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Abstract

We present a new diffuse interface model for the dynamics of inextensible vesicles in a viscous

fluid with inertial forces. A new feature of this work is the implementation of the local

inextensibility condition in the diffuse interface context. Local inextensibility is enforced by using

a local Lagrange multiplier, which provides the necessary tension force at the interface. We

introduce a new equation for the local Lagrange multiplier whose solution essentially provides a

harmonic extension of the multiplier off the interface while maintaining the local inextensibility

constraint near the interface. We also develop a local relaxation scheme that dynamically corrects

local stretching/compression errors thereby preventing their accumulation. Asymptotic analysis is

presented that shows that our new system converges to a relaxed version of the inextensible sharp

interface model. This is also verified numerically. To solve the equations, we use an adaptive

finite element method with implicit coupling between the Navier-Stokes and the diffuse interface

inextensibility equations. Numerical simulations of a single vesicle in a shear flow at different

Reynolds numbers demonstrate that errors in enforcing local inextensibility may accumulate and

lead to large differences in the dynamics in the tumbling regime and smaller differences in the

inclination angle of vesicles in the tank-treading regime. The local relaxation algorithm is shown

to prevent the accumulation of stretching and compression errors very effectively. Simulations of

two vesicles in an extensional flow show that local inextensibility plays an important role when

vesicles are in close proximity by inhibiting fluid drainage in the near contact region.
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1. Introduction

Vesicles are fluid-filled sacs bounded by a closed lipid bilayer membrane. Vesicles play a

critical role in intracellular transport of molecules and proteins [4]. Vesicles have been used

as drug delivery vehicles [56], microreactors [21] and as models of more complex

biostructures such as red blood cells (RBCs) [55]. RBCs and vesicles are known to undergo

complex motions and shape changes under applied flows (e.g., see [3, 10, 15, 22, 28, 38,

50]) and transitions from stationary shapes (tank-treading) to trembling to tumbling have

been observed as a function of flow conditions and membrane characteristics. RBCs resist

shear deformation due to the presence of a membrane cytoskeleton and also resist bending

and area dilatation (e.g., see [2, 50, 65]), while the lipid bilayer membranes in vesicles are

liquid-like, resist bending and are largely inextensible (e.g., see [39, 55]). In this paper, we

focus on the dynamics of homogeneous vesicles, although our results apply more generally

to the case in which there may be several lipid components on the membrane that can induce

the formation of rafts.

Most experimental results on vesicles are performed in the low Reynolds number regime,

see e.g. [15, 28, 42]. Under these conditions inertial effects can be neglected and the Stokes

limit considered, which allows the development of small-deformation perturbation theories

[13, 29, 36, 45, 46, 47, 64], which all qualitatively predict the experimentally observed tank-

treading and tumbling motion. Various numerical approaches have also been considered in

the Stokes limit to analyze tank-treading and tumbling, e.g. [6, 7, 8, 24, 30, 31, 33, 48, 51,

57, 60, 61, 66]. Except for [30] in which the vesicle shape was assumed to be a fixed

ellipsoid, all other models are of Helfrich type and consider a membrane free energy

(1)

with membrane Γ(t), total curvature H, spontaneous curvature H0, normal bending rigidity

bN, Gaussian bending rigidity bG and Gaussian curvature K. We focus on the case in which

the vesicle is homogeneous and its topology does not change. Then bN, H0 and bG may be

assumed to be constant and the Gaussian bending energy only contributes a constant and can

therefore be neglected. Lagrange multipliers are used to enforce the inextensibility

constraint, which can be considered as a global constraint to enforce a constant area of the

membrane, but allowing for local variations, or as a stronger local constraint. The jump

condition for the fluid stress tensor S = −pI + νD, where p is the pressure, ν is the viscosity,

and D is twice the rate of deformation tensor D = ∇v + (∇v)T, with velocity v, along the

membrane then reads

(2)

(3)
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(4)

where [f]Γ = fouter − finner, n is the normal pointing out of the vesicle, and ∇Γ is the surface

gradient ∇Γ = P∇, with the projection operator P = I − n ⊗ n. The Lagrange multipliers are

functionals of the fluid velocity v and are obtained by requiring

We remark that locally inextensible vesicles also conserve the global surface area. The jump

condition for the velocity in all cases is

Due to the linearity of the Stokes problem, efficient algorithms can be derived to solve the

coupled fluid-structure flow problem, e.g. [8, 57, 60, 61, 66]. When inertial forces are

considered, the development of efficient algorithms remains a significant challenge.

