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Abstract

Most elliptic interface solvers become complicated for complex interface problems at
those “exceptional points” where there are not enough neighboring interior points for
high order interpolation. Such complication increases especially in three dimensions.
Usually, the solvers are thus reduced to low order accuracy. In this paper, we classify
these exceptional points and propose two recipes to maintain order of accuracy there,
aiming at improving the previous coupling interface method [26]. Yet the idea is also
applicable to other interface solvers. The main idea is to have at least first order approx-
imations for second order derivatives at those exceptional points. Recipe 1 is to use the
finite difference approximation for the second order derivatives at a nearby interior grid
point, whenever this is possible. Recipe 2 is to flip domain signatures and introduce a
ghost state so that a second-order method can be applied. This ghost state is a smooth
extension of the solution at the exceptional point from the other side of the interface. The
original state is recovered by a post-processing using nearby states and jump conditions.
The choice of recipes is determined by a classification scheme of the exceptional points.
The method renders the solution and its gradient uniformly second-order accurate in the
entire computed domain. Numerical examples are provided to illustrate the second order
accuracy of the presently proposed method in approximating the gradients of the orig-
inal states for some complex interfaces which we had tested previous in two and three
dimensions, and a real molecule (1D63) which is double-helix shape and composed of
hundreds of atoms.
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1. Introduction

The elliptic interface problem involves solving the following partial differential equa-
tion

−∇ · (ε(x)∇u(x)) = f(x), in Ω\Γ, (1)

where ε is positive and Γ is the interface, across which, the coefficient ε(·) is discontinuous.
On the interface, two interface conditions are given:

[u] = τ, [ε∇u · n] = σ on Γ, (2)

where n is the normal direction to the interface, see Fig. 1. On the boundary ∂Ω, the
Dirichlet boundary condition is applied. Such elliptic interface problems appear com-
monly in two phase flows in fluid dynamics, fluid-structure interaction, electromagnetism,
bio-mechanics, etc., see review articles [1, 2].
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Figure 1: Domain for interface problems. The blue curve Γ is the interface which separates the domain
Ω into Ω− and Ω+. The normal to the interface is denoted as n. The light blue lines are the grid lines of
the uniform mesh. Red cross markers labeled by P, Q, and R are called exceptional points since there
are not enough interior grid points on the same side for high-order interpolation.

There are many elliptic interface numerical solvers. For example, for boundary inte-
gral approaches, we refer to [3]; for body-fitting approaches, we refer to [4, 5]; for finite
element approaches, we refer readers to [6, 7, 8, 9], and for finite volume approaches,
we refer to [10]. When there is a moving interface, the finite difference approaches are
most suitable. The basic idea is to embed the interface into a Cartesian grid, in which a
standard finite difference method can be applied. We roughly classify them into two cate-
gories, the dimensional splitting and un-splitting methods. For the un-splitting methods,
we refer readers to [11, 12] for regularization methods; [1, 13] for the immersed boundary
method; [14, 15, 2] for the immersed interface method (IIM); [16] for the multidimen-
sional piecewise polynomials method, and [17, 18] for the virtual node method. For the
dimension splitting methods, we refer readers to [19, 20, 21, 22, 23, 24, 25]. Our previous
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work [26], the coupling interface method (CIM) belongs to the latter. The convergence
and accuracy analysis of finite difference approaches can be found in [27, 28].

In some moving interface problems, accurate approximation for gradients is neces-
sary [29, 30, 31, 32]. A straight forward way is to take numerical differentiation from
nearby computed solutions, but this approach lowers down the order of accuracy by one,
see, for example, the convergence results in [18]. Even worse, a high order approximation
for gradients may not be possible at those points where there are not enough neighbor-
ing grid points available on the same side for interpolation, such as the P, Q and R
in Fig.1. We call such points exceptional points. Many of such exceptional points are
generic, which means that they cannot be removed by refining meshes, and they are
typical in three dimensions. The magnitudes of errors thus depend on how the interfaces
cut through the underlying regular grids. One observes that the error fluctuates against
the mesh size.

In this paper, we classify these exceptional points and propose recipes to maintain
high order accuracy there. These recipes are to improve the previous method, the cou-
pling interface method [26], but the idea is also applicable to other elliptic interface
solvers. The main idea is the follows. First, a suitable mesh size is suggested based on
the maximal curvature of the interface to eliminate certain kinds of exceptional points
other than the generic ones. Then, we propose two recipes to have first order approx-
imation for second order derivatives on generic exceptional points. Recipe 1 uses the
finite difference approximation for the second order derivatives at an adjacent interior
grid, if it is available. Recipe 2 is to flip the domain signature of the exceptional point
so that it is no longer an exceptional point and a second-order method can be applied.
The state so computed is a ghost state, which is the smooth extension of the solution
at the exceptional point from the other side of the interface. The original state can be
recovered by a post-processing using nearby states and jump conditions. The idea of
ghost states has been introduced in [21]. The difference is that the state in [21] is used
as an intermediate state during discretization, while our ghost states are computed in
the discrete systems. The choice of which recipe to use is determined by a classification
of the exceptional points. The improved method renders the solution and its gradient
uniformly second-order accurate in the entire computed domain. Careful numerical tests
are performed to show a second-order accuracy for gradients in two and three dimensions,
including a real molecule (1D63) composed of hundreds of atoms.

1.1. Brief review of the Coupling Interface Method

In our previous work [26], we proposed the coupling interface method, which is a di-
mension splitting method based on a Cartesian grid. In each dimension, it uses piecewise
polynomials to approximate the solution from both sides of the interface. The informa-
tion from different dimensions is linked through jump conditions, leading to a coupled
linear equation for the principal second order derivatives. This approach reduces the size
of stencils, and thus has mild restriction on the interfaces. This gives it more potential
to handle complex interface problems. Indeed, the first-order method (CIM1) only re-
quires the interface intersects each grid segment at most once. The second-order method
(CIM2) basically requires that at an interface point, there are two adjacent grid points
sitting in the same region on each side of the interface in each dimensional direction.
For the convenience of readers, we summarize the key procedures of CIM2 below. The
high-order approximation for the gradient of the solution is also included.
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Suppose that Ω = [0, 1]d in d > 1 dimensions and the underlying Cartesian grid is
uniform with mesh size h = 1/N , where N is the number of intervals in one edge of the
cube Ω. Let xi = ih be a grid point, where the symbol i = (i1, i2, · · · , id) is a multi-index
with ik ∈ N ∪ {0}. Let ek, k = 1, 2, · · · , d denote the unit coordinate vectors which we
call the coordinate directions. We call xi±ek

the adjacent grid points of xi.
Let us suppose the interface Γ cuts the domain Ω into two regions Ω−(ϕ(x) < 0) and

Ω+(ϕ(x) > 0). We assume that Γ intersects any grid segment xjxj+ek
at most once. Let

us call the intersection the interface point. A grid point xi is called an interior point if
all its adjacent points are in the same region of xi. The rest of the grid points are called
on-front points. They are further classified into regular on-front points (where CIM2 can
be applied) and exceptional points. Their definitions will be clear in the description of
CIM2 below.

