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A Full Multigrid Method for Eigenvalue Problems∗

Hehu Xie†

Abstract

In this paper, a full (nested) multigrid scheme is proposed to solve eigen-
value problems. The idea here is to use the multilevel correction method to
transform the solution of eigenvalue problem to a series of solutions of the
corresponding boundary value problems and eigenvalue problems defined on
the coarsest finite element space. The boundary value problems which are
define on a sequence of multilevel finite element space can be solved by some
multigrid iteration steps. Besides the multigrid iteration, all other efficient
iteration methods for solving boundary value problems can serve as linear
problem solver. The computational work of this new scheme can reach opti-
mal order the same as solving the corresponding source problem. Therefore,
this type of iteration scheme improves the efficiency of eigenvalue problem
solving.

Keywords. Eigenvalue problem, full multigrid method, multilevel correc-
tion, finite element method.
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1 Introduction

It is well known there have existed many efficient algorithms, such as multigrid
method and many other precondition techniques [8, 17, 21], for solving boundary
value problems. The error bounds of the approximate solution obtained from these
efficient numerical algorithms are comparable to the theoretical bounds determined
by the finite element discretization. But the amount of computational work involved
is only proportional to the number of unknowns in the discretized equations. For
more details of the multigrid and multilevel methods, please refer to [4, 5, 6, 7, 8,
11, 12, 15, 16, 17, 21, 22] and the references cited therein.
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But there is no many efficient numerical methods for solving eigenvalue problems
with optimal complexity. Solving large scale eigenvalue problems is one of funda-
mental problems in modern science and engineering society. However, it is always a
very difficult task to solve high-dimensional eigenvalue problems which come from
physical and chemistry sciences. Recently, a type of multilevel correction method is
proposed for solving eigenvalue problems in [13, 19, 20]. In this multilevel correction
scheme, the solution of eigenvalue problem on the final level mesh can be reduced
to a series of solutions of boundary value problems on the multilevel meshes and a
series of solutions of the eigenvalue problem on the coarsest mesh. The multilevel
correction method gives a way to construct the multigrid method for eigenvalue
problems [19, 20].

The aim of this paper is to present a full multigrid method for solving eigenvalue
problems based on the combination of the multilevel correction method [19, 20] and
the multigrid iteration for boundary value problems. Comparing with the method
in [13, 19, 20], the difference is that we do not solve the linear boundary value
problem exactly in each correction step with the multigrid method. We only get
an approximate solution with some multigrid iteration steps. In this new version
of multigrid method, solving eigenvalue problem will not be much more difficult
than the multigrid scheme for the corresponding boundary value problems. It is
worth to noting that besides the multigrid method here, other types of numerical
algorithms such as BPX multilevel preconditioners [21], algebraic multigrid method
and domain decomposition preconditioners (cf. [8, 18]) can also act as the linear
algebraic solvers for boundary value problems.

An outline of the paper goes as follows. In Section 2, we introduce the finite
element method for eigenvalue problem and the corresponding basic error estimates.
A type of full multigrid algorithm for solving eigenvalue problem by finite element
method is given in Section 3. Two numerical examples are presented to validate
our theoretical analysis in section 4. Some concluding remarks are given in the last
section.

2 Finite element method for eigenvalue problem

This section is devoted to introducing some notation and the finite element method
for eigenvalue problem. In this paper, we shall use the standard notation for Sobolev
spaces W s,p(Ω) and their associated norms and semi-norms (cf. [1]). For p = 2, we
denote Hs(Ω) = W s,2(Ω) and H1

0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}, where v|Ω = 0 is
in the sense of trace, ‖ · ‖s,Ω = ‖ · ‖s,2,Ω. The letter C (with or without subscripts)
denotes a generic positive constant which may be different at its different occurrences
through the paper.

For simplicity, we consider the following model problem to illustrate the main
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idea: Find (λ, u) such that
{

−∇ · (A∇u) + φu = λu, in Ω,
u = 0, on ∂Ω,

(2.1)

where A is a symmetric and positive definite matrix with suitable regularity, φ is
a nonnegative function, Ω ⊂ Rd (d = 2, 3) is a bounded domain with Lipschitz
boundary ∂Ω and ∇, ∇· denote the gradient, divergence operators, respectively.

