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Abstract

A robust method to handle vacuum and near vacuum regions in hybrid simulations for space and astrophysical plasmas
is presented. The conventional hybrid simulation model dealing with kinetic ions and a massless charge-neutralizing
electron fluid is known to be susceptible to numerical instability due to divergence of the whistler-mode wave disper-
sion, as well as division-by-density operation in regions of low density. Consequently, a pure vacuum region is not
allowed to exist in the simulation domain unless some ad hoc technique is used. To resolve this difficulty, an alter-
native way to introduce finite electron inertia effect is proposed. Contrary to the conventional method, the proposed
one introduces a correction to the electric field rather thanthe magnetic field. It is shown that the generalized Ohm’s
law correctly reduces to Laplace’s equation in a vacuum which therefore does not involve any numerical problems.
In addition, a variable ion-to-electron mass ratio is introduced to reduce the phase velocity of high frequency whistler
waves at low density regions so that the stability conditionis always satisfied. It is demonstrated that the proposed
model is able to handle near vacuum regions generated as a result of nonlinear self-consistent development of the
system, as well as pure vacuum regions set up at the initial condition, without losing the advantages of the standard
hybrid code.

Keywords: collisionless plasma, kinetic simulation, hybrid simulation

1. Introduction

Numerical simulations have been an essential tool to investigate complicated nonlinear phenomena occurring in
space and astrophysical plasmas. Although the conventional magnetohydrodynamics (MHD) proves itself useful to
describe macroscopic plasma dynamics even in the collisionless regime in which the mean free path for Coulomb
collisions is comparable to or larger than the system size, it does not necessarily means that one can completely
ignore important kinetic physics. For example, it is well recognized that one must take into account kinetic effect
to understand magnetic reconnection, which has been one of the key processes in magnetospheric physics affecting
plasma transport, driving global convection, and perhaps triggering substorms. It is now becoming more and more
popular to consider that magnetic reconnection plays a key role in astrophysical environments as well. Another
example in which kinetic effect is central is the problem of particle acceleration in collisionless shocks. It requires
seamless treatment of both microscopic and macroscopic physics because small-scale phenomena primarily determine
the acceleration of low energy particles (or “injection”),while the transport of higher energy particles is predominantly
governed by characteristics of MHD turbulence. Kinetic numerical simulations that can simultaneously deal with
both macroscopic and microscopic dynamics of the collisionless plasma are indeed essential to investigate these
important issues. Among those proposed so far, the best numerical technique for this purpose is probably the hybrid
simulation, in which ions are treated kinetically whereas electrons are assumed to be a massless charge-neutralizing
fluid (Winske et al., 2001; Lipatov, 2002).
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The concept of the hybrid simulation is indeed promising in that it enables us to access the ion dynamics,
while seemingly less important but more computationally demanding electron physics has been factored out. It has
been widely used to study elementary processes such as plasma instabilities, magnetic reconnection, collisionless
fast and slow shocks (e.g., Leroy et al., 1982; Winske & Leroy, 1984; Terasawa et al., 1986; Nakamura et al., 1998;
Higashimori & Hoshino, 2012). With rapidly increasing computational resources, one may now be able to use a
simulation box which is large enough to include the global scale as well. Recently, attempts have been made to
model the interaction between the solar wind and relativelysmall unmagnetized and magnetized solar system bod-
ies by using global hybrid simulations (e.g., Terada et al.,2002; Kallio & Janhunen, 2003; Trávnı́ček et al., 2007;
Holmström et al., 2012; Dyadechkin et al., 2013). On the other hand, it has been well known that hybrid simulations
are in practice susceptible to numerical instability. Despite the long history of this technique, to the authors knowledge,
any fundamental solutions to this problem has not been given. It is indeed a serious obstacle that hinders application
to many important and interesting problems in space and astrophysical plasma physics. The primary purpose of the
present paper is to provide a practical solution to the problem of numerical stability in the hybrid simulation. As we
will see below, this can be realized by introducing a new way to include finite electron inertia effect.

It is well known that the Alfvén wave at short wavelength comparable to ion inertia length has dispersion due to
the decoupling between ion and electron dynamics. There thus appears the whistler mode whose frequency diverges
asω ∝ k2. This means that the maximum phase velocity in the system increases rapidly without bound, implying
numerical difficulty. This is probably a part of the reasons for the numerical instability in hybrid simulations. It is
thus easy to expect that inclusion of finite electron inertiacan help stabilizing the simulation because the maximum
phase velocity in this case is limited by roughly the electron Alfvén speed. Even with finite electron inertia, however,
a numerical problem arises in regions of low density. This isobviously due to the division-by-density operation
needed to calculate the electric field from ion moment quantities, which makes it impossible to handle such (near)
vacuum regions. In practice, numerical difficulty arises even long before this limit is reached because the Alfvén
speed increases as the density decreases, imposing a severerestriction on the simulation time step.

The method we propose in the present paper essentially resolves all these numerical difficulties. Our strategy is
also to introduce finite electron inertia effect to limit the maximum phase velocity in the system. We argue that the
way in which the electron inertia is introduced is a key to solve the problem. An electron inertia correction term
has conventionally been introduced to the magnetic field andits electric field counterpart is often neglected (e.g.,
Kuznetsova et al., 1998; Shay et al., 1998; Nakamura et al., 2008). By modifying the procedure so that the correction
is introduced directly to the electric field, we show that thedivision-by-density operation is almost eliminated from
the simulation procedure. In addition to this, to reduce themaximum wave phase velocity in a low density region,
the ion-to-electron mass ratio is considered to be a variable quantity. That is, the mass ratio is reduced locally so that
the CFL (Courant-Friedrichs-Lewy) condition is automatically satisfied. We demonstrate that the proposed model
implemented in a one-dimensional (1D) hybrid simulation code can successfully follow nonlinear evolution of the
system even when extremely low density regions appear as a result of strong instabilities. Furthermore, we also show
that the code is able to handle pure vacuum regions, as well asthe interface between vacuum and finite density plasma
regions. These features suggest that the present model is indeed very robust and will help stabilizing simulations
applied to many important problems in space and astrophysical plasmas.

