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Abstract

The link-wise artificial compressibility method (LW-ACM) is a recent formula-

tion of the artificial compressibility method for solving the incompressible Navier–

Stokes equations. Two implementations of the LW-ACM in three dimensions on

CUDA enabled GPUs are described. The first one is a modified version of a state-

of-the-art CUDA implementation of the lattice Boltzmann method (LBM), showing

that an existing GPU LBM solver might easily be adapted to LW-ACM. The sec-

ond one follows a novel approach, which leads to a performance increase of up to

1.8× compared to the LBM implementation considered here, while reducing the

memory requirements by a factor of 5.25. Large-scale simulations of the lid-driven

cubic cavity at Reynolds number Re = 2000 were performed for both LW-ACM

and LBM. Comparison of the simulation results against spectral elements reference

data shows that LW-ACM performs almost as well as multiple-relaxation-time LBM

in terms of accuracy.

Keywords: Computational fluid dynamics, Link-wise artificial compressibility

method, High-performance computing, Lid-driven cubic cavity, CUDA

1. Introduction

Although the use of unstructured meshes is widespread in computational fluids

dynamics (CFD), alternative approaches using Cartesian grids such as the lattice

Boltzmann method (LBM) have gained increasing interest in recent years. How-

ever, while unstructured meshes are specifically intended for representing complex

boundaries, Cartesian grid approaches need additional techniques to address this

issue. Using nested meshes with hierarchical data structures such as octrees [8] is a

possible method at the expense of the regularity of the data access pattern. Another

way consists in incorporating additional treatments for boundary nodes based on

techniques such as immersed boundary methods [11] or cut cell methods [10],

inaccurate resolution of the boundary layers being a possible shortcoming. Never-

theless, from a computational standpoint, CFD solvers based on uniform Cartesian

meshes are especially well-suited for high-performance implementations on mas-

sively parallel processors such as graphics processing units (GPUs) [16].
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Sharing many similarities with the LBM, the artificial compressibility method

(ACM) has been recently given a novel formulation, known as the link-wise ACM

(LW-ACM) [3], which involves a finite set of links on a regular Cartesian mesh.

Besides other interesting features, the LW-ACM enables to use specific techniques

from both LBM and finite differences. In this paper, we describe two GPU im-

plementations of the LW-ACM in three dimensions within the framework of the

NVIDIA CUDA technology. Given the algorithmic similarities between LBM and LW-

ACM, our first approach reinvests common GPU implementation techniques of the

LBM [13]. However, the LW-ACM updating rule makes possible to recover all the

necessary informations from the hydrodynamic variables of the fluid. Hence our

second implementation takes advantage of this specific feature to reduce consider-

ably the memory requirements as well as the amount of data transferred between

GPU and device memory. In addition, for validation and comparison purposes, we

performed large-scale simulations of the lid-driven cubic cavity using either LW-

ACM or LBM, and matched our simulation results against highly accurate reference

data.

The remainder of the paper is organised as follows. In Section 2, we briefly

introduce the LW-ACM and discuss its algorithmic aspects. Section 3 describes the

two GPU implementations of LW-ACM. In section 4, we report performance of both

LW-ACM implementations and compare these results with a state-of-the-art CUDA

LBM solver. Section 5 presents our simulations of the lid-driven cubic cavity and

section 6 provides some concluding remarks.

2. Link-wise artificial compressibility method

2.1. Artificial compressibility equations

The artificial compressibility method (ACM), which was first introduced by

Chorin in 1967 [6], is a numerical approach for solving the incompressible Navier–

Stokes equations (INSE). Using the Einstein summation convention, the INSE are

expressed as:

∂tui + u j∂ jui = −
1

ρ0

∂i p+ ν∂
2
j j

ui + Fi , (1)

∂ ju j = 0, (2)

where ui are the components of the fluid velocity u, p is the pressure, Fi are the

components of the external force per unit mass, ρ0 is the density, ν is the kinematic

viscosity, and t is the time. The indices i, j = 1, 2, 3 refer to the spatial coordinates.

Since pressure does not appear in Eq. 2, i.e. the continuity equation, most

mainstream numerical methods resort to the derived pressure Poisson equation:

∂ 2
j j

p = −ρ0∂
2
i j
(uiu j). (3)

It should be noted that the adoption of an implicit time-marching, although natural,

impairs the adaptability of these approaches to massive parallelism.

