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1. Introduction

In this paper, we consider a simple problem, namely the solution of the
scalar wave equation

utt = ∆u, t > 0, (1)

subject to homogeneous initial conditions

u(r, θ, φ, 0) = 0, ut(r, θ, φ, 0) = 0 (2)

in the exterior of the unit sphere. Here, (r, θ, φ) denote the spherical coor-
dinates of a point in R3 with r > 1. Standard textbooks on mathematical
physics (such as [5, 11]) present exact solutions for the time-harmonic cases
governed by the Helmholtz equation, but generally fail to discuss the difficul-
ties associated with the fully time-dependent case (1). As we shall see, it is
a nontrivial matter to develop closed-form solutions, and a surprisingly sub-
tle matter to develop solutions that can be computed without catastrophic
cancellation.

In this paper, we restrict our attention to boundary value problems with
Dirichlet or Robin conditions. We consider the Dirichlet problem first, and
assume we are given data on the boundary of the unit sphere of the form:

u(1, θ, φ, t) = f(θ, φ, t). (3)

It is natural to begin by expanding both u and f in terms of spherical har-
monics.

u(r, θ, φ, t) =
∞∑
n=0

n∑
m=−n

unm(r, t)Ynm(θ, φ),

f(θ, φ, t) =
∞∑
n=0

n∑
m=−n

fnm(t)Ynm(θ, φ),

(4)

where

Y m
n (θ, φ) =

√
2n+ 1

4π

√
(n− |m|)!
(n+ |m|)!

P |m|n (cos θ)eimφ , (5)

Pn(x) is the standard Legendre polynomial of degree n, and the associated
Legendre functions Pm

n are defined by the Rodrigues’ formula

Pm
n (x) = (−1)m(1− x2)m/2

dm

dxm
Pn(x).
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We let ûnm(r, s) and f̂nm(s) denote the Laplace transforms of unm(r, t)
and fnm(t):

ûnm(r, s) =

∫ ∞
0

e−stunm(r, t)dt, (6)

f̂nm(s) =

∫ ∞
0

e−stfnm(t)dt. (7)

It is straightforward [1] to see that ûnm(r, s) satisfies the linear second order
ordinary differential equation (ODE)

r2ûnm(r, s)rr + 2rûnm(r, s)r − [s2r2 + n(n+ 1)]ûnm(r, s) = 0,

for which the decaying solution as r → ∞ is the modified spherical Hankel
function kn(sr). It follows that

ûnm(r, s) = cnm(s)kn(sr).

Matching boundary data on the unit sphere, we have cnm(s) = f̂nm(s)/kn(s),
and

ûnm(r, s) =
kn(sr)

kn(s)
f̂nm(s). (8)

The remaining difficulty is that we have an explicit solution in the Laplace
transform domain, but we seek the solution in the time domain. For this,
we write the right hand side of (8) in a form for which the inverse Laplace
transform can carried out analytically. First, from [1, 10, 12], we have

kn(z) =
pn(z)

zn+1
e−z =

∏n
j=1(z − αn,j)

zn+1
e−z, (9)

where αn,j (j = 1, · · · , n) are the simple roots of kn lying on the open left
half of the complex plane. Thus,

kn(sr)

kn(s)
=

1

r
e−s(r−1)

n∏
j=1

s− 1
r
αn,j

s− αn,j

=
1

r
e−s(r−1)

(
1 +

n∑
j=1

an,j(r)

s− αn,j

)
,

(10)
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where the second equality follows from an expansion using partial fractions
and the coefficients an,j are given from the residue theorem by the formula:

an,j(r) =

∏n
k=1(αn,j − 1

r
αn,k)∏n

k=1,k 6=j(αn,j − αn,k)

=
pn(αn,jr)

rnp′n(αn,j)

= reαn,j(r−1)kn(αn,jr)

k′n(αn,j)
, j = 1, · · · , n.

(11)

Substituting (10) into (8), we obtain

ûnm(r, s) =
1

r

(
1 +

n∑
j=1

an,j(r)

s− αn,j

)
(e−s(r−1)f̂nm(s)). (12)

Taking the inverse Laplace transform of both sides, we have

unm(r, t) =
1

r

(
fnm(t− r + 1) +

n∑
j=1

an,j(r)

∫ t−r+1

0

eαn,j(t−r+1−τ)fnm(τ)dτ

)
.

(13)

This involves the use of the convolution theorem and the formulas L−1
(

1
s−α

)
=

eαt and L−1
(
e−s(r−1)f̂nm(s)

)
= fnm(t − r + 1)H(t − r + 1), where H is the

Heaviside function.