Inertial effects can become important in a variety of biophysical applications. Flowing

vesicles/RBCs in larger blood vessels such as arterioles and arteries may experience

Reynolds numbers of order unity or higher, especially if the vessels are constricted due to

diseases such as thrombosis, e.g. [5, 62]. Large Reynolds numbers may also be found in

biomedical devices such as ventricular assist devices, e.g., [23]. Motivated by these

applications inertial effects are considered in [16, 32, 34, 41, 43, 54], which found that the

classical tumbling behavior of highly viscous vesicles is no longer observed at moderate

Reynolds numbers.

The Navier-Stokes equations inside and outside the vesicle read

(5)

(6)

with density ρ = ρ1,2 and stress tensor S = S1,2 = −pI + ν1,2D. Here, the notation ρ1,2 means

ρ1 inside and ρ2 outside the vesicle. The global area constraint, which can be treated

explicitly, has been used by [9] within a front tracking method, by [17, 18, 25, 44] within

phase field methods, and was also considered in [53] within a level-set approach.
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The local inextensibility constraint is more delicate and leads to additional nonlinear

coupling in the model. This has been considered within a level set approach in [16, 34, 53,

54], immersed boundary methods [31, 32] and phase field methods [7, 8, 34, 43]. Capsule-

like models have also been considered using strain-energy functions that penalize local

stretching, e.g. [12, 41].

In [53, 54] the system is rewritten as a single-fluid model by considering the jump

conditions for the fluid stress tensor as a body-force term with a delta-function δΓ to localize

the force at the membrane. An iterative multi-step projection method is used to ensure first

the incompressibility of the fluid and second to determine the Lagrange multiplier.

However, the projection step to determine the Lagrange multiplier is fully explicit and does

not preserve the incompressibility of the fluid. The approach also assumes that the level set

function is a signed distance function, and thus requires redistancing. Further, the

inextensibility constraint was enforced throughout the computational domain near the

interface, which could influence the velocity field in the bulk fluid phases. In [34, 35], a

saddle-point approach was used to solve the level-set formulation of the system using

adaptive finite elements. An implicit time-stepping algorithm was proposed where the fluid

equations and the level-set equations were solved iteratively at each time step. Additional

Lagrange multipliers were introduced into the level-set equation to enhance volume and

surface area conservation. Indeed, without these additional Lagrange multipliers, the volume

and surface area errors increase rapidly leading to inaccuracy of the method. The additional

Lagrange multipliers, however, do not introduce additional forces in the fluid, which is

questionable physically. A similar approach is used in [16] although they did not use

adaptive local refinement and did not consider the additional Lagrange multipliers in the

level-set equation. Instead higher order polynomial approximations were used in the finite

element method to increase accuracy, which increases the computational cost. In [43], an

other approach was used in the level-set context. In particular, a simple elastic force was

introduced to penalize local stretching. This method requires a large elasticity coefficient to

generate nearly inextensible membranes that can introduce time step restrictions for

stability.

In [26, 31, 32], a single-fluid model was also used with a Lagrange multiplier to enforce

inextensibility; the scheme was implemented using a penalty immersed boundary method

(pIB) in 2D and in axisymmetric flows. In this approach, the interface is represented by two

curves one of which moves with the fluid while the other moves elastically under the

influence of bending forces. The two curves are linked by stiff springs, which provide the

only forces in the fluid. This approach enables the system for the fluid flow and the elastic

and bending forces to be decoupled, which is in the same spirit as the method in [53, 54]. In

principle, the method should converge to the original inextensible model as the spring

stiffness tends to infinity, although this was not demonstrated and numerically large

stiffnesses can introduce severe time step restrictions for stability.

Single-fluid models implemented using the phase field method were presented in [7, 8, 43].

