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Abstract

In this paper, we propose a Runge-Kutta (RK) central discontinuous Galerkin (CDG) gas-

kinetic BGK method for the Navier-Stokes equations. The proposed method is based on the

CDG method defined on two sets of overlapping meshes to avoid discontinuous solutions at

cell interfaces, as well as the gas-kinetic BGK model to evaluate fluxes for both convection

and diffusion terms. Redundant representation of the numerical solution in the CDG method

offers great convenience in the design of gas-kinetic BGK fluxes. Specifically, the evaluation

of fluxes at cell interfaces of one set of computational mesh is right inside the cells of the

staggered mesh, hence the corresponding particle distribution function for flux evaluation

is much simpler than that in existing gas-kinetic BGK methods. As a central scheme, the

proposed CDG-BGK has doubled the memory requirement as the corresponding DG scheme;

on the other hand, for the convection part, the CFL time step constraint of the CDG method

for numerical stability is relatively large compared with that for the DG method. Numerical

boundary conditions have to be treated with special care. Numerical examples for 1D and

2D viscous flow simulations are presented to validate the accuracy and robustness of the

proposed RK CDG-BGK method.
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1 Introduction

There are two scales in describing compressible flow motions: the kinetic scale via the Boltz-

mann equation describing the particle distribution function and the hydrodynamic scale via

the Euler or Navier-Stokes equations describing macroscopic flow variables such as mass,

momentum and energy. In a gas-kinetic representation, all flow variables are moments of

particle distribution function; the Euler or Navier-Stokes equations can be derived from

taking moments of the Boltzmann equation based on the Chapman-Enskog expansion [3].

In this paper, we are interested in numerically simulating Navier-Stokes equations via the

Boltzmann scheme with high order accuracy.

In the past few decades, many computational efforts have been devoted to simulate Euler

or Navier-Stokes equations in the field of computational fluid dynamics (CFD). Many of clas-

sical numerical methods for Navier-Stokes equations involve solving convection and viscous

terms separately on one set of computational grid. For the nonlinear convection term, the

design of numerical fluxes at element interfaces is crucial to the success of numerical algo-

rithms. Various approximate Riemann solvers have been proposed to approximate the wave

structure of exact Riemann solutions, e.g. Godunov scheme [9], the approximate Riemann

solvers due to Roe [30], Osher [29], Harten, Lax and van Leer [11], etc. For a summary on this

topic, see [33]. For the viscous diffusion term, central difference method is often used. An-

other approach is to design fluxes at cell interfaces based on integrating particle distribution

function in the phase space at kinetic scale. The kinetic flux vector splitting method for the

Euler equations (KFVS-Euler) based on the collisionless Boltzmann equation is introduced

in [25]. When viscous effect is considered, the particle distribution function contains both

equilibrium (Maxwellian) and nonequilibrium parts of the gas flow; the inviscid and viscous

terms can be treated simultaneously. For example, the kinetic flux vector splitting method

for Navier-Stokes equations (KFVS-NS) was developed by introducing the nonequilibrium

term in particle distribution obtained by Chapman-Enskog expansion in [4]; the gas-kinetic

BGK method for Navier-Stokes equations (BGK-NS) was introduced in [40, 36].

To improve the performance of numerical schemes, high order schemes are introduced

in 80’s and underwent great development since then. For example, in the finite volume or

finite difference framework, there are the second order MUSCL scheme [34], the essentially
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non-oscillatory (ENO) scheme [10] and the weighted ENO (WENO) scheme [19, 12]. The

discontinuous Galerkin (DG) method, as a class of finite element methods, has been very

popular in the CFD community [7, 1, 8]. The high-order accuracy of DG is achieved by using

high-order polynomial approximations within each element, where more than one degrees of

freedom per element are stored and updated. The DG method has been well-known for its

flexibility, h-p adaptivity, compactness and high parallel efficiency [5]. There have been many

work in existing literatures in improving the BGK-NS method to be of high order accurate by

interpolations or reconstructions such as WENO [24], by piecewise parabolic reconstruction

of high order BGK fluxes [16], and by the DG framework [37, 18, 28]. These methods have

been successfully applied in many engineering problems, such as the hypersonic viscous and

heat conducting flows [15, 39, 17], 3D transonic flow [26], among many others. Compar-

isons between the schemes with approximate Riemann solvers and the particle distribution

functions of the Boltzmann equation are provided in [24, 14].

The central scheme uses staggered meshes to avoid solving Riemann problems at cell in-

terfaces and provides a black box solution to nonlinear hyperbolic conservation laws [27, 13].

Liu [20] introduced central schemes based on two sets of overlapping meshes. Taking advan-

tages of the redundant representation of the solution on overlapping meshes, approximate

Riemann solvers are not needed at cell interfaces, and the high order total variation dimin-

ishing (TVD) Runge-Kutta (RK) methods can be directly applied by the method of lines

approach. Following similar spirit, central DG (CDG) methods are proposed and developed

for hyperbolic equations in [21], and central local DG methods are proposed for diffusion

equations in [23].

We propose to couple the CDG framework [21] with the BGK-NS method [36] for Navier-

Stokes simulations. Compared with the DG BGK methods [37, 18, 28], CDG methods

evolve two pieces of approximate solutions defined on two sets of overlapping meshes. Such

redundant representation of numerical solution offers great convenience in the design of

gas-kinetic BGK fluxes. Specifically, the evaluation of fluxes at cell interfaces of one set of

computational mesh is right inside a cell of the staggered mesh (i.e. continuous regions of the

solution at the staggered mesh). Hence, the particle distribution function, without involving

two different Maxwellian distributions from the left and right states and the corresponding
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equilibrium state, is much simpler than existing gas-kinetic BGK methods [36, 37, 18, 28].

One of the key components that contributes to the success of the gas-kinetic BGK scheme [36]

is the exact time evolution of the BGK equation along characteristics; such mechanism,

despite its rather complicated formulation, brings the distribution function at cell interfaces

to the equilibrium state in a very effective way. In the CDG framework, since the distribution

function is continuous (at the interior of the other set of solution), such exact evolution is

not as crucial. In our scheme, the method of lines approach is adopted; a third-order TVD

RK method is used for temporal discretization. As the central scheme, the proposed CDG-

BGK has doubled the memory requirement, since two sets of solutions have to be stored

and updated simultaneously; on the other hand, for the convection part, the CFL time step

constraint of the CDG method for numerical stability is relatively large compared with that

for the DG method. The numerical boundary conditions have to be treated with special care.

For example, a class of DG basis functions that preserves the given boundary condition, in

the spirit of [6], are proposed for the wall boundary condition.

The paper is organized as follows. In Section 2, we propose the CDG-BGK method

for one and two dimensional problems. The BGK fluxes, as well as numerical boundary

conditions are discussed in details. In Section 3, following the pioneering work of [36, 18],

extensive numerical results are demonstrated to showcase the effectiveness of the proposed

approach. We conclude the paper in Section 4.