The present paper is organized as follows. First, we presenta simulation model in section 2, in which a new way
to introduce finite electron inertia is discussed. Numerical implementation is explained in section 3. Section 4 shows
simulation results of several test problems. Finally, summary and conclusions are given in section 5.

2. Simulation Model

2.1. Standard Hybrid Model
For the sake of completeness and to clarify the differences, we first describe the standard hybrid model. Readers

who are already familiar with the hybrid model and its assumptions can skip this subsection. Tutorials and compre-
hensive reviews of the hybrid code are found elsewhere (Winske et al., 2001; Lipatov, 2002).

The basic equations used in the hybrid model are consisting of equation of motion for individual ions and for a
fluid electrons

dx j

dt
= v j , (1)
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dv j

dt
=

q j

mj

(

E +
v j

c
× B

)

, (2)

dve

dt
= − e

me

(

E +
ve

c
× B

)

− 1
neme

∇ · Pe, (3)

where the subscriptj ande indicate the indices for individual ions and the electron fluid and other notations are
standard.

The electromagnetic fields evolve according to the following Maxwell equations in the Darwin approximation

1
c
∂B
∂t
= −∇ × E, (4)

∇ × B =
4π
c

J, (5)

and the electric charge densityρ and current densityJ are defined as

ρ =
∑

s

qsns− ene, (6)

J =
∑

s

qsnsVs − eneVe, (7)

whereqs, ns,Vs are the charge, number density and bulk velocity of ion speciesscalculated by taking moments of the
distribution function. Notice that there is no equation to determine the time evolution of the electric field.

The crucial assumption in the hybrid model is the quasi-neutrality, that is, the electrons move fast enough to cancel
any charge-density fluctuations andρ = 0 is always satisfied. The electron density thus can be written by using ion
densitiesne ≈ ni ≡

∑

s qsns/e. In addition, the electron bulk velocity may also be eliminated using Ampere’s law and
the relationVe = Vi − J/nie whereVi ≡

∑

s qsnsVs/nee. Finally, since the conventional hybrid model ignores the
inertia of electron completely (me → 0), one can use the equation of motion for the electron fluid todetermine the
electric field from given ion moment quantities and the magnetic field. This gives the generalized Ohm’s law of the
form

E = −Ve

c
× B − 1

nie
∇ · Pe,

= −Vi

c
× B +

1
4πnie

(∇ × B) × B − 1
nie
∇ · Pe. (8)

The second term in the right-hand side is the well-known Hallelectric field contribution. Determining the electron
pressure tensor by using an appropriate equation of state, the evolution of the system can be followed in time.

2.2. Finite Electron Inertia

The conventional way to include a finite electron inertia correction into the hybrid model is to introduce the
following so-called generalized electromagnetic fieldÊ, B̂ defined as

Ê = E − ∂
∂t













c
ω2

pe
∇ × B













, (9)

B̂ = B + ∇ ×












c2

ω2
pe
∇ × B













, (10)

in which the terms proportional to∇ × B represent electron inertia correction (Lipatov, 2002). Itis easy to show that
they exactly satisfy Faraday’s law:

1
c
∂B̂
∂t
= −∇ × Ê. (11)
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From the equation of motion for the electron fluid, it may be shown that

Ê = −Ve

c
× B − 1

nee
∇ · Pe −

me

e
(Ve · ∇) Ve, (12)

which is similar to the generalized Ohm’s law Eq. (8) but now with the last term which also represents the correction.
Note that this equation is not exact; we have dropped the terms ∂ne/∂t, ∂ni/∂t, ∂niVi/∂t, assuming ion moment
quantities do not change during the fast electron time scale.

Given the generalized electric field̂E, one can advance the generalized magnetic fieldB̂ by using Eq. (11). The
standard electromagnetic field may then be recovered from Eqs. (9) and (10). Further simplifications are commonly
adopted; for example, the electric field correction term andelectron-scale spatial variation of density are often ignored.
In this case, the magnetic field may be recovered by solving the implicit equation

B̂ =













1− c2

ω2
pe
∇2













B, (13)

andÊ ≈ E is assumed. The nice feature with this approach is that the correction can be implemented as a post process
to the each integration step of a standard procedure.

Although the above (or similar) set of equations correctly model finite electron inertia effect on transverse modes
and have been used for a variety of problems in space physics (e.g., Kuznetsova et al., 1998; Shay et al., 1998;
Nakamura et al., 2008), we here prefer to use a different form concerning the numerical stability. Multiplying nee
to Eq. (12) and eliminatinĝE using Eq. (9), one obtains

1
4π

(

ω2
pe− c2∇2

)

E =
e

me

(

Je

c
× B − ∇ · Pe

)

+ (Ve · ∇) Je, (14)

whereJe ≡ −eneVe is the electron current density. In deriving this equation,∇ · E ∼ O((VA/c)2) has been neglected,
which is indeed a reasonable assumption. Once the electric field is determined by solving Eq. (14), the magnetic field
may be updated using Eq. (4) without invoking the generalized electromagnetic fields.

The present implementation obviously describes the electron scale physics better than the conventional one be-
cause it retains the correction term for the electric field aswell. Concerning the ions dynamics, however, the effect
will be small as it affects only high frequency waves. Nevertheless, the use of Eq.(14) has a remarkable advantage.
It is easy to recognize that the terms in the right-hand side of Eq. (14) are proportional to the density. (Or more
precisely, they are first and second order moments of the distribution function.) Therefore, in the limit of low density
(ne ≈ ni → 0), it correctly reduces to the following Laplace’s equation:

∇2E = 0, (15)

implying that there is no essential difficulty with this equation in dealing with low density (or vacuum) regions. This
is reflected by the fact that the division-by-density operation is “almost” eliminated in the calculation procedure. This
will be explained later in more detail.