Now, let us briefly explain the discretization procedure of CIM2 at a regular on-front
point xj ∈ Ω−. We will only explain the case when for all k, xj−ek

are in the same region
of xj and xj+ek

are not. The discretization of (1) by CIM2 at xj proceeds in three steps.

1. Dimension-by-dimension discretization: We apply the one-dimensional CIM2 at xj

along each coordinate direction.

∂2u

∂x2k
(xj) =

1

h2
(Lj,k(uj−ek

, uj, uj+ek
, uj+2ek

) + bj,k[u]x̂k
+ cj,kh[ε∇u · ek]x̂k

)+O(h),

(3)
where Lj,k(uj−ek

, uj, uj+ek
, uj+2ek

) is a linear combination of uj−ek
, uj, uj+ek

, and
uj+2ek

. This one dimensional formula can be derived using piecewise parabola
approximation and the two jump conditions, see [26]

2. Representation of one-dimensional jump data in terms of the multi-dimensional
jump data and the one-side gradient: This gives

[ε∇u · ek]x̂k
= nk · ek[ε∇u · nk]x̂k

+ tk · ek
(
ε(x̂+

k )[∇u · tk]x̂k
+ [ε]x̂k

∇u−(x̂k) · tk
)
,

(4)
where tk is the unit vector parallel to the projection of ek onto the tangent plane
of Γ at x̂k.

3. Approximation of the one-side gradient and the cross derivatives:

∇u−(x̂k) =
1

h

[
uj − uj−eℓ

+
h2

2

∂2u

∂x2ℓ
(xj) + αkh

2 ∂2u

∂xk∂xℓ
(xj)

]d
ℓ=1

+O(h2), (5)

where αkh = ∥x̂k − xj∥. Here we make another constraint for an on-front point,
namely, xj−ek−eℓ

is also in the same region of xi. Then the above cross derivatives
can be simply approximated by

∂2u

∂xk∂xℓ
(xj) =

1

h2
(uj − uj−ek

− uj−eℓ
+ uj−ek−eℓ

) +O(h). (6)

Note that we use (5) and (6) to approximate the gradient of the solution after u is
solved. In [26], we showed the second-order accuracy for the gradient of solution
when there are no exceptional points in the computational domain.
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After substituting (4), (5) and (6) in (3), a linear system for the principal second order
derivatives is obtained:

M

[
∂2u

∂x2k
(xj)

]d
k=1

=
1

h2
[(Lj,k + Tj,k)uj + Jj,k]

d
k=1 +O(h), (7)

where Lj,k, Tj,k and Jj,k are

Lj,kuj = Lj,k(uj−ek
, uj, uj+ek

, uj+2ek
), (8)

Tj,kuj = cj,k[ε]x̂k
tk · ek

d∑
ℓ=1

(
uj − uj−eℓ

+ αkh
2 ∂2u

∂xk∂xℓ
(xj)

)
tk · eℓ, (9)

Jj,k = bj,k[u]x̂k
+ cj,kh

(
[ε∇u · n]x̂k

nk · ek + ε(x̂+
k )[∇u · tk]x̂k

tk · ek
)
, (10)

and the entries of the matrix M are

Mk,ℓ = δk,ℓ − σk[ε]x̂k

(
1

2
+ αkδk,ℓ

)
(tk · ek)(tk · eℓ). (11)

Here δk,ℓ is 1 for k = ℓ and 0 otherwise. It has been shown in [26] that if the maximum
curvature of the interface is not too large (say,O(1/h)), then M is invertible. Thus, we
obtain a first-order approximation of the principal second order derivatives at xj, and
thus a first order approximation for Eq. (1) at xj.

As we can see the requirements for a regular on-front point xj are

(i) for each coordinate direction, there are two grid points (including xj) on the same
side and two grids on the opposite side;

(ii) there is at least one grid point, say xj−ek−eℓ
, available on the same side to compute

cross derivative ∂2u/∂xk∂xℓ.

Those grid points which do not meet the above requirement are called exceptional points.
An exceptional point is called type-I if it does not meet the requirement (i), and type-II
if it satisfies (i) but not (ii).

2. Classification of type-I exceptional points and the corresponding recipes

2.1. An indicator to classify type-I exceptional points

The treatments of type-I exceptional points are based on the following indicatorG(xi)
which measures the number of adjacent grid points in the same region. Let xi be a grid
point, we define a vector G(xi) = (g1(xi), g2(xi), · · · , gd(xi)) by:

gk(xi) =

 2, if xi−ek
,xi and xi+ek

are in the same region;
0, if xi−ek

and xi+ek
are not in the region that xi belongs to;

1, otherwise.
(12)

In other words, gk(xi) = 2 (resp. 1, 0) means that there are two (resp. one, zero) neigh-
boring grid points of xi in ek-direction are on the same side. It is obvious that a grid
point satisfies condition (i) above if and only if gk(xi), gk(xi±ek

) ≥ 1 for all k. Thus, a
5



grid point violates condition (i) (that is, a type I point) if and only if it satisfies either (i)
gk(xi) = 0 or (ii) gk(xi−ek

) = 0 or (iii) gk(xi+ek
) = 0 for some k. Below, we discuss their

treatments in two and three dimensions separately. For simplicity of explanation, we
may assume g1(xi) ≤ g2(xi) ≤ g3(xi). Other cases are simply an orientation or rotation
of this case.

xi

e1

e2

(a) G(xi) = (0, 1)

e1

e2

xi

(b) G(xi) = (0, 0)

e1

e2

xi

(c) G(xi) = (0, 2)

Figure 2: Type-I exceptional points in two dimensions. The region colored by light yellow is Ω+ while
the white region is Ω−. The circles and disks are grid points in Ω− and Ω+, respectively.

2.2. Type-I exceptional points in two dimensions with g1(xi) = 0

There are three sub-cases, namely G(xi) = (0, 1), (0, 0), and (0, 2). See Figs. 2(a),
2(b) and 2(c). The grid points marked by squares are the exceptional points under
discussion.

Case G(xi) = (0, 1), see Fig.2(a). This situation happens when a grid point is near
an interface point whose tangent is nearly perpendicular to some coordinate direction.
In this case, we cannot obtain first order approximations for ux1x1(xi) and ux1x2(xi)
by CIM2. We provide two recipes to get an O(h) approximation for the second order
derivatives at xi.

• Recipe 1. The first recipe is to replace the second order derivatives ux1x1(xi)
by an adjacent one where an O(h) approximation is available. More precisely, we
replace ux1x1(xi) by ux1x1(xi−e2) in (3), that is,

∂2u

∂x21
(xi) =

∂2u

∂x21
(xi−e2) +O(h) =

1

h2
(ui−e2−e1 − 2ui−e2 + ui−e2+e1) +O(h), (13)

Meanwhile we also replace ∂2u
∂x1∂x2

(xi) by
∂2u

∂x1∂x2
(xi−e2) in (6). These replacements

are then used in the Eq. (7) for later derivation of ∂2u
∂x2

2
in CIM2. There may be more

than one possible adjacent point to choose, or no such adjacent point available. In
the former case, we choose the one with the smallest stencil size. In the latter case,
we select further away adjacent points until an O(h) approximation is available. In
practice, we have never meet this case.