In this approach, a Lagrange multiplier was introduced and was assumed to satisfy an

advection-reaction equation where the advective time derivative was proportional to the

surface divergence of the velocity field. The constant of proportionality was referred to as a

Aland et al. Page 4

J Comput Phys. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



tension-like parameter T. To ensure stability, additional diffusion is introduced which

smooths out strong local variations in ∇Γ · v. As shown in the asymptotic analysis in [7],

and further discussed in [27], inextensibility in this approach was only fulfilled in the limit T

→ ∞ where in practice, T ∼ε−1 and ε is proportional to the thickness of the diffuse

interface, which is taken to zero in the asymptotics. Thus, for finite ε, the interface is not

fully inextensible. The convergence of the method as ε → 0 was not demonstrated

numerically.

Each of the methods discussed above has advantages and disadvantages. A common feature

is that all the single-fluid methods require various forms of regularization to implement the

dynamics and to enforce the inextensibility of the vesicle membrane to some degree. This is

true of our new method as well. However, none of the previously developed methods have

been shown to converge numerically to inextensible evolution. As we show here, the

dynamics of the vesicle can be very sensitive to the accuracy to which the inextensibility

condition is modeled. Thus, there is still a need to develop models for which the accuracy of

the inextensibility constraint can be explicitly controlled and for which convergence to the

sharp interface model can be demonstrated.

Accordingly, in this paper we present a new diffuse interface model for the dynamics of

inextensible vesicles in a viscous fluid with inertia. A new feature of this work is the

implementation of the local inextensibility condition in the diffuse interface context. As in

the other methods described above, local inextensibility is enforced by using a local

Lagrange multiplier, which provides the necessary tension force at the interface. However,

we introduce a new equation for the local Lagrange multiplier whose solution essentially

provides a harmonic extension of the local Lagrange multiplier off the interface while

maintaining the local inextensibility constraint near the interface. The degree to which local

inextensibility is enforced is controlled by a regularization parameter that scales with the

square of the interface thickness. We demonstrate using asymptotic analysis and numerical

simulations that inextensible evolution is obtained when the interface thickness tends to

zero. To make the method more robust, we also develop a local relaxation scheme that

dynamically corrects local stretching/compression errors. The discretized equations are

solved in 2D using an adaptive finite element method.

The outline of the paper is as follows. In Sec. 2, the new diffuse interface models are

derived. In Sec. 3, a matched asymptotic analysis of the diffuse models is presented. In Sec.

4, the spatiotemporal discretization of the system is discussed. Numerical results are

presented in Sec. 5. In Sec. 6, conclusions are given and future work is discussed. Finally,

details on the matched asymptotic analysis are given in an Appendix.

2. Phase Field/Diffuse Interface Models

The phase field method, also known as the diffuse interface method, introduces an auxiliary

field ϕ that distinguishes the vesicle interior from the exterior. The vesicle boundary is

modeled by a narrow, diffuse layer. An equation is posed for the phase field function ϕ,

which is nonlinearly coupled to the fluid equations. In the models presented below, space is

nondimensionalized using L, a characteristic length scale (e.g., vesicle size), and time is
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non-dimensionalized using V/L where V is a characteristic velocity scale (e.g., far-field

velocity magnitude). The density and viscosity are nondimensionalized using their values in

the matrix fluid. Near the interface, ϕ can be approximated by

(7)

where ε characterizes the thickness of the diffuse interface and r(t, x) denotes the signed-

distance function between x ∈ Ω and its nearest point on Γ(t). Taking r to be negative inside

the vesicle, we label the inside with ϕ ≈ 1 and the outside with ϕ ≈ −1. The interface Γ(t) is

implicitly defined by the zero level set of ϕ.

Consider a diffuse interface version of the nondimensional Helfrich energy [19]

(8)

where the Reynolds number is Re = ρ2VL/ν2, where ρ2 and ν2 are the density and viscosity

of the matrix fluid (the fluid outside the vesicle). The bending capillary number is

, where bN is the bending stiffness. The scaling factor 4√2/3 arises from

the choice of the double-well potential (ϕ2 − 1) (ϕ + H0) contained in Eq. (8) and is chosen

to match the sharp interface energy in the thin interface limit. For example, in [19] a formal

convergence analysis as ε → 0 is performed to show that the diffuse interface energy in Eq.