The idea of solving Laplace’s equation instead of the generalized Ohm’s law Eq. (8) to obtain the electric field
in low density regions is not new. For instance, Harned (1982) used the same idea to allow a vacuum region to exist
in a simulation box. In this case, however, the plasma and vacuum regions are essentially distinct and the interface
between them must somehow be determined. On the other hand, there is no need to determine such an interface in our
case. It is clear from Eq. (14) that these two regions are naturally connected with an intermediate region in between
where the electron inertia effect dominates.

Strictly speaking, however, one must recognize the fact that dealing with such a low density region in the hybrid
model certainly violates its assumptions. Namely, the quasi-neutrality assumptionne ≈ ni is no longer valid in such a
tenuous region because time scale associated with the electron plasma oscillation may ultimately become comparable
to the simulation time step, and non-negligible charge density fluctuation would appear in reality. It is thus clear that
this model does not necessarily give physically correct description of the interface between the plasma and vacuum
regions. However, with typical dynamic range of density andgrid sizes in hybrid simulations, such a region is not
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well resolved anyway. It is thus rather important in practice that a code has capability to handle such regions without
numerical problems.

For later use, we rewrite Eq. (14) into the following form
(

ρe −
me

e
c2

4π
∇2

)

E = F(B, ρe, Je,Pe)

≡ Je

c
× B − ∇ · Pe+

me

e
(Ve · ∇)Je+ ρeηJ (16)

whereρe = ene (> 0) is the electron charge density. Here we have introduced a finite resistivityη. It is easy to see
that terms with theme/e factor is due to finite electron inertia which vanishes in thelimit me → 0, and the standard
generalized Ohm’s law (8) is recovered.

In Appendix A, a generalized equation for the electric field is derived in a more systematic manner, which reduces
to Eq. (14) in a certain limit appropriate for practical purposes.

2.3. Electron Pressure

Although so far nothing has been assumed for the electron pressure tensor, in the present study we consider only
a scalar pressurePe = PeI (whereI is a unit tensor) determined by the polytropic equation of state for simplicity. To
ensure that the pressure becomes zero in a vacuum regionne ≈ ni → 0, we takeS ≡ Pe/ρ

γ
e to be the independent

variable whereγ (> 1) is the polytropic index for the electron fluid. Since it is aquantity related to the entropy
(∝ ln S), its total derivative is zero in the absence of explicit dissipation. In the presence of finite resistivity, we have

d
dt

S =
∂

∂t
S + (Ve · ∇)S = (γ − 1)η

J2

ρ
γ
e
. (17)

The electron pressurePe may readily be obtained by multiplyingS by ργe. It thus vanishes in a vacuum region,
consistent with Laplace’s equation Eq. (15). Hereafter, the quantityS is called the electron entropy although it is not
so in a strict sense.

Note that the application of our equation for the electric field is not restricted to the specific model of the electron
pressure tensor. Extension to any tensor electron pressuremodels proposed previously, such as those used to study
collisionless magnetic reconnection (e.g., Hesse & Winske, 1994; Kuznetsova et al., 1998), is straightforward.

3. Numerical Implementation

In this section, implementation of the proposed model to a 1Dcode is described. We think that the scheme
given here is just an example and different methods may also be used and extension to multidimensions should be
straightforward because the essential difference from the standard hybrid code is only the way in which the electric
field is determined.

3.1. Time Integration

The standard Buneman-Boris integration is used to calculate particle trajectories. The particle positions and veloc-
ities are defined at the integer and half-integer time steps (xn

j , vn+1/2
j ), respectively. Accordingly, the electromagnetic

field is defined at the integer time stepEn, Bn.
We use the following iterative algorithm of Horowitz et al. (1989) for time integration of the induction equation.

Bn+1/2 = Bn − c∆t
2
∇ × En+1/2 (18)

(

ρn+1/2
e −

mec2

4πe
∇2

)

En+1/2
k = Fk(Bn+1/2, ρn+1/2

e , Jn+1/2
e ,Pn+1/2

e ), (19)

ρn+1/2
e En+1/2

x = Fx(Bn+1/2, ρn+1/2
e , Jn+1/2

e ,Pn+1/2
e ), (20)

wherek = y, z. Notice that the longitudinal component (Ex) does not have the Laplacian correction term. This comes
from the fact that the longitudinal and transverse components decouple in 1D, and the correction must operate only
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to the transverse component. In multidimensional simulations, one may simply introduce the correction to all the
components because (1)∇ · E is small and (2) it is not easy (unless one solves Poisson’s equation) to decompose the
field into the transverse and longitudinal components.

We define the electron entropy (or equivalently pressure) atthe half time stepSn+1/2, which is advanced by using
the electron velocity defined at the full time stepVn

e as follows

Sn+1/2 = Sn−1/2 − ∆t

[

(

Vn
e · ∇

)

Sn−1/2 + (γ − 1)η
(Jn)2

(ρn
e)γ

]

, (21)

and then used to determine the electric fieldEn+1/2. The iteration is typically performed until relative errorof the
electric field becomes smaller than 10−3 at all grid points. Although this formally looks an implicitscheme, we find it
is not stable when the CFL condition defined for whistler wavephase velocity is violated.

The electromagnetic field at the next time step is then determined as follows

Bn+1 = −Bn + 2Bn+1/2 (22)

En+1 = −1
2

En−1/2 +
3
2

En+1/2. (23)

Notice that the electric fieldEn+1 is estimated from those defined at half time steps. We find thatnaive use of the
relationEn+1/2 = (En+1+En)/2 results in producing high frequency aliasing noise in the electric field spectrum, which
completely vanishes when Eq. (23) is used instead. This may be understood by the fact that the value ofEn is not well
constrained because adding an arbitrary amount toEn and subtracting the same amount fromEn+1 does not change
En+1/2. SinceEn+1/2 is well determined by the above iteration procedure, Eq. (23) better estimates the electric field at
the next step.

