arxXiv:1406.6613v1 [physics.plasm-ph] 25 Jun 2014

A Robust Method for Handling Low Density Regions in Hybridrilations for
Collisionless Plasmas

Takanobu Amani Katsuaki Higashimori, Keisuke Shirakawa
Department of Earth and Planetary Science, University &®o Tokyo, 113-0033, Japan

Abstract

A robust method to handle vacuum and near vacuum regionsirdgimulations for space and astrophysical plasmas
is presented. The conventional hybrid simulation modelidgavith kinetic ions and a massless charge-neutralizing
electron fluid is known to be susceptible to numerical initgltlue to divergence of the whistler-mode wave disper-
sion, as well as division-by-density operation in regioh&w density. Consequently, a pure vacuum region is not
allowed to exist in the simulation domain unless some ad bolrtique is used. To resolve thidfdiulty, an alter-
native way to introduce finite electron inertiffect is proposed. Contrary to the conventional method, tbpgsed
one introduces a correction to the electric field rather thammagnetic field. It is shown that the generalized Ohm’s
law correctly reduces to Laplace’s equation in a vacuum itierefore does not involve any numerical problems.
In addition, a variable ion-to-electron mass ratio is idtroed to reduce the phase velocity of high frequency whistle
waves at low density regions so that the stability condit®always satisfied. It is demonstrated that the proposed
model is able to handle near vacuum regions generated asilhagEsonlinear self-consistent development of the
system, as well as pure vacuum regions set up at the initraditon, without losing the advantages of the standard
hybrid code.
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1. Introduction

Numerical simulations have been an essential tool to irgetst complicated nonlinear phenomena occurring in
space and astrophysical plasmas. Although the convehtizegnetohydrodynamics (MHD) proves itself useful to
describe macroscopic plasma dynamics even in the colleserregime in which the mean free path for Coulomb
collisions is comparable to or larger than the system sizdpés not necessarily means that one can completely
ignore important kinetic physics. For example, it is weltagnized that one must take into account kineffeat
to understand magnetic reconnection, which has been oreddety processes in magnetospheric phydiectng
plasma transport, driving global convection, and perhepggéring substorms. It is now becoming more and more
popular to consider that magnetic reconnection plays a &kyin astrophysical environments as well. Another
example in which kinetic fect is central is the problem of particle acceleration ifisionless shocks. It requires
seamless treatment of both microscopic and macroscopsgigsiyecause small-scale phenomena primarily determine
the acceleration of low energy particles (or “injectio}ile the transport of higher energy particles is predomitya
governed by characteristics of MHD turbulence. Kinetic muical simulations that can simultaneously deal with
both macroscopic and microscopic dynamics of the collisiss plasma are indeed essential to investigate these
important issues. Among those proposed so far, the bestnahtchnique for this purpose is probably the hybrid
simulation, in which ions are treated kinetically whereles®ons are assumed to be a massless charge-neutralizing
fluid (Winske et al., 2001; Lipatov, 2002).
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The concept of the hybrid simulation is indeed promisinghattit enables us to access the ion dynamics,
while seemingly less important but more computationallgneeding electron physics has been factored out. It has
been widely used to study elementary processes such asalastabilities, magnetic reconnection, collisionless
fast and slow shocks (e.@., Leroy et al., 1982; Winske & Lei®84; Terasawa etlal., 1986; Nakamura et al., 1998;
Higashimori & Hoshino| 2012). With rapidly increasing cont@tional resources, one may now be able to use a
simulation box which is large enough to include the globalesas well. Recently, attempts have been made to
model the interaction between the solar wind and relatigahall unmagnetized and magnetized solar system bod-
ies by using global hybrid simulations (e.g., Terada e12002;| Kallio & Janhuner, 2003; Travnicek et al., 2007,
Holmstrom et al., 2012; Dyadechkin et al., 2013). On theepttand, it has been well known that hybrid simulations
are in practice susceptible to numerical instability. Dieshe long history of this technique, to the authors knalgke
any fundamental solutions to this problem has not been gitésindeed a serious obstacle that hinders application
to many important and interesting problems in space and@sysical plasma physics. The primary purpose of the
present paper is to provide a practical solution to the gmobdf numerical stability in the hybrid simulation. As we
will see below, this can be realized by introducing a new veaiyntlude finite electron inertiafkect.

It is well known that the Alfvén wave at short wavelength qarable to ion inertia length has dispersion due to
the decoupling between ion and electron dynamics. Thesedppears the whistler mode whose frequency diverges
asw « k. This means that the maximum phase velocity in the systeneases rapidly without bound, implying
numerical dificulty. This is probably a part of the reasons for the numeéritstability in hybrid simulations. It is
thus easy to expect that inclusion of finite electron ineséia help stabilizing the simulation because the maximum
phase velocity in this case is limited by roughly the elettidfvén speed. Even with finite electron inertia, however,
a numerical problem arises in regions of low density. Thishsiously due to the division-by-density operation
needed to calculate the electric field from ion moment qgtiastiwhich makes it impossible to handle such (near)
vacuum regions. In practice, numericaffdiulty arises even long before this limit is reached becahseAtfvén
speed increases as the density decreases, imposing amsstgotion on the simulation time step.