The ACM is in contrast based on the artificial compressibility equations (ACE),

a modified form of the INSE in which the continuity equation is replaced by:

∂tρ+ ∂ ju j = 0, p = ρ/ζ, (4)
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where ρ is defined as the artificial density, ζ as the artificial compressibility, and

p = ρ/ζ as the artificial equation of state. The ACE yield an artificial speed of

sound: cs = 1/
p

ζ, and thus an artificial Mach number: Ma=
p

ζ×max‖u‖.
The presence of the pressure time derivative in Eq. 4 allows for explicit time-

integration. Although ACM was primarily intended for steady flows, it is known to

yield also accurate solutions for the time-dependent INSE in the limit of vanishing

Mach number [15].

2.2. Link-wise formulation

The LW-ACM is a discrete formulation of the ACM within a framework similar

to the one of the LBM. It operates on a regular Cartesian spatial mesh of mesh size

δx with a regular time step δt. In accordance with the established practice of LBM,

we shall express all following quantities in terms of lattice units, i.e. adopt δx as

unit of length and δt as unit of time.

The mesh is associated to a lattice stencil, i.e. a finite set of velocities {ξα}
where α = 0, . . . , Q − 1. This stencil is usually chosen such as to link the mesh

points to some of their nearest neighbours on the mesh. In the present work, we

used the three-dimensional D3Q19 stencil, which is represented in Fig. 1. The

coordinates of the ξα velocities in the D3Q19 stencil are defined as:

[ξα] =







(0, 0,0) α= 0,

(±1,0, 0), (0,±1,0), (0, 0,±1) α= 1, . . . , 6,

(±1,±1,0), (±1, 0,±1), (0,±1,±1) α= 7, . . . , 18.

(5)
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Figure 1: The D3Q19 stencil — The blue arrows represent the ξα velocities.

The hydrodynamics is represented by a set of Q dependent variables { fα} de-

fined at the mesh points such that:

ρ =
∑

α

fα , (6)
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ρu =
∑

α

fαξα . (7)

In addition, we use local equilibrium functions f (e)α which are known functions

of ρ and u. With cs = 1/
p

3, the equilibria are written as:

f (e)α (ρ, u) = wαρ

�

1+ 3u · ξα +
9

2
(u · ξα)2 −

3

2
u

2

�

, (8)

where wα are the weights associated to the velocity set (see Appendix A of [3]).

For the D3Q19 stencil, these weights are:

wα =







1/3 α= 0,

1/18 α= 1, . . . , 6,

1/36 α= 7, . . . , 18.

(9)

Moreover, we denote f (e,o)
α the odd parts of the equilibrium functions:

f (e,o)
α (ρ, u) =

1

2

�

f (e)α (ρ, u)− f (e)α (ρ, −u)
�

. (10)

Derived from the Bhatnagar–Gross–Krook model equation [4], the fundamental

updating rule of the LW-ACM is expressed as:

fα(x , t+1) = f (e)α (x −ξα, t)+2

�

ω− 1

ω

�

�

f (e,o)
α (x , t)− f (e,o)

α (x − ξα, t)
�

, (11)

where ω is the relaxation frequency. Assuming diffusive scaling, i.e. δx = ǫ and

δt = ǫ2 with ǫ≪ 1, asymptotic analysis shows that the scaled moments:

ρ̄ = (ρ−ρ0)/ǫ
2, (12)

ū = u/ǫ, (13)

satisfy the ACE (see Appendix B of [3]), with viscosity:

ν =
1

3

�

1

ω
−

1

2

�

. (14)

2.3. Algorithmic aspect

The updating rule of LW-ACM may be split into two steps:

fα(x , t + 1) = f ∗α (x − ξα, t) + 2

�

ω− 1

ω

�

f (e,o)
α (x , t), (15)

f ∗α (x , t + 1) = f (e)α (x , t + 1)− 2

�

ω− 1

ω

�

f (e,o)
α (x , t + 1), (16)

which show strong similarities with the two elementary steps of LBM. As regards

to data access, Eq. 15 is equivalent to the usual LBM in-place propagation with

the additional constraint of retrieving ρ(x , t) and u(x , t) in order to compute
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1. for all time step t do