It should be cautious that the resulting matrix may have bad condition number after
such replacement. In order to study this issue, we consider such a replacement on
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the standard discrete Laplacian in the domain [0, 1]× [0, 1]. The standard discrete
Laplacian can also be approximated by one of the following four discretizations
derived by shifting one grid point (i.e. recipe 1). 1 −1 1

0 −2 0
0 1 0

 ,
 0 1 0

0 −2 0
1 −1 1

 ,
 1 0 0

−1 −2 1
1 0 0

 ,
 0 0 1

1 −2 −1
0 0 1

 . (14)

In [26], we explained that, in practice, the number of exceptional points in of O(1),
independent of mesh sizes. To mimic such situations, we randomly choose four
grid points in the domain and replace the discrete Laplacian by one of the above
discretizations randomly. We repeat the test 100 times and see the difference of the
condition number between the discrete Laplacian and the resulting matrix which
recipe 1 is applied at four random grid points. The box-and-whisker diagram for
the differences is shown in Figure 3. We use three mesh sizes: h = 1/20, 1/40, and
1/80. The condition numbers for discrete Laplacian are about 161.45, 647.79, and
2593.16 for h = 1/20, 1/40, and 1/80, respectively. Some differences are greater
than the first quartile plus 1.5 times the interquartile range when h is 1/20 and
1/40, see the plus markers in Figure 3. It is due to the locations of those random
points are too closed. Even with that, we found that the difference is almost O(1)
when the mesh size h decreases. It shows that the change of condition number is
of O(1) in average and independent of the mesh size if we apply the recipe 1 only
at few exceptional points.

0

10

20

30

40

50

60

70

80

h=1/20 h=1/40 h=1/80

Figure 3: Boxplot of 100 tests for the difference of the condition number between the standard discrete
Laplacian and the resulting matrix which recipe 1 is applied at four random grid points. Here we use
three mesh sizes: h = 1/20, 1/40, and 1/80. The condition numbers for standard discrete Laplacian are
about 161.45, 647.79, and 2593.16 for h = 1/20, 1/40, and 1/80, respectively. It shows the change of the
condition number is of O(1) and independent of the mesh size.

• Recipe 2. This is an alternative recipe to treat the exceptional point as shown in
Fig. 2(a). First, we flip the domain signature of xi from Ω− to Ω+. That is, we treat
xi as if it were on the Ω+ side. After flipping, xi becomes a regular on-front points,
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and so do its two adjacent points. Thereby we can apply CIM2 at these points, as
will be shown in detail below. The state so computed, denoted by ũ(xi), is called a
ghost state. It is a smooth extrapolation of u from Ω+-side. The advantage of this
approach is that all states so computed are second order accurate. The original
states will be recovered by a post processing.

In detail, as shown in Figure 2(a), after flipping the domain signature, the point

xi is no longer an exceptional point. Therefore, we can approximate ∂2ũ
∂x2

1
easily by

the central finite differencing:

∂2ũ

∂x21
=

1

h2
(ui−e1 − 2ũi + ui+e1) +O(h2). (15)

Along the e2 direction, we can approximate ∂2ũ
∂x2

2
by the one-dimensional CIM2

formula:

∂2ũ

∂x22
(xi) =

1

h2
(Li,k(ui−2e2 , ui−e2 , ũi, ui+e2) + b2,k[u]x̂k

+ c2,kh[ε∇u · e2]x̂2
) +O(h).

(16)
Here, we treat xi and xi+e2 are in domain Ω+, while xi−e2 and xi−2e2 in domain
Ω−. Note that the relative distance becomes negative or greater than 1 in the ap-
proximation. The issue for the condition number and the corresponding treatment
are discussed later. Up to this point, we get the dimension-by-dimension discretiza-
tion at the first step in CIM2. After the second and third steps in CIM2, we can

get an O(h) approximation for ∂2ũ
∂x2

2
(xi).

Notice that ũi is expected to be the extrapolation of u from Ω+-side. Therefore,
we should also replace the source term of Eq. (1) by an extrapolation of f from
Ω+-side, see Fig. 2(a). For instance, the source term at xi may be approximated
by

f̃i =
1

2
(fi−e1 + fi+e1) +O(h2). (17)

Since the flips affect the classification of other grid points, we design a global flipping
process as the follow. First, we look over all exceptional points with G(x) = (0, 0),
(0, 1), (1, 0) in two dimensions and G(x) = (0, 0, 0), (0, 0, 1), (0, 1, 0), or (1, 0, 0)
in three dimensions, see Table 1. We flip the domain signatures of these points
simultaneously. We repeat this global flipping process until no more such points
exist or a maximum number of iterations is reached. If the latter cases do occur,
we apply recipe 1 at such grid points. Otherwise, recipe 2 is applied.

We remark that such flipping may produce a matrix with bad condition number
due to the determinant of the coupling matrix M of Eq. (11) may be near zero. We
illustrate this phenomenon and propose a threshold for det M to avoid such situ-
ations by the following simple example. We consider the one dimensional elliptic
interface problem on domain [−1, 1]. We discretize it into 2N subintervals uni-
formly. We assume that the interface point is situated at αh, where h = 1/2N . We
apply the flipping domain recipe at xN = 0. Figure 4 (a), (b) show the condition
numbers (log-scale) versus α with α ∈ (−1, 1) for the case ε− = 1 and ε+ = 2 and
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the case ε− = 2 and ε+ = 80, respectively. Figure 4 (c), (d) are the corresponding
determinant of M. We see that the condition numbers are poor when det M is
closed to zero. Otherwise, the condition numbers are well controlled if det M is
away from zero.

From this study, we set up a threshold, say 0.1265, for |det M| for the case ε− = 2
and ε+ = 80 from our experiments. If |det M| is less than this threshold value, then
we apply recipe 1 instead. We adopt GMRES[36] as a smoother in the algebraic
multigrid solver[37, 38, 39] to solve the corresponding system, with the control of
det M, the computation is relatively stable.
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(a) condition number for ε− = 1 and ε+ = 2
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(b) condition number for ε− = 2 and ε+ = 80
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(c) determinant for ε− = 1 and ε+ = 2
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(d) determinant for ε− = 2 and ε+ = 80

Figure 4: The semi-log plot of the condition number versus the interface location α. The recipe 2 is
applied when α < 0 at the middle of the domain.

The state ũi so obtained is the extrapolated state at xi, but all states nearby are
second order accurate. We can recover the original state ui by

ui = 2ui−e2 − ui−2e2 + h2
∂2u

∂x22
(xi−e2) +O(h3), (18)

where ∂2u
∂x2

2
(xi−e2) is replaced by an O(h) approximation derived by CIM2 proce-
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dures that we mentioned before with the help of the ghost state ũi.

Case G(xi) = (0, 0), see Fig.2(b). The above flipping domain-signature approach
can also be used for the case G(xi) = (0, 0). By flipping domain signature, we can

approximate ∂2ũ
∂x2

k
(xi) by the standard central finite difference method. Then ũ can be

solved and thereby u|+Ω can be found. To reconstruct ui, we solve a local discrete Poisson
equation at xi with boundary being the four neighboring interface intersections, at which
u|−Ω can be obtained from u|+Ω and the jump conditions.

Case G(xi) = (0, 2), see Fig.2(c). In this case, we adopt recipe 1 above. We may

approximate ∂2u
∂x2

1
(xi) by searching the approximations at xi±e2 , xi+e1+e2 , and xi−e1−e2 .