Remark 1. Wilcox [17] studied the solution of the scalar wave equation and
derived formula (13) in 1959. In that short note, Wilcox stated that the

coefficients an,j given by (11) grew slowly based on the claim that
kn(αn,j)

k′n(αn,j)
=

O(n1/2) as n → ∞. Unfortunately, this estimate is incorrect. In fact, even
after multiplication by the exponentially decaying factor eαn,j(r−1), the co-
efficients an,j (j = 1, · · · , n) grow exponentially fast as n → ∞. In the
next section, we explain this growth in detail. As a result, even though (13)
is very convenient for the purpose of theoretical studies, it cannot be used
for numerical calculation due to catastrophe cancellation in carrying out the
summation.
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Remark 2. Benedict, Field and Lau [3] have recently developed algorithms
for compressing the kernel, which they call the teleportation kernel, arising
in sphere-to-sphere propagation of data both for the standard wave equation
as well as wave equations arising in linearized gravitational theories. For the
wave equation their compressed kernels can be used to perform the same
function as our solution of the Dirichlet problem. The largest value of n
considered in [3] is 64. It is as yet unclear if useful compressions for much
larger values of n can be constructed using their methods.

1.1. Asymptotic growth of the logarithmic derivative of the spherical modified
Bessel function

We first show that the coefficients an,j (j = 1, · · · , n) defined in (11) grow
exponentially as n → ∞, for fixed large r. Indeed, Lemma 3 in Section 3
shows that the zeros αn,j of kn satisfy the estimates: |αn,j| ∼ O(n) for all j
and |αn,j − αn,k| ∝ |j − k|. Thus when r is large, we have

max
j
|an,j(r)| = max

j

∣∣∣∣∣
∏n

k=1(αn,j − 1
r
αn,k)∏n

k=1,k 6=j(αn,j − αn,k)

∣∣∣∣∣
∼ nn

n!
∼ en,

(14)

where the last line follows from Stirling’s formula n! ∼
√

2πn
(
n
e

)n
. We have

computed maxj |an,j| for n = 1, · · · , 200 using (11), and plotted them in
Figure 1 for r = 2, clearly exhibiting the exponential growth of maxj |an,j|.
We also plot |an,j(r)| as a function of j for a fixed value of n in Fig. 2.

From the preceding analysis, it is clear that one cannot use (13) as stated,
since the desired solution is O(1) and catastrophic cancellation will occur in
computing u(r, θ, φ, t) from exponentially large intermediate quantities.

Fortunately, even though maxj |an,j(r)| grows exponentially as n increases,
we can rewrite (13) in the form of a convolution, which involves much more
benign growth:

unm(r, t) =
1

r

(
fnm(t− r + 1) +

∫ t−r+1

0

Cn(r, t− r + 1− τ)fnm(τ)dτ

)
,

(15)
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Figure 1: The function maxj |an,j(r)| for increasing values of n, with r = 2.
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Figure 2: A plot of |an,j(r)| as a function of j, for n = 80 and r = 2.

where the convolution kernel Cn is defined by the formula

Cn(r, t) =
n∑
j=1

an,j(r)e
αn,jt. (16)

If we write

Cn(r, t) = L−1
(
Ĉn(r, s)

)
, (17)
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then from (11), we have

Ĉn(r, s) =
n∏
j=1

s− 1
r
αn,j

s− αn,j
− 1 =

n∑
j=1

an,j(r)

s− αn,j

= res(r−1)kn(sr)

kn(s)
− 1

=
√
res(r−1)Kn+1/2(sr)

Kn+1/2(s)
− 1,

(18)

where Kn+1/2 is the modified Bessel function of the second kind. The last

expression follows from the fact that kn(z) =
√

2
πz
Kn+ 1

2
(z).

The convolution kernel Cn(r, t) and its Laplace transform Ĉn(r, s) are
plotted in Figs. 3 and 4, respectively.
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Figure 3: The convolution kernel Cn(r, t) as a function of t for n = 80 and r = 2. The
left-hand plot shows Cn(r, t) for t ∈ [0, 0.2], the middle plot shows the same function on
[0, 0.02], and the right-hand plot shows the function on [0.02, 0.2].

The following lemma shows that the convolution kernel grows only quadrat-
ically as a function of n at t = 0. Numerical experiments (see Fig. 3) suggest
that Cn(r, t) is maximal in magnitude at t = 0. Thus, while the sum of
exponential expression (16) involves catastrophic cancellation, the function
Cn(r, t) is, itself, well-behaved and we may seek an alternative method for
the evaluation of the convolution integral.
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Figure 4: The Laplace transform Ĉn(r, s) of the convolution kernel is plotted on the
imaginary axis over the range [−1000i, 1000i] for n = 80 and r = 2. The red (lower)
curve corresponds to the real part of Ĉn(r, s) and the blue (upper) curve corresponds to
its imaginary part.

