

4∆s2
,

dl = −(D‖ −D⊥)
S

2∆s
+

D‖

∆s2
−

D‖r
−D‖l

4∆s2
,

du = −(D‖ −D⊥)
N

2∆n
+

D⊥

∆n2
+

D⊥u
−D⊥d

4∆n2
,

dd = (D‖ −D⊥)
N

2∆n
+

D⊥

∆n2
−

D⊥u
−D⊥d

4∆n2
,

dc = −2
D‖

∆s2
− 2

D⊥

∆n2
.

For the local symmetric coefficients we consider the derivatives

Tx(x, y) = ai,jTi,j + ai+1,jTi+1,j + ai−1,jTi−1,j + ai,j+1Ti,j+1 + ai,j−1Ti,j−1

+ ai+1,j+1Ti+1,j+1 + ai−1,j+1Ti−1,j+1 + ai+1,j−1Ti+1,j−1 + ai−1,j−1Ti−1,j−1,

Ty(x, y) = bi,jTi,j + bi+1,jTi+1,j + bi−1,jTi−1,j + bi,j+1Ti,j+1 + bi,j−1Ti,j−1

+ bi+1,j+1Ti+1,j+1 + bi−1,j+1Ti−1,j+1 + bi+1,j−1Ti+1,j−1 + bi−1,j−1Ti−1,j−1,

where

ai,j =
1

2h
(−αru + αlu + αld − αrd) , bi,j =

1

2h
(−αru − αlu + αld + αrd) ,

ai+1,j =
1

2h
(αru + αrd) , bi+1,j =

1

2h
(−αru + αrd) ,

ai−1,j =
1

2h
(−αlu − αld) , bi−1,j =

1

2h
(−αlu + αld) ,

ai,j+1 =
1

2h
(−αru + αlu) , bi,j+1 =

1

2h
(αru + αlu) ,

ai,j−1 =
1

2h
(αld − αrd) , bi,j−1 =

1

2h
(−αld − αrd) ,

ai+1,j+1 =
αru

2h
, bi+1,j+1 =

αru

2h
, ai−1,j−1 = −

αld

2h
, bi−1,j−1 = −

αld

2h

ai−1,j+1 = −
αlu

2h
, bi−1,j+1 =

αlu

2h
, ai+1,j−1 =

αrd

2h
, bi+1,j−1 = −

αrd

2h
,

where the α’s are defined in section5.2.
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