2. for all mesh point x do

3. load ρ(x , t) and u(x , t)

4. for all index α do

5. load f ∗α (x − ξα, t)

6. compute fα(x , t + 1) (Eq. 15)

7. end for

8. compute ρ(x , t + 1) (Eq. 6)

9. compute u(x , t + 1) (Eq. 7)

10. store ρ(x , t + 1) and u(x , t + 1)

11. for all index α do

12. compute f ∗α (x , t + 1) (Eq. 16)

13. store f ∗α (x , t + 1)

14. end for

15. end for

16. end for

Algorithm 1: General formulation of the two-step LW-ACM.

1. for all time step t do

2. for all mesh point x do

3. for all index α do

4. load ρ(x − ξα, t) and u(x − ξα, t)

5. compute f (e)α (x − ξα, t) (Eq. 8)

6. compute f (e,o)
α (x − ξα, t) (Eq. 10)

7. end for

8. for all index α do

9. compute fα(x , t + 1) (Eq. 11)

10. end for

11. compute ρ(x , t + 1) (Eq. 6)

12. compute u(x , t + 1) (Eq. 7)

13. store ρ(x , t + 1) and u(x , t + 1)

14. end for

15. end for

Algorithm 2: General formulation of the single-step LW-ACM.
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f (e,o)
α (x , t). Eq. 16 is equivalent to the LBM collision step insofar as only local

information (with respect to both time and space) are required. It is worth noting

that, with this formulation, the fα are disposable variables and that only ρ, u,

and the f ∗α need to be stored globally between two iterations. The corresponding

algorithm is summarised in Algorithm 1.

From an implementation standpoint, the two-step formulation of the LW-ACM

is very close to LBM. Thus, the adaptation of an existing LBM code to LW-ACM

should be straightforward in general. In a memory-bound context, as for most

GPU implementations of the LBM, the additional cost of loading and storing ρ

and u at each time step is likely to have a noticeable, although slight, impact

on performance. When using the D3Q19 stencil for instance, the amount of data

transferred is increased by 4/19≈ 21%.

Considering the right-hand side of Eq. 11, one sees that the LW-ACM updating

rule is fully expressed in terms of known functions of ρ and u. This suggests an

alternative implementation approach, outlined by Algorithm 2, in which only ρ

and u are kept in memory.

Compared to LBM, the single-step formulation considerably reduces the mem-

ory consumption. However, in the three-dimensional case, the number of required

read operations per time step is multiplied by 4. To be of practical interest in a

memory-bound situation, such approach must therefore be coupled with an appro-

priate strategy to minimise read redundancy.

3. Implementations

3.1. General-purpose computing on GPUs

General-purpose computing on graphics processing units is still an emerging

field. A thorough description of the CUDA technology being beyond the scope

of this article, we refer the reader to manuals such as the CUDA programming

guide [12]. For the sake of clarity, however, we shall summarise some of the specific

aspects of GPU programming.

The CUDA programming paradigm is referred to as single instruction multiple

threads (SIMT). A CUDA program consists of sequential code run by the host sys-

tem and at least one function, named kernel, which is off-loaded to the computing

device at the appropriate time and processed in parallel threads. Each thread is

an instance of the kernel with its own local variables. To launch a kernel, it is

necessary to specify an execution grid which consists of a set of identical thread

blocks.

The two-level structure of the execution grid is due to architectural constraints.

A CUDA enabled GPU is formed by several streaming multiprocessors (SMs) each

of one containing a given number of scalar processors (SPs)1 and a small shared

memory. Within an SM, the SPs are strongly coupled: an SP may either process

the current instruction or remain idle (which might occur in case of conditional

branching). At GPU level, the SMs are not synchronised and may only communicate

through the off-chip device memory.

A thread block must fit into one single SM which, on one hand, implies strong

limitations on its size and resource consumption, but, on the other hand, enables

1Depending on the hardware generation, the number of SPs per SM ranges from 8 to 32.
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efficient data transfer and synchronisation between threads. At global level, on the

contrary, synchronisation and data transfer operations are likely to have a signifi-

cant cost and should be avoided as much as possible.