The method we propose in the present paper essentiallyessall these numerical fliiculties. Our strategy is
also to introduce finite electron inertifect to limit the maximum phase velocity in the system. We arthat the
way in which the electron inertia is introduced is a key toveahe problem. An electron inertia correction term
has conventionally been introduced to the magnetic fieldindlectric field counterpart is often neglected (e.g.,
Kuznetsova et al., 1998; Shay et al., 1998; Nakamural etG8)2 By modifying the procedure so that the correction
is introduced directly to the electric field, we show that tinsion-by-density operation is almost eliminated from
the simulation procedure. In addition to this, to reducerntteximum wave phase velocity in a low density region,
the ion-to-electron mass ratio is considered to be a varigbantity. That is, the mass ratio is reduced locally so that
the CFL (Courant-Friedrichs-Lewy) condition is automaliig satisfied. We demonstrate that the proposed model
implemented in a one-dimensional (1D) hybrid simulatiodecan successfully follow nonlinear evolution of the
system even when extremely low density regions appear &l of strong instabilities. Furthermore, we also show
that the code is able to handle pure vacuum regions, as wibleasterface between vacuum and finite density plasma
regions. These features suggest that the present modelésdrvery robust and will help stabilizing simulations
applied to many important problems in space and astropalysiasmas.

The present paper is organized as follows. First, we pressimulation model in sectidd 2, in which a new way
to introduce finite electron inertia is discussed. Numéiio@lementation is explained in sectibh 3. Secfidn 4 shows
simulation results of several test problems. Finally, siamnand conclusions are given in sectidn 5.

2. Simulation Model

2.1. Standard Hybrid Model
For the sake of completeness and to clarify théedénces, we first describe the standard hybrid model. Reader
who are already familiar with the hybrid model and its asstioms can skip this subsection. Tutorials and compre-
hensive reviews of the hybrid code are found elsewhere (giesal.| 2001; Lipatov, 2002).
The basic equations used in the hybrid model are consisfieguation of motion for individual ions and for a
fluid electrons
de
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where the subscript and e indicate the indices for individual ions and the electrondfland other notations are
standard.
The electromagnetic fields evolve according to the follapitaxwell equations in the Darwin approximation
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and the electric charge densityand current density are defined as
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whereggs, ng, Vs are the charge, number density and bulk velocity of ion gssaialculated by taking moments of the
distribution function. Notice that there is no equation &tetmine the time evolution of the electric field.

The crucial assumption in the hybrid model is the quasiadity, that is, the electrons move fast enough to cancel
any charge-density fluctuations and= 0 is always satisfied. The electron density thus can be writfeusing ion
densitiem, ~ n; = Y qshs/e. In addition, the electron bulk velocity may also be elim@thusing Ampere’s law and
the relationVe = Vi — J/nie whereV; = Y ;qsnsVs/nee. Finally, since the conventional hybrid model ignores the
inertia of electron completelyng — 0), one can use the equation of motion for the electron fluidet@rmine the
electric field from given ion moment quantities and the maigrfeeld. This gives the generalized Ohm’s law of the
form

E - Yeyp_ly.p,
c ne
Vi 1 1
= B4+ (VxB)XB-—V-P. 8
¢~ +47rnie( x B) x ne  ° (8)

The second term in the right-hand side is the well-known igttric field contribution. Determining the electron
pressure tensor by using an appropriate equation of steteyvblution of the system can be followed in time.

2.2. Finite Electron Inertia

The conventional way to include a finite electron inertiareotion into the hybrid model is to introduce the
following so-called generalized electromagnetic fielB defined as
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in which the terms proportional t@ x B represent electron inertia correction (Lipatov, 2002)s kasy to show that
they exactly satisfy Faraday’s law:
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From the equation of motion for the electron fluid, it may bewsh that
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which is similar to the generalized Ohm’s law Eg. (8) but noithvthe last term which also represents the correction.
Note that this equation is not exact; we have dropped thestérgydt, on;/at, on;V;/adt, assuming ion moment
guantities do not change during the fast electron time scale

Given the generalized electric fieffl one can advance the generalized magnetic fiely using Eq.[(I1). The
standard electromagnetic field may then be recovered frosn @) and[(ID). Further simplifications are commonly
adopted; for example, the electric field correction termeladtron-scale spatial variation of density are often igdo
In this case, the magnetic field may be recovered by solviagntiplicit equation

B = (1—i2v2)5, (13)
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andE ~ E is assumed. The nice feature with this approach is that tireatn can be implemented as a post process
to the each integration step of a standard procedure.

Although the above (or similar) set of equations correctydel finite electron inertiafBect on transverse modes
and have been used for a variety of problems in space physigs Kuznetsova et al., 1998; Shay etlal., 1998;
Nakamura et all, 2008), we here prefer to usefedint form concerning the numerical stability. Multiplginee
to Eq. [I2) and eliminating using Eq.[[®), one obtains
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whereJe = —enVe is the electron current density. In deriving this equatnE ~ O((Va/c)?) has been neglected,
which is indeed a reasonable assumption. Once the eleeiddsidetermined by solving Eq.{14), the magnetic field
may be updated using Eql (4) without invoking the generdl&dectromagnetic fields.

The present implementation obviously describes the @edcale physics better than the conventional one be-
cause it retains the correction term for the electric fieldvaB. Concerning the ions dynamics, however, titee
will be small as it &ects only high frequency waves. Nevertheless, the use oflEjyhas a remarkable advantage.
It is easy to recognize that the terms in the right-hand sidéop (14) are proportional to the density. (Or more
precisely, they are first and second order moments of thetison function.) Therefore, in the limit of low density
(ne = nj — 0), it correctly reduces to the following Laplace’s equatio

V2E =0, (15)

implying that there is no essentialidculty with this equation in dealing with low density (or vaoun) regions. This
is reflected by the fact that the division-by-density ogerais “almost” eliminated in the calculation procedureisTh
will be explained later in more detail.