2.3. Type-I exceptional points in two dimensions with g1(xi±e1) = 0.

Let us discuss the case g1(xi+e1) = 0 only. The other case has the same treatment.
The grid xi is adjacent to another type-I exceptional point i+ e1 with g1(xi+e1) = 0. In
this case, g1(xi) = 0, 1 or 2. We find that g1(xi) ̸= 2 because it contradicts g1(xi+e1) = 0.
If g1(xi) = 0, it will be handled in the previous subsection. Thus, the only case under
discussion is g1(xi) = 1. This corresponds to those triangle markers in Fig. 2.

Our goal is to find a first-order approximation for ∂2u
∂x2

1
(xi). We have two recipes for

the grid point xi+e1 . The first recipe is to adopt recipe 2 at xi+e1 , from which we get a

ghost state ũi+e1 . We then approximate ∂2u
∂x2

k
(xi) by

∂2u

∂x21
(xi) =

1

h2
(ui−e1 − 2ui + ũi+e1) +O(h2). (19)

If recipe 1 is used at xi+e1 , we notice that xi−e1 , xi and xi+2e1 are in the same region.

Therefore, we can get a first order approximation for ∂2u
∂x2

1
(xi) by

∂2u

∂x21
(xi) =

1

h2

(
2

3
ui−e1 − ui +

1

3
ui+2e1

)
+O(h). (20)

At this point, we have completely solved all the cases of type-I exceptional points in
two dimensions.

2.4. Type-I exceptional points in three dimensions

For the study in three dimensions, without lose of generality, we may assume that
g1 ≤ g2 ≤ g3 at the exceptional point for simple explanation. Under this assumption,
we recall that xi is an exceptional point if and only if g1(xi) = 0, or g1(xi−e1) = 0, or
g1(xi+e1) = 0. Similar to the discussion in two dimensions, we study the case g1(xi) = 0
and the cases g1(xi±e1) = 0 separately.

Case g1(xi) = 0. These exceptional points are classified into six categories based on
the values of G(xi), see Fig. 5. They can be handled by recipes 1 and 2 as above. We
summarized their treatments in Table 1.

Case g1(xi±e1) = 0. The treatment for this case is identical to the same case in two
dimensions. We thus skip the redundant explanation.
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(a) G(xi) = (0, 0, 0) (b) G(xi) = (0, 0, 1) (c) G(xi) = (0, 0, 2)

(d) G(xi) = (0, 1, 1) (e) G(xi) = (0, 1, 2) (f) G(xi) = (0, 2, 2)

Figure 5: Exceptional points in three dimensions. The interface is colored by gradient of yellow. The
circles and disks are grid points in Ω− and Ω+, respectively. Red, green, and blue segments are parallel
to e1, e2, and e3, respectively. Note that the unit of each axes is the mesh size h.

Recipe 1 (shift) Recipe 2 (flip)
G(xi) = (0, 0) −

√

G(xi) = (0, 1) △
√

G(xi) = (0, 2)
√

−
G(xi) = (0, 0, 0) −

√

G(xi) = (0, 0, 1) △
√

G(xi) = (0, 0, 2)
√

−
G(xi) = (0, 1, 1)

√
△

G(xi) = (0, 1, 2)
√

−
G(xi) = (0, 2, 2)

√
−

Table 1: Summary of the solutions for type-I exceptional points. The symbol
√

means that it is our
first solution for the case. The symbol △ means that we use this solution when the first solution does
not work. The symbol − means that this solution does not work for the case.
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2.5. Choosing recipe 1 or recipe 2?
The decision to choose recipe 1 or recipe 2 is based on the following rule. First,

let n(xi) =
d∑

k=1

gk(xi) be the number of adjacent points of xi in the same region. If

n(xi) < 2, then we apply recipe 2 unless the corresponding determinant is small than a
given tolerant value. Otherwise, we apply recipe 1. The reasons are the follows. Recipe
2 cannot be applied for the cases G(xi) = (0, 2) in two dimensions and G(xi) = (0, 0, 2),
(0, 1, 2), and (0, 2, 2) in three dimensions, because the exceptional point xi remains an
exceptional point after flipping the domain signature. For the case G(xi) = (0, 1, 1), we
can choose either recipe 1 or 2. We choose recipe 1 for logical simplicity. All these cases
are summarized by n(xi) ≥ 2. On the other hand, if n(xi) = 0, i.e., there are no available
adjacent points, recipe 2 is the only choice. If n(xi) = 1, both choices are possible. We
choose recipe 2 in our code since the stencil of recipe 1 is usually larger.

3. Classification of Type-II exceptional points and corresponding recipes

We recall that a type-II exceptional point is a grid point xj where the second-order

cross derivative
∂2u(xj)
∂xk∂xℓ

can not be approximated easily by neighboring grid values on the
same region. By definition, xj is not a type-I exceptional point, thus we have at least
one adjacent grid point in the same region as xj in each direction, i.e., gk(xj), gℓ(xj) ≥ 1.
Without loss of generality, we may assume that xj−ek

, xj−eℓ
, and xj are in the same

region but xj−ek−eℓ
is not. Other situations are simply a rotation and reflection of this

one. Under this assumption, there are six cases in the ek-eℓ plane, see Fig. 6.

Case 1. In case 1 (Fig. 6(a)), the approximation of cross derivative in the first case can
be derived from the coupling technique in CIM2. Since xj+ek−eℓ

is in the same region of
xj, we can use the following approximation for the cross derivative:

∂2u(xj)

∂xk∂xℓ
=

1

h2
(uj − uj−ek

− uj−eℓ
+ uj+ek−eℓ

) +
∂2u(xj)

∂x2k
+O(h). (21)

We then use (21) to replace (6) in the derivation of the principal derivatives. Note that
∂2u(xj)

∂x2
k

is used in the approximation and then coupled in Eq. (7). Besides, since xj−ek+eℓ

is in the same region of xj, we can also use the following approximation for the cross
derivative:

∂2u(xj)

∂xk∂xℓ
=

1

h2
(uj − uj−ek

− uj−eℓ
+ uj−ek+eℓ

) +
∂2u(xj)

∂x2ℓ
+O(h). (22)

Note that
∂2u(xj)

∂x2
ℓ

is used in the approximation and then coupled in Eq. (7). Both

replacements, (21) and (22), change the coupling matrix. Fortunately, the resulting
coupling matrix is still solvable in all our tests.

Case 2. In cases 2-6, the design of finite difference approximations of cross derivatives
depends on how we deal with the neighboring type-I exceptional points. For example,
in case 2, at xj−ek

, we can use recipe 2 (flip) or recipe 1 (shift). If we use recipe 2, then
we need to flip the domain signature of xj to get enough grid points to compute the
cross-derivative. If we choose recipe 1, then we can use (21) to approximate the cross
derivative.
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xj

ek

eℓ

(a) case 1

xj

ek

eℓ

(b) case 2

xj

ek

eℓ

(c) case 3

xj

ek

eℓ

(d) case 4

xj

ek

eℓ

(e) case 5

xj

ek

eℓ

(f) case 6

Figure 6: Exceptional points of type-II in two dimensions. The region colored by light yellow is Ω+

while the white region is Ω−. The circles and disks are grid points in Ω− and Ω+, respectively.
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Case 3. If we flip the domain signature of xj−eℓ
, we will need to flip the domain signature

of xj. Alternatively, if choose recipe 1 at xj−eℓ
, then we can use (22) to approximate the

cross derivative.