3.2. Basic implementation

Our first attempt to implement the LW-ACM was based on a modified version of

the TheLMA2 framework hereafter referred to as TheLMA*. Consisting of multiple

software components, TheLMA is devoted to the implementation of LBM solvers on

GPU based systems [2]. A main computation kernel is responsible for updating the

lattice, performing both propagation and collision. This kernel is invoked for each

time step, therefore enforcing global synchronisation. Moreover, in order to avoid

read-after-write hazards, two instances of the lattice are kept in memory. Although

less memory consuming approaches are possible, this method proves to be the most

convenient and efficient in practice, allowing to keep the code as simple as possible,

even with complex boundary conditions.

In order to gain advantage from the massive parallelism of GPUs, each node of

the computation domain is handled by a specific thread. Since the blocks within

the execution grid and the threads within the blocks are referenced by three-

dimensional indices, there are numerous ways to set the correspondence between

the grid and the computation domain. For simulations in three dimensions, expe-

rience shows that the most efficient approach consist in using a two-dimensional

grid of one-dimensional blocks. The lattice is stored in a four-dimensional array

of floating point numbers, the fastest-varying dimension corresponding to the di-

rection of the blocks. This setup enables the SMs to perform coalesced accesses to

device memory resulting in high data transfer rates. Moreover, practice shows that

choosing the velocity index as the second fastest-varying dimension has a positive

impact on cache reuse and thus on performance.

The TheLMA* version of LW-ACM implements Algorithm 1. Being designed for

versatility, very few modifications were required to adapt the TheLMA framework

to LW-ACM. Only about 150 lines of code needed to be edited, a first functional

version being available after less than 3 days of work. The most notable change

concerns the fluid density and velocity which are usually kept in separate arrays

since these variables need not be saved at every time step. In the present case,

ρ and the components of u are stored as supplementary fα variables with α =

19, 20, 21, 22. This modification furthermore improves cache reuse and preserves

simple array index computations in the main kernel.

3.3. Optimised implementation

Our second implementation of the LW-ACM is based on Algorithm 2. Although

some peripheral components of TheLMA could be recycled, the core elements of

this new program, which we named Louise, had to be written from scratch. As a

matter of fact, the constraints in terms of data transfer are completely different,

the key aspect being the read redundancy. To address this issue, we chose to fetch

in shared memory the fluid density and velocity associated to each block and its

immediate neighbourhood, which we further refer to as its halo. As for TheLMA

2TheLMA stands for Thermal LBM on Many-core Architectures, thermal simulations of the indoor and

outdoor environment of buildings being the primary goal of this project.
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Figure 2: Data access to the halo of a block for the main kernel of Louise — The

plain discs represent the active threads whereas the hollow ones represent the nodes

from which ρ and u are read.
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based solvers, we assign a specific thread to each node, invoke the main compu-

tation kernel at each time step, and keep two instances of the fluid data in global

memory. However, instead of using four-dimensional arrays to store the fluid data,

we use three-dimensional arrays of float4 structures containing the density and

the velocity components. This set-up, which is made possible by the use of a shared

buffer at block level, preserves memory access coalescence while improving data

locality in global memory.

In order to optimise the number of read operations with respect to the number

of threads, the shape of the blocks must be cubic and the size must be as large as

possible. Moreover, since coalesced memory accesses are issued by groups of 32

threads named warps3, the number of threads in the blocks should be a multiple of

32. Taking into account the amount of shared memory provided on present CUDA

enabled GPUs, we therefore chose to use 8 × 8 × 8 blocks. In the main kernel,

each thread starts with loading the fluid density and velocity at its associated node.

The threads located at the faces or the edges of the current block are furthermore

responsible for loading the fluid data from the corresponding nodes of the halo (see

Fig. 2). It should be mentioned that, when using the D3Q19 stencil as in our case,

the data from the vertices of the halo are not required and thus are not loaded.

Once all data is available, the threads update ρ and u for their associated node

and write these values to global memory.

Using the proposed approach, there are 992 read operations4 and 512 write op-

erations to global memory per block and per time step. Each block being assigned

to 512 nodes, the read redundancy ratio is therefore less than 2. When comparing

Louise to a TheLMA based LBM solver, the amount of data read is reduced by a

factor of 2.44, the amount of data written is reduced by a factor of 4.75, and the

global memory consumption is reduced by a factor of 5.25.