In order to use the finite element method to solve the eigenvalue problem (2.1),
we need to define the corresponding variational form as follows: Find (λ, u) ∈ R×V

such that b(u, u) = 1 and

a(u, v) = λb(u, v), ∀v ∈ V, (2.2)

where V := H1
0 (Ω) and

a(u, v) =

∫

Ω

(
∇u · A∇v + φuv

)
dΩ, b(u, v) =

∫

Ω

uvdΩ. (2.3)

The norms ‖ · ‖a and ‖ · ‖b are defined by

‖v‖a = a(v, v)1/2 and ‖v‖b = b(v, v)1/2.

It is well known that the eigenvalue problem (2.2) has an eigenvalue sequence {λj}
(cf. [3, 9]):

0 < λ1 ≤ λ2 ≤ · · · ≤ λk ≤ · · · , lim
k→∞

λk = ∞,

and associated eigenfunctions

u1, u2, · · · , uk, · · · ,

where b(ui, uj) = δij (δij denotes the Kronecker function). In the sequence {λj}, the
λj are repeated according to their geometric multiplicity.

Now, let us define the finite element approximations of the problem (2.2). First we
generate a shape-regular decomposition of the computing domain Ω ⊂ Rd (d = 2, 3)
into triangles or rectangles for d = 2 (tetrahedrons or hexahedrons for d = 3) (cf.
[8, 10]). The diameter of a cell K ∈ Th is denoted by hK and the mesh size h

describes the maximum diameter of all cells K ∈ Th. Based on the mesh Th, we can
construct a finite element space denoted by Vh ⊂ V . For simplicity, we set Vh as the
linear finite element space which is defined as follows

Vh =
{
vh ∈ C(Ω)

∣∣ vh|K ∈ P1, ∀K ∈ Th

}
, (2.4)

where P1 denotes the linear function space.

The standard finite element scheme for eigenvalue problem (2.2) is: Find (λ̄h, ūh) ∈
R× Vh such that b(ūh, ūh) = 1 and

a(ūh, vh) = λ̄hb(ūh, vh), ∀vh ∈ Vh. (2.5)
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From [2, 3, 9], the discrete eigenvalue problem (2.5) has eigenvalues:

0 < λ̄1,h ≤ λ̄2,h ≤ · · · ≤ λ̄k,h ≤ · · · ≤ λ̄Nh,h,

and corresponding eigenfunctions

ū1,h, ū2,h, · · · , ūk,h, · · · , ūNh,h,

where b(ūi,h, ūj,h) = δij , 1 ≤ i, j ≤ Nh (Nh is the dimension of the finite element
space Vh).

Let M(λi) denote the eigenspace corresponding to the eigenvalue λi which is
defined by

M(λi) =
{
w ∈ H1

0 (Ω) : w is an eigenvalue of (2.2)

corresponding to λi and b(w,w) = 1
}
, (2.6)

and define

δh(λi) = sup
w∈M(λi)

inf
vh∈Vh

‖w − vh‖a. (2.7)

Let us define the following quantity:

ηa(h) = sup
f∈L2(Ω),‖f‖b=1

inf
vh∈Vh

‖Tf − vh‖a, (2.8)

where T : L2(Ω) → V is defined as

a(Tf, v) = b(f, v), ∀f ∈ L2(Ω) and ∀v ∈ V. (2.9)

Then the error estimates for the eigenpair approximations by the finite element
method can be described as follows.

Lemma 2.1. ([2, Lemma 3.6, Theorem 4.4] and [9]) For any eigenpair approxima-
tion (λ̄i,h, ūi,h) (i = 1, 2, · · · , Nh) of (2.5), there exists an exact eigenpair (λi, ui) of
(2.2) such that b(ui, ui) = 1 and

‖ui − ūi,h‖a ≤
(
1 + Ciηa(h)

)
δh(λi), (2.10)

‖ui − ūi,h‖b ≤ Ciηa(h)‖ui − ui,h‖a, (2.11)

|λi − λ̄i,h| ≤ Ci‖ui − ūi,h‖
2
a. (2.12)

Here and hereafter Ci is some constant depending on i but independent of the mesh
size h.
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3 Full multigrid algorithm for eigenvalue problem