The idea of solving Laplace’s equation instead of the gdizedhOhm’s law Eq.[(B) to obtain the electric field
in low density regions is not new. For instance, Harned (] 282d the same idea to allow a vacuum region to exist
in a simulation box. In this case, however, the plasma andwaaegions are essentially distinct and the interface
between them must somehow be determined. On the other iemne i$ no need to determine such an interface in our
case. ltis clear from Eq_{14) that these two regions areraliyiconnected with an intermediate region in between
where the electron inertidfect dominates.

Strictly speaking, however, one must recognize the fadtdbaling with such a low density region in the hybrid
model certainly violates its assumptions. Namely, the goastrality assumption, ~ n; is no longer valid in such a
tenuous region because time scale associated with theaglgitasma oscillation may ultimately become comparable
to the simulation time step, and non-negligible charge itfefisctuation would appear in reality. It is thus clear that
this model does not necessarily give physically correctudgtion of the interface between the plasma and vacuum
regions. However, with typical dynamic range of density gnid sizes in hybrid simulations, such a region is not
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well resolved anyway. It is thus rather important in praeticat a code has capability to handle such regions without
numerical problems.
For later use, we rewrite Eq.{{14) into the following form
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wherepe = en, (> 0) is the electron charge density. Here we have introducentita fiesistivityr. It is easy to see
that terms with themg/e factor is due to finite electron inertia which vanishes inlthet m¢ — 0, and the standard
generalized Ohm’s lavi18) is recovered.

In[Appendix_A, a generalized equation for the electric fisldérived in a more systematic manner, which reduces
to Eq. [14) in a certain limit appropriate for practical posgs.

2.3. Electron Pressure

Although so far nothing has been assumed for the electraspre tensor, in the present study we consider only
a scalar pressutig, = Pl (wherel is a unit tensor) determined by the polytropic equation afesfor simplicity. To
ensure that the pressure becomes zero in a vacuum regiem; — 0, we takeS = Pg/pl to be the independent
variable wherey (> 1) is the polytropic index for the electron fluid. Since it igjaantity related to the entropy
(e< In S), its total derivative is zero in the absence of explicis@iation. In the presence of finite resistivity, we have

dS—aS Ve-V)S = 1 z 17
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The electron pressurig. may readily be obtained by multiplyin§ by p&. It thus vanishes in a vacuum region,
consistent with Laplace’s equation EQ.]J(15). Hereafter,ghantityS is called the electron entropy although it is not
S0 in a strict sense.

Note that the application of our equation for the electritlfie not restricted to the specific model of the electron

pressure tensor. Extension to any tensor electron pressaglels proposed previously, such as those used to study
collisionless magnetic reconnection (e.g., Hesse & Winsk8é4; Kuznetsova et al., 1998), is straightforward.

3. Numerical Implementation

In this section, implementation of the proposed model to acbBe is described. We think that the scheme
given here is just an example andfdirent methods may also be used and extension to multidiorenshould be
straightforward because the essentidlietence from the standard hybrid code is only the way in wHiehelectric
field is determined.

3.1. Time Integration

The standard Buneman-Boris integration is used to cakeplatticle trajectories. The particle positions and veloc-
ities are defined at the integer and half-integer time sue?)y'r'l/z), respectively. Accordingly, the electromagnetic
field is defined at the integer time step, B".

We use the following iterative algorithm of Horowitz et &@1989) for time integration of the induction equation.

BM™l2 _ gn_ C_Atv x Ent1/2 (18)
2
MeC? 12
(p2+1/2  4ne VZ) EE+ 2 = Fk(Bml/z,Pngl/z, Jg+l/2’ P2+1/2)’ (19)
PIFURENZ L (M2 je1j2 gnelj2 pnel/2) (20)

wherek =y, z. Notice that the longitudinal componefi,) does not have the Laplacian correction term. This comes
from the fact that the longitudinal and transverse comptméacouple in 1D, and the correction must operate only
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to the transverse component. In multidimensional simotesj one may simply introduce the correction to all the
components because (T} E is small and (2) it is not easy (unless one solves Poissonatam) to decompose the
field into the transverse and longitudinal components.

We define the electron entropy (or equivalently pressurteahalf time stef"*/2, which is advanced by using
the electron velocity defined at the full time stépas follows

(@m?
ey |’

and then used to determine the electric fiEl4Y/2. The iteration is typically performed until relative errof the
electric field becomes smaller than 2@t all grid points. Although this formally looks an implicitheme, we find it
is not stable when the CFL condition defined for whistler wakiase velocity is violated.

The electromagnetic field at the next time step is then detexaras follows

Sn+1/2 — Sn—l/z — At (Vg 3 V) Sn—1/2 + (,y _ 1))7 (21)

Bn+1 — _Bn + ZBn+1/2 (22)
1
En+1 — _EEn—l/Z + gEn+1/2‘ (23)

Notice that the electric fielE™?! is estimated from those defined at half time steps. We findrthae use of the
relationE™1/2 = (E™1 + E")/2 results in producing high frequency aliasing noise in teeteic field spectrum, which
completely vanishes when E@.{23) is used instead. This maybterstood by the fact that the valuesdfis not well
constrained because adding an arbitrary amouBf'tand subtracting the same amount fr&fi! does not change
E™Y2. SinceE™ Y2 is well determined by the above iteration procedure, [EQ). k28er estimates the electric field at
the next step.

3.2. Spatial Discretization and Electron Inertia Correni

We use the standard staggered mesh for the electromageétiBfii/», E; with a constant grid spacingx. To
be consistent with this, ion moment quantities and the edaatntropy are defined at the integer grid poipts; Jej,

Si. The second-order central finitefidirence is used for approximation of spatial derivativegpkéor the electron
entropy equatiori(21) which is solved by the first-order ughscheme. It is well known that the staggered mesh can
be extended to multidimensions and it guarani&eB = 0 within machine epsilon.