Lemma 1. Let r > 1. Then

Cn(r, 0) =
n∑
j=1

an,j(r) =
n(n+ 1)

2

(
1

r
− 1

)
. (19)

Proof. By the initial value theorem for the Laplace transform,

Cn(r, 0) = lim
s→∞

sĈn(r, s). (20)

The first equality in (19) follows from (18). From [1] (formula 9.7.2 on page
378), we have the asymptotic expansion

Kν(z) ∼
√

π

2z
e−z
{

1 +
µ− 1

8z
+

(µ− 1)(µ− 9)

2!(8z)2
+ · · ·

}
, (21)

where µ = 4ν2. Substituting (18) and (21) into (20), we obtain

Cn(r, 0) = lim
s→∞

s

(
1 + µ−1

8sr
+O(s−2)

1 + µ−1
8s

+O(s−2)
− 1

)
=
µ− 1

8

(
1

r
− 1

)
. (22)

The result (19) now follows from the fact that µ = 4ν2 = 4
(
n+ 1

2

)2
.
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Despite the fact that maxj |an,j(r)| grows exponentially with n, (19) shows
that the sum of weights an,j is only O(n2) for fixed r. Still, however, the
formula (13) cannot be used in practice because of catastrophic cancellation
in the summation

n∑
j=1

an,j(r)

∫ t−r+1

0

eαn,j(t−r+1−τ)fnm(τ)dτ.

Thus, we will need a different representation for the convolution operator∫ t−r+1

0
Cn(r, t− r+ 1− τ)fnm(τ)dτ which is suitable for numerical computa-

tion.

1.2. Stable computation of the convolution integral

To obtain a stable formula, we note first that we may rewrite (13) in the
form:

unm(r, t) =
1

r

∫ t−r+1

0

L−1
(
Ĉn(r, s) + 1

)
(r, t− r+ 1− τ)fnm(τ)dτ. (23)

We then use (18) to express Ĉn as

Ĉn(r, s) + 1 =
n∏
j=1

s− 1
r
αn,j

s− αn,j
=

n∏
j=1

(
1 +

(1− 1
r
)αn,j

s− αn,j

)
. (24)

We can, therefore, compute unm recursively:

φ0(t) = fnm(t),

φj(t) = φj−1(t) +

(
1− 1

r

)
αn,j

∫ t

0

eαn,j(t−τ)φj−1(τ)dτ, j = 1, · · · , n
(25)

and, finally,

unm(r, t) =
1

r
φn(t− r + 1). (26)

Numerical experiments indicate that the above recursion is stable if the
zeros αn,j of kn are arranged in ascending order according to their real parts,
i.e., αn,1 is closest to the negative real axis and αn,n is closest to the imaginary
axis.
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Remark 3. Alternatively, it is easy to show that the functions φj (j =
1, · · · , n) are the solutions to the following first order system of ordinary
differential equations (ODEs) with zero initial conditions.

A
dφ

dt
= Bφ+ F (t), (27)

where φ is a column vector of length n with the jth entry being φj, A, B are
n× n constant matrices defined by the formulas

A =


1 0

−1
. . .
. . . . . .

0 −1 1

 , B =


αn,1 0

−αn,2

r

. . .

. . . . . .

0 −αn,n

r
αn,n

 , (28)

and F is a column vector of length n whose only nonzero entry is F1(t) =
f ′nm(t)− αn,1

r
fnm(t).

Remark 4. The ODE system (27) can actually be solved analytically. That
is, one may multiply both sides of (27) by A−1 to obtain

dφ

dt
= Mφ+ A−1F (t), (29)

where M = A−1B. It is clear that M is a constant lower triangular ma-
trix. One could then diagonalize the system using the eigen-decomposition
M = SΛS−1. This, however, is numerically unstable since M is a highly
nonnormal matrix. Thus, even though the condition number of M is not
very high (numerical evidence shows that cond(M) = O(n)), S is extremely
ill-conditioned. In fact, more detailed analysis shows that this approach leads
exactly to the formula (13). Nevertherless, the ODE system (27) itself can
be solved numerically using standard ODE packages, albeit less efficiently
than the explicit recursive approach we present in section 3, especially for
high precision.

2. The Robin problem

In this section, we consider the Robin problem for the scalar wave equa-
tion on the unit sphere:

vtt −∆v = 0, r > 1, t > 0, (30)
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with homogeneous initial data

v(r, θ, φ, 0) = 0, vt(r, θ, φ, 0) = 0, r > 1, (31)

and the boundary condition(
∂

∂r
+ 1

)
v(r, θ, φ, t) = g(θ, φ, t), r = 1. (32)

It should be noted that Tokita [14] extended Wilcox’s analysis of the
Dirichlet problem to the case of Robin boundary conditions of the form ( ∂

∂r
+

σ)v = g, although he assumed that σ < 1 in his discussion. We are primarily
concerned with the case σ = 1 since it arises in the solution of the full
Maxwell equations [7].