(8) tends to the nondimensional form of the sharp interface energy in Eq. (1). This approach

differs from the treatment in [8] where the diffuse interface version of the Helfrich energy is

the extension of the sharp interface energy in Eq. (1) off the interface into the whole domain

Ω with the total curvature and normal vector being calculated as H = ∇ · n and n = −∇ϕ/|

∇ϕ|, respectively.

2.1. Global surface area constraint: Model A

A thermodynamically consistent phase field approach to model the dynamics of vesicles in a

viscous fluid was proposed in [17, 18]. In this approach, spatially constant Lagrange

multipliers were introduced to enforce volume and total (global) surface area conservation,

and bending forces obtained variationally from the energy in Eq. (8) were included. The

resulting nondimensional Navier-Stokes system is

(9)

(10)
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where λglobal = λglobal(t) ∈ ℝ and λvolume = λvolume ∈ ℝ are the Lagrange multipliers and the

terms on the right hand side of Eq. (9) are the excess forces due to bending, global surface

area conservation and volume conservation respectively. Further,

(11)

(12)

(13)

The evolution of ϕ is given by the dimensionless nonlinear advection-diffusion equation

(14)

where η > 0 is a small mobility parameter. The density ratio and viscosity ratio are modeled

as ρ = ρ(ϕ) = 0.5(ϕ+ 1)ρ1/ρ2 +0.5(1 − ϕ) and ν = ν(ϕ) = 0.5(ϕ + 1)ν1/ν2 +0.5(1 − ϕ),

respectively (see also [7, 53]). The Lagrange multipliers λvolume and λglobal follow from the

constraints

(15)

(16)

Using the evolution equation for ϕ, the system to be solved for λvolume and λglobal reads

(17)

(18)

which must be solved together with Eqs. (9), (10) and (14). Because of the accumulation of

errors, [20] suggested that additional relaxation terms be added to the equations, which was

found to improve accuracy. That is, the terms  and  are added

to the right hand sides of Eqs. (17) and (18), respectively, where 0 and 0 denote the

desired volume and area. The relaxation parameter is the inverse of the time step size τ.
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2.2. Local inextensibility constraint: Model B

To enforce the local inextensibility constraint in the phase-field model, we propose a

modification of the flow problem in model A. In particular, we introduce spatially varying

Lagrange multiplier λlocal, which introduces tension forces along the interface. These tension

forces take the form ∇ · (δεP λlocal), where P = I − n ⊗ n, with n = −∇ϕ/|∇ϕ|, is the

tangential projection operator and δε = 0.5|∇ϕ| is a diffuse interface approximation of the

surface delta function.

The nondimensional Navier-Stokes equation thereby becomes

(19)

(20)

where we have also retained the volume and global surface area Lagrange multipliers, which

we found to help improve the accuracy of the method. The inclusion of the volume and

global surface area constraints results in a decreased magnitude of λlocal compared to the

case where the constraints are not included. The evolution equation for ϕ as well as the

system to determine λglobal and λvolume remain as before.

The inextensibility constraint ∇Γ · v = P : ∇v = 0 on Γ is extended off Γ into the whole

domain Ω, following the diffuse domain approach [37, 52, 58]. The idea is to perform an

extension of the equation in order to solve for λlocal in the whole domain, without extending

the inextensibility constraint away from the interface. In particular, we take

(21)

where ξ > 0 is a parameter independent of ε. Eq. (21) reduces to Δλlocal = 0 away from Γ,

since ϕ2 ≈ 1 and δε ≈ 0, and becomes P : ∇v = 0 near Γ, where δε is large and ϕ2 ≈ 0.

Thus, this effectively provides a harmonic extension of λlocal off Γ while maintaining the

local inextensibility constraint near Γ. An asymptotic analysis is given in Sec.3, which

shows convergence of Eq. (21) as ε → 0 to the original sharp interface inextensibility

constraint. We note that the tension force term in the Navier-Stokes equation expands to ∇ ·

(δεPλlocal) = δε(∇Γλlocal − λlocalHn), which is exactly the body force term used in [6, 7, 8,

34, 53].