We solve the implicit equation (16) for the electric field imigerative manner. The right-hand-siBlealculated
from the moment quantities and magnetic field at each gridtpsiused as a source term for solving the equation.
The second-order finite flierence approximation to the Laplacian operator reducesaittidiagonal matrix equation
in 1D

(—€Exj-1 + (0ei + 2€) Exi + —€Exjs1) = Fui, (24)

wherek = y,zande = mec?/4reAx?. Notice thate/pe = (C/wpe/AX)?> < 1 in practice, meaning that the matrix is
diagonally dominant and is relatively easy to invert. Iistiudy, we use the simple symmetric Gauss-Seidel method to
solve the matrix equation which is very easy to implementh@ligh its convergence is known to be slow, experience
has shown that only a few iterations are typicallyfimient. In general, with higher order discretization gmdn
multidimensions, it becomes a band matrix. The diagonadypitiant property, however, does not change because
it is determined by the fact that the electron inertia is rfiyesesmall correction. The situation obviously changes
when the grid size is chosen to be small enough to resolveléistren inertia lengtit/wpe to take into account the
electron-scale physics more rigorously. In addition, ia tise where a pure vacuum region exists in the simulation
domain as is treated in one of the test problems discussed/ibe implicit equation essentially reduces to Laplace’s
equation. In such a case, it is better to use a more sophéslitarative matrix solver for faster convergence.

It is worth noting that, once the source term is given, thésttw-by-density operation is not anymore needed to
invert the matrix, because the diagonal @@éents (whose inverses are needed) of the matrixjis- 2¢, rather than
pej. However, we must mention that the calculatiorVaf= Je/pe cannot completely be avoided from the numerical
procedure: It appears at the third term of the source ternyofI8) and the equation for the electron entropy EQ. (17).
Nevertheless, these terms do not pose a serious numeitdprin practice because they represent the Doppler shift
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of the waves into the electron-fluid rest frame whenevenitafi-defined, while on the other hand, in a vacuum region
obviously it cannot be defined. For the present purpose, defiree the electron velocity as

max(oe, Pe,min) ’

where the minimum densiiye min is chosen to correspond to the one-count level in the prasaey. This makes sure
that the electron velocity does not diverge in a vacuum regibereas the modification does ndfeat results in a
cell containing more than one particle. We find this simple éombined with the variable mass ratio technique as
explained below, is dficient to keep track of the simulation without numerical geohs even for highly nonlinear
problems in which near vacuum regions appear in an unexgpetaaner.

(25)

Ve

3.3. Variable Mass Ratio

The numerical schemes described so far have been shownuedessful when the time step isBaiently small.
However, it may become unstable in highly nonlinear prolsié@mwhich regions of extremely low density appear as a
result of self-consistent time evolution and consequeht#ymaximum phase velocity of the system violates the CFL
condition. A much smaller time step is therefore needed taivibty, but it is often impractical. We simply try to
stabilize the simulation by numerical means at the expeheeroect physics whenever they appear in the simulation
box.

For a cold plasma, the maximum wave phase velocity in thesy# determined from the whistler mode disper-
sion relation as

i B 1,
2 \Arngme 2 he

whereVae is the electron Alfvén velocity. This upper bound on the gghaelocity does not exist in the limite — O
because the electron Alfvén velocity is proportionahfoy /me.

In general, numerical stability for an explicit scheme asterequires the Courant number defined with respect to
the maximum phase velocity to be less than unifymaAt/Ax < 1. The phase velocity must therefore be numerically
reduced for stability in low density regions. Our strate@yehis to consider the mass ratio as a variable quantity.
By locally and temporarily modifying the mass ratio, the rinaxm phase velocity can be reduced so that the CFL
condition is always satisfied. More specifically, one mayaseodified electron masg, defined as

me_ o (me o AtV
" max[— VZ(Zan) ] (27)

(26)

Vp,max =

m’ A

instead of the physical electron mass HereV, = B/ v4rnim is the Alfvén speed calculated by using the local
density and magnetic field, amdis the maximum allowed Courant number. In the present pageglways choose
a = 1/2 for safety.

It is important to mention that although this modifies thepdision relation of whistler waves, low frequency
Alfvén waves are notféected as far ase/m < 1 is satisfied. In contrast, if one imposes a floor value in iigts
reduce the phase velocity, it is modified even in the MHD liitaddition, since the phase velocity diverges at short
wavelength in the limitne — 0, the floor value must be chosen much larger than the casdimitthelectron inertia.

It must be pointed out that the electron inertia lengtlype introduced in hybrid and Hall-MHD models is usually
treated as if it were a constant even when the density maygehsubstantially (Kuznetsova et al., 1998; Shay et al.,
1998; Nakamura et al., 2008). This corresponds to chanpmgiass ratio to compensate the density variations. Our
treatment is similar, but much better than this becauseytechange only in the limited region and time in which the
stability condition is no longer satisfied. In any case, rfiodiion of the finite electron mass will not influence the
simulation results as far as the electron inertia scaletigppropriately resolved.

We emphasize that when one is primarily interested in thedigramics, a finite electron mass may be seen as
an artificial parameter for numerical stability rather thghysical, which does notfi@ct the simulation results by
assumption. This will hold in most of situations where théiigy simulation applies and the electron inertigeet is
not expected to be important. Otherwise, one must employre fismdamental model taking into account rigorous
electron-scale physics. B, validity range affsuariable mass ratio technique is discussed.
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4. Test Problems

In this section, we discuss simulation results for sevestl problems that demonstrate the robustness of our new
method. In the present paper, we fix the number of iteratioriffe electron inertia correction (symmetric Gauss-
Seidel iteration) to 2, while the iteration to determine #ectric field (i.e., the Horowitz iteration loop) contiraie
until the relative error of electric fields becomes less thar’. Note that we have confirmed that the number of
iteration for the electron inertia correction does not @ethe result significantly.