2 CDG-BGK method for compressible Navier-Stokes

equations

In this section, we first introduce a 1D BGK model and the corresponding macroscopic

conservative Navier-Stokes equations in Section 2.1. We propose to use the central discon-

tinuous Galerkin (CDG) spatial discretization [20] coupled with a third-order total variation

diminishing (TVD) Runge-Kutta (RK) temporal discretization [32] for solving the 1D Navier-

Stokes equations in Section 2.2. The BGK type flux for both convection and viscous terms

will be described in Section 2.3 and extension to two-dimensional cases will be presented in

Section 2.4. Finally we discuss the numerical boundary conditions in Section 2.5.
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2.1 The 1D BGK model and Navier-Stokes equations

The integro-differential kinetic Boltzmann equation is commonly used to describe the evo-

lution of the particle distribution function. To avoid the complicated bilinear collisional

operator of the Boltzmann equation, a simplified BGK model was proposed by Bhatnagar et

al. [2]. The BGK collisional operator is known to preserve the collisional invariant properties

of mass, momentum and energy, as well as the entropy dissipation property.

For a 1D flow, the BGK model can be written as [36]

ft + ufx =
g − f
τ

, (2.1)

where τ is the particle collision time, f(x, t, u, ξ) is an unknown function of space variable

x, time variable t, particle velocity u and internal variables ξ. ξ is taking into account

to describe the internal motions, such as rotation and vibration [35]. g(x, t, u, ξ) is the

Maxwellian distribution given by

g = ρ

(
λ

π

)K+1
2

e−λ[(u−U)2+|ξ|2], (2.2)

where ρ is the macroscopic density, U is the macroscopic velocity in the x direction, λ is

related to the gas temperature T by λ = 1/T , |ξ|2 = ξ2
1 + ξ2

2 + . . . + ξ2
K with K being the

total number of degrees of freedom in ξ.

The relation between the macroscopic conservative variables and the microscopic distri-

bution function f is

W = (ρ, ρU,E)T =

∫
ψf dΞ =

∫
ψg dΞ, (2.3)

where E = 1
2
ρU2 + p/(γ − 1) is the total energy, with p = 1

2
ρT = ρ/(2λ) to be the pressure,

and γ = (K + 3)/(K + 1) is the ratio of specific heats.

ψ = (ψ1, ψ2, ψ3)T =

(
1, u,

1

2
(u2 + |ξ|2)

)T
, (2.4)

and dΞ = dudξ is the volume element in the phase space with dξ = dξ1dξ2 . . . dξK . The

second equality in equation (2.3) is due to the fact that the BGK collisional term conserves

mass, momentum and energy. In other words, f and g satisfy the conservation constraint∫
ψ
g − f
τ

dΞ = 0, (2.5)
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at any point in space and time. By taking moments of ψ to the BGK model (2.1), due to

equation (2.5), we get ∫
ψftdΞ +

∫
uψfxdΞ = 0, (2.6)

or

Wt + Gx = 0, (2.7)

where W is the vector of the macroscopic conservative variables in equation (2.3). G =∫
uψfdΞ is the flux function from the kinetic formulation. Specifically,

G =


Gρ

Gm

GE

 =

∫
u


1

u

1

2
(u2 + |ξ|2)

 fdΞ, (2.8)

where Gρ is the density flux, Gm is the momentum flux, GE is the energy flux.

Based on the Chapman-Enskog expansion [3] with

f = g − τ(gt + ugx) +O(τ 2), (2.9)

from the BGK model (2.1), the compressible Navier-Stokes equations on macroscopic vari-

ables can be obtained by omitting O(τ 2) terms (for details see [35])
ρ

ρU

E


t

+


ρU

ρU2 + p

U(E + p)


x

=


0

s1x

s2x


x

, (2.10)

where s1x = µ[ 2K
K+1

Ux], s2x = µ[K+3
4
Tx + 2K

K+1
UUx] are the viscous terms, µ = τp is the

dynamic viscousity coefficient. For a monatomic gas, K = 2, γ = 5/3, the above Navier-

Stokes equations become,


ρ

ρU

E


t

+


ρU

ρU2 + p

U(E + p)


x

=


0

4

3
µUx

5

4
µTx +

4

3
µUUx


x

. (2.11)
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Remark 2.1. The kinetic flux function G in equation (2.8) encompasses both the convection

and diffusion terms in the macroscopic Navier-Stokes system (2.10) with the approximation

to the f function by equation (2.9). The convection term in the Navier-Stokes system (2.10)

is due to the contribution from the Maxwellian function g in (2.9), while the diffusion term

is due to the O(τ) term in equation (2.9).

2.2 The RK CDG method

We propose to use the RK CDG method [21] to solve equation (2.7). The CDG method

evolves two sets of approximate solutions defined on overlapping cells. Compared with the

DG method, the CDG method does not need a numerical flux at the cell interface. The

evaluation of the flux at the interface of one cell is right inside a cell of the other staggered

cells. The CDG method uses the flux function of the solution at the staggered cells, which

has no ambiguous values there. This is convenient for us to define the BGK flux in the next

subsection. In the following, we first follow [21] to describe the CDG method.

We first consider a 1D domain [0, L] with a partition of {xi}i=Ni=1 . Denote xi+ 1
2

= 1
2
(xi +

xi+1), and let Ii = [xi− 1
2
, xi+ 1

2
] and Ii+ 1

2
= [xi, xi+1] be two sets of overlapping cells. Two

discrete spaces associated with the overlapping cells Ii and Ii+ 1
2

are defined as

Zh = Zk
h = {z : each of its 3 components z|Ii ∈ P k(Ii),∀i},

Wh = Wk
h = {z : each of its 3 components z|I

i+1
2

∈ P k(Ii+ 1
2
),∀i},

where the local space P k(I) consists of polynomials of degree at most k on I.

The semi-discrete CDG method for solving (2.7) is given as follows: find two sets of

approximate solutions WZ
h ∈ Zh and WW

h ∈Wh, such that for any ηh ∈ Zh, ζh ∈Wh and

for all i,

d

dt

∫
Ii

WZ
hηh dx =

1

∆τn

∫
Ii

(WW
h −WZ

h )ηh dx+

∫
Ii

G(WW
h )

d

dx
ηh dx

−G(WW
h (xi+ 1

2
, t))ηh(x

−
i+ 1

2

) + G(WW
h (xi− 1

2
, t))ηh(x

+
i− 1

2

),
(2.12)

d

dt

∫
I
i+1

2

WW
h ζh dx =

1

∆τn

∫
I
i+1

2

(WZ
h −WW

h )ζh dx+

∫
I
i+1

2

G(WZ
h )

d

dx
ζh dx

−G(WZ
h (xi+1, t))ζh(x

−
i+1) + G(WZ

h (xi, t))ζh(x
+
i ),

(2.13)
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where x±i are the right and left limits at the point xi. Here, the operations for vectors

are in the component-wise sense [7]. ∆τn is the maximum time step determined by the

CFL condition, the specification of which can be found at the beginning of Section 3. The

first terms on the right side of equations (2.12) and (2.13) are used to remove its O(1/∆t)

dependency of numerical dissipation [21].

We focus our discussions on the approximate solution WZ
h on cell Ii. It can be expressed

as

WZ
h (x, t) =

k∑
l=0

WZ,l
i (t)ηli(x), (2.14)

where {ηli} is a basis function of P k(Ii). For example, the Legendre polynomials are a local

orthogonal basis of P k(Ii). In the 1D case, η0
i = 1, η1

i = ( x−xi
∆xi/2

), η2
i = ( x−xi

∆xi/2
)2− 1

3
,. . ., where

∆xi = xi+1/2 − xi−1/2. The approximate solution WW
h on cell Ii+ 1

2
can be defined similarly.