Recently, a multilevel correction scheme is introduced in [13, 19, 20] for solving
eigenvalue problems. Based on the idea of multilevel correction scheme, we propose
a type of full multigrid method for eigenvalue problems here. The main idea in this
method is to approximate the underlying boundary value problems on each level by
some multigrid smoothing iteration steps. In order to describe the full multigrid
method, we first introduce the sequence of finite element spaces. We generate a
coarse mesh TH with the mesh size H and the coarse linear finite element space VH

is defined on the mesh TH . Then we define a sequence of triangulations Thk
of Ω ⊂ Rd

determined as follows. Suppose Th1
(produced from TH by regular refinements) is

given and let Thk
be obtained from Thk−1

via one regular refinement step (produce
βd subelements) such that

hk =
1

β
hk−1, k = 2, · · · , n, (3.1)

where the positive number β denotes the refinement index and larger than 1 (always
equals 2). Based on this sequence of meshes, we construct the corresponding nested
linear finite element spaces such that

VH ⊆ Vh1
⊂ Vh2

⊂ · · · ⊂ Vhn
. (3.2)

The sequence of finite element spaces Vh1
⊂ Vh2

⊂ · · · ⊂ Vhn
and the finite element

space VH have the following relations of approximation accuracy

ηa(H) & δh1
(λi), δhk

(λi) =
1

β
δhk−1

(λi), k = 2, · · · , n. (3.3)

3.1 One correction step

In order to design the full multigrid method, we introduce an one correction step in
this subsection.

Assume we have obtained an eigenpair approximation (λℓ,hk
, uℓ,hk

) ∈ R × Vhk
.

Now we introduce a type of iteration step to improve the accuracy of the current
eigenpair approximation (λℓ,hk

, uℓ,hk
).

Algorithm 3.1. One Correction Step

1. Define the following auxiliary source problem: Find ûℓ+1,hk
∈ Vhk

such that

a(ûℓ+1,hk
, vhk

) = λℓ,hk
b(uℓ,hk

, vhk
), ∀vhk

∈ Vhk
. (3.4)

Perform m multigrid iteration steps with the initial value uℓ,hk
to obtain a new

eigenfunction approximation ũℓ+1,hk
∈ Vhk

by

ũℓ+1,hk
= MG(Vhk

, λℓ,hk
uℓ,hk

, uℓ,hk
, m), (3.5)
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where Vhk
denotes the working space for the multigrid iteration, λℓ,hk

uℓ,hk
is

the right hand side term of the linear equation, uℓ,hk
denotes the initial guess

and m is the number of multigrid iteration times.

2. Define a new finite element space VH,hk
= VH + span{ũℓ+1,hk

} and solve the
following eigenvalue problem: Find (λℓ+1,hk

, uℓ+1,hk
) ∈ R × VH,hk

such that
b(uℓ+1,hk

, uℓ+1,hk
) = 1 and

a(uℓ+1,hk
, vH,hk

) = λℓ+1,hk
b(uℓ+1,hk

, vH,hk
), ∀vH,hk

∈ VH,hk
. (3.6)

In order to simplify the notation and summarize the above two steps, we define

(λℓ+1,hk
, uℓ+1,hk

) = EigenMG(VH , λℓ,hk
, uℓ,hk

, Vhk
, m).

Theorem 3.1. Assume the multigrid iteration ũℓ+1,hk
= MG(Vhk

, λℓ,hk
uℓ,hk

, uℓ,hk
, m)

has the following error reduction rate

‖ûℓ+1,hk
− ũℓ+1,hk

‖a ≤ θ‖ûℓ+1,hk
− uℓ,hk

‖a, (3.7)

and (λℓ,hk
, uℓ,hk

) has the following properties

‖ūhk
− uℓ,hk

‖b ≤ Ciηa(H)‖ūhk
− uℓ,hk

‖a, (3.8)

|λ̄hk
− λℓ,hk

| ≤ Ci‖ūhk
− uℓ,hk

‖2a. (3.9)

After performing the one correction step defined in Algorithm 3.1, the resultant
eigenpair approximation (λℓ+1,hk

, uℓ+1,hk
) ∈ R×Vhk

has the following error estimates

‖ūhk
− uℓ+1,hk

‖a ≤ γ‖ūhk
− uℓ,hk

‖a, (3.10)