In the following, unless otherwise stated, time and spaeeeaspectively normalized to the inverse ion cyclotron
frequency 1Q and the ion inertia lengtfa/Qg; defined for the average density and magnetic field. The spleed o
light is held fixed toVa/c = 107* in all the simulation runs presented below. The resistiisgtgssumed to be zero
except for examples shown in section 4.4. The number of gnaisiber of particle per cell are denotediy, Nypc,
respectively. The periodic boundary condition is alwaysdjsnd the velocity distribution is initialized by isotiop
Maxwellian with a given temperature.

4.1. Linear Dispersion Relation

We have tested whether our newly developed code can repedldecretical linear dispersion relation for a homo-
geneous plasma with finite electron inertféeet. The simulations are performed without any explicitydrations
and the system evolves solely from thermal noise. The coderified with various grid spacings and time steps,
number of particles per cell, as well as physical paramesigch as mass ratio, plasma beta, etc. One of the exam-
ples is shown in Fid]1, which displays the-k diagram of the transverse electric field obtained with a mass
m/me = 100, temperature ratid;/Te = 1, and plasma bejg = 10°2. Here, the constant background magnetic field
By is imposed along th& direction and the electric field is normalized\¥@By/c accordingly. Other simulation pa-
rameters are as followst = 5x 1073, Ax = 0.1, Ny = 256, Nppc = 64. In this plot, the positive (negative) frequency
represents right-hand (left-hand) circularly polarizeald®, and similarly signs of the wavenumber indicatéetént
helicities. We see that the agreement between the simulaggult and theoretical dispersion relation shown with the
solid lines is very good. Notice that, in this figure, tiféeet of electron inertia appearskat; = 3, beyond which the
phase velocity is reduced relative to the Hall-MHD dispamgielation shown in the dashed line. We have confirmed
that the total energy is in general very well conserved. isplarticular run, the error is less thar2 x 1072 %.

4.2. Electromagnetic lon Beam Instability

In this section, we discuss simulation results for the ragbelectromagnetic ion beam instability which is one of
the standard test problems for a conventional hybrid cotle.purpose of this test is to show that the present method
does not introduce any additional numericdhidulties when applied to problems that can be treated by #relatd
hybrid model.

The simulation setup is very similarito Winske & Leroy (108We choose the relative beam densifyny = 0.02,
and bulk velocityv,/Va = 10 streaming parallel to the ambient magnetic field, theméelseta for core iong. = 1.0,
beam iong;, = 1.0, and electronge = 0.1. The ion to electron mass ratio is chosen taham, = 100. In this case,
it is easy to find from linear analysis that right-hand ciealyl polarized electromagnetic waves propagating pdralle
to the magnetic field are unstable due to cyclotron resomdertsiction with the beam ions. The initial magnetic field
is thus taken to be along thedirection. Fig[2 displays the time evolution of the mode &tagdes that are expected
to grow due to this instability. In this simulation, we use= 0.01, Ax = 0.25, Nx = 1024,Np,c = 64. It is clear
that the simulation results agree very well with the lindwary whose growth rates are shown in dashed lines[Fig. 3
shows a snapshot of the magnetic field, and the ion phase digram for both beam and core components just
before the saturation. The transverse velocities of bears éwe strongly ffected by the excited large-amplitude
wave whereas the core ions are modulated only slightly. fEature is consistent with the fact that the instability is
excited by the resonance between the wave and beam iongl ligws time evolution of parallel and perpendicular
energies for both beam and core ions, as well as the magretiefiergy. One can see that the beam parallel energy
is substantially reduced as a result of the instability aaddferred to the perpendicular energy of the beam and core
components through pitch-angle scattering.

The above linear and nonlinear development of the instgllconsistent with previous studies, and thus confirms
that the new model can reproduce the standard hybrid sironlag¢sults. Note that, in this simulation, the grid
size is always much larger than the electron inertia lengtind the whole run and the electron inerti@eet is an
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Figure 1: Power spectral density (gray scale) obtained ftwersimulation for a homogeneous plasma. No explicit pestimns are added at the
initial condition. The solid line represents the dispengielations of circularly polarized electromagnetic wagakulated for a cold plasma. The
dashed line shows the dispersion relation corresponditiggtélall-MHD (me — 0).

unimportant small correction. Indeed, the result withbettorrection appears almost exactly the same. Itis impbrta
to mention that the inclusion of the electron inertifeet does not impose any numericahdiulties in application of
our method to problems where the electron inertia does agtalole.

4.3. Decay Instability

Now we consider an example in which near vacuum (or extredeslydensity) regions appear as a result of
nonlinear and self-consistent development of the systeme. standard hybrid method will not be able to keep track
of such a simulation owing to its limit on handling low deggiegions. In contrast, we demonstrate that the present
model is free from such fliculty.

To show this, we choose a parametric instability of a langgléude circularly polarized Alfvén wave (Goldstein,
1978; Wong & Goldsteln, 1986; Terasawa €tlal., 1986). Algiothe Alfvén wave is an exact solution of MHD equa-
tions even for finite amplitude, it is known to be unstableiagfgoerturbations and will decay through the excitation
of other waves (daughter waves). Specifically, the decagliilgty is a process occurring in a low beta plasma that ex-
cites a forward-propagating ion-acoustic wave and a baakpeopagating Alfvén wave. The simulation parameters
are chosen as follows. The parent large-amplitude wave tk@R-mode Alfvénwhistler branch propagating along
the ambient magnetic field (taken along thdirection) with frequency and wavenumber af(koy) = (0.215 0.196)
and the amplitude i8,/Bo = 0.5 (i.e., 50% of the background magnetic field). The plasma {fet both ions and
electrons) and ion-to-electron mass ratio gre- S = 1072 andm/me = 100, respectively. Other parameters are
At = 0.01,Ax = 0.5, Ny = 512,Nppc = 64.