3.2. Spatial Discretization and Electron Inertia Correction

We use the standard staggered mesh for the electromagnetic field Bi+1/2, Ei with a constant grid spacing∆x. To
be consistent with this, ion moment quantities and the electron entropy are defined at the integer grid points:ρe,i , Je,i,
Si . The second-order central finite difference is used for approximation of spatial derivatives except for the electron
entropy equation (21) which is solved by the first-order upwind scheme. It is well known that the staggered mesh can
be extended to multidimensions and it guarantees∇ · B = 0 within machine epsilon.

We solve the implicit equation (16) for the electric field in an iterative manner. The right-hand-sideF calculated
from the moment quantities and magnetic field at each grid point is used as a source term for solving the equation.
The second-order finite difference approximation to the Laplacian operator reduces it to a tridiagonal matrix equation
in 1D

(

−ǫEk,i−1 +
(

ρe,i + 2ǫ
)

Ek,i + −ǫEk,i+1
)

= Fk,i , (24)

wherek = y, z andǫ = mec2/4πe∆x2. Notice thatǫ/ρe = (c/ωpe/∆x)2 . 1 in practice, meaning that the matrix is
diagonally dominant and is relatively easy to invert. In this study, we use the simple symmetric Gauss-Seidel method to
solve the matrix equation which is very easy to implement. Although its convergence is known to be slow, experience
has shown that only a few iterations are typically sufficient. In general, with higher order discretization and/or in
multidimensions, it becomes a band matrix. The diagonally dominant property, however, does not change because
it is determined by the fact that the electron inertia is merely a small correction. The situation obviously changes
when the grid size is chosen to be small enough to resolve the electron inertia lengthc/ωpe to take into account the
electron-scale physics more rigorously. In addition, in the case where a pure vacuum region exists in the simulation
domain as is treated in one of the test problems discussed below, the implicit equation essentially reduces to Laplace’s
equation. In such a case, it is better to use a more sophisticated iterative matrix solver for faster convergence.

It is worth noting that, once the source term is given, the division-by-density operation is not anymore needed to
invert the matrix, because the diagonal coefficients (whose inverses are needed) of the matrix isρe,i + 2ǫ, rather than
ρe,i. However, we must mention that the calculation ofVe = Je/ρe cannot completely be avoided from the numerical
procedure: It appears at the third term of the source term of Eq. (16) and the equation for the electron entropy Eq. (17).
Nevertheless, these terms do not pose a serious numerical problem in practice because they represent the Doppler shift
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of the waves into the electron-fluid rest frame whenever it iswell-defined, while on the other hand, in a vacuum region
obviously it cannot be defined. For the present purpose, we redefine the electron velocity as

Ve =
Je

max(ρe, ρe,min)
, (25)

where the minimum densityρe,min is chosen to correspond to the one-count level in the presentstudy. This makes sure
that the electron velocity does not diverge in a vacuum region whereas the modification does not affect results in a
cell containing more than one particle. We find this simple fix, combined with the variable mass ratio technique as
explained below, is sufficient to keep track of the simulation without numerical problems even for highly nonlinear
problems in which near vacuum regions appear in an unexpected manner.

3.3. Variable Mass Ratio

The numerical schemes described so far have been shown to be successful when the time step is sufficiently small.
However, it may become unstable in highly nonlinear problems in which regions of extremely low density appear as a
result of self-consistent time evolution and consequentlythe maximum phase velocity of the system violates the CFL
condition. A much smaller time step is therefore needed for stability, but it is often impractical. We simply try to
stabilize the simulation by numerical means at the expense of correct physics whenever they appear in the simulation
box.

For a cold plasma, the maximum wave phase velocity in the system is determined from the whistler mode disper-
sion relation as

vp,max≃
1
2

B
√

4πneme

=
1
2

VA,e (26)

whereVA,e is the electron Alfvén velocity. This upper bound on the phase velocity does not exist in the limitme→ 0
because the electron Alfvén velocity is proportional to

√
mi/me.

In general, numerical stability for an explicit scheme at least requires the Courant number defined with respect to
the maximum phase velocity to be less than unity:vp,max∆t/∆x ≤ 1. The phase velocity must therefore be numerically
reduced for stability in low density regions. Our strategy here is to consider the mass ratio as a variable quantity.
By locally and temporarily modifying the mass ratio, the maximum phase velocity can be reduced so that the CFL
condition is always satisfied. More specifically, one may usea modified electron massm′e defined as

m′e
mi
= max















me

mi
,V2

A

(

∆t
2α∆x

)2












(27)

instead of the physical electron massme. HereVA = B/
√

4πnimi is the Alfvén speed calculated by using the local
density and magnetic field, andα is the maximum allowed Courant number. In the present paper,we always choose
α = 1/2 for safety.

It is important to mention that although this modifies the dispersion relation of whistler waves, low frequency
Alfvén waves are not affected as far asme/mi ≪ 1 is satisfied. In contrast, if one imposes a floor value in density to
reduce the phase velocity, it is modified even in the MHD limit. In addition, since the phase velocity diverges at short
wavelength in the limitme→ 0, the floor value must be chosen much larger than the case withfinite electron inertia.
It must be pointed out that the electron inertia lengthc/ωpe introduced in hybrid and Hall-MHD models is usually
treated as if it were a constant even when the density may change substantially (Kuznetsova et al., 1998; Shay et al.,
1998; Nakamura et al., 2008). This corresponds to changing the mass ratio to compensate the density variations. Our
treatment is similar, but much better than this because it may change only in the limited region and time in which the
stability condition is no longer satisfied. In any case, modification of the finite electron mass will not influence the
simulation results as far as the electron inertia scale is not appropriately resolved.