‖ūhk
− uℓ+1,hk

‖b ≤ Ciηa(H)‖ūhk
− uℓ+1,hk

‖a, (3.11)

|λ̄hk
− λℓ+1,hk

| ≤ Ci‖ūhk
− uℓ+1,hk

‖2a. (3.12)

where

γ = θ + (1 + 2θ)Ciηa(H) + (1 + θ)C2
i η

2
a(H). (3.13)

Proof. From (2.5) and (3.4), we have

a(ūhk
− ûℓ+1,hk

, vhk
) = b(λ̄hk

ūhk
− λℓ,hk

uℓ,hk
, vhk

), ∀vhk
∈ Vhk

. (3.14)

It leads to the following estimates

‖ūhk
− ûℓ+1,hk

‖a ≤ ‖λ̄hk
ūhk

− λℓ,hk
uℓ,hk

‖b

≤ |λ̄hk
− λℓ,hk

|+ ‖ūhk
− uℓ,hk

‖b

≤ Ciηa(H)‖ūhk
− uℓ,hk

‖a. (3.15)
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Combining (3.7) and (3.15) leads to the following linear solving error estimate for
ũℓ+1,hk

‖ûℓ+1,hk
− ũℓ+1,hk

‖a ≤ θ‖ûℓ+1,hk
− uℓ,hk

‖a

≤ θ
(
‖ûℓ+1,hk

− ūhk
‖a + ‖ūhk

− uℓ,hk
‖a
)

≤ θ
(
1 + Ciηa(H)

)
‖ūhk

− uℓ,hk
‖a. (3.16)

Then from (3.15) and (3.16), we have the following inequalities

‖ūhk
− ũℓ+1,hk

‖a ≤ ‖ūhk
− ûℓ+1,hk

‖a + ‖ûℓ+1,hk
− ũℓ+1,hk

‖a

≤
(
θ + (1 + θ)Ciηa(H)

)
‖ūhk

− uℓ,hk
‖a. (3.17)

The eigenvalue problem (3.6) can be regarded as a finite dimensional subspace
approximation of the eigenvalue problem (2.5). Similarly to Lemma 2.1 (see [2,
Theorem 4.4]), from the second step in Algorithm 3.1 and (3.17), the following
estimates hold

‖ūhk
− uℓ+1,hk

‖a ≤
(
1 + Ciη̃a(H)

)
inf

vH,hk
∈VH,hk

‖ūhk
− vH,hk

‖a

≤
(
1 + Ciηa(H)

)
‖ūhk

− ũℓ+1,hk
‖a

≤ γ‖ūhk
− uℓ,hk

‖a (3.18)

and

‖ūhk
− uℓ+1,hk

‖b ≤ Ciη̃a(H)‖ūhk
− uℓ+1,hk

‖a

≤ Ciηa(H)‖ūhk
− uℓ+1,hk

‖a, (3.19)

|λ̄hk
− λℓ+1,hk

| ≤ Ci‖ūhk
− uℓ+1,hk

‖2a, (3.20)

where

η̃a(H) = sup
f∈V,‖f‖0=1

inf
v∈VH,hk

‖Tf − v‖a ≤ ηa(H). (3.21)

Then we obtained the desired results (3.10)-(3.12) and complete the proof.

3.2 Full multigrid method for eigenvalue problem

In this subsection, we introduce a full multigrid scheme based on the One Correction
Step defined in Algorithm 3.1. This type of full multigrid method can obtain the
optimal error estimate with the optimal computational work.

Since the multigrid method for the boundary value problem has the uniform error
reduction rate, we can choose suitable m such that θ < 1 in (3.7). From (3.13), we
have γ < 1 if H is small enough. From this observation, we can build the following
full multigrid method for solving eigenvalue problems.
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Algorithm 3.2. Full Multigrid Scheme

1. Solve the following eigenvalue problem in Vh1
: Find (λh1

, uh1
) ∈ R× Vh1

such
that

a(uh1
, vh1

) = λh1
b(uh1

, vh1
), ∀vh1

∈ Vh1
.

Solve this eigenvalue problem to get an eigenpair approximation (λh1
, uh1

) ∈
R× Vh1

.

2. For k = 2, · · · , n, do the following iteration

• Set u0,hk
= uhk−1

.

• Do the following multigrid iteration

(λℓ+1,hk
, uℓ+1,hk

) = EigenMG(VH , λℓ,hk
, uℓ,hk

, Vhk
, m), for ℓ = 0, · · · , p− 1.