As in the analysis of the Dirichlet problem, we first expand v and g in
terms of spherical harmonics, perform the Laplace transform in t, match the
boundary data and obtain

v(r, θ, φ, t) =
∞∑
n=0

n∑
m=−n

L−1(v̂nm(r, s))Ynm(θ, φ),

g(θ, φ, t) =
∞∑
n=0

n∑
m=−n

L−1(ĝnm(s))Ynm(θ, φ),

(33)

and

v̂nm(r, s) =
kn(sr)

sk′n(s) + kn(s)
ĝnm(s). (34)

We turn now to a study the properties of the kernel in (34), letting

Kn(r, s) =
kn(sr)

sk′n(s) + kn(s)
, (35)

and

Dn(z) = zk′n(z) + kn(z). (36)

Recalling from 9 that kn(z) = pn(z)
zn+1 e

−z, we have

Dn(z) =
−zpn(z)− npn(z) + zp′n(z)

zn+1
e−z ≡ qn+1(z)

zn+1
e−z. (37)

11



Hence,

Kn(r, s) =
1

r

pn(sr)

qn+1(s)rn
e−s(r−1). (38)

In particular, for n = 0, we have

K0(r, s) = − 1

rs
e−s(r−1). (39)

Obviously, the poles of Kn are simply the zeros of Dn. Those zeros have been
characterized by Tokita [14] in the following lemma.

Lemma 2. [adapted from [14].] For n ≥ 1, Dn(z) = zk′n(z)+kn(z) has n+1
simple roots denoted by {βn,0, · · · , βn,n}. All the roots lie in the open left half
of the complex plane symmetrically with respect to the real axis. Furthermore,
they satisfy the following estimates

<βn,j < −An
1
3 , (40)

|βn,j| < Bn, (41)

for sufficiently large n and 0 ≤ j ≤ n. Hence, there exists a positive number
µ such that

<βn,j < −µ, (42)

for all n ≥ 1 and 0 ≤ j ≤ n.

From the preceding lemma, for n ≥ 1 we have

Kn(r, s) =
1

r
e−s(r−1)

∏n
j=1

(
s− 1

r
αn,j

)
−
∏n

j=0(s− βn,j)

= −1

r
e−s(r−1) 1

s− βn,0

n∏
j=1

(
1 +

(
βn,j −

1

r
αn,j

)
1

s− βn,j

)
.

(43)

One could carry out a partial fraction expansion for the right hand side
of (43) to obtain

Kn(r, s) =
1

r
e−s(r−1)

n∑
j=0

bn,j(r)

s− βn,j
, (44)

12



where the coefficients bn,j are given by the formula

bn,j(r) = −
∏n

k=1

(
βn,j − 1

r
αn,k

)∏n
k=0,k 6=j(βn,j − βn,k)

=
pn(βn,jr)

rnq′n+1(βn,j)

= reβn,j(r−1)kn(βn,jr)

D′n(βn,j)
.

(45)

This would yield

vnm =
1

r

n∑
j=0

bn,j(r)

∫ t−r+1

0

eβn,j(t−r+1−τ)gnm(τ)dτ, n > 0. (46)

Unfortunately, the coefficients bn,j (j = 0, · · · , n) behave as badly as the co-
efficients an,j defined in (11) for the Dirichlet problem. That is, catastrophic
cancellation in (46) makes it ill-suited for numerical computation.

Fortunately, as in section 1.2, we can compute vnm without catastrophic
cancellation using the following recurrence (β0,0 = 0):

ψ0(t) =

∫ t

0

eβn,0(t−τ)gnm(τ)dτ,

ψj(t) = ψj−1(t) +

(
βn,j −

1

r
αn,j

)∫ t

0

eβn,j(t−τ)ψj−1(τ)dτ, j = 1, · · · , n,

(47)

with

vnm(r, t) = −1

r
ψn(t− r + 1). (48)

We leave the derivation of the recurrence to the reader.

Remark 5. It is possible to write down a system of ODEs that is equivalent
to (47). We omit details since the derivation is straightforward and we prefer
the recurrence for numerical purposes in any case.

13



3. A numerical method

In order to carry out the recurrences (25) or (47), we first need to compute
to compute the zeros of kn(z) and Dn(z). The following lemma provides
asymptotic approximations of the zeros of these two functions, which we will
use as initial guesses followed by a simple Newton iteration. In practice, we
have found that six Newton steps are sufficient to achieve double precision
accuracy for n < 10, 000.

Lemma 3. (Asymptotic distribution of the zeros of kn(z) andDn(z), adapted
from [10, 14]); see also the appendix.