We emphasize that when one is primarily interested in the iondynamics, a finite electron mass may be seen as
an artificial parameter for numerical stability rather thanphysical, which does not affect the simulation results by
assumption. This will hold in most of situations where the hybrid simulation applies and the electron inertia effect is
not expected to be important. Otherwise, one must employ a more fundamental model taking into account rigorous
electron-scale physics. In Appendix B, validity range of such variable mass ratio technique is discussed.
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4. Test Problems

In this section, we discuss simulation results for several test problems that demonstrate the robustness of our new
method. In the present paper, we fix the number of iteration for the electron inertia correction (symmetric Gauss-
Seidel iteration) to 2, while the iteration to determine theelectric field (i.e., the Horowitz iteration loop) continues
until the relative error of electric fields becomes less than10−3. Note that we have confirmed that the number of
iteration for the electron inertia correction does not change the result significantly.

In the following, unless otherwise stated, time and space are respectively normalized to the inverse ion cyclotron
frequency 1/Ωci and the ion inertia lengthVA/Ωci defined for the average density and magnetic field. The speed of
light is held fixed toVA/c = 10−4 in all the simulation runs presented below. The resistivityis assumed to be zero
except for examples shown in section 4.4. The number of grids, number of particle per cell are denoted byNx, Nppc,
respectively. The periodic boundary condition is always used, and the velocity distribution is initialized by isotropic
Maxwellian with a given temperature.

4.1. Linear Dispersion Relation

We have tested whether our newly developed code can reproduce theoretical linear dispersion relation for a homo-
geneous plasma with finite electron inertia effect. The simulations are performed without any explicit perturbations
and the system evolves solely from thermal noise. The code isverified with various grid spacings and time steps,
number of particles per cell, as well as physical parameterssuch as mass ratio, plasma beta, etc. One of the exam-
ples is shown in Fig. 1, which displays theω−k diagram of the transverse electric field obtained with a massratio
mi/me = 100, temperature ratioTi/Te = 1, and plasma betaβi = 10−2. Here, the constant background magnetic field
B0 is imposed along thex direction and the electric field is normalized toVAB0/c accordingly. Other simulation pa-
rameters are as follows:∆t = 5× 10−3, ∆x = 0.1, Nx = 256,Nppc = 64. In this plot, the positive (negative) frequency
represents right-hand (left-hand) circularly polarized mode, and similarly signs of the wavenumber indicate different
helicities. We see that the agreement between the simulation result and theoretical dispersion relation shown with the
solid lines is very good. Notice that, in this figure, the effect of electron inertia appears atkλi & 3, beyond which the
phase velocity is reduced relative to the Hall-MHD dispersion relation shown in the dashed line. We have confirmed
that the total energy is in general very well conserved. In this particular run, the error is less than∼ 2× 10−3 %.

4.2. Electromagnetic Ion Beam Instability

In this section, we discuss simulation results for the resonant electromagnetic ion beam instability which is one of
the standard test problems for a conventional hybrid code. The purpose of this test is to show that the present method
does not introduce any additional numerical difficulties when applied to problems that can be treated by the standard
hybrid model.

The simulation setup is very similar to Winske & Leroy (1984). We choose the relative beam densitynb/n0 = 0.02,
and bulk velocityVb/VA = 10 streaming parallel to the ambient magnetic field, the plasma beta for core ionsβc = 1.0,
beam ionsβb = 1.0, and electronsβe = 0.1. The ion to electron mass ratio is chosen to bemi/me = 100. In this case,
it is easy to find from linear analysis that right-hand circularly polarized electromagnetic waves propagating parallel
to the magnetic field are unstable due to cyclotron resonant interaction with the beam ions. The initial magnetic field
is thus taken to be along thex direction. Fig. 2 displays the time evolution of the mode amplitudes that are expected
to grow due to this instability. In this simulation, we use∆t = 0.01,∆x = 0.25, Nx = 1024,Nppc = 64. It is clear
that the simulation results agree very well with the linear theory whose growth rates are shown in dashed lines. Fig. 3
shows a snapshot of the magnetic field, and the ion phase spacediagram for both beam and core components just
before the saturation. The transverse velocities of beam ions are strongly affected by the excited large-amplitude
wave whereas the core ions are modulated only slightly. Thisfeature is consistent with the fact that the instability is
excited by the resonance between the wave and beam ions. Fig.4 shows time evolution of parallel and perpendicular
energies for both beam and core ions, as well as the magnetic field energy. One can see that the beam parallel energy
is substantially reduced as a result of the instability and transferred to the perpendicular energy of the beam and core
components through pitch-angle scattering.

The above linear and nonlinear development of the instability is consistent with previous studies, and thus confirms
that the new model can reproduce the standard hybrid simulation results. Note that, in this simulation, the grid
size is always much larger than the electron inertia length during the whole run and the electron inertia effect is an
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Figure 1: Power spectral density (gray scale) obtained fromthe simulation for a homogeneous plasma. No explicit perturbations are added at the
initial condition. The solid line represents the dispersion relations of circularly polarized electromagnetic wavescalculated for a cold plasma. The
dashed line shows the dispersion relation corresponding tothe Hall-MHD (me→ 0).

unimportant small correction. Indeed, the result without the correction appears almost exactly the same. It is important
to mention that the inclusion of the electron inertia effect does not impose any numerical difficulties in application of
our method to problems where the electron inertia does not play a role.

4.3. Decay Instability

Now we consider an example in which near vacuum (or extremelylow density) regions appear as a result of
nonlinear and self-consistent development of the system. The standard hybrid method will not be able to keep track
of such a simulation owing to its limit on handling low density regions. In contrast, we demonstrate that the present
model is free from such difficulty.

To show this, we choose a parametric instability of a large-amplitude circularly polarized Alfvén wave (Goldstein,
1978; Wong & Goldstein, 1986; Terasawa et al., 1986). Although the Alfvén wave is an exact solution of MHD equa-
tions even for finite amplitude, it is known to be unstable against perturbations and will decay through the excitation
of other waves (daughter waves). Specifically, the decay instability is a process occurring in a low beta plasma that ex-
cites a forward-propagating ion-acoustic wave and a backward-propagating Alfvén wave. The simulation parameters
are chosen as follows. The parent large-amplitude wave is onthe R-mode Alfvén/whistler branch propagating along
the ambient magnetic field (taken along thex direction) with frequency and wavenumber of (ω0, k0) = (0.215, 0.196)
and the amplitude isBp/B0 = 0.5 (i.e., 50% of the background magnetic field). The plasma beta (for both ions and
electrons) and ion-to-electron mass ratio areβi = βe = 10−2 andmi/me = 100, respectively. Other parameters are
∆t = 0.01,∆x = 0.5, Nx = 512,Nppc = 64.