Cases 4-6. In these cases, we choose recipe 2. We flip the domain signatures at the those
blue squares in Figs. 6(d), 6(e), and 6(f) so that the cross derivative at the ghost state
can be obtained.

4. A practical issue – how fine of mesh we should choose

It is worth noticing that many cases in the above two sections can be avoided if the
underlying mesh is fine enough. We call an exceptional point non-generic if it can be
removed (no longer being an exceptional point) after mesh refinement. We claim that
all type-II and some type-I exceptional points are non-generic provided the interface is
a smooth closed curve. The characterization of type-I exceptional points are listed in
Table 2. However, the case G(xi) = (0, 1) is generic. Let us consider a circle centered
at (0, 0) with radius 1/

√
2. Suppose the domain is [−1, 1]× [−1, 1] and the mesh size is

h = 2/N , where N is the number of intervals on [−1, 1]. Let (kh, ℓh) be the grid point
of the uniform grid, where k and ℓ are integers. The nearest grid point inside the circle
on the x-axis is (0, ⌊1/(

√
2h)⌋h). We can know whether (±h, ⌊1/(

√
2h)⌋h) is inside the

circle or not by checking the signs of the following function:

h2 +

(⌊
1√
2h

⌋
h

)2

− 1

2
,

or (
2

N

)2

+

(⌊
N

2
√
2

⌋
2

N

)2

− 1

2
.

It is easy to write a code to check the signs and the signs for most of N are negative.
However, the signs are positive for some N , e.g., N = 99, 577, 3940, 665857, 45239074,
and more. We show that in many cases of h, (0, ⌊1/(

√
2h)⌋h) is inside the circle, while

(±h, ⌊1/(
√
2h)⌋h) is outside the circle even after mesh refinement. Thus, such kind of

exceptional point cannot be removed after mesh refinement. That is why we call it
generic.

In order to clarify how fine of a mesh we should choose to avoid complicated cases,
we introduce two indicators. First, we define the bottle-neck width of the interface Γ by

δ(Γ) := inf
x∈Γ

{r|B̄r(x) ∩ Γ contains at least two non-empty disjoint subsets}, (23)

if this set is non-empty. Here, B̄r(x) = {y|∥y − x∥2 ≤ r}. If this set is empty, then we
define δ(Γ) to be the diameter of Γ (the maximum distance between any two points on
Γ). Second, we define the maximum curvature of Γ to be κ∞ = sup

x∈Γ
κΓ(x), where κΓ(x)

is the (un-signed) curvature of Γ in 2D, and the largest principal curvature (in absolute
value) of Γ in 3D at x ∈ Γ.

We claim that: under the conditions (i) h < δ(Γ)/
√
5 and (ii) κ∞h < 4/5, we can

avoid the cases: (i) type-I exceptional points withG(xi) = (0, 0), (0, 2) in two dimensions,
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Generic
G(xi) = (0, 0) −
G(xi) = (0, 1)

√

G(xi) = (0, 2) −
G(xi) = (0, 0, 0) −
G(xi) = (0, 0, 1)

√

G(xi) = (0, 0, 2) −
G(xi) = (0, 1, 1)

√

G(xi) = (0, 1, 2)
√

G(xi) = (0, 2, 2) −

Table 2: The symbol
√
/− means that it is a generic/non-generic case.

and (ii) all type-II exceptional points in two and three dimensions. In addition, we also
conjecture that under the same conditions, we can avoid the type-I exceptional points
with G(xi) = (0, 0, 0), (0, 0, 2), (0, 2, 2) in three dimensions. Some of the proofs of the
above claim will be given in the Appendix.

5. Numerical Results and Discussions

Below we test our method in two and three dimensions. The domain is chosen to be
Ω = [−1, 1]2 or [−1, 1]3 in 2D and 3D, respectively. The underlying Cartesian grid is
uniform with N intervals on each edge of the computational domain Ω, i.e., h = 2/N .
Let ue denote the exact solution of Eq. (1), and u stand for the numerical solution
obtained by our method. For the numerical tests, the exact solution is chosen first.
Then the source term, the boundary condition and the jump conditions are derived by
plugging the exact solution into the equation. We focus on the accuracy for the numerical
solution and its gradient. The solution error ∥u − ue∥∞ is the maximum error over all
grid points. The gradient error ∥∇u − ∇ue∥∞,Γ is the maximum error of the gradient
component ∇u−∇ue over all intersections of interface and grid lines, where the gradient
∇u is computed from Eq. (5). All the experiments are tested on a machine with Intel
i7-3930K CPU and 32G memory.

Below, we shall compare the following two methods.

• Our new method (CIM2 + new recipes), we shall called it the Improved Coupling
Interface Method (ICIM);

• the Hybrid Coupling Interface Method (HCIM) [26]. This method adopts CIM2 at
regular points, and CIM1 at exceptional points.

Example 1. We choose a flower-like interface which was introduced in [26]. To test the
robustness of our new method (ICIM), we rotate this flower so that the relative locations
of the interface points (intersections of the interface and the Cartesian meshes) in grid
segments are quite arbitrary. The flower-like interface is described in polar coordinate
by

r = a(1 + b sin(ω(θ + t) + ψ)), (24)
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where a > 0, 0 < b < 1, ω ∈ Z, ψ is a phase parameter, and t is a time parameter for
rotating the flower. Note that the maximum curvature of this interface is

κ∞ =
|ωb2 + b− 1|
a(1− b)2

. (25)

The elliptic coefficients and exact solution are given in prior as follows:

ε(x, y) =

{
80 if (x, y) ∈ Ω+

2 if (x, y) ∈ Ω− (26)

ue(x, y) =

{
x2 + y2 + xy + x3 if (x, y) ∈ Ω+

4x2 + 3y2 + 5xy if (x, y) ∈ Ω− . (27)

The prescribed jump conditions and the source term are computed from (1).
Case 1. We take ω = 5, a = b = 0.5, ψ = π/4 for the first testing interface, see Fig.

7(a). We test robustness and accuracy here.

Robustness check. The robustness is tested by rotating the interface. The time t varies
from 0 to 2π/5 with ∆t = π/180. The underlying Cartesian mesh is fixed. The bottle-
neck size δ(Γ) ≈ 0.7529, which is computed numerically. The maximum curvature κ∞ = 6
is computed from (25). Therefore, we use

h =
1

20
= 0.05 < min{ 4

5κ∞
≈ 0.13,

1√
5
δ(Γ) ≈ 0.3367}.