• set λhk
= λp,hk

and uhk
= up,hk

.

end Do

Finally, we obtain an eigenpair approximation (λhn
, uhn

) ∈ R× Vhn
.

Theorem 3.2. After implementing Algorithm 3.2, the resultant eigenpair approxi-
mation (λhn

, uhn
) has the following error estimate

‖ūhn
− uhn

‖a ≤ C
γp

1− βγp
δhn

(λ), (3.22)

|λ̄hn
− λhn

| ≤ Cδ2hn
(λ), (3.23)

under the condition βγp < 1.

Proof. Define ek := ūhk
− uhk

. Then from step 1 in Algorithm 3.2, it is obvious
e1 = 0. For k = 2, · · · , n, we have

‖ek‖a ≤ γp‖ūhk
− uhk−1

‖a

≤ γp
(
‖ūhk

− ūhk−1
‖a + ‖ūhk−1

− uhk−1
‖a
)

≤ γp
(
Cδhk

(λ) + ‖ek−1‖a
)
. (3.24)

By iterating inequality (3.24) and βγp < 1, the following inequalities hold

‖en‖a ≤ Cγpδhn
(λ) + Cγ2pδhn−1

(λ) + · · ·+ Cγ(n−1)pδh2
(λ)

≤ C

n∑

k=2

γ(n−k+1)pδhℓ
(λ) = C

(
n∑

k=2

(
βγp
)n−k

)
γpδhn

(λ)

≤ C
γp

1− βγp
δhn

(λ). (3.25)

For such choice of p, we arrive the desired result (3.22) and (3.23) can be obtained
by (2.12) and (3.22).
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Remark 3.1. The good convergence rate of the multigrid method for boundary value
problems leads to that we do not need to choose large m and p [8, 12, 17, 21].

Now we turn our attention to the estimate of computational work for Full Multi-
grid Scheme 3.2. We will show that Algorithm 3.2 makes solving eigenvalue problem
need almost the same work as solving the corresponding boundary value problem.

First, we define the dimension of each level finite element space as Nk := dimVhk
.

Then we have

Nk =
( 1
β

)d(n−k)

Nn, k = 1, 2, · · · , n. (3.26)

Theorem 3.3. Assume the eigenvalue problem solved in the coarse spaces VH and
Vh1

need work O(MH) and O(Mh1
), respectively, and the work of the multigrid solver

MG(Vhk
, λℓ,hk

uℓ,hk
, uℓ,hk

, m) in each level space Vhk
is O(Nk) for k = 2, 3, · · · , n.

Then the work involved in the Full Multigrid Scheme 3.2 is O(Nn +MH log(Nn) +
Mh1

). Furthermore, the complexity will be O(Nn) provided MH ≪ Nk and Mh1
≤

Nk.

Proof. Let Wk denote the work in the correction step in the k-th finite element space
Vhk

. Then with the correction definition in Algorithm 3.1, we have

Wk = O(Nk +MH), k = 2, · · · , n. (3.27)

Iterating (3.27) and using the fact (3.26), we obtain

Total work =

n∑

k=1

Wk = O
(
Mh1

+

n∑

k=2

(
Nk +MH

))

= O
(
Mh1

+ (n− 1)MH +

n∑

k=2

( 1
β

)d(n−k)
Nn

)

= O(Nn +MH logNn +Mh1
).

This is the desired result O(Nn + MH logNn + Mh1
) and the one O(Nn) can be

obtained by the conditions MH ≪ Nn and Mh1
≤ Nn.

4 Numerical results

In this section, two numerical examples are presented to illustrate the efficiency of
the full multigrid scheme proposed in this paper.
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4.1 Model eigenvalue problem

Here we give the numerical results of the full multigrid scheme for the model eigen-
value problem: Find (λ, u) such that





−∆u = λu, in Ω,
u = 0, on ∂Ω,∫

Ω
u2dΩ = 1,

(4.1)

where Ω = (0, 1)× (0, 1).

The sequence of finite element spaces are constructed by using linear element on
the series of meshes which are produced by regular refinement with β = 2 (connecting
the midpoints of each edge). In this example, we use two meshes which are generated
by Delaunay method as the initial mesh Th1

and set TH = Th1
to investigate the

convergence behaviors. Figure 1 shows the corresponding initial meshes: one is
coarse and the other is fine.