Time evolution of the decay instability is summarized in Fig. 5. In this figure, the transverse magnetic fieldBy is
decomposed into different helicities (denoted asB+y andB−y ), and are shown in the left and center panels, respectively.
Note that theB+y (B−y ) component includes R-mode (L-mode) waves propagating to the right and L-mode (R-mode)
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Figure 2: Time evolution of mode amplitudes expected to growdue to the electromagnetic ion beam instability. The different colors represent
different modes (mode numbers 4, 5, 6). The dashed lines indicate theoretical linear growth rates for corresponding modes shown in the solid lines.

wave propagating to the left. (See Terasawa et al. (1986) fortechnical details.) The density fluctuations are also shown
in the right panel. The parent wave is a R-mode wave propagating in the positivex direction with a mode number
of 8, which can be easily identified in the left panel at the initial stage. The growth of the instability is seen as the
development of large-amplitude density fluctuations. A backward-propagating Alfvén wave is then excited associated
with this. For this particular run, the amplitude of densityfluctuations is found to be substantial (Ni/Ni,0 & 1) at the
saturation stage.

Fig. 6 displays the snapshot of density and ion phase space diagram around the saturationΩcit = 92.0. One can
see that clear ion phase-space holes are formed due to the trapping of ions by an electrostatic potential produced
by large-amplitude ion-acoustic waves as was found by earlier studies (Terasawa et al., 1986). The large-amplitude
density fluctuations are associated with the trapped ion dynamics. The minimum density (during the whole run) goes
down to∼ 10−2 relative to the initial density, which is comparable to the one-count level (1/Nppc ∼ 0.016) for the
simulation parameters. Thanks to the new method to determine the electric field as well as the variable mass ratio
technique, the appearance of such extremely low density regions does not lead to collapse of the simulation. Note that
we have confirmed that a fixed mass ratio makes simulations numerically unstable even if the same equation is used
to determine the electric field. Furthermore, even densities below the one-count level do not lead to any numerical
problems. Indeed, a simulation with a lower beta (β = 10−3) with all other parameters fixed is also successful, in
which the minimum density becomes as low as∼ 10−3, i.e., well below the one-count level. This demonstrates the
robustness of our model in handling low density (or near vacuum) regions which may appear in an unexpected manner
due to nonlinear development of the system. This is a clear advantage over the standard hybrid code.

4.4. Plasma Expansion to Vacuum
Finally, we demonstrate that the present model is able to handle a pure vacuum as well as the interface between

plasma and vacuum regions in a seamless manner. One of the examples of such situations occurring in space is
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Figure 3: Snapshot of magnetic fieldBy (top) and transverse ion phase space diagram for core (middle) and beam (bottom) components just before
the saturation.

the interaction between the solar wind and the Moon (e.g., Holmström et al., 2012). Since the solar wind plasma
is obscured, the plasma density is substantially depleted behind the obstacle and a wake region appears which is
essentially a vacuum region. The solar wind plasma gradually intrude into the wake owing to a finite thermal velocity
and the region will be filled with the plasma again far downstream of the obstacle. Assuming steady state, this
refilling process of the wake may be approximately modeled by1D expansion of a plasma into a pure vacuum region
(Farrell et al., 1998; Birch & Chapman, 2001), which is simulated here.

Initially, the system is divided into two regions: the left and right regions respectively correspond to the plasma
and vacuum regions. The plasma then freely expands into the vacuum region with their thermal velocity. This can
be clearly seen in Fig. 7 showing a snapshot of a typical simulation. The plasma region is initially uniform and is
characterized byβi = βe = 10−2, andmi/me = 100. The uniform magnetic fieldB0 parallel to thex direction is
imposed. Other parameters∆t = 0.01,∆x = 0.5, Nx = 512 andNppc = 128 for the plasma region are used. Note that,
in this section, the inertia length and Alfvén velocity (i.e., normalizations) are defined with the average density over
the entire simulation box.

Since the magnetic field is alongx direction, particles in the left-hand side of the box with positive velocity can
freely propagate to the vacuum region. This free streaming signature can be seen in the ion phase space diagram.
In addition, the longitudinal electric fieldEx in the interface region is slightly positive due to the pressure gradient
(x ∼ 130−140), and the ions at the leading edge are accelerated towardthe vacuum, a feature consistent with previous
particle-in-cell simulations (Farrell et al., 1998; Birch& Chapman, 2001). We see that the code can keep track of the
evolution without any numerical instabilities even in the presence of a pure vacuum region. No ad hoc technique is
needed in handling the interface region.

There is concern about handling vacuum regions with hybrid codes because a finite current density may numer-
ically arise even in the absence of current carriers. This isbecause the total current is calculated from the magnetic
field and is nothing to do with the plasma density. This clearly contradicts with the basic assumption of the hybrid
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Figure 4: Time history for parallel and perpendicular particle energies for the beamWb,‖, Wb,⊥(top), core ionsWc,‖, Wc,⊥, and the magnetic field
energyWf (bottom).

model. To let the system quickly relaxes to a state consistent with the assumption, previous studies have introduced
a large resistivity in low density regions (Hewett, 1980; Holmström, 2013). The resulting equation for the magnetic
field is a diffusion equation with its coefficient proportional to the resistivity, and the steady statesolution is given
by a potential magnetic field∇2B = 0. The problem with this approach is that the large resistivity imposes a severe
restriction on the time step for an explicit time integration scheme. In contrast to this, our method can better handle
this issue.