The fluxes G at the cell interfaces and the integrals on the right side of equations (2.12) and

(2.13) are calculated by the gas-kinetic formulation presented in next section. The integrals

on the right side of equation (2.12) contain solutions WW
h ,W

Z
h , which are continuous over two

subintervals [xi− 1
2
, xi] and [xi, xi+ 1

2
]. These integrals are computed by Gaussian quadrature

rules on each of the subinterval. Similar comments apply for the integral on the right hand

side of equation (2.13). If the solutions are discontinuous, the TVB limiter proposed by

Cockburn and Shu [7] will be used to eliminate spurious oscillations and enforce the stability.

In this paper, we use a method of lines RK method for temporal discretization. Let

Wh = (WZ
h ,W

W
h ), the third order TVD RK time discretization [31] for equations (2.12)

and (2.13) is the following,

W
(1)
h = Wn

h + ∆tnLh(W
n
h),

W
(2)
h =

3

4
Wn

h +
1

4
W

(1)
h +

1

4
∆tnLh(W

(1)
h ),

Wn+1
h =

1

3
Wn

h +
2

3
W

(2)
h +

2

3
∆tnLh(W

(2)
h ),

(2.15)

where ∆tn = θ∆τn is the current time step with θ ∈ (0, 1] and Lh(Wh) is the spatial

operators on the right side of the semi-discrete equations (2.12) and (2.13).

Remark 2.2. For the third-order TVD RK method (2.15), the CDG method has a little

larger CFL number than the DG method for convection part, e.g., the CFL numbers of the
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CDG method are 0.58, 0.33, 0.22, while the CFL numbers of the DG method are 0.4, 0.2, 0.13,

for P 1, P 2, P 3 respectively [22].

2.3 The BGK flux

In this section, we describe how to evaluate the vector G from the BGK model for the

CDG method in equations (2.12)-(2.13). As pointed out in Remark 2.1, both convection and

viscous terms in Navier-Stokes equations (2.10) comes from the vector G, the evaluation of

which mimics the Chapman-Enskog expansion [3]. Below, we provide a brief review of the

existing algorithm in numerically approximating the BGK flux for the gas-kinetic scheme

in the finite volume framework [36], with some of the ideas originally developed in [40, 35].

Further development of such schemes in the DG framework could be found in [37, 18, 28].

We note that it is very difficult to completely describe the BGK gas-kinetic scheme, hence

we only outline main steps with intuition below, but refer readers to the original manuscript

[36] for technical details.

Gas-kinetic scheme in finite volume framework [36]. The gas-kinetic BGK scheme up-

dates the macroscopic conservative variables based on integrating equation (2.7) from tn

to tn+1,

W
n+1

j = W
n

j +
∆tn

∆xj
(Ĝn

j− 1
2
− Ĝn

j+ 1
2
), (2.16)

where W
n

j are cell averages of the macroscopic conservative variables, ∆tn = tn+1 − tn is

current time step, ∆xj = xj+ 1
2
− xj− 1

2
and

Ĝn
j+ 1

2
=

1

∆tn

∫ ∆tn

0

∫
ψuf(xj+ 1

2
, tn + t, u, ξ) dΞdt. (2.17)

Here f is to be obtained from analytically solving the BGK model (2.1) via characteristically

tracing with a source term. Specifically,

f(xj+1/2, t
n+t, u, ξ) =

1

τ

∫ t

0

g(x′, t′, u, ξ)e−(tn+t−t′)/τ dt′+e−t/τf0(xj+1/2−ut, tn, u, ξ), (2.18)

where x′ = xj+1/2−u(tn+t−t′) is the particle trajectory, f0 is the distribution function at tn,

g is the Maxwellian distribution function. Based on the framework outlined above, to update

the macroscopic conservative variable W
n+1

j , we need to specify procedures to approximate

f0 and g in equation (2.18) and to evaluate the temporal integration in equation (2.17).
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Approximation of f0. The initial distribution function is approximated based on equa-

tion (2.9) as well as a first order Taylor expansion in space around xj+ 1
2
. We use superscripts

l and r to indicate the left and right limits of the solutions respectively. In particular,

f0(x, tn, u, ξ) =

{
gl
[
1− τ(alu+ Al) + al(x− xj+1/2)

]
, if x ≤ xj+1/2,

gr
[
1− τ(aru+ Ar) + ar(x− xj+1/2)

]
, if x > xj+1/2,

(2.19)

where

gl = g(x−j+1/2, t
n, u, ξ) = ρl

(
λl

π

)K+1
2

e−λ
l[(u−U l)2+|ξ|2],

gr = g(x+
j+1/2, t

n, u, ξ) = ρr
(
λr

π

)K+1
2

e−λ
r[(u−Ur)2+|ξ|2],

(2.20)

are the Maxwellian distribution functions based on macroscopic variables (ρl, U l, λl) and

(ρr, U r, λr) at the left limit x−j+1/2 and the right limit x+
j+1/2 respectively. al, Al are related

to the spatial and temporal slopes of g at the left limit x−j+1/2, which are simply denoted as

∂xg
l and ∂tg

l with l denoting the left limit. Similarly for ρlx, λ
l
x and U l

x. Specifically, for al

we have

al =
∂xg

l

gl
=
ρlx
ρl

+
K + 1

2λl
λlx − λlx[(u− U l)2 + |ξ|2]− 2λl(U l − u)U l

x, (2.21)

which is a quadratic function of u and ξ. In terms of implementation, it was suggested in [36]

to express al in the following quadratic form of u and ξ

al = al1 + al2u+ al3
1

2
(u2 + |ξ|2), (2.22)

with the coefficients al1, al2, al3 to be determined in a similar fashion as equations (2.28)-(2.31)

below. Al can also be expressed in the form of

Al =
∂tg

l

gl
= Al1 + Al2u+ Al3

1

2
(u2 + |ξ|2),

whose coefficients can be determined by the compatibility condition as in equations (2.33)-

(2.34) below. Similar notations and comments apply to ar, Ar. More details can be found

in [36].

Approximation of the equilibrium state g. In order to get the Maxwellian function g at

(x′, t′) in equation (2.18), let g be approximated by the following gf function based on a

Taylor expansion of the Maxwellian function around (xj+ 1
2
, tn) both in space and in time.

gf (x, t, u, ξ) =

{
g0

[
1 + āl(x− xj+1/2) + Ā(t− tn)

]
, if x ≤ xj+1/2,

g0

[
1 + ār(x− xj+1/2) + Ā(t− tn)

]
, if x > xj+1/2,

(2.23)
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where g0 is the Maxwellian distribution function at (xj+ 1
2
, tn) with

g0 = g0(xj+1/2, t
n, u, ξ) = ρ0

(
λ0

π

)K+1
2

e−λ0[(u−U0)2+|ξ|2]. (2.24)

Here the macroscopic variables (ρ0, (ρU)0, E0) at the cell interface xj+1/2 and time tn are

obtained by

(ρ0, (ρU)0, E0)T =

∫
u≥0

∫
glψdΞ +

∫
u<0

∫
grψdΞ, (2.25)

where gl, gr are specified in equation (2.20). It can be observed that gf has discontinuous

spatial slope and continuous temporal slope around (xj+ 1
2
, tn): āl, ār are related to the spatial

slopes of g0 from the left and right sides of xj+1/2 and Ā is the temporal slope of g0. They can

be determined by a similar process as that for al, ar and Al, Ar. The only difference is that

we use the ‘after-collision’ Maxwellian g0 here, while we use the ‘before-collision’ equilibrium

state gl and gr previously.