The error computed from HCIM fluctuates in time because CIM1 is used at exceptional
points. However, the error computed from ICIM is quite uniform in time and much
smaller, see Fig. 7(b).
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(a) Interface
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(b) Robustness

Figure 7: Robustness test for the flower-like interface with n = 5, a = b = 0.5, and ψ = π/4. (a) the
interface at t = 0. (b) The semi-log plot of the error versus the time t, t ∈ [0, 2π/5]. The unit of x-axis
is degree. The cross and circle denote the errors computed from HCIM and ICIM, respectively.
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Accuracy check. In this test, we fix t = 0 (i.e. the interface is steady). We refine the
mesh with N (number of grid in each dimension) ranging from 40 to 400 with increment
∆N = 1. The convergence result is shown in Fig. 8. We see that the fluctuation of
errors computed by ICIM is smaller. In addition, the least squares fit of the errors show
that the convergence of u is of second order and the accuracy of ∇u is slightly smaller
than second order.
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slope = −1.88

(b) Grad

Figure 8: The log-log plots of the error of solution (a) and its gradient (b) versus the number of intervals
N with the interface in 7(a). The slopes of the lines in (a) and (b) are computed by least-square fit.

Case 2. In this test, we choose the same flower-like interface but with ω = 12,
a = b = 0.5, ψ = π/4, see Fig. 9(a). The bottle-neck size δ(Γ) ≈ 0.0105, and the
κ∞ = 20. Therefore, we choose

h =
1

320
= 0.0031 < min{ 4

5κ∞
= 0.04,

1√
5
δ(Γ) ≈ 0.0047}.

Robustness. We rotate the interface with time t varying from 0 to π/6 with ∆t = π/180.
We choose h = 1

320 . The error computed from HCIM fluctuates in time, whereas the
error computed from ICIM is almost uniform in time and much smaller, see Fig. 9(b).

Accuracy check. In the accuracy test, we choose h = 1/320, 1/640, and 1/1280. We
also choose t = 7π/180. Table 3 shows the second-order convergence in both u and its
gradient ∇u.

mesh size ∥u− ue∥∞ order ∥∇u−∇ue∥∞,Γ order
1/320 2.99× 10−6 − 1.63× 10−4 −
1/640 6.85× 10−7 2.13 3.26× 10−5 2.32
1/1280 1.78× 10−7 1.94 8.29× 10−6 1.97

Table 3: Convergence results for the interface in 9(a).

17



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

(a) Interface

0 5 10 15 20 25 30
−6

−5.5

−5

−4.5

−4

−3.5

−3

θ

lo
g
1
0
‖
u
−

u
e
‖
∞

 

 

HCIM
ICIM
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Figure 9: Robustness test for the flower-like interface when n = 12, a = b = 0.5, and ψ = π/4. (a) the
interface at t = 0. (b) The semi-log plot of the error versus the time t, t ∈ [0, π/6]. The unit of x-axis is
degree. The cross and circle denote the errors computed from HCIM and ICIM, respectively.

Example 2. The interface in three dimensions can be very complex in practice, e.g.,
the surface of a molecular composed by hundreds or hundreds of atoms. In order to
show the convergence clearly, we test several simple interfaces first. Here we use the
three-dimensional interfaces in [26]: eight balls, ellipsoid, peanut, donut, banana, and
popcorn. The level-set functions are listed below and the figures are plotted in Fig. 10:

• Eight balls: ϕ(x, y, z) = min
0≤k≤7

{
√

(x− xk)2 + (y − yk)2 + (z − zk)2} − 0.3, where

(xk, yk, zk) = ((−1)⌊k/4⌋ × 0.5, (−1)⌊k/2⌋ × 0.5, (−1)k × 0.5).

• Ellipsoid: ϕ(x, y, z) = 2x2 + 3y2 + 6z2 − 1.32.

• Peanut: ϕ(x, y, z) = ϕ(r, θ, ψ) = r−0.5−0.2 sin(2θ) sin(ψ), where x = r cos θ sinψ,
y = r sin θ sinψ, z = r cosψ.

• Donut: ϕ(x, y, z) = (
√
x2 + y2 − 0.6)2 + z2 − 0.32.

• Banana: ϕ(x, y, z) = (7x+6)4+2401y4+3601.5z4+98(7x+6)2(y2+z2)+4802y2z2−
94(7x+ 6)2 + 3822y2 − 4606z2 + 1521.

• Popcorn: ϕ(x, y, z) =
√
x2 + y2 + z2 − r0 −

11∑
k=0

2 exp(25((x − xk)
2 + (y − yk)

2 +

(z − zk)
2)), where

(xk, yk, zk) =
r0√
5

(
2 cos(

2kπ

5
− ⌊k

5
⌋π), 2 sin(2kπ

5
− ⌊k

5
⌋π), (−1)⌊

k
5 ⌋
)
, 0 ≤ k ≤ 9

= r0(0, 0, (−1)k−10), 10 ≤ k ≤ 11.
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The elliptic coefficients and exact solution are given in prior:

ε(x, y, z) =

{
80 if (x, y, z) ∈ Ω+

2 if (x, y, z) ∈ Ω− (28)

ue(x, y, z) =

{
xy + x4 + y4 + xz2 + cos(2x+ y2 + z3) if (x, y, z) ∈ Ω+

x3 + xy2 + y3 + z4 + sin(3(x2 + y2)) if (x, y, z) ∈ Ω− . (29)

The prescribed jump conditions and the source term are computed from (1). In the
following tests, the number of intervals N ranges from 50 to 140 with the increment
∆N = 5.

(a) Eight balls (b) Ellipsoid (c) Peanut

(d) Donut (e) Banana (f) Popcorn

Figure 10: The six interfaces: (a) eight balls; (b) ellipsoid; (c) peanut; (d) donut; (e) banana; (f) popcorn.

Figure 11 shows the number of grid points where recipe 1 and 2 are applied for the
above six interfaces. By the rule for choosing recipe 1 or 2 illustrated in section 2.5, there
are more exceptional points with recipe 1 than recipe 2.

Figure 12 shows the convergence results of the above six interfaces. The log-log
plots of the error versus the number of intervals in one side shows the clearly second
order convergence in maximum norm for the solutions. The convergence of the solution
gradient is slightly below second order.

In order to show the difference between the original coupling interface method, we
compare the errors computed by a first order method (CIM1), a hybrid order method
(HCIM), and the improved coupling interface method (ICIM), see Fig. 13. The hybrid
order method means that we apply CIM1 on those exceptional points. In Fig. 13(a), we
see that the errors of the solution computed by ICIM is smaller than those of the other
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(c) Peanut
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(d) Donut
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Figure 11: The number of grid points where recipe 1 and 2 are applied versus the number of intervals
in one edge of domain Ω for the six interfaces: (a) eight balls; (b) ellipsoid; (c) peanut; (d) donut; (e)
banana; (f) popcorn. In each figure, the number of intervals N ranges from 50 to 140 with the increment
∆N = 5. Red circles and blue dots are the number which recipe 1 and 2 are applied, respectively.
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Gradient: m = -1.81
Solution: m = -2.09

(a) Eight balls
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Gradient: m = -1.90
Solution: m = -2.03

(b) Ellipsoid
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Gradient: m = -1.85
Solution: m = -1.97

(c) Peanut
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Gradient: m = -1.72
Solution: m = -2.01

(d) Donut
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Gradient: m = -1.82
Solution: m = -2.17

(e) Banana
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Gradient: m = -2.00
Solution: m = -1.95