In the region of our interest, the plasma densityρe approaches to zero, whereas we need a large resistivityη. We
may thus assume thatηρe remains finite. Then for a sufficiently low density region, the equation for the electric field
is reduced to

∇2E = −
ω2

pe

c2
ηJ. (28)

In this case, by taking rotation of the induction equation, one sees

∂

∂t
(∇ × B) = −η

ω2
pe

4π
(∇ × B) (29)

which means that the total current in such a region decays exponentially with a damping rate ofηω2
pe/4π. This equation

is clearly a pure damping equation requiring only local information. Therefore, the numerical stability criterion is very
much relaxed as compared to the diffusion equation which involves spatial derivatives. Practically, one can use a large
resistivity such that the decay time becomes on the order of the simulation time step. Since the total current vanishes as
a result, the final state will be given by a potential magneticfield that is equivalent to the diffusion equation approach.
Namely, even if a non-zero current density develops for whatever reason, one can enforce it to decay very rapidly

12



Figure 5: Time evolution of decay instability of Alfvén wave. The left and center panels showB+y and B−y which are calculated using Fourier
decomposition of the rawBy into different helicities. The right panel shows density fluctuations normalized to the initial uniform density.

within a few time steps by appropriately choosing the resistivity. We have implemented this damping by setting the
resistivity as follows:

ηρe =
1
2

(

γmax
me

e
− η0ρe

) (

1− tanh
(

ρe − ρmin

σ

))

+ η0ρe, (30)

whereη0 is the background uniform resistivity (chosen to be zero in this study),γmax is the damping rate in vacuum,
ρmin is density corresponding to one particle per cell and we chooseσ = ρmin/2. This form of resistivity smoothly
connects from the uniform background in the plasma region tothe vacuum where the damping rate is chosen to be
γmax = 1/∆t, and ensures that the large resistive damping operates onlyin near and pure vacuum regions where
ρe . ρmin.

We have tested the effectiveness of this method by initially setting up non-zero current density by hand in a vacuum
region, which shows monotonic and rapid decay of the initialcurrent density as expected (not shown). Results of
another nontrivial example are shown in Figures 8 and 9. The setup of this simulation is the same as the previous
one except that a localized Alfvénic wave packet propagating in the positivex direction initially exists in the plasma
region. The thickness of Gaussian envelope of the packet is 10 with a wave number ofk0 = 0.196. The maximum
amplitude of the wave packet is 20% of the background field andis therefore large enough for nonlinear effects being
visible. Time evolution ofBy and density is shown in Fig. 8. The wave packet initially propagates to the right and
is then reflected off the interface. During its interaction with the interface, the density hump has formed due to a
ponderomotive force exerted by the wave packet as seen in theleft panel of Fig. 8. This is clearly a nonlinear effect
and cannot be seen in smaller amplitude cases, which demonstrates that the present method is robust and stable even
in the presence of nonlinear perturbations. A snapshot of the transverse magnetic fieldBy, Bz and density and phase
space diagram for ions atΩcit = 140.0 are shown in Fig. 9. The wave packet is already reflected at this time and is
propagating to the left. In the vacuum region, there exists asmall but finite transverse magnetic fields. The magnetic
field in vacuum is, however, constant or current-free due to the imposed damping. Although the relaxation time to
the assumed state is finite, we think it is practically fast enough, and the relative simplicity is an advantage of our
approach.

Note that the simulation can run without introducing resistivity in this particular case, although it gives short
wavelength noise both in the plasma and vacuum regions generated during the interaction between the wave packet

13



Figure 6: Snapshot of density (top) and ion phase space diagram (bottom) for decay instability of Alfvén wave around thesaturationΩcit = 92.0.

and the interface. Thus, the “vacuum resistivity” is not strictly necessary, but is probably better to be included for
numerical stability.

5. Summary and Conclusions

In the present paper, we have introduced a new equation to determine the electric field for the hybrid simulations
for collisionless plasmas. The equation takes into accountfinite electron inertia effect and reduces to Laplace’s
equation in the limit of low density. This is in clear contrast to the methods proposed so far that consider a correction
only to the magnetic field. This difference resolves the fundamental difficulty inherent in the conventional hybrid
simulation model, i.e, the impossibility of handling vacuum regions due to the existence of the division-by-density
operation in the simulation procedure.

The present method improves numerical stability even for a region of finite density. This is because the inclusion
of finite electron inertia imposes a limit of the maximum phase velocity of the system. In addition, it is sometimes
needed for numerical stability to introduce a variable massratio technique, which ensures the stability by reducing the
ion-to-electron mass ratio in regions where the maximum wave phase velocity violates the CFL stability condition.
One may think that the electron inertia effect is merely a numerical stabilization factor rather than physics. This will
hold in most of situations where the hybrid simulation applies and the electron inertia effect is not expected to be
important, or not of primary interest. The proposed method will thus be useful for application of the hybrid code
to problems where scale length comparable or longer than ioninertia length is essential, while appearance of low
density regions as a result of self-consistent evolution ofthe system is unavoidable. It is worth mentioning that the
method does not deteriorate the advantages of the standard hybrid code. In addition, we think that most of discussion
presented in this paper will also apply to the Hall-MHD code as well.
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Figure 7: Snapshot of plasma expansion to vacuum atΩcit = 48.0. The longitudinal electric field (top), density (middle),ion phase space diagram
(gray scale) andx component of the bulk velocityVx (bottom) are shown. In a pure vacuum region where ion densityis exactly zero, the bulk
velocity is also set to zero.