Analytical evaluation of the integration in equation (2.17). After f is determined, we can

get

Ĝn
j+ 1

2
=

1

∆tn

∫ ∆tn

0

[
〈ψuf(xj+ 1

2
, tn + t, u, ξ)〉u≥0 + 〈ψuf(xj+ 1

2
, tn + t, u, ξ)〉u<0

]
dt.

where

〈ψuf(xj+ 1
2
, tn + t, u, ξ)〉u≥0 =

∫
u≥0

∫
ψuf(xj+ 1

2
, tn + t, u, ξ) dΞ.

Similarly for the u < 0 integral. The details of the moments evaluation of such integration

can be found in Appendix A of [36]. The temporal integration in equation (2.17) can also

be performed analytically.

Proposed CDG-BGK method. We propose to use the CDG method for spatial discretiza-

tion with the BGK flux for convection and diffusion terms in the Navier-Stokes system. In

the CDG framework, two pieces of approximate solutions defined on overlapping cells are

evolved. Since the cell interface on one set of cell is right inside a cell of the staggered cells,

the solution at the staggered cell is continuous for flux evaluation without ambiguity, and

we have

gl = gr = g0, al = ar = a, Al = Ar = A, (2.26)

in equation (2.19). In other words, the before-collision and after-collision equilibrium states

are the same. Due to this fact, the use of exact time evolution formula (2.18) is not as crucial.
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Therefore, we propose to use the third-order explicit TVD RK method for time evolution by

the method of lines approach. Below we describe in details several numerical approximations

needed for the proposed CDG-BGK method. They are, in some sense, special cases for the

BGK scheme reviewed above.

Approximation of the distribution function f . The particle distribution function f at any

spatial location x and time t is approximated by

f(x, t, u, ξ) = g [1− τ(au+ A)] . (2.27)

where g = g(x, t, u, ξ) is the Maxwellian distribution (2.2) at time t. Similar to equations

(2.21) and (2.22), a is related to the spatial slope of g in the form of

∂xg

g
.
= a = a1 + a2u+ a3

1

2
(u2 + |ξ|2). (2.28)

The coefficients a1, a2 and a3 are determined by taking the spatial derivatives on the com-

ponents of W in equation (2.3),∫
ag dΞ =

∂ρ

∂x
,

∫
aug dΞ =

∂(ρU)

∂x
,

∫
a

1

2
(u2 + |ξ|2)g dΞ =

∂E

∂x
, (2.29)

where the slopes of the macroscopic conservative variables can be obtained by directly taking

derivatives of the CDG polynomials. Equation (2.29) can be rewritten in a matrix-vector

form as

Γ(a1, a2, a3)T =
1

ρ

(
∂ρ

∂x
,
∂(ρU)

∂x
,
∂E

∂x

)T
, (2.30)

where

(Γαβ) =

(∫
gψαψβ dΞ/ρ

)
=


1 U Φ1

U U2 + 1
2λ

Φ2

Φ1 Φ2 Φ3

 , α, β = 1, 2, 3, (2.31)

with

Φ1 =
1

2

(
U2 +

K + 1

2λ

)
, Φ2 =

1

2

(
U3 +

(K + 3)U

2λ

)
,

Φ3 =
1

4

(
U4 +

K2 + 4K + 3

4λ2
+

(2K + 6)U2

2λ

)
.

A is the temporal slope of g with the following form,

∂tg

g
.
= A = A1 + A2u+ A3

1

2
(u2 + |ξ|2), (2.32)
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where A1, A2, A3 are uniquely determined by the compatibility condition∫
(au+ A)ψg dΞ = 0, (2.33)

that is

Γ(A1, A2, A3)T = −1

ρ

∫
auψg dΞ, (2.34)

where Γ is the same as equation (2.31). The matrix Γ is symmetric and can be efficiently

inverted to determine the components of a in equation (2.28) and A in equation (2.32).

Integration in the phase space to obtain G. After a,A are determined, we can get the

fluxes in equations (2.12) and (2.13) by taking the moments of uψ to the distribution function

f given by equation (2.27),

G =

∫
uψfdΞ = ρ

[
〈uψ〉 − τ〈au2ψ〉 − τ〈Auψ〉

]
. (2.35)

The moments evaluation of the Maxwellian distribution function are provided in Appendix A.1.

Remark 2.3. Although the derivation of the numerical flux functions G comes from the

kinetic BGK formulation, the integration in the phase space is done analytically as in Ap-

pendix A.1. The actual implementation is at the level of macroscopic variables. Hence, the

computational cost is on the same scale of other existing Navier-Stokes solvers. The same

comments apply to the gas-kinetic BGK scheme in [36].

Remark 2.4. The BGK model corresponds to a unit Prandtl number Pr. For a variable

Prandtl number, we modify the energy flux by [36]

Gnew
E = GE + (

1

Pr
− 1)q. (2.36)

The heat flux q can be evaluated precisely,

q =
1

2

∫
(u− U)

(
(u− U)2 + ξ2

)
fdΞ = −τ

∫
g (u− U)

(
ψ3 − ψ2U +

1

2
U2

)
(au+ A) dΞ.

(2.37)

Remark 2.5. In equation (2.29), the spatial derivative is directly taken on the CDG poly-

nomials. It would lead to a kth order scheme with P k polynomial space for viscous flow

simulations (not the optimal (k+ 1)th order). For convection dominated problems, the accu-

racy would still be (k+ 1)th order. Such fact is verified in our numerical results in Section 3.
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2.4 Extension to two-dimensional cases

In this subsection, we extend the proposed CDG-BGK method in previous subsections to

two-dimensional cases. The 2D BGK model can be written as

ft + ufx + vfy =
g − f
τ

, (2.38)

where f(x, y, t, u, v, ξ) is the particle distribution function of space variables x, y, time

variable t, particle velocities u, v and internal variables ξ. While g(x, y, t, u, v, ξ) is the

Maxwellian distribution given by

g = ρ

(
λ

π

)K+2
2

e−λ[(u−U)2+(v−V )2+|ξ|2], (2.39)

where ρ is the macroscopic density, λ = 1/(2RT ), U, V are the macroscopic velocities in

x, y directions, |ξ|2 = ξ2
1 + ξ2

2 + . . . + ξ2
K with K being the total number of degrees of

freedom in ξ. Based on the conservative constraint condition (2.5), taking the moments

of ψ = (ψ1, ψ2, ψ3, ψ4)T = (1, u, v, 1
2
(u2 + v2 + |ξ|2))T to equation (2.38), we can get the

following system of macroscopic conservative equation∫
ψft dΞ +

∫
uψfx dΞ +

∫
vψfy dΞ = 0, (2.40)

or

Wt + Gx + Hy = 0. (2.41)

Here W = (ρ, ρU, ρV,E)T is the vector of macroscopic conservative variables, G =
∫
uψfdΞ

and H =
∫
vψfdΞ are the flux functions in x, y directions respectively. The Chapman-

Enskog expansion with f = g − τ(gt + ugx + vgy) +O(τ 2), and from equation (2.40) gives a

2D compressible Navier-Stokes equations [35],
ρ

ρU

ρV

E


t

+


ρU

ρU2 + p

ρUV

U(E + p)


x

+


ρV

ρUV

ρV 2 + p

V (E + p)


y

=


0

s1x

s2x

s3x


x

+


0

s1y

s2y

s3y


y

, (2.42)
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where

S1x = µ

[
2Ux −

2

K + 2
(Ux + Vy)

]
, S1y = µ(Uy + Vx),

S2x = µ(Vx + Uy), S2y = µ

[
2Vy −

2

K + 2
(Ux + Vy)

]
,

S3x = µ

[
2UUx + V (Vx + Uy)−

2

K + 2
U(Ux + Vy) +

K + 4

4
Tx

]
,

S3y = µ

[
U(Uy + Vx) + 2V Vy −

2

K + 2
V (Ux + Vy) +

K + 4

4
Ty

]
.