4. Performance study

4.1. Methodology

In order to demonstrate the relevance of our optimisations, we studied perfor-

mance of both the TheLMA* and the Louise programs as well as of a TheLMA based

D3Q19 LBM solver. We chose to simulate the well-know lid-driven cubic cavity in

single precision. This test case consists of a closed cavity with five solid walls and a

top lid on which a constant velocity is imposed to the fluid. Both the TheLMA and

the TheLMA* solvers implement the simple bounce-back (SBB) boundary condition

for the walls. Following [9], we impose the top lid velocity u0 by adding :

2

c2
s

wαρξα · u0 (17)

to the fα variables after bounce-back. As regards to Louise, since LW-ACM can

accommodate with either finite difference or LBM techniques, and since retrieving

the values of the fα at the former time step would lead to additional memory

accesses, we chose to implement usual finite difference boundary conditions. While

3The size of a warp is actually hardware-dependent and might be different with future CUDA GPUs.
4This evaluation is only valid in the bulk of the computation domain, since the application of bound-

ary conditions might alter the data access pattern.
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Figure 3: Performance comparison on the lid-driven cubic cavity — Performance is

reported in million lattice node updates per second (MLUPS).

Size TheLMA TheLMA* Louise

96 89.6 99.2 43.6

128 89.6 100.2 46.1

160 89.5 100.6 47.3

192 89.2 101.0 47.8

224 89.3 100.3 48.4

256 89.1 101.0 48.7

288 89.2 100.9 48.9

320 88.0 100.3 49.1

352 — — 49.3

384 — — 49.6

416 — — 49.9

448 — — 50.1

480 — — 50.3

512 — — 50.5

544 — — 50.4

576 — — 50.3

Table 1: Ratio (in %) of the data throughput to the maximum sustained throughput

for the lid-driven cubic cavity test case.
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preserving performance, this choice enabled us to compare the effects of both types

of boundary conditions.

We performed the simulations on a GeForce GTX Titan commodity graphics

card featuring a Kepler GK110 GPU and 6 GB of device memory. According to the

bandwidthTest program shipped with the CUDA software development kit, the

maximum sustained data throughput between GPU and device memory is approxi-

matively 231 GB/s, which is almost twice as much as for the Fermi, i.e. the former

CUDA GPU generation. The graphics card was hosted on a Debian GNU/Linux 6.0

workstation running version 319.23 of the Nvidia device driver. Preliminary tests

showed that the device driver enforces an aggressive power management policy,

downscaling the processor frequency to keep the core temperature within optimal

range. Recorded performance may thus considerably vary, depending on the start

temperature and the duration of the run. To get reproducible results and valid

comparisons, it is therefore necessary to ensure identical start temperatures and

run times. In the present study, we chose to perform short-time runs (about 30 s)

at low start temperature (42 ◦C), hence staying at the maximum frequency level.

In practice, for long-time computations, experience shows that the obtained per-

formance is about 15 % less than the values reported hereafter.

4.2. Results and discussion

Performance is reported in MLUPS, i.e. million lattice node updates per second,

which is the usual performance metric for LBM. The size of the cavity ranges from

96 to the largest possible, i.e. 576 for Louise and 320 for TheLMA and TheLMA*.

The results are plotted in Fig. 3. In addition, the ratio of the data throughput esti-

mated from performance to the maximum sustained throughput is given in Tab. 1.

Inspecting Tab. 1 leads to the conclusion that the performance of TheLMA

and TheLMA* is memory-bound, the former outperforming the later by about 7 %

on average. There appears to be a very efficient bandwidth and cache use5, for

TheLMA* resulting in the ratio of the data throughput of TheLMA* to the sus-

tained throughput of the bandwidthTest program being close to or even greater

than 100 %. The difference in performance between the TheLMA and TheLMA*

versions is less than expected when considering the amount of data to be trans-

ferred at each time step. However, opposite to the loading and storing of the fα
variables, the additional memory access operations required by TheLMA* are all

well-aligned and thus more efficient.