Finally, we note that although the current method introduces finite electron inertia, its application to problems
where electron scale physics plays a role must be done with care, because the assumption of a fluid electron is not
always appropriate for phenomena with scale length on the order of the electron inertia length encountered in space
and astrophysical plasmas, unless electrons are sufficiently cold.
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Appendix A. Alternative Derivation of Equation (14)

By taking temporal derivative of Ampere’s law and using Faraday’s law, we obtain the following equation:

− c2∇ × ∇ × E = 4π
∂

∂t
J. (A.1)

The total current density is defined as

J =
∑

s

qs

∫

v fs(v)dv, (A.2)
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Figure 8: Time evolution of plasma expansion to vacuum with localized wave packet. The transverse magnetic fieldBy (left) and density (right)
are shown.

whereqs, fs(v) is charge and distribution function of particle speciess, and the sum is taken over all particle species.
Now we assume that the charged particles are collisionless and traveling under the action of electromagnetic fields.
Then, the distribution functionfs obeys the Vlasov equation

∂

∂t
fs + v · ∂

∂x
fs + as ·

∂

∂v
fs = 0, (A.3)

where the acceleration is given by the Lorentz force

as =
qs

ms

(

E +
v
c
× B

)

. (A.4)

One may now rewrite the right-hand side of Eq. (A.1) as

4π
∂

∂t
J =

∑

s

4πqs

∫

v
∂

∂t
fsdv

= −
∑

s

4πqs

∫

v
[

v · ∂
∂x

fs + as ·
∂

∂v
fs

]

dv

= −
∑

s

[

∇ ·
(

4πqs

∫

vv fsdv
)

− 4πqs

∫

as fsdv
]

=
∑

s

[

ΛsE +
Γs

c
× B − ∇ ·Πs

]

, (A.5)
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Figure 9: Snapshot of plasma expansion to vacuum with localized wave packet atΩcit = 140.0. The transverse magnetic fieldBy (red),Bz (blue) is
shown in the top panel, whereas density and ion phase space diagram and bulk velocityVx are shown in the middle and bottom panels, respectively.

whereΛs, Γs,Πs are defined by moments of the distribution function

Λs ≡
4πq2

s

ms

∫

fsdv (A.6)

Γs ≡
4πq2

s

ms

∫

v fsdv (A.7)

Πs ≡ 4πqs

∫

vv fsdv. (A.8)

Note that, in the above derivation, we made use of the fact that ∇v · as = 0 for the Lorentz force, and assumed that the
distribution function is a rapidly decaying function of velocity: i.e., fs→ 0 for v → ±∞, but otherwise everything is
exact.

It is easy to see thatΛs andΓs is inversely proportional to the mass∝ 1/ms, and the dominant contribution comes
from electrons. The tensorΠs may be rewritten as

Πs = 4πqs

(

nsVsVs +
1

ms
Ps

)

, (A.9)

whereVs andPs are the bulk velocity and pressure tensor, respectively. Therefore, the contribution of the pressure
gradient is greater from electrons than ions, unless the ion-to-electron temperature ratio is unusually high. The contri-
bution of the term proportional toVsVs is usually small, but for electrons, it may not always be ignored because the
electron bulk velocity can become as high as the electron Alfvén speed.

Consequently, for typical problems to which the hybrid simulation is applied, it is sufficient to take into account
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the electron contributionΛe, Γe,Πe to Eq. (A.1). Then we arrive at

1
4π

(

ω2
pe+ c2∇ × ∇×

)

E =
e

me

(

Je

c
× B − ∇ · Pe

)

+ ∇ · (VeJe) . (A.10)

If we further assume the charge neutrality conditionni ≈ ne, we have∇ · E ≈ 0, and∇ · Ve ≈ 0, and Eq. (14) results.
Note that the latter condition comes from the fact that temporal and spatial derivatives of the electron density are small
on the electron scale,∂ne/∂t ≈ ∂ne/∂x ≈ 0.

Appendix B. Validity Range of Variable Mass Ratio

In the present paper, we have introduced a technique to reduce the maximum phase velocity of the system by
locally and temporarily reducing the ion-to-electron massratio. We think this is not likely to affect the simulation
results as far as the ion dynamics is concerned as explained below.

In the linear approximation for a homogeneous plasma, it is possible to estimate the range in which finite electron
inertia does not change the ion dynamics. For this, we consider whistler waves propagating parallel to the ambient
magnetic field as it gives the maximum frequency in the systemwhich is the most sensitive mode to the electron
dynamics. The dispersion relation for parallel propagating right-handed circularly polarized electromagnetic waves
in a cold electron-ion plasma is given by

1+
(ωpi

kc

)2 ω

ω + Ωci
+

(ωpe

kc

)2 ω

ω −Ωce
= 0 (B.1)

whereω/kc≪ 1 is assumed and the cyclotron frequencyΩcs(s= i, e) is defined as an absolute value. Forme/mi ≪ 1,
it may be approximated as

ω2

(ω + Ωci)Ωci
≃

(

1− me

mi

ω

Ωci

) (

kc
ωpi

)2

(B.2)

In the limit of me → 0, this reduces to the usual whistler mode branch. Assuming that the finite electron inertia
becomes important at high frequency regime (ω ∝ k2), a critical wavenumberkc beyond which the electron inertia
introducesO(Ωci) correction to the frequency may be estimated askcc/ωpi ≃ (mi/me)1/4. The critical wavenumber
depends only weakly on mass ratio, implying that the actual value of mass ratio is not important as far asme/mi ≪ 1.
In other words, if one wants to model a specific phenomenon correctly up tok < kmax, the range of mass ratio required
for this may be determined asmi/me & (kmaxc/ωpi)4. The dynamics of ions will not be affected by the artificial
modification of the wave dispersion as far as this condition is satisfied.

Similar analysis for the case with nonlinear and/or inhomogeneous effects is not easy in general, but the above
condition can be used as a rough measure. Another thing that we do not taken into account in the above analysis is
ion kinetic effect such as cyclotron resonance. Concerning the whistler mode, this is justified unless the ion thermal
velocity is much larger than the Alfvén velocity, since otherwise the ions cannot resonantly interact with such high
frequency waves. For a very high beta plasma such that the ionplasma beta is comparable or larger than the mass
ratio (β & mi/me), the ion cyclotron damping may not be negligible even for the whistler branch. Nevertheless, since
the general trend is to reduce the real frequency so that the electron inertia becomes less important, one can expect
that the above conclusion will roughly hold.
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