The total energy E = 1
2
ρ(U2 + V 2) + p/(γ − 1) with the pressure p = ρ/(2λ) and γ =

(K + 4)/(K + 2). For monatomic gas K = 1 and γ = 5/3, while for diatomic gas K = 3

and γ = 7/5. Similarly, the kinetic flux functions G,H in equation (2.41) are represented by

both convection and diffusion terms in the 2D macroscopic Navier-Stokes equations (2.42)

in x, y directions respectively.

We consider the following numerical discretization of a 2D rectangular domain Ω =

[0, Lx] × [0, Ly]. Let {xi}i=Nxi=1 and {yj}j=Nyj=1 be partitions of [0, Lx] and [0, Ly] respectively,

with xi+ 1
2

= 1
2
(xi+xi+1), yj+ 1

2
= 1

2
(yj +yj+1). Let Ii = [xi− 1

2
, xi+ 1

2
], Jj = [yj− 1

2
, yj+ 1

2
], Ii+ 1

2
=

[xi, xi+1], Jj+ 1
2

= [yj, yj+1]. Denote {Di,j}i,j and {Di+ 1
2
,j+ 1

2
}i,j be two sets of overlapping

meshes for Ω, with Di,j = Ii × Jj and Di+ 1
2
,j+ 1

2
= Ii+ 1

2
× Jj+ 1

2
, see Fig. 2.1. Two discrete

spaces associated with the overlapping cells {Di,j}i,j and {Di+ 1
2
,j+ 1

2
}i,j are defined as

Zh = Zk
h = {z : each of its 4 components z|Di,j ∈ P k(Di,j),∀i, j},

Wh = Wk
h = {z : each of its 4 components z|D

i+1
2 ,j+

1
2

∈ P k(Di+ 1
2
,j+ 1

2
),∀i, j},

where the local space P k(D) consists of polynomials of degree at most k on D. Similar to

the 1D case, the semi-discrete CDG scheme for solving equation (2.41) is given as follows:

find two sets of approximate solutions WZ
h ∈ Zh and WW

h ∈Wh, such that for any ηh ∈ Zh,

ζh ∈Wh and for all i and j,

d

dt

∫
Di,j

WZ
hηh dxdy =

1

∆τn

∫
Di,j

(WW
h −WZ

h )ηh dxdy +

∫
Di,j

(G(WW
h )

d

dx
ηh + H(WW

h )
d

dy
ηh) dxdy

−
∫ yj+1/2

yj−1/2

(G(WW
h (xi+ 1

2
, y, t))ηh(x

−
i+ 1

2

, y)−G(WW
h (xi− 1

2
, y, t))ηh(x

+
i− 1

2

, y))dy

−
∫ xi+1/2

xi−1/2

(H(WW
h (x, yj+ 1

2
, t))ηh(x, y

−
j+ 1

2

)−H(WW
h (x, yj− 1

2
, t))ηh(x, y

+
j− 1

2

))dx,

(2.43)
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Figure 2.1: 2D overlapping meshes.

d

dt

∫
D
i+1

2 ,j+
1
2

WW
h ζh dxdy =

1

∆τn

∫
D
i+1

2 ,j+
1
2

(WZ
h −WW

h )ζh dxdy

+

∫
D
i+1

2 ,j+
1
2

(G(WZ
h )

d

dx
ζh + H(WZ

h )
d

dy
ζh) dxdy

−
∫ yj+1

yj

(G(WZ
h (xi+1, y, t))ζh(x

−
i+1, y)−G(WZ

h (xi, y, t))ζh(x
+
i , y))dy

−
∫ xi+1

xi

(H(WZ
h (x, yj+1, t))ζh(x, y

−
j+1)−H(WZ

h (x, yj, t))ζh(x, y
+
j ))dx.

(2.44)

Here vectors operations are component-wise operations. The semi-discrete scheme of equa-

tions (2.43)-(2.44) will be evolved in time by the third-order TVD RK time method (2.15).

The approximate solution WZ
h on the element Di,j can be expressed as

WZ
h (x, y, t) =

2k+1∑
l=0

WZ,l
i,j (t)ηli,j(x, y), for x, y ∈ Di,j. (2.45)

The 2D Legendre polynomials ηli,j are taken as a local orthogonal basis on Di,j,

η0
i,j(x, y) = 1, η1

i,j(x, y) =
(x− xi)
∆xi/2

, η2
i,j(x, y) =

(y − yj)
∆yj/2

, η3
i,j(x, y) = η1

i,j(x, y)η2
i,j(x, y),

η4
i,j(x, y) = (η1

i,j(x, y))2 − 1

3
, η5

i,j(x, y) = (η2
i,j(x, y))2 − 1

3
, . . . ,

where ∆xi = xi+ 1
2
− xi− 1

2
, ∆yj = yj+ 1

2
− yj− 1

2
. The approximate solution WW

h can be

obtained similarly. The fluxes G(x, y, t) and H(x, y, t) on the right side of equations (2.43)
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and (2.44) are calculated by the gas-kinetic formulation presented below. Note that in 2D

case, the first two integrals on the right side of equation (2.43) contain four pieces of solutions

on four subcells, each of which is calculated by a 2D Gaussian quadrature rule. The rest

two integrals on the right side of equation (2.43) are associated with two pieces of solutions,

each of which is determined by a 1D Gaussian quadrature rule. Similar comments apply for

the integrals on the right side of equation (2.44).

In the following, we follow the spirit of 1D BGK scheme to propose the 2D strategy

for computing the fluxes G and H. The distribution function f in equation (2.38) can be

expressed as

f(x, y, tn, u, v, ξ) = g [1− τ(au+ bv + A)] , (2.46)

up to the first order of τ , where g = g(x, y, tn, u, v, ξ) is the Maxwellian distribution func-

tion (2.39) associated with the macroscopic variables (ρ, U, V, λ) at (x, y) on the dual mesh.

Similar to the 1D case, a, b are related to the spatial slopes of g in x, y directions respectively,

and are taken to be in the form of

∂xg

g
.
= a = a1 +a2u+a3v+a4

1

2
(u2 +v2 + |ξ|2),

∂yg

g
.
= b = b1 +b2u+b3v+b4

1

2
(u2 +v2 + |ξ|2).

The components of a and b can be uniquely determined from the partial derivatives of the

macroscopic conservative variables with respect to x, y∫
ag dΞ =

∂ρ

∂x
,

∫
bg dΞ =

∂ρ

∂y
,∫

aug dΞ =
∂(ρU)

∂x
,

∫
bug dΞ =

∂(ρU)

∂y
,∫

avg dΞ =
∂(ρV )

∂x
,

∫
bvg dΞ =

∂(ρV )

∂y
,∫

a
1

2
(u2 + v2 + |ξ|2)g dΞ =

∂E

∂x
,

∫
b
1

2
(u2 + v2 + |ξ|2)g dΞ =

∂E

∂y
.