Time evolution of the decay instability is summarized in.[Hg In this figure, the transverse magnetic fiBlgis
decomposed into derent helicities (denoted &, andB;), and are shown in the left and center panels, respectively.
Note that theBj (B;) component includes R-mode (L-mode) waves propagatingeaight and L-mode (R-mode)
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Figure 2: Time evolution of mode amplitudes expected to gdow to the electromagnetic ion beam instability. Th@dent colors represent
different modes (mode number$46). The dashed lines indicate theoretical linear growtbsrér corresponding modes shown in the solid lines.

wave propagating to the left. (See Terasawa et al. (1986g¢&hinical details.) The density fluctuations are also shown
in the right panel. The parent wave is a R-mode wave propagatithe positivex direction with a mode number
of 8, which can be easily identified in the left panel at théiahistage. The growth of the instability is seen as the
development of large-amplitude density fluctuations. Advaard-propagating Alfvén wave is then excited associated
with this. For this particular run, the amplitude of denditictuations is found to be substanti&li(Nio = 1) at the
saturation stage.

Fig.[8 displays the snapshot of density and ion phase spageadh around the saturatién;t = 92.0. One can
see that clear ion phase-space holes are formed due to gpnigeof ions by an electrostatic potential produced
by large-amplitude ion-acoustic waves as was found byerestudies/ (Terasawa et al., 1986). The large-amplitude
density fluctuations are associated with the trapped iomihjos. The minimum density (during the whole run) goes
down to~ 102 relative to the initial density, which is comparable to threeecount level (INppe ~ 0.016) for the
simulation parameters. Thanks to the new method to deterthim electric field as well as the variable mass ratio
technique, the appearance of such extremely low densitynegloes not lead to collapse of the simulation. Note that
we have confirmed that a fixed mass ratio makes simulationgricatly unstable even if the same equation is used
to determine the electric field. Furthermore, even derssiiEdow the one-count level do not lead to any numerical
problems. Indeed, a simulation with a lower bega=( 10-%) with all other parameters fixed is also successful, in
which the minimum density becomes as low~a4073, i.e., well below the one-count level. This demonstrates th
robustness of our model in handling low density (or near uaturegions which may appear in an unexpected manner
due to nonlinear development of the system. This is a clearadge over the standard hybrid code.

4.4. Plasma Expansion to Vacuum

Finally, we demonstrate that the present model is able tdleanpure vacuum as well as the interface between
plasma and vacuum regions in a seamless manner. One of thilesaof such situations occurring in space is
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Figure 3: Snapshot of magnetic fiely (top) and transverse ion phase space diagram for core @piddt beam (bottom) components just before
the saturation.

the interaction between the solar wind and the Moon (e.glmisindm et al.| 2012). Since the solar wind plasma
is obscured, the plasma density is substantially deplegédihld the obstacle and a wake region appears which is
essentially a vacuum region. The solar wind plasma graglimtude into the wake owing to a finite thermal velocity
and the region will be filled with the plasma again far doweain of the obstacle. Assuming steady state, this
refilling process of the wake may be approximately modeledibgxpansion of a plasma into a pure vacuum region
(Farrell et al., 1998; Birch & Chapman, 2001), which is siatatl here.

Initially, the system is divided into two regions: the leftdaright regions respectively correspond to the plasma
and vacuum regions. The plasma then freely expands intoabteuwn region with their thermal velocity. This can
be clearly seen in Fidl] 7 showing a snapshot of a typical sitiarl. The plasma region is initially uniform and is
characterized bg; = B = 102, andm/me = 100. The uniform magnetic fiel8, parallel to thex direction is
imposed. Other parameteks = 0.01,Ax = 0.5, Ny = 512 andNp,c = 128 for the plasma region are used. Note that,
in this section, the inertia length and Alfvén velocitye(i.normalizations) are defined with the average density ove
the entire simulation box.

Since the magnetic field is alongdirection, particles in the left-hand side of the box wittsjiwe velocity can
freely propagate to the vacuum region. This free streamigpgasure can be seen in the ion phase space diagram.
In addition, the longitudinal electric fielly in the interface region is slightly positive due to the pteesgradient
(x ~ 130-140), and the ions at the leading edge are accelerated tdeavdcuum, a feature consistent with previous
particle-in-cell simulations (Farrell etlal., 1998; Bir@hChapman, 2001). We see that the code can keep track of the
evolution without any numerical instabilities even in thregence of a pure vacuum region. No ad hoc technique is
needed in handling the interface region.

There is concern about handling vacuum regions with hylwites because a finite current density may numer-
ically arise even in the absence of current carriers. Thiretause the total current is calculated from the magnetic
field and is nothing to do with the plasma density. This cleadntradicts with the basic assumption of the hybrid
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Figure 4: Time history for parallel and perpendicular metienergies for the bealivy);, Wh 1 (top), core iondM, We 1, and the magnetic field
energyWs (bottom).

model. To let the system quickly relaxes to a state condistéh the assumption, previous studies have introduced
a large resistivity in low density regions (Hewett, 1980;lidstrom, 2013). The resulting equation for the magnetic
field is a ditusion equation with its cdicient proportional to the resistivity, and the steady stafieition is given
by a potential magnetic field’B = 0. The problem with this approach is that the large restgtiviposes a severe
restriction on the time step for an explicit time integratecheme. In contrast to this, our method can better handle
this issue.