1. The zeros of kn(z) have the following asymptotic expansion

αn,j ∼ n(z(ζj) +O(n−1)), n→∞, (49)

uniformly in j, where ζj is defined by the formula

ζj = e−2πi/3

(
n+

1

2

)−2/3

aj, (50)

aj is the jth negative zero of the Airy function Ai whose asymptotic
expansion is given by the formula

aj ∼ −(
3π

2
)2/3(j − 1

4
)2/3 +O(j−4/3), (51)

and z(ζ) is obtained from inverting the equation

2

3
ζ3/2 = ln

i(1 +
√

1 + z2)

z
−
√

1 + z2, (52)

where the branch is chosen so that ζ is real when z is positive imaginary.
In other words, z(ζ) lies on the curve whose parametric equation is

z(t) = −(t2 − t tanh t)1/2 ± i(t coth t− t2)1/2, (53)

where t ∈ [0, t0] and t0 = 1.19968 . . . is the positive root of t = coth t.

2. The zeros of Dn(z) = zk′n(z) + kn(z) have the asymptotic expansion

βn,j ∼ n(z(ξj) +O(n−1)), n→∞, (54)

14



uniformly in j, where ξj is defined by the formula

ξj = e−2πi/3

(
n+

1

2

)−2/3

bj, (55)

and bj is the jth negative zero of the first derivative of the Airy function
Ai′ whose asymptotic expansion is given by the formula

bj ∼ −(
3π

2
)2/3(j − 3

4
)2/3 +O(j−4/3), (56)

and z(ξ) is defined as in (52) with ζ replaced by ξ.

Figure 5 shows the zeros of k10(z), D10(z), k11(z) and D11(z).
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Figure 5: Zeros of k10(z), D10(z), k11(z) and D11(z). The zeros of kn are marked by red
+, and the zeros of Dn are marked by blue ∗.

3.1. Marching in time

We now present a high-order discretization scheme for computing unm
and vnm. We will only discuss the computation of unm in detail, since the

15



treatment of vnm is analogous. Recall that the relevant recurrence relations
are (25) and (26). To proceed, we first introduce the auxillary functions

hj(t) =

∫ t

0

eαn,j(t−τ)φj−1(τ)dτ, j = 1, · · · , n. (57)

Then, (25) becomes

φj(t) = φj−1(t) +

(
1− 1

r

)
αn,jhj(t). (58)

It is easy to check that hj(k∆t) satisfies the recurrence relation

hj(k∆t) = eαn,j∆thj((k − 1)∆t) +

∫ k∆t

(k−1)∆t

eαn,j(k∆t−τ)φj−1(τ)dτ. (59)

Thus, we need only consider the calculation of the integral over [(k−1)∆t, k∆t].
For this, we interpolate φj−1(τ) by a polynomial of degree p − 1 with the
shifted and scaled Legendre nodes as interpolation nodes. That is,

φj−1(τ) ≈
p−1∑
i=0

ciPi

(
2

∆t
(τ − (k − 1

2
)∆t)

)

=

p−1∑
i=0

p∑
l=1

uilφj−1((k − 1)∆t+ ∆t(1 + xl)/2)Pi

(
2

∆t
(τ − (k − 1

2
)∆t)

)
,

(60)

where xl (l = 1, · · · , p) are the standard Legendre nodes on [−1, 1] and uil is
the (i, l) entry of the matrix converting function values to the coefficients of
a Legendre expansion.

Substituting (60) into the integral on the right side of (59) and simplify-
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ing, we obtain∫ k∆t

(k−1)∆t

eα(k∆t−τ)φj−1(τ)dτ

≈
p∑
l=1

uilφj−1((k − 1)∆t+ ∆t(1 + xl)/2)

· ∆t

2

p−1∑
i=0

∫ 1

−1

eαn,j
∆t
2

(1−y)Pi(y)dy

=

p∑
l=1

ql(αn,j)φj−1((k − 1)∆t+ ∆t(1 + xl)/2),

(61)

where the coefficients ql (l = 1, · · · , p) are given by the formula

ql(αn,j) =
∆t

2

p−1∑
i=0

uil

∫ 1

−1

eαn,j
∆t
2

(1−y)Pi(y)dy. (62)

Substituting (61) into (59), we obtain

hj(k∆t) = eαn,j∆thj((k−1)∆t)+

p∑
l=1

ql(αn,j)φj−1((k−1)∆t+∆t(1+xl)/2).

(63)

In order to be able to use (63), we need to calculate φj−1((k−1)∆t+∆t/2(1+
xl)). For this, we can again apply the recurrence (25) and obtain

φ0((k − 1)∆t+ ∆t(1 + xl)/2) = fnm((k − 1)∆t+ ∆t/2(1 + xl)),

φj((k − 1)∆t+ ∆t(1 + xl)/2) = φj−1((k − 1)∆t+ ∆t/2(1 + xl))

+

(
1− 1

r

)
αn,je

αn,j∆t(1+xl)/2hj((k − 1)∆t)

+

(
1− 1

r

)
αn,j

p∑
s=1

wls(αn,j)φj−1((k − 1)∆t+ ∆t/2(1 + xs)),

(64)

where the coefficients wls, for l, s ∈ {1, . . . , p}, are given by the formula

wls(αn,j) =
∆t

2

p−1∑
i=0

uis

∫ xl

−1

eαn,j
∆t
2

(xl−y)Pi(y)dy. (65)

In summary, the algorithm for computing unm(r, T ) proceeds in two
stages: a precomputation stage and a time-marching stage.
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Algorithm 1 Precomputation phase

Comment: For spherical harmonic order n, time step ∆t, and desired order
of accuracy p, precompute the coefficients needed in the marching scheme
for unm.