(2.47)

The above equations can be written in a matrix-vector form as

Γ(a1, a2, a3, a4)T =
1

ρ

(
∂ρ

∂x
,
∂(ρU)

∂x
,
∂(ρV )

∂x
,
∂E

∂x

)T
, (2.48)

where

(Γαβ) =

(∫
gψαψβ dΞ/ρ

)
=


1 U V Φ1

U U2 + 1
2λ

UV Φ2

V UV V 2 + 1
2λ

Φ3

Φ1 Φ2 Φ3 Φ4

 , (2.49)
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with

Φ1 =
1

2

(
U2 + V 2 +

K + 2

2λ

)
, Φ2 =

1

2

(
U3 + UV 2 +

(K + 4)U

2λ

)
,

Φ3 =
1

2

(
U3 + U2V +

(K + 4)V

2λ

)
, Φ4 =

1

4

(
(U2 + V 2)2 +

(K + 4)(U2 + V 2)

λ
+
K2 + 6K + 8

4λ2

)
.

Thus, a can be obtained by solving the linear system (2.48). Similar procedures can be used

to get b. A is related to the temporal slope of g with the following form

∂tg

g
.
= A = A1 + A2u+ A3v + A4

1

2
(u2 + v2 + |ξ|2),

where A1, A2, A3, A4 are uniquely determined by the compatibility condition∫
(au+ bv + A)ψg dΞ = 0.

After a and b are determined, A1, A2, A3, A4 can be obtained by solving the following linear

system

Γ(A1, A2, A3, A4)T = −1

ρ

∫
(au+ bv)ψg dΞ, (2.50)

with Γ specified in equation (2.49).

After the distribution function f in equation (2.46) is determined, we can get the fluxes

G and H in equations (2.43) and (2.44) by taking the moments of uψ and vψ, they are

G =

∫
uψfdΞ = ρ

[
〈uψ〉 − τ〈au2ψ〉 − τ〈buvψ〉 − τ〈Auψ〉

]
,

H =

∫
vψfdΞ = ρ

[
〈vψ〉 − τ〈auvψ〉 − τ〈bv2ψ〉 − τ〈Avψ〉

]
,

where the evaluation of the moments for the 2D Maxwellian distribution function are orga-

nized in Appendix A.1.

2.5 Numerical boundary conditions

For the numerical tests in this paper, we follow closely the examples in [36, 18], with similar

boundary conditions, e.g. inflow, outflow and wall boundary conditions. In the CDG method,

two sets of approximate solutions on overlapping cells are updated; thus numerical boundary

conditions are needed for both solutions. The inflow and outflow conditions can be treated,

in a similar manner as those in DG, for both solutions in the CDG method. The more

challenging case is the wall boundary conditions.
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In the following, we take the Couette flow in a channel with the bottom wall fixed and

the top wall moving (see Section 3.2) as an example to describe the proposed numerical

no-slip boundary condition at both walls. Although the Couette flow is a 2D problem, it

can be implemented as a 1D problem since the solutions do not depend on x. We assume

the overlapping cells in the y-direction as plotted in Fig. 2.2 with the walls located at y0 and

y5 with y0 = 0, y5 = 5. Cells J0 = [y− 1
2
, y 1

2
] and J5 = [y 9

2
, y 11

2
] are cut through by the walls.

For the no-slip boundary condition at wall, the physical macroscopic velocities U, V are zero

on the wall. However, the numerical ones might not be zero due to numerical errors; such

non-zero errors might accumulated during long time evolution and eventually impact the

effectiveness of the proposed scheme. We propose to enforce zero velocities at the numerical

level. For example, in cell J0 at the bottom wall, we adopt the following basis functions

η0
0 = 1, η1

0 =

(
y − y0

∆y0/2

)
, η2

0 =

(
y − y0

∆y0/2

)2

,

with

(ρU)Zh = (ρU)Z,00 η0
0 + (ρU)Z,10 η1

0 + (ρU)Z,20 η2
0, (ρV )Zh = (ρV )Z,00 η0

0 + (ρV )Z,10 η1
0 + (ρV )Z,20 η2

0,

where ∆y0 = y 1
2
− y− 1

2
, (ρU)Z,l0 are the coefficients of (ρU)Zh for the basis ηl0 with l = 0, 1, 2,

similarly for (ρV )Z,l0 . Since η1
0 = η2

0 = 0 at y0, we only need to enforce (ρU)Z,00 = (ρV )Z,00 = 0

to get (ρU)y0 = (ρV )y0 = 0. Similarly for another set of solutions in cell J 1
2
. The approximate

solution in the ghost cell J− 1
2

is obtained in a mirror-symmetric manner with respect to the

solution on cell J 1
2
. Similar ideas of using a special set of basis to preserve the solution

structure in DG methods can also be found in [6]. Boundary conditions on the top wall

y = 5 can be set similarly.

Figure 2.2: The 1D overlapping cells for the Couette flow.
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3 Numerical examples

In this section, we present simulation results of the proposed CDG-BGK method for several

1D and 2D viscous flow problems. For comparison, most of the examples are taken from [36,

18]. The maximum time step ∆τn in equations. (2.12), (2.13), (2.43) and (2.44) is chosen

based on the CFL condition, while the time step in evolution is taken to be ∆tn = 0.9∆τn

unless otherwise specified.

We define, in 1D cases,

∆τn = min

(
CFLc hx

Emx

,
CFLd h

2
x

µ

)
,

and in 2D cases,

∆τn = min

(
CFLc

/(Emx

hx
+

Emy

hy

)
,CFLd

/( µ

h2
x

+
µ

h2
y

))
,

where hx = mini

(
min(∆xi,∆xi+ 1

2
)
)

and hy = minj

(
min(∆yj,∆yj+ 1

2
)
)

, with ∆xi = xi+ 1
2
−

xi− 1
2

and ∆xi+ 1
2

= xi+1 − xi, similarly for ∆yj and ∆yj+ 1
2
. Emx,Emy are the maximum

eigenvalues in x and y directions respectively. The eigenvalues are U − C,U, U, U + C

in the x direction and V − C, V, V, V + C in the y direction for convection part, where

C =
√
γp/ρ is the speed of sound. CFLc and CFLd are the CFL numbers for the convection

and diffusion parts. In our numerical examples, for the third-order TVD Runge-Kutta

method (2.15), we take CFLc = 0.58, 0.33, 0.22 [22] and CFLd = 0.06, 0.01, 0.005 for P 1,

P 2 and P 3 solution spaces respectively. Our CFLd numbers are larger than those taken

in [23] for the central local DG method, yet they are working properly for all our numerical

examples. The Prandtl number modification (2.36) will be used in all numerical examples

except the laminar boundary layer case.

3.1 Accuracy test

We first solve the Navier-Stokes equations (2.7) with smooth solutions, where the initial

conditions are given by

ρ(x, t = 0) = 1 + 0.2 sin(πx), U(x, t = 0) = 1, p(x, t = 0) = 1. (3.1)

The computational domain is [0, 2] with periodic boundary condition. Two different viscosity

coefficients are tested, µ = 0.00001 and µ = 0.1, corresponding to a convection-dominated
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flow and a viscous flow, respectively. For this example, the Prandtl number is Pr = 2/3

and the ratio of specific heats is γ = 5/3. We compute the solutions up to time t = 2.