(f) Popcorn

Figure 12: The log-log plots of the error versus the number of intervals in one side for the six interfaces:
(a) eight balls; (b) ellipsoid; (c) peanut; (d) donut; (e) banana; (f) popcorn. In each figure, the number
of intervals N ranges from 50 to 140 with the increment ∆N = 5. Red dots and blue circles are the
maximum error of solution gradient ∥∇u − ∇ue∥∞,Γ and the maximum error of solution ∥u − ue∥∞,
respectively.
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two methods. However, in Fig. 13(b), it shows that the approximation for the solution
gradient computed by CIM1 or HCIM is only of first order accuracy. In the meanwhile,
the approximation for the solution gradient computed by ICIM is clearly of second order
accuracy.
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CIM1: m = −1.24
HCIM: m = −1.76
ICIM: m = −1.95

(a) Solution
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CIM1: m = −0.94
HCIM: m = −0.65
ICIM: m = −2.00

(b) Gradient

Figure 13: The log-log plots of the error versus the number of intervals in one side for the popcorn
interface. (a) the comparison for the errors of solution; (b) the comparison for the errors of solution
gradient. In each figure, the number of intervals N ranges from 50 to 140 with the increment ∆N = 5.
Blue dots, crosses, circles in (a) are the maximum errors of solution ∥u − ue∥∞ computed by CIM1,
HCIM, and ICIM, respectively. Red dots, crosses, circles in (b) are the maximum error of solution
gradient ∥∇u−∇ue∥∞,Γ computed by CIM1, HCIM, and ICIM, respectively.

To study the efficiency issue, Figure 14 shows the log-log plot for the run time ver-
sus N3 log10N . The slopes of the regression lines are almost 1. Since these are three
dimensional runs, this result shows the run time is essential linearly proportionality to
the number of unknowns. We also report the peak of memory usage from the system
information. The peaks of memory usage are around 234MB and 1576MB if the total
number of unknowns are 603 and 1203, respectively. The memory usage is proportional
to the total number of unknowns. In addition, we adopt the Gauss Seidel iteration as a
smoother in the algebraic multigrid method for the six cases. If we change the smoother
to the GMRES method, the computational time increases a little.

Example 3. Our third test interface is a molecular surface whose ID in the protein
data bank (PDB-ID) is 1D63[33], see Fig. 15(a). From PDB, one can generate a PQR
file by PDB2PQR[34] software with so-called AMBER force field. The PQR file contains
the structure of the molecule which consists of the positions (pi), the partial charges
(qi), and the radius (ri) of its atoms. The Van der Waal’s surface of the molecule is the
union of each sphere centered at pi with radius ri. However, there is a sharp corner at
the intersection of two spheres. There are many methods to smooth the Van der Waal
surfaces, such as the solvent excluded surface (SES). Since the solvent excluded surface
is not represented by a level-set function, we construct another smoothed Van der Waal
surface by using a smooth characterized function χη:

χη(x) =
1

2

(
1 + tanh

(
x

η

))
. (30)
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(a) Eight balls
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(b) Ellipsoid
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(c) Peanut
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(d) Donut
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(e) Banana
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(f) Popcorn

Figure 14: The log-log plots of running time versus the number of intervals in one edge of domain Ω
for the six interfaces: (a) eight balls; (b) ellipsoid; (c) peanut; (d) donut; (e) banana; (f) popcorn. In
each figure, the x-axis represents log10(N

3 log10(N)) when N ranges from 50 to 140 with the increment
∆N = 5. Red circles are the running times. Blue lines are regression lines.

Then the level-set function for the smoothed Van der Waal surface is defined by

ϕ(x) = c−
∑
i

χη(ri − ∥x− pi∥) (31)

In the numerical tests, we choose c = 0.25 and η = 1/40. The smoothed molecular
surface for 1D63 is shown in Fig. 15(a). It looks like structure rotating in the upward
direction. Since it is a complex interface, the mesh size should be small enough to resolve
the structure of the interface. The number of intervals (N) in one edge of Ω ranges from
170 to 340 with increment ∆N = 5. The coefficients and the exact solution are the same
as those in example 2. In this test, we adopt GMRES[36] as a smoother in the algebraic
multigrid solver[37, 38, 39] to solve the corresponding system, which costs more time,
but is relatively stable compared to the Gauss Seidel iterations. In Fig. 15(b), the errors
fluctuate since the mesh size is not fine enough. However, from the least squares fit, we
may see that the convergence rate is still of second order for the solution and slightly
below second order (about 1.68) for the gradients. Besides, it takes 4480.11 seconds
(around a hour and fifteen minutes) for computing the solution and the gradients when
N = 340.

Example 4. Our final test is a diamond-like interface which has sharp corners and
edges. The level-set function is given by

ϕ(x, y, z) = |x|+ |y|+ |z| − c. (32)
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Figure 15: Convergence result for the 1D63 interface. (a) the smoothed Van der Waal surface of 1D63
defined by (31) with c = 0.25 and η = 1/40. (b) The log-log plot of the error versus the number of
intervals in one side.

In the test, we choose c = 0.7501 in order to have six critical exceptional points along
three coordinate directions, see Fig. 16(a). The coefficients and the exact solution are
the same as those in example 2. For testing this situation, we keep N to be a multiple
of 4, i.e., N ranges from 52 to 140 with increment ∆N = 4. Figure 16(b) is the log-log
plot of the error versus N . It shows the second order convergence for the solution and
the gradient. Therefore, our recipes still work for cornered interface.
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Figure 16: Convergence result for the diamond interface. (a) the diamond interface with c = 0.7501. (b)
The log-log plot of the error versus the number of intervals in one edge.
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6. Concluding Remarks

In this paper, we propose an improved coupling interface method for accurate approx-
imation for the gradient in two and three dimensions of solutions of complex interface
problems. We provide two recipes to improve accuracy at those exceptional points where
there are not enough grid points for interpolation. Recipe 1 is to approximate second or-
der derivatives at the exceptional points by a finite difference approximation at a nearby
grid point based on a searching rule. Recipe 2 is to flip its domain signature and in-
troduce a ghost state so that a second-order method can be applied. This ghost state
is the smooth extension of the solution at the exceptional point from the other side of
the interface. The original state is recovered by a post-processing using nearby states
and jump conditions. The recipe choosing rule is based on a classification of the excep-
tional points. To decrease complexity of the classification and the number of exceptional
points, a suitable mesh size in terms of maximum curvature and size of bottle-neck is
also suggested. The improved method renders the solution and its gradient uniformly
second-order accurate in the entire computed domain. In addition, the idea is also ap-
plicable to other interface solvers. We test our method in two and three dimensions with
complex interfaces, including the surface of a real molecule (1D63) which is double-helix
shape and composed hundreds of atoms. Numerical results show uniformly second-order
accuracy for the solution and its gradients. The presently proposed recipes can be readily
applied to eigenvalue problems with complex/sharp interfaces such as electromagnetic
periodic structures (photonic crystals, plasmonic crystals, etc.) [35].
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Appendix A. Proofs of Propositions

In the following discussion, we assume that the interface Γ is a two-dimensional closed
and smooth curve.

Lemma Appendix A.1. Suppose x1 and x2 are on the simple closed smooth curve Γ
with the condition x1x2 < δ(Γ). The two points x1 and x2 are connected in Bx1x2(x1) by
a sub-curve γ ⊂ Γ. Suppose that γ is parametrized by x(t) with x(0) = x1 and x(1) = x2.
The distance x(t)x1 is a non-decreasing function when t ∈ (0, 1).