1: Compute and store the zeros αn,j (j = 1, · · · , n) of kn.
2: Compute the Legendre nodes xl (l = 1, · · · , p) and the p × p matrix u

which converts function values to the coefficients of the corresponding
Legendre expansion.

3: for j = 1 : n and i = 1 : p do
4: Compute the integrals

∫ 1

−1
eαn,j

∆t
2

(1−y)Pi(y)dy.
5: end for
6: for j = 1 : n and i = 1 : p do
7: Compute and store the coefficients ql(αn,j) defined in (62).
8: end for
9: for j = 1 : n, i = 1 : p, and l = 1 : p do

10: Compute the integrals
∫ xl
−1
eαn,j

∆t
2

(xl−y)Pi(y)dy.
11: end for
12: for j = 1 : n, s = 1 : p, and l = 1 : p do
13: Compute and store the coefficients wls(αn,j) defined in (65).
14: end for
15: for j = 1 : p do
16: Compute and store eαn,j∆t.
17: end for
18: for j = 1 : n and l = 1 : p do
19: Compute and store eαn,j∆t(1+xl)/2.
20: end for
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Algorithm 2 Marching in time

Comment: Given n, r, T , the desired order of accuracy p, and the number
of desired time steps NT , compute the spherical harmonic mode unm at
(r, T ) defined by (26).

1: Set ∆t = (T − r + 1)/NT .
2: for j = 1 : n do
3: Set hj = 0.
4: end for
5: for k = 1 : NT do
6: for l = 1 : p do
7: Evaluate the boundary data fnm((k − 1)∆t+ ∆t(1 + xl)/2) by

computing the spherical harmonic transform of the Dirichlet
data f , and set φ0((k−1)∆t+∆t(1+xl)/2) = fnm((k−1)∆t+
∆t/2(1 + xl)).

8: end for
9: for j = 1 : n and l = 1 : p do

10: Use (64) to compute φj((k − 1)∆t+ ∆t(1 + xl)/2)
11: end for
12: for j = 1 : n do
13: Use (63) to update hj.
14: end for
15: end for
16: Set unm = fnm(NT∆t).
17: for j = 1 : n do
18: Compute unm = unm +

(
1− 1

r

)
αn,jhj.

19: end for
20: Compute unm = unm/r.
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3.2. Computational complexity

For each spherical harmonic mode, it is easy to see that the precompu-
tation cost is O(np2) and the marching cost is O(np2NT ), where p is the
desired order of accuracy and NT is the total number of time steps. Thus,
if we truncate the spherical harmonic expansion order at N , then the pre-
computation cost is O(N2p2) and the marching cost is O(N3p2NT ). The cost
of computing the spherical harmonic transform of the boundary data at all
times is O(N3NTp) and the cost of the inverse spherical harmonic transform
at the final time is O(N3). Summing all these factors up, we observe that
the total computational cost of our algorithm is O(N3p2NT ).

4. Numerical examples

We have implemented the above algorithm in Fortran for both the Dirich-
let and Robin problems governed by the scalar wave equation. To test its
convergence and stability, we consider the exact solution

u(x, t) =
2∑
i=1

cie
−(t−ti−|x−yi|)2/ai cos(ki(t− |x− yi|))/|x− yi| (66)

with y1 = (0.3,−0.5, 0.6), t1 = 1.2, a1 = 0.05, k1 = 100, and y2 = (−0.4,−0.5, 0.7),
t2 = 3.2, a2 = 0.28, k2 = 80. The numerical solution is computed on a sphere
of radius r = 100 at t = 103.

Tables 1-4 show the relative L2 error of the numerical solution of the
scalar wave equation for varying values of N , the order of the spherical ex-
pansion and total number of time steps. Note that the solution is oscillatory
in both space and time, so that finite difference or finite element methods
would have difficulty computing the solution in the far field with high preci-
sion because of numerical dispersion errors. In Tables 1 and 3, the order of
temporal convolution is p = 10 and we break the time interval [99, 103] into
200 equispaced subintervals (yielding a total of 2000 discretization points in
time). In Tables 2 and 4, we use 80 terms in the spherical harmonic expan-
sions. These tables show that numerical solution converges spectrally fast to
the exact solution.