TVB limiter is not used for this case. Since the exact solution is not available for this

problem, the numerical errors and orders of density ρ are computed by comparing to the

reference solution which is obtained by the P 3 solution space with 1280 cells. Here we take

∆τn = min

(
CFLc h

4
3
x

Emx
, CFLd h

2
x

µ

)
for the P 3 case so that the temporal error is not dominated.

The results are shown in Table 3.1. (k + 1)th-order convergent rate can be observed for the

proposed CDG-BGK scheme with µ = 0.00001 and P k solution spaces, while kth-order

convergent rate for even k and (k+ 1)th-order convergent rate for odd k can be observed for

the solution with µ = 0.1 and P k solution spaces.

3.2 Couette flow

In the second example, we consider the couette flow in a channel of height H, with the bottom

wall fixed and the top wall moving at a constant speed U1 in the horizontal direction. We

assume isothermal boundary condition at the bottom and top walls with temperature being

T0 and T1 respectively. If the viscosity and heat conduction coefficients µ and κq are constant,

an analytical solution for the steady state temperature distribution can be obtained, that is

T − T0

T1 − T0

=
y

H
+
PrEc

2

y

H
(1− y

H
), (3.2)

where the Eckert number is Ec = U2
1/(Cp(T1 − T0)). Cp is the heat capacity at a constant

pressure, for a monatomic gas Cp = 5
2
R and for a diatomic gas Cp = 7

2
R.

The solution of this problem does not depend on x, hence we solve it as a reduced 1D

problem from equation (2.41) in the y direction, that is,

Wt + Hy = 0,

i.e. the compressible Navier-Stokes equations (2.42) without the x-derivative term.

We take the computational domain to be [0, 5] (H = 5) and divided by 5 cells with cell

size ∆y = 1. The isothermal no-slip boundary condition with pressure gradient being zero

in y direction is used on the bottom and top walls [36]. Here we consider the temperature λ0

and λ1 at the boundaries with different ratios of specific heats γ = 5/3, 7/5, different Prandtl
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Table 3.1: Accuracy test, L1 and L∞ errors and orders for the initial condition (3.1) with
P 1, P 2 and P 3 solution spaces.

N L1 error order L∞ error order

µ = 0.00001, P 1

10 0.21E-02 – 0.34E-02 –
20 0.78E-03 1.45 0.12E-02 1.50
40 0.24E-03 1.72 0.36E-03 1.70
80 0.65E-04 1.88 0.10E-03 1.86
160 0.17E-04 1.94 0.26E-04 1.93

µ = 0.00001, P 2

10 0.28E-03 – 0.46E-03 –
20 0.36E-04 2.94 0.58E-04 2.98
40 0.46E-05 2.98 0.73E-05 3.00
80 0.58E-06 2.99 0.92E-06 3.00
160 0.73E-07 2.99 0.12E-06 2.99

µ = 0.00001, P 3

10 0.27E-04 – 0.38E-04 –
20 0.16E-05 4.04 0.25E-05 3.95
40 0.10E-06 4.02 0.15E-06 3.99
80 0.63E-08 4.01 0.97E-08 3.99
160 0.39E-09 4.00 0.61E-09 3.99

µ = 0.1, P 1

10 0.10E-02 – 0.19E-02 –
20 0.27E-03 1.93 0.52E-03 1.89
40 0.68E-04 1.98 0.13E-03 1.97
80 0.17E-04 2.00 0.33E-04 1.99
160 0.42E-05 2.02 0.84E-05 2.00

µ = 0.1, P 2

10 0.13E-03 – 0.22E-03 –
20 0.35E-04 1.95 0.56E-04 1.94
40 0.87E-05 1.99 0.14E-04 1.99
80 0.22E-05 2.00 0.35E-05 2.00
160 0.55E-06 2.00 0.89E-06 2.00

µ = 0.1, P 3

10 0.93E-05 – 0.17E-04 –
20 0.74E-06 3.65 0.14E-05 3.61
40 0.49E-07 3.92 0.90E-07 3.93
80 0.31E-08 3.99 0.56E-08 4.02
160 0.19E-09 4.03 0.38E-09 3.89
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Table 3.2: Boundary settings of λ0 and λ1 for Couette flow.
Pr γ Ec λ0 λ1

0.72,1.0 5/3 10 1/1.19960 1/1.20040
0.72,1.0 5/3 50 1/1.19992 1/1.20008
0.72,1.0 7/5 10 1/1.42851 1/1.42863
0.72,1.0 7/5 50 1/1.42829 1/1.42886

Table 3.3: Couette flow, L1 and L∞ errors and orders for P 1, P 2 and P 3 solution spaces.
N L1 error order L∞ error order

P 1

5 0.61E+00 – 0.66E+00 –
10 0.19E+00 1.66 0.22E+00 1.60
20 0.61E-01 1.65 0.74E-01 1.55

P 2

5 0.13E-03 – 0.16E-03 –
10 0.30E-04 2.14 0.41E-04 1.96
20 0.74E-05 2.04 0.11E-04 1.96

P 3

5 0.22E-04 – 0.28E-04 –
10 0.35E-05 2.63 0.45E-05 2.62
20 0.61E-06 2.51 0.82E-06 2.46

numbers Pr = 0.72, 1.0 and different Eckert numbers Ec = 10, 50. For specific settings, see

Table 3.2. We take U1 = 0.1 and µ = 0.1. The initial conditions are

ρ(y, t = 0) = 1, U(y, t = 0) = 0.1, V (y, t = 0) = 0, M(y, t = 0) = 0.1,

where M = U/C is the Mach number.

The results with different boundary settings are shown in Figs. 3.1 and 3.2. The Prandtl

number modification (2.36) is used in Pr = 0.72 cases. From the figures, we can see that: (1)

numerical results match the analytical solutions very well with different parameters even on

such a coarse numerical cell; (2) the implementation of the Prandtl number modification is

needed compared with the analytical solutions and (3) P 2 solution space gives more accurate

results than P 1 solution space with the same cell size. Numerical errors and orders of con-

vergence to analytical solutions are summarized in Table 3.3. Roughly kth order convergent

rate is observed for the method with P k polynomial space.

3.3 Navier-Stokes shock structure

Now we consider the shock structure problem for a monatomic gas by solving the Navier-

Stokes equations (2.7). γ = 5/3 and the dynamical viscosity coefficient is µ = µ−∞(T/T−∞)0.8,
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Figure 3.1: Temperature ratio (T − T0)/(T1 − T0) in the Couette flow with γ = 5/3. Left:
Ec = 10. Right: Ec = 50.

−∞ and ∞ denote the values at the upstream and downsteam respectively. The dynamical

viscosity coefficient at the upstream keeps to be a constant µ−∞ = 0.0005. The collision time

τ in the BGK model is local via the relationship τ = µ/p in each cell. The Mach number

M = 1.5 at the upstream and the Prandtl number Pr = 2/3. The initial conditions are


ρ

U

p


−∞

=


1

1

1

γM2

 ,


ρ

U

p


∞

=



(γ + 1)M2

2 + (γ − 1)M2

γ − 1

γ + 1
+

2

(γ + 1)M2(
2γ

γ + 1
M2 − γ − 1

γ + 1

)
1

γM2

 .

For this problem, the shock would not arrive at the left or right boundary. Hence, we

can impose the boundary condition as the constant left and right states. The reference

solution can be obtained by integrating the steady state Navier-Stokes equations, with the

corresponding Matlab programs available in Appendix C of [36].