In the region of our interest, the plasma dengityapproaches to zero, whereas we need a large resisfivitye
may thus assume thap, remains finite. Then for a $liciently low density region, the equation for the electriddie
is reduced to

V2E = — CgenJ (28)
In this case, by taking rotation of the induction equatiaome sees
ﬁ(V><Es)——‘”—’2"9(V><Es) (29)
at T g

which means that the total currentin such a region decays®gially with a damping rate qfuf,e/47r. This equation

is clearly a pure damping equation requiring only local infation. Therefore, the numerical stability criterion ey
much relaxed as compared to th&dsion equation which involves spatial derivatives. Pcadly, one can use a large
resistivity such that the decay time becomes on the ordéedditnulation time step. Since the total current vanishes as
a result, the final state will be given by a potential magnfégid that is equivalent to the filusion equation approach.
Namely, even if a non-zero current density develops for edetreason, one can enforce it to decay very rapidly
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decomposition of the ra, into different helicities. The right panel shows density fluctuatinormalized to the initial uniform density.

within a few time steps by appropriately choosing the rasigt We have implemented this damping by setting the
resistivity as follows:

1 Me ~ Pmi
e =5 (’)’max? - nope) (1 - tanh(w)) + 10Pes (30)

wherenyg is the background uniform resistivity (chosen to be zerdnia study),ymax is the damping rate in vacuum,
Pmin 1S density corresponding to one particle per cell and we sB60= pmin/2. This form of resistivity smoothly
connects from the uniform background in the plasma regiadhéovacuum where the damping rate is chosen to be
vmax = 1/At, and ensures that the large resistive damping operatesiromgar and pure vacuum regions where
Pe S Pmin-

We have tested thdfectiveness of this method by initially setting up non-zargent density by hand in a vacuum
region, which shows monotonic and rapid decay of the intiakent density as expected (not shown). Results of
another nontrivial example are shown in Figures 8 [@nd 9. Ehepsof this simulation is the same as the previous
one except that a localized Alfvénic wave packet propagat the positivex direction initially exists in the plasma
region. The thickness of Gaussian envelope of the packél igith a wave number ofy = 0.196. The maximum
amplitude of the wave packet is 20% of the background fieldisitlterefore large enough for nonlinedieets being
visible. Time evolution 0B, and density is shown in Fig] 8. The wave packet initially @rggtes to the right and
is then reflected f the interface. During its interaction with the interfacee tdensity hump has formed due to a
ponderomotive force exerted by the wave packet as seen iefth@anel of Fig[B. This is clearly a nonlineaftect
and cannot be seen in smaller amplitude cases, which deratassthat the present method is robust and stable even
in the presence of nonlinear perturbations. A snapshotefrinsverse magnetic fieRj, B, and density and phase
space diagram for ions &it = 1400 are shown in Fid.]9. The wave packet is already reflectedstithe and is
propagating to the left. In the vacuum region, there exisidall but finite transverse magnetic fields. The magnetic
field in vacuum is, however, constant or current-free dud&imposed damping. Although the relaxation time to
the assumed state is finite, we think it is practically fagiuggh, and the relative simplicity is an advantage of our
approach.

Note that the simulation can run without introducing réeitst in this particular case, although it gives short
wavelength noise both in the plasma and vacuum regions gigeduring the interaction between the wave packet
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Figure 6: Snapshot of density (top) and ion phase spaceagiafisottom) for decay instability of Alfvén wave around geurationQgit = 92.0.

and the interface. Thus, the “vacuum resistivity” is noicsy necessary, but is probably better to be included for
numerical stability.

5. Summary and Conclusions

In the present paper, we have introduced a new equation éomieie the electric field for the hybrid simulations
for collisionless plasmas. The equation takes into accéinite electron inertia #ect and reduces to Laplace’s
equation in the limit of low density. This is in clear contrésthe methods proposed so far that consider a correction
only to the magnetic field. This flerence resolves the fundamentédtidulty inherent in the conventional hybrid
simulation model, i.e, the impossibility of handling vacuuegions due to the existence of the division-by-density
operation in the simulation procedure.

The present method improves numerical stability even faggon of finite density. This is because the inclusion
of finite electron inertia imposes a limit of the maximum phaslocity of the system. In addition, it is sometimes
needed for numerical stability to introduce a variable nmatie technique, which ensures the stability by reducimg th
ion-to-electron mass ratio in regions where the maximumengavase velocity violates the CFL stability condition.
One may think that the electron inertifiert is merely a numerical stabilization factor rather thhpsgics. This will
hold in most of situations where the hybrid simulation appland the electron inertidfect is not expected to be
important, or not of primary interest. The proposed methdtithus be useful for application of the hybrid code
to problems where scale length comparable or longer thainiemia length is essential, while appearance of low
density regions as a result of self-consistent evolutiothefsystem is unavoidable. It is worth mentioning that the
method does not deteriorate the advantages of the stanglanid bode. In addition, we think that most of discussion
presented in this paper will also apply to the Hall-MHD codenell.
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Figure 7: Snapshot of plasma expansion to vacuuf.at= 48.0. The longitudinal electric field (top), density (middl@n phase space diagram
(gray scale) anc component of the bulk velocity, (bottom) are shown. In a pure vacuum region where ion deisigxactly zero, the bulk
velocity is also set to zero.