5. Conclusions

We have presented an analytic solution for the scalar wave equation in
the exterior of a sphere in a form that is numerically tractable and permits
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NS 102400 129600 160000 193600 230400 270400
N 80 90 100 110 120 130
E 0.84E-01 0.65E-03 0.12E-05 0.64E-09 0.89E-12 0.88E-12

Table 1: Relative L2 error of the numerical solution of the Dirichlet problem with increas-
ing spherical harmonic expansion order N . NS is the total number of discretization on
the unit sphere. Since the discretization error is usually greater than the truncation error,
Nθ = Nφ is chosen to be 4N . Thus NS = 16N2. The total number of discretization points
in time is NT = 2000.

NT 250 500 750 1000 1500 2000
E 0.19E+00 0.12E-03 0.15E-05 0.30E-07 0.47E-10 0.88E-12

Table 2: Relative L2 error of the numerical solution of the Dirichlet problem as a function
of the total number of discretization points in time. Here, the spherical harmonic expansion
order was set to 125 and the total of number of discretization points on the unit sphere is
NS = 250000. The order of integration for temporal convolution is fixed at p = 10.
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Figure 6: The left-hand plot shows the value of the boundary data at the north pole of
the unit sphere as a function of time, and the right-hand plot shows the solution at the
north pole of the outer sphere of radius r = 100. The exact solution is of the same form
as (66) - that is, induced by two sources in the interior of the unit sphere.

high order accuracy even for objects many wavelengths in size. Aside from its
intrinsic interest in single or multiple scattering from a collection of spheres,
our algorithm provides a useful reference solution for any numerical method
designed to solve problems of exterior scattering. At the present time, such
codes are typically tested by Fourier transformation after a long-time simu-
lation and comparison with a set of single frequency solutions computed by
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NS 102400 129600 160000 193600 230400 270400
N 80 90 100 110 120 130
E 0.84E-01 0.65E-03 0.12E-05 0.64E-09 0.71E-12 0.70E-12

Table 3: Relative L2 error of the numerical solution of the Robin problem with increasing
spherical harmonic expansion order N . NS is the total number of discretization on the
unit sphere. Since the discretization error is usually greater than the truncation error,
Nθ = Nφ is chosen to be 4N . Thus NS = 16N2. The total number of discretization points
in time is NT = 2000.

NT 250 500 750 1000 1250 1500
E 0.92E-02 0.13E-05 0.41E-07 0.15E-08 0.58E-10 0.33E-11

Table 4: Relative L2 error of the numerical solution of the Robin problem as a function of
the total number of discretization points in time. Here, the spherical harmonic expansion
orer is 125 and the total of number of discretization points on the unit sphere is NS =
250000. The order of integration for temporal convolution is p = 10.
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Figure 7: The analog of Fig. 6 for a “true” scattering problem. Dirichlet boundary
conditions are generated by two exterior sources placed on the z-axis, at (0, 0, 1.3) and
(0, 0, 1.7). The left-hand plot shows the value of the boundary data at the north pole of
the unit sphere as a function of time, and the right-hand plot shows the solution at the
north pole of the outer sphere of radius r = 100.

separation of variables applied to the Helmholtz equation.

Remark 6. An exception is the work of Sauter and Veit [13], who make use
of a formulation equivalent to that of Wilcox to develop a benchmark solution
for a time-domain integral equation solver which can be applied to scattering
from general geometries. Exponential ill-conditioning is avoided by consider-
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Figure 8: The analog of Fig. 6 for a “true” scattering problem. Robin boundary conditions
are generated by two exterior sources placed on the z-axis, at (0, 0, 1.3) and (0, 0, 1.7). The
left-hand plot shows the value of the boundary data at the north pole of the unit sphere
as a function of time, and the right-hand plot shows the solution at the north pole of the
outer sphere of radius r = 100.
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Figure 9: We plot the solution of the field scattered by the unit sphere in the xz-plane
within the annular region 1 < r < 3 at t = 4. with boundary data as in Fig. 7. Note that
the domain is approximately 50 wavelengths in size.

ing only low-order spherical harmonic expansions. Recently, Grote and Sim
[8] have also used an approach based on the local exact radiation boundary
conditions proposed in [9] to develop a new hybrid asymptotic/finite differ-
ence formalism for multiple scattering in the time domain. The advantage of
the Grote-Sim method is that spherical harmonic transformations are unnec-
essary and the evaluation formulas can be localized in angle. However, they
also restrict their attention to low-order expansions, and our preliminary ex-
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periments using their formulas indicate a loss of conditioning for n large.
(The loss of conditioning presumably also applies to the radiation boundary
conditions in [9].) The method developed here should be of immediate use
in both contexts

As implemented above, our algorithm has O(N3NT ) complexity. It is
possible, however, to reduce the cost to O(N2 logNNT ). This requires the
use of a fast spherical harmonic transform (see, for example, [15] and refer-
ences therein). With this fast algorithm, the cost of each spherical harmonic
transform is reduced from O(N3) to O(N2 logN). Second, we believe that
the convolution kernels can be compressed as in [2], so that they involve only
O(log n) modes for each n for a given precision. We note that compressions
for n = 64 and various radii are reported in [3], both for the scalar wave
equation considered here (which they call the flat-space wave equation) and
for wave equations with Zerilli and Regge-Wheeler potentials. In the latter
cases, compressed kernels are also constructed for smaller values of n, as the
exact kernels do not have rational transforms. Tabulated coefficients required
for implementing the compressed kernels may be found online [18].