The computational domain is [−0.1, 0.1] and the cell size ∆x = 1/800 for both P 1 and

P 2 cases. TVB limiter is used for this example. The results are presented in Fig. 3.3. In the

figures, the normal stress and the heat flux are defined to be

τnn =
4

3
µ
Ux
2p
, qx = −5

4

µ

Pr

Tx
pC

.

From these results, we can see that the shock structure is captured well with a reasonable
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Figure 3.2: Temperature ratio (T − T0)/(T1 − T0) in the Couette flow with γ = 7/5. Left:
Ec = 10. Right: Ec = 50.

number of grid points. The difference between the results from P 1 and P 2 cases are very

small.

3.4 Shock tube problem

In the fourth example, the Sod problem is tested by solving the Navier-Stokes equations (2.7)

with γ = 1.4 and Pr = 2/3. The computational domain is [−0.5, 0.5] with the cell size

∆x = 1/200, and ∆tn = 0.5∆τn in this case. TVB limiter is used for this example. The

initial conditions are

(ρ, U, p) =

{
(1, 0, 1), x ≤ 0,

(0.125, 0, 0.1), x > 0.
(3.3)

We compute the solutions up to time t = 0.2. Similar to shock structure case, we can impose

the boundary condition as the constant left and right states. In Fig. 3.4, we show the results

with a kinematic viscosity coefficient ν = µ/ρ = 0.0005/(ρ
√
λ). The solid lines are the

reference solutions computed on a much refined cell size ∆x = 1/1200 with P 2 solution

space. Both the shock and the contact discontinuity are captured well. From the zoom-in

Fig. 3.5, we can see the P 2 case gives slightly better results than the P 1 case. The results

with a smaller viscosity coefficient ν = µ/ρ = 0.00005/(ρ
√
λ) are presented in Fig. 3.6. The

CDG-BGK method can capture the sharp discontinuity.
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3.5 Laminar boundary layer

The last example is the 2D laminar boundary layer problem over a flat plate and we solve

the 2D Navier-Stokes equations (2.41). The wall starts from x = 0 with a length of L = 3

at y = 0. A uniform rectangular mesh with 480 × 120 cells is used on the computational

domain [−1, 3]× [0, 1]. The initial conditions are set to be

ρ−∞ = ρ(x, y, t = 0) = 1, U−∞ = U(x, y, t = 0) = 1, V (x, y, t = 0) = 0, M(x, y, t = 0) = 0.2.

We take γ = 1.4, Pr = 1, and λ−∞ = λ(x, y, t = 0) = γM2/2. The kinematic viscosity

coefficient is ν = 3× 10−4. The Reynolds number based on the upstream flow states and the

length L is Re = LU−∞
ν

= 104. No limiter is used in this case. The no-slip adiabatic boundary

condition is imposed on the flat plate. Mirror-symmetric boundary condition is used for the

other part of the bottom boundary. On the left and top boundaries, the non-reflective

boundary condition is used, which is based on the Riemann invariants. For example, on the

left boundary, let (ρ1, U1, p1) be the macroscopic density, velocity and pressure right inside

the computation domain adjacent to the left boundary and (ρ0, U0, p0) be the values on the

ghost cell correspondingly, we have

ρ0 = (
C2

0

γ S0

)
1

γ−1 , U0 =
1

2
(R1 +R2), p0 =

C2
0ρ0

γ
, (3.4)

where R1 = U−∞ + 2C−∞
γ−1

and R2 = U1− 2C1

γ−1
are two Riemann invariants, S−∞ = p−∞

ργ−∞
is the

entropy from the initial condition, C1 =
√
γ/(2λ1) and C−∞ =

√
γ/(2λ−∞) are speeds of

sound. U0 = 1
2
(R1+R2), C0 = γ−1

4
(R1−R2), S0 = p0

ργ0
in (3.4) are obtained from the conditions

U0 + 2C0

γ−1
= R1, U0 − 2C0

γ−1
= R2 and S0 = S−∞. For details, see [38]. Similar treatments on

the top boundary. A first order extrapolation of cell average of the conservative variables is

used at the right boundary.

In Fig. 3.7, we show the P 1 solution of the velocity U in the x direction. The non-

dimensional velocity U/U−∞ at location x = 0.5 and x = 1 for both P 1 and P 2 cases

are shown in Fig. 3.8, which are compared to the Blasius solution. In the plots, η =

y
√
U−∞/(νx), and we can see that the scheme with the P 2 solution space performs slightly

better than that with the P 1 solution space.
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4 Conclusion

In this paper, a novel CDG-BGK method for viscous flow simulations is proposed. The

new scheme inherits several merits from both the CDG framework and the gas-kinetic BGK

schemes. The fluxes in the BGK method is based on the particle transport and collisional

mechanism via the gas-kinetic BGK model. Such fluxes take into account of both the convec-

tive and viscous terms, due to the intrinsic connection between the gas-kinetic BGK model

and the Navier-Stokes equations. The CDG method evolves two pieces of approximate so-

lutions defined on overlapping meshes. The cell interfaces of one computational mesh are

inside the staggered mesh, hence the fluxes are in the continuous region of the staggered

solution. For the CDG-BGK method, the distribution function in the interior of elements

is continuous and is much easier to evaluate than existing finite volume or DG BGK meth-

ods. Numerical results in 1D and 2D illustrate the accuracy and robustness of the proposed

CDG-BGK scheme.
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A Appendix

A.1 1D and 2D moments

The evaluation of the Maxwellian is given in this section, the details can be found in [36].

For the 1D flow, the moments of Maxwellian g with respect to Q is introduced as,

ρ〈Q〉 =

∫
Qgdudξ,

and the general moment formula is

〈unξl〉 = 〈un〉〈ξl〉,
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where n is integer, and l is an even integer. The moments of 〈ξl〉 are

〈ξ0〉 = 1, 〈ξ2〉 =
K

2λ
, 〈ξ4〉 =

K(K + 2)

4λ2
, (A.1)

and

〈u0〉 = 1, 〈u1〉 = U, . . . , 〈un+2〉 = U〈un+1〉+
n+ 1

2λ
〈un〉. (A.2)

For the 2D flow,

ρ〈Q〉 =

∫
Qgdudvdξ,

and the general moment formula is

〈unvmξl〉 = 〈un〉〈vm〉〈ξl〉,

where n,m are integers, and l is an even integer. Here the moments 〈un〉 and 〈ξl〉 are the

same as the 1D flow. The moments of v are

〈v0〉 = 1, 〈v1〉 = V, . . . , 〈vn+2〉 = V 〈vn+1〉+
n+ 1

2λ
〈vn〉. (A.3)
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Figure 3.3: Navier-Stokes shock structure calculation, P 1 and P 2 cases.
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Figure 3.4: Shock tube problem for the Navier-Stokes equations with kinematic viscosity
coefficient ν = 0.0005/(ρ

√
λ).

Figure 3.5: The zoom-in view of the density distribution around the shock wave in shock
tube test with ν = 0.0005/(ρ

√
λ).
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Figure 3.6: Shock tube problem for the Navier-Stokes equations with kinematic viscosity
coefficient ν = 0.00005/(ρ

√
λ).

Figure 3.7: Laminar boundary layer, contour of velocity obtained by P 1 case. The right plot
is the zoom-in plot of the interesting region in the left plot.

Figure 3.8: Laminar boundary layer, U velocity distribution along two vertical lines bench-
marked with the Blasius solution. CDG solutions with P 1 and P 2 solution spaces.
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