Algorithm 3.2 is applied to solve the eigenvalue problem. In this subsection, we
choose m = 2 and 2 conjugate gradient smoothing steps for the presmoothing and
postsmoothing in each multigrid iteration step in Algorithm 3.1. In each level of
the full multigrid scheme defined in Algorithm 3.2, we only do 2 multigrid iteration
steps (p = 2) defined in Algorithm 3.1. For comparison, we also solve the eigenvalue
problem by the direct method. Figure 2 gives the corresponding numerical results
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Figure 1: The coarse and fine initial meshes for the unit square

for the first eigenvalue λ1 = 2π2 and the corresponding eigenfunction on the two
initial meshes illustrated in Figure 1.

From Figure 2, we find the full multigrid scheme can obtain the optimal error
estimates as same as the direct eigenvalue problem solving for the eigenvalue and
the corresponding eigenfunction approximations.

We also check the convergence behavior for multi eigenvalue approximations with
Algorithm 3.2. Here the first six eigenvalues λ = 2π2, 5π2, 5π2, 8π2, 10π2, 10π2 are
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Figure 2: The errors of the full multigrid algorithm for the first six eigenvalues on the
unit square, where uh and λh denote the eigenfunction and eigenvalue approximations by
Algorithm 3.2, and u

dir
h and λ

dir
h denote the eigenfunction and eigenvalue approximation

by direct eigenvalue solving (The left figure corresponds to the left mesh in Figure 1 and
the right figure corresponds to the right mesh in Figure 1)

investigated. We adopt the meshes in Figure 1 as the initial meshes and the cor-
responding numerical results are shown in Figure 3 which also exhibits the optimal
convergence of the full multigrid scheme.

4.2 More general eigenvalue problem

Here we give numerical results of the full multigrid method for solving a more general
eigenvalue problem on the unit square domain Ω = (0, 1)× (0, 1): Find (λ, u) such
that 




−∇ · A∇u+ φu = λρu, in Ω,
u = 0, on ∂Ω,∫

Ω
ρu2dΩ = 1,

(4.2)

where

A =

(
1 + (x1 −

1
2
)2 (x1 −

1
2
)(x2 −

1
2
)

(x1 −
1
2
)(x2 −

1
2
) 1 + (x2 −

1
2
)2

)
,

φ = e(x1−
1

2
)(x2−

1

2
) and ρ = 1 + (x1 −

1
2
)(x2 −

1
2
).

In this example, we also use two coarse meshes which are shown in Figure 1
as the initial meshes to investigate the convergence behaviors. Since the exact
solution is not known, we choose an adequately accurate eigenvalue approximations
with the extrapolation method (see, e.g., [14]) as the exact eigenvalues to measure
errors. Figure 4 gives the corresponding numerical results for the first six eigenvalue
approximations. In this example, we also choose m = 2, p = 2 and 2 conjugate
gradient smoothing step in the presmoothing and postsmoothing procedure. Here
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Figure 3: The errors of the full multigrid algorithm for the first six eigenvalues on the
unit square, λh denotes the eigenvalue approximation by Algorithm 3.2, λdir

h denotes the
eigenvalue approximation by direct eigenvalue solving (The left figure corresponds to the
left mesh in Figure 1 and the right figure corresponds to the right mesh in Figure 1)

we also compare the numerical results with the direct algorithm. The corresponding
results are shown in Figure 4 which also exhibits the optimality of the error and
complexity for Algorithm 3.2.

5 Concluding remarks

In this paper, we give a full multigrid scheme to solve eigenvalue problems. The
idea here is to use the multilevel correction method to transform the solution of
the eigenvalue problem to a series of solutions of the corresponding boundary value
problems, which can be solved by some multigrid iteration steps, and solutions of
eigenvalue problems defined on the coarsest finite element space.

We can replace the multigrid iteration by other types of efficient iteration schemes
such as algebraic multigrid method, the type of preconditioned schemes based on
the subspace decomposition and subspace corrections (see, e.g., [8, 21]), and the
domain decomposition method (see, e.g., [18, 23]). The ideas can be extended to
other types of linear and nonlinear eigenvalue problems and other types problems.
These will be investigated in our future work.
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