The Louise program outperforms the TheLMA based solver by a factor of up

to 1.8, however the performance increase is not proportional to the gains in data

transfer. Using the CUDA profiler shows that, because of the synchronisation barrier

required after gathering the data at the beginning of the main computation kernel,

a large proportion of the load operations are stalled, thus exposing the high latency

of the device memory. It is also worth mentioning that the performance of Louise

grows with the size of the cavity, which is likely to be caused by an increasing cache

reuse. Indeed, since the blocks are dispatched to the SMs in an ordered fashion,

a larger computation domain increases the probability to have consecutive blocks

5When a SM starts processing a block of threads, 19 coalesced read operations are issued and the

corresponding memory segments are loaded from device memory through L2 cache. Because of the

address shift induced by propagation, 10 out of the 19 transactions are not aligned and some of the

loaded segments can be reused for neighbouring blocks.
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processed concurrently, thus improving the data locality. With Louise, performance

goes up to nearly 2500 MLUPS which is close to the performance reported for a

TheLMA based multi-GPU solver running on a cluster of eight Fermi GPUs [14].

5. Validation study

5.1. Reference data

Although the LW-ACM was carefully validated in [3], no high-resolution valida-

tion study of the LW-ACM has been published so far to the best of our knowledge.

For this purpose, we generated highly accurate reference data of the lid-driven cu-

bic cavity at Reynolds number Re = 2000, using a spectral and mortar element

analysis program developed using the OpenSPECULOOS toolbox [1, 5]. We per-

formed the simulation on 83 elements with Gauss–Lobato–Legendre polynomials

of degree 12 and a dimensionless time step duration of 10−3. We obtained a di-

mensionless time-to-solution of 18.4 using the convergence criterion:

‖Un+1 −Un‖2 < 10−2 (18)

where ‖ ·‖2 is the ℓ2-norm and Un is the dimensionless velocity field at time step n.

The simulation ran for 64 hours on 256 CPU cores of a cluster featuring double

socket Xeon E5-2670 nodes and InfiniBand FDR interconnect.

5.2. Results and discussion

In order to evaluate the accuracy of LW-ACM and to make comparison with

LBM, we simulated the lid-driven cubic cavity in single precision at Re= 2000 with

both Louise and TheLMA* (since the implemented boundary conditions are dif-

ferent) as well as with the TheLMA version which uses a multiple-relaxation-time

(MRT) lattice Boltzmann model [7]. We performed the simulation for a dimen-

sionless duration of 18.4, as for our reference data, and used the same range of

resolutions as in our performance study.

Comparison between the LW-ACM and LBM simulations and our reference is

made by subtracting the resulting normalised velocity field to the values interpo-

lated from the reference data on the appropriate Cartesian grid. The ℓ2-norm of

the discrepancy fields are plotted in Fig. 4, whereas a detailed view of these dis-

crepancies in a cavity of size 128 is provided by Figs. 5, 6, and 7.

Fig. 4 shows that both LW-ACM and LBM converge towards the reference solu-

tion at approximatively the same rate. Moreover, LW-ACM appears to be almost as

accurate as LBM, except for the coarser resolutions in the case of TheLMA*. It is

worth mentioning that using the Louise program with a Kepler based accelerator,

a discrepancy norm of less than 1 % is achieved for a cavity of size 224 within less

than 3 minutes of computations.

Considering Figs. 5, 6, and 7, we see that the discrepancies are mainly located

near the top lid. For LBM, the most important discrepancies are close to the top

edge of the downstream wall, where the pressure gradients are the higher. In the

case of TheLMA*, the discrepancies are less severe but more extended than with

the two other programs, resulting in a larger ℓ2-norm. With Louise, the major

discrepancies are along the stream-wise edges of the top lid. Improved boundary

conditions on the edges could possibly cure this defect.
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Figure 4: ℓ2-norm of the velocity discrepancy with respect to reference data for

TheLMA, TheLMA* and Louise on the lid-driven cubic cavity at Re= 2000.
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Figure 5: Velocity discrepancy with respect to reference data for TheLMA.
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Figure 6: Velocity discrepancy with respect to reference data for TheLMA*.
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Figure 7: Velocity discrepancy with respect to reference data for Louise.
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6. Conclusions

In the present work, we describe two implementations of the LW-ACM on a

CUDA enabled GPU. The approach chosen for the Louise program appears very

promising. Compared to LBM, performance with the latest CUDA generation is

increased by a factor of up to 1.8. The global memory requirements are reduced by

a factor of 5.25, making possible to handle up to 201 million nodes instead of 38

using a 6 GB computing device. The TheLMA* version is of less practical interest.