Finally, we note that although the current method introdufigite electron inertia, its application to problems
where electron scale physics plays a role must be done wigh bacause the assumption of a fluid electron is not
always appropriate for phenomena with scale length on tteraf the electron inertia length encountered in space
and astrophysical plasmas, unless electrons dfeismtly cold.
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Appendix A. Alternative Derivation of Equation (14)

By taking temporal derivative of Ampere’s law and using fags law, we obtain the following equation:
2 (9
—CVXVXE= 47rEJ. (A.1)

The total current density is defined as

J= Z Us f vis(v)dv, (A.2)

S
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Figure 8: Time evolution of plasma expansion to vacuum vattalized wave packet. The transverse magnetic Bgldeft) and density (right)
are shown.

whereqs, fs(v) is charge and distribution function of particle spedeand the sum is taken over all particle species.
Now we assume that the charged particles are collisionlegdraveling under the action of electromagnetic fields.
Then, the distribution functioffy obeys the Vlasov equation

0 0 0
afs'f'V'&fs'f'as‘afs—o, (A3)

where the acceleration is given by the Lorentz force
Os ( \ )
= —(E+-xB]. A.4
e (A4)

One may now rewrite the right-hand side of Hg. {(A.1) as
0 0
4715\] 28147rqs f va fsdv
0 0
fV[V' &fs-f-as' Efs]dv

[V-(47rqS f vvfsdv)—47rqS f asfsdv]

r
[ASE+?S><B—V.HS], (A.5)

o

S

[

S

16



0.1

>
|

0.0

Byvz

-0.1

§
<

Figure 9: Snapshot of plasma expansion to vacuum with iredlvave packet &t = 1400. The transverse magnetic fiej (red), B; (blue) is
shown in the top panel, whereas density and ion phase spageudi and bulk velocityy are shown in the middle and bottom panels, respectively.

whereAg, T's, I are defined by moments of the distribution function

A7

As = m‘js f fodv (A.6)
2

r, = 2% f vidv (A7)
Mg

My = 4nQs f vv fedv. (A.8)

Note that, in the above derivation, we made use of the fatMhaag = O for the Lorentz force, and assumed that the
distribution function is a rapidly decaying function of gelty: i.e., fs — 0 forv — *oo0, but otherwise everything is
exact.

Itis easy to see thats andI's is inversely proportional to the massl/ms, and the dominant contribution comes
from electrons. The tensdfs may be rewritten as

1
I = 4nQs (nsVsVs + HPS)’ (A.9)
S

whereV andPs are the bulk velocity and pressure tensor, respectivelgrdfore, the contribution of the pressure
gradient is greater from electrons than ions, unless thédexectron temperature ratio is unusually high. The dent
bution of the term proportional td Vs is usually small, but for electrons, it may not always be igrbbecause the
electron bulk velocity can become as high as the electrovélspeed.

Consequently, for typical problems to which the hybrid dimtion is applied, it is sfficient to take into account

17



the electron contributione, e, Il to Eq. [A1). Then we arrive at

1 e (J

E(w%e+c2VxVx)E=n—b(fxB—V-Pe)+V-(VeJe)~ (A.10)

If we further assume the charge neutrality conditipr: ne, we haveV - E = 0, andV - Ve ~ 0, and Eq.[(T4) results.
Note that the latter condition comes from the fact that teralend spatial derivatives of the electron density are kmal
on the electron scaléng/ot ~ dng/dx ~ 0.

Appendix B. Validity Range of Variable Mass Ratio

In the present paper, we have introduced a technique to eettiecmaximum phase velocity of the system by
locally and temporarily reducing the ion-to-electron mest$o. We think this is not likely to fiect the simulation
results as far as the ion dynamics is concerned as explagied.b

In the linear approximation for a homogeneous plasma, ib&sible to estimate the range in which finite electron
inertia does not change the ion dynamics. For this, we censithistler waves propagating parallel to the ambient
magnetic field as it gives the maximum frequency in the sysigrith is the most sensitive mode to the electron
dynamics. The dispersion relation for parallel propagatight-handed circularly polarized electromagnetic veave
in a cold electron-ion plasma is given by

wpi\2  w wpe\2  w©
1 (—”) (—) -0 B.1
* kc/ w+ Qg * kc/ w—Qce (B.1)

wherew/kc < 1 is assumed and the cyclotron frequefigy(s = i, €) is defined as an absolute value. Faym < 1,

it may be approximated as

2 2

et (1_ Ei)(ﬁ) (B.2)
(w + Qi) m Q¢ ) \wpi

In the limit of m¢ — 0, this reduces to the usual whistler mode branch. Assunhiagthe finite electron inertia
becomes important at high frequency regime k?), a critical wavenumbek. beyond which the electron inertia
introducesO(Q;) correction to the frequency may be estimatedk@gwp ~ (m/me)¥4. The critical wavenumber
depends only weakly on mass ratio, implying that the actakiesof mass ratio is not important as famagm < 1.

In other words, if one wants to model a specific phenomenarectly up tok < kmax the range of mass ratio required
for this may be determined ag/me > (kmaxc/wpi)“. The dynamics of ions will not befi@cted by the artificial
modification of the wave dispersion as far as this conditsosaitisfied.

Similar analysis for the case with nonlinear gsrdnhomogeneousfkects is not easy in general, but the above
condition can be used as a rough measure. Another thing #hdbwot taken into account in the above analysis is
ion kinetic gfect such as cyclotron resonance. Concerning the whistleienthis is justified unless the ion thermal
velocity is much larger than the Alfvén velocity, since etise the ions cannot resonantly interact with such high
frequency waves. For a very high beta plasma such that thplamma beta is comparable or larger than the mass
ratio (8 2 my/me), the ion cyclotron damping may not be negligible even ferwhistler branch. Nevertheless, since
the general trend is to reduce the real frequency so thati¢le&ren inertia becomes less important, one can expect
that the above conclusion will roughly hold.
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