For the extension of the present approach to the full Maxwell equations,
see [7]. Software implementing the algorithm of the present paper will be
made available upon request.

6. Appendix: asymptotic analysis of exponential growth of the
coefficients an,j in (11)

An alternative analysis of the instability phenomenon can be carried out
using the uniform asymptotic expansions of the Bessel functons due to Olver
[12]. We first recall the relationship between Kn+1/2 and the Hankel function,

H
(1)
n+1/2:

Kn+1/2(z) =
πi

2
ei(n+1/2)πH

(1)
n+1/2(iz). (67)

Thus the residues we wish to estimate are given by

an,j(r) =
√
re(r−1)αn,j

Kn+1/2(αn,jr)

K ′n+1/2(αn,j)
= −i

√
re(r−1)αn,j

H
(1)
n+1/2(iαn,jr)

H
(1) ′
n+1/2(iαn,j)

. (68)
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To approximate these for n� 1 we use (see [12]):

H
(1)
n+1/2

((
n+

1

2

)
w

)
∼ (69)

2e−πi/3
(
n+

1

2

)−1/3(
4ζ

1− w2

)1/4

Ai

(
e2πi/3

(
n+

1

2

)2/3

ζ

)
,

H
(1) ′
n+1/2

((
n+

1

2

)
w

)
∼ (70)

4e−2πi/3

w

(
n+

1

2

)−2/3(
4ζ

1− w2

)−1/4

Ai′

(
e2πi/3

(
n+

1

2

)2/3

ζ

)
,

which hold uniformly in |arg(w)| < π − δ; thus in particular they hold in
<z < 0 where we will be using them. Here ζ is given by (52) with the
replacement z = iw.

To proceed we recall the basic properties of the Airy function, Ai(y),
which are listed in the Appendix of [12] as well as [1, Ch. 10]:

i. Ai(y) has infinitely many zeros which lie on the negative real axis. For j
large the jth zero, aj, of Ai(y) satisfies (51) and the derivative satisfies

Ai′(aj) ∼ (−1)j−1 1√
π

(
3

2
πj

)1/6

. (71)

ii. For |arg(y)| < π the function Ai(y) satisfies the asymptotic formula

Ai(y) ∼ 1

2
√
π
y−1/4e−

2
3
y3/2

, |y| � 1. (72)

Using (i.) we deduce that the poles, αn,j, are asymptotically given by
(49) and approximately lie on the curve nz(t) where z(t) is defined in (53).
This is the curve for which e2πi/3ζ(z) is real and negative.

To evaluate the residues we must calculate using (69),(70)

an,j ∼
√
re(r−1)αn,jαn,j

(
n+

1

2

)1/3(
ζ ζr

(1 + α2
n,jr

2)(1 + α2
n,j)

)1/4

×
Ai
(
e2πi/3

(
n+ 1

2

)2/3
ζr

)
Ai′(aj)

, (73)
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where we have introduced

ζr = ζ(αn,jr). (74)

Obviously the scaling z → rz moves ζr off the curve where the argument of
the Airy function is real and negative. Thus using (72) and (52) we deduce
that the asymptotic formula for an,j contains an exponential term

an,j ∝ e(r−1)αn,j− 2
3

(n+1/2)ζ
3/2
r (75)

= exp

[(
n+

1

2

)
ηn,j(r)

]
where

ηn,j(r) =

(r − 1)α̃n,j − ln

1 +
√

1 + α̃2
n,jr

2

iα̃n,jr

+
√

1 + α̃2
n,jr

2

 . (76)

Here we have introduced α̃n,j =
(
n+ 1

2

)−1
αn,j.

Finally, we consider the real part of the expression in parentheses on the
second line of (75). In particular we replace α̃n,j by a continuous variable
α traversing the scaled curve, z(t), containing the approximate zeros. Then
the function η depends only on r and the coordinate describing the curve; in
particular it is independent of n and j. In Fig. 10 we plot the real part of η
scaled by log10 e for r = 2. This can be compared with Fig. 2 by scaling both
axes by n = 80 and recognizing the vertical axis as the base ten logarithm.
We then observe good agreement with the numerical results. The maximum
value plotted in Figure 10 is approximately .13, which is the predicted slope
of the straight line plotted in Fig. 1. Again the agreement is good. We note
that increasing r makes the problem somewhat worse; the scaled maximum
real part is approximately .23 for r = 5 and .27 for r = 20.
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