Proof. By the definition of δ(Γ), we can show that x1 and x2 are connected by a sub-curve
γ ⊂ Γ in the ball centered at x1 with radius δ(Γ) easily. Suppose that γ is parametrized
by x(t) with x(0) = x1 and x(1) = x2. If x(t) decreases at t0 ∈ (0, 1), there exists
δ such that x(t0 − δ) > x(t0 + δ). However, x(t0 − δ) is outside of the ball centered
at x1 with radius x1x(t0 + δ). It implies that x(t0 + δ) is not connected in the ball
centered at x1 with radius x1x(t0 + δ). By the definition of δ(Γ), x1x(t0 + δ) > δ(Γ).
But x1x(t0 + δ) < δ(Γ). It deduces a contradiction. Therefore, the distance x(t)x1 is a
non-decreasing function when t ∈ (0, 1).
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Before we prove the propositions, we make a conjecture here:

Conjecture Appendix A.1. Suppose that Γ is a simple closed smooth curve in two
dimensions. Three different points x1, x2, and x3 are selected sequentially on Γ. Let γ
be the sub-curve of Γ which starts from x1, passes x2, and ends at x3. Then we have

max
x∈γ

κΓ(x) ≥ r−1
c , (A.1)

where rc is the radius of the circumcircle of x1, x2, and x3.

This conjecture can estimate a lower bound of the maximum curvature κ∞ in a piece
of curve. We can say that the following propositions are true for the curve Γ on which
the above conjecture is valid.

With this conjecture, we have the following two propositions.

Proposition Appendix A.1. If κ∞h <
√
3
2 and h < 1

2δ(Γ), then the case G(xi) = (0, 2)
does not occur.

Proof. Suppose G(xi) = (0, 2) does occur, this means that Γ cuts through the segments
[xi−e1 ,xi] and [xi,xi+e1 ], see Figure 2(c) . Let x̂1 and x̂2 be the corresponding interface
points, respectively. Since x̂1x̂2 < 2h < δ(Γ), x̂2 is connected to x̂1 in B̄r(x̂1) with
r = x̂1x̂2. However, there is no intersection in the segment from xi−e2 to xi+e2 . In
order to connect x̂1 and x̂2, Γ should pass through the segment from xi+e2

to xi+2e2

or the segment from xi−e2 to xi−2e2 . Without lose of generality, we assume that there
is an intersection x̂3 in the segment from xi+e2

to xi+2e2
. We now search among all

possibilities of the locations of x̂1, x̂2, and x̂3. Let αk = x̂kxi/h, we have

0 ≤ α1 ≤ 1,
√
(1 + α1)2 − α1 ≤ α2 ≤ 1, 1 ≤ α3 ≤

√
α2
2 + 2α1α2. (A.2)

Let R be the radius of the circumcircle which passes through x̂1, x̂2, and x̂3.

R =

√(
α2 + α1

2

)2

+

(
1

2α3
(α2

3 − α1α2)

)2

(A.3)

We can easily check that (A.3) reaches its maximum R = 2
√
3h
3 when α1 = α2 = 1 and

α3 =
√
3. This implies κ∞h ≥

√
3
2 and violates the assumption. Therefore, G(xi) = (0, 2)

does not happen.

Proposition Appendix A.2. If κ∞h <

√
4+2

√
2

2 and h < 1
2δ(Γ), G(xi) = (0, 0) does

not happen.

Proof. If G(xi) = (0, 0) happens, we can find at least four intersections of the interface,
two of them are in the segment from xi−e1 to xi+e1 , and the other two are in the segment
from xi−e2 to xi+e2 , see Figure 2 (a). Suppose these are x̂1 = xi−α1he1, x̂2 = xi−α2he2,
x̂3 = xi+α3he1, and x̂4 = xi+α4he2, where αk > 0. These four intersections should be
connected to each other since if the distance of each two points is smaller than 2h then
it is also smaller than δ(Γ). Without loss of generality, we assume that Γ passes through
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x̂1, x̂2, x̂3, and x̂4 sequentially. And then it intersects the segment from xi−e1+e2 to
xi+e2 at x̂5 = xi+e2 − α5h. Since the distance is smaller than δ(Γ), we have

x̂2x̂1 ≤ x̂3x̂1 ≤ x̂4x̂1 ≤ x̂5x̂1 (A.4)

x̂3x̂2 ≤ x̂4x̂2 ≤ x̂5x̂2 (A.5)

x̂2x̂3 ≤ x̂1x̂3 (A.6)

x̂4x̂3 ≤ x̂5x̂3 (A.7)

x̂3x̂4 ≤ x̂2x̂4 ≤ x̂5x̂4 (A.8)

x̂4x̂5 ≤ x̂5x̂3 ≤ x̂2x̂5 ≤ x̂1x̂5 (A.9)

Therefore, we have the following inequalities:

0 ≤ α1 ≤ 1 (A.10)

(
√
2− 1)α1 ≤ α3 ≤

√
1 + α2

1 − α1 (A.11)

0 ≤ α5 ≤ α1 −
√
(α1 + α3)2 − 1 (A.12)

Let R be the radius of the circumcircle which passes through x̂1, x̂3, and x̂5. We have

R =

√(
α3 + α1

2

)2

+

(
1− (α1 − α5)(α3 + α5)

2

)2

(A.13)

We can easily check that (A.13) reaches its maximum R =
√
2−

√
2h when α1 = 1,

α3 =
√
2 − 1 and α5 = 0. This implies κ∞h ≥

√
4+2

√
2

2 and violates the assumption.
Therefore, G(xi) = (0, 0) does not happen.

For type-II exceptional points, we have the following proposition

Proposition Appendix A.3. If κ∞h <
4
5 and h < 1√

5
δ(Γ), type-II exceptional points

does not happen.

Proof. We will discuss all the cases in Fig. 6 For case 5 in the Fig. 6(e), we can find two
intersections x̂1, x̂2, and x̂3 in the segments xi−ek

xi−ek−eℓ
, xi−ek

xi−ek+eℓ
, and xixi+ek

,
respectively. Since h ≤ 1√

5
δ(Γ), x̂1, x̂2, and x̂3 are connected. For these three points,

the maximum radius of the circumcircle which passes through x̂1, x̂2, and x̂3 is 5
4 when

x̂1 = xi−ek−eℓ
, x̂2 = xi−ek+eℓ

, and x̂3 = xi+ek
. This gives us κ∞h ≤ 4

5 .
For the other cases, we can find at least x̂4, x̂5, and x̂6 in the segments xixi+ek

,
xixi+eℓ

, and xi−ek−eℓ
xi−ek

, respectively. Since h ≤ 1√
5
δ(Γ), x̂4, x̂5, and x̂6 are con-

nected. For these three points, the maximum radius of the circumcircle which passes

through x̂4, x̂5, and x̂6 is 5
√
2

6 when x̂4 = xi+ek
, x̂5 = xi+eℓ

, and x̂6 = xi−ek−eℓ
. This

gives us κ∞h ≤ 3
√
2

5 .

Since 4
5 <

3
√
2

5 , we conclude that if κ∞h <
4
5 and h < 1√

5
δ(Γ), type-II exceptional

points does not happen.
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