However, it proves that an existing GPU LBM might easily be adapted to LW-ACM

with only slight performance loss.

The large scale validation enabled by these high-performance implementations

shows that LW-ACM is able to reach excellent accuracy, at least at moderate Reynolds

number, in a very short amount of time. Implementations of the LW-ACM on mas-

sively parallel processors could become instruments of choice for CFD simulations

in engineering applications.

Acknowledgements

Pietro Asinari acknowledges the support of the Italian Ministry of Research

(FIRB grant RBFR10VZUG).

References

[1] SPECtral Unstructured eLements Object-Oriented System (SPECULOOS).

www.sourceforge.net/projects/openspeculoos.

[2] Thermal LBM on Many-core Architectures (TheLMA).

www.thelma-project.info.

[3] P. Asinari, T. Ohwada, E. Chiavazzo, and A.F. Di Rienzo. Link-wise Artificial

Compressibility Method. Journal of Computational Physics, 231(15):5109–

5143, 2012.

[4] P. L. Bhatnagar, E. P. Gross, and M. Krook. A Model for Collision Processes in

Gases. I. Small Amplitude Processes in Charged and Neutral One-Component

Systems. Physical Review, 94(3):511–525, 1954.

[5] C. Bosshard, R. Bouffanais, C. Clémençon, M. Deville, N. Fiétier, R. Gruber,

S. Kehtari, V. Keller, and J. Latt. Computational Performance of a Parallelized

Three-Dimensional High-Order Spectral Element Toolbox. In Advanced Paral-

lel Processing Technologies, volume 5737 of Lecture Notes in Computer Science,

pages 323–329. Springer, 2009.

[6] A. J. Chorin. A numerical method for solving incompressible viscous flow

problems. Journal of computational physics, 2(1):12–26, 1967.

[7] D. d’Humières, I. Ginzburg, M. Krafczyk, P. Lallemand, and L.S. Luo. Multiple-

relaxation-time lattice Boltzmann models in three dimensions. Philosophical

Transactions of the Royal Society A, 360:437–451, 2002.

[8] S Geller, S Uphoff, and M Krafczyk. Turbulent jet computations based on

MRT and Cascaded Lattice Boltzmann models. Computers & Mathematics

with Applications, 65(12):1956–1966, 2013.

15

http://www.thelma-project.info


[9] A. J. C. Ladd and R. Verberg. Lattice-Boltzmann simulations of particle-fluid

suspensions. Journal of Statistical Physics, 104(5-6):1191–1251, 2001.

[10] X.L. Luo, Z.L. Gu, K.B. Lei, S. Wang, and K. Kase. A three-dimensional Carte-

sian cut cell method for incompressible viscous flow with irregular domains.

International Journal for Numerical Methods in Fluids, 69(12):1939–1959,

2012.

[11] R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Reviews of

Fluid Mechanics, 37:239–261, 2005.

[12] NVIDIA. Compute Unified Device Architecture Programming Guide version 5.5,

July 2013.

[13] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. A New Approach to

the Lattice Boltzmann Method for Graphics Processing Units. Computers and

Mathematics with Applications, 12(61):3628–3638, 2011.

[14] C. Obrecht, F. Kuznik, B. Tourancheau, and J.-J. Roux. Scalable lattice Boltz-

mann solvers for CUDA GPU clusters. Parallel Computing, 39(6-7):259–270,

2013.

[15] R. Témam. Navier–Stokes equations: Theory and numerical analysis. North-

Holland, 1979.

[16] J. Tölke and M. Krafczyk. TeraFLOP computing on a desktop PC with GPUs

for 3D CFD. International Journal of Computational Fluid Dynamics, 22(7):

443–456, 2008.

16


	Introduction
	Link-wise artificial compressibility method
	Artificial compressibility equations
	Link-wise formulation
	Algorithmic aspect

	Implementations
	General-purpose computing on GPUs
	Basic implementation
	Optimised implementation

	Performance study
	Methodology
	Results and discussion

	Validation study
	Reference data
	Results and discussion

	Conclusions