Our approach differs from that taken in the phase field method used in [6, 7, 8, 43], where

the evolution equation ∂tλlocal + v · ∇λlocal = βΔλlocal + TP : ∇v was used instead of Eq.

(21). In this equation, T is interpreted as a tension-like constant that effectively controls the

inextensibility of the membrane and the diffusion is only added for regularization purposes,

with a small parameter β > 0. Note that if T → ∞, such as would be the case if T ~ 1/ε, then

the inextensibility condition is enforced throughout the whole domain, which is unlike the

formulation considered here. Further, unlike the case here, the additional Lagrange

multipliers for volume and global area conservation were not considered.
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The above choice of the regularization term is further justified by admitting the following

energy law. Consider the total energy

where we have assumed the kinetic energy with constant density, i.e. the density ratio ρ = 1.

Note, that thermodynamically consistent diffuse interface models with different densities are

still controversial and either involve additional forces in the Navier-Stokes equation [1] or

quasi-incompressibility [40]. The time derivative of the above energy is

Plug in the time evolution equations (9),(10) and (14) and use integration by parts to obtain

This can be rewritten using Eqs. (17) and (18) multiplied by ηλvolume and ηλglobal,

respectively:

Finally using the regularized inextensibility equation (21) and integration by parts we obtain

decreasing energy

2.3. Local inextensibility constraint with relaxation Model C

As occurs with the global surface area constraint [20], solving Eq. (21) may introduce small

errors at each time step due to the regularization term (first term on the left hand side). Such

errors may accumulate over time and may lead to spurious local stretching and compression

of the membrane. Hence, it would be desirable to have a local mechanism to correct these

errors and drive a slightly stretched or compressed surface back to equilibrium. Such

relaxation mechanisms were used in sharp interface models of flexible fibers evolving in a

Stokes flow [59]. Here, we present a local relaxation mechanism in the diffuse interface

context.
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We introduce a variable c to measure local stretching of the interface. Taking c to evolve by

the surface mass conservation equation:

(22)

and setting the initial value c(x, 0) = 1, locations where c deviates from 1 represent regions

of compression (c > 1) and stretching (c < 1). For numerical purposes we introduce

additional diffusion along the interface

(23)

with a small parameter θ > 0. Restricting the diffusion to the interface ensures no

interference with the bulk.

We use a version of Hooke's law to relax the local changes in interfacial area. In particular,

we require that the strength of the relaxation is proportional to the amount of local stretching

and compression. Accordingly, we take ∇Γ · v = ζ(c −1)/c, where ζ > 0 is a constant

controlling the strength of the relaxation. As we will see later in the diffuse interface model,

a good choice for ζ is the inverse of the time step size. As long as c = 1 the original

inextensibility condition ∇Γ · v = 0 holds.

Within the diffuse domain formulation we replace Eq. (21) by

(24)

where the concentration c satisfies a diffuse interface version of Eq. (23),

(25)

e.g., see [52]. The complete model including relaxation consists of solving the Navier-

Stokes equation (19), (20) and (24) for v, p and λlocal, the surface conservation equation (25)

for c, the phase field equation (14) for ϕ, and Eqs. (17)-(18) for the Lagrange multipliers

λglobal and λvolume.

At first glance, model C appears to be similar to the approach presented in [7, 8, 6].

However here, the evolution equation is for c, which serves only to correct errors in local

inextensibility, rather than for λlocal as in [7, 8, 6], which generates a tension force in the

fluid.

3. Asymptotic analysis

In this section, we use matched asymptotic expansions to show that Eq. (24) converges as ε

→ 0 to the relaxed version of the sharp interface inextensibility condition
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(26)

on the membrane surface Γ(t), and Eq. (25) converges to the corresponding sharp interface

Eq. (23). In this approach, we expand the variables in powers of the interface thickness ε in

regions close to (inner expansion) and far (outer expansion) from the interface. The two

expansions are matched in an intermediate region where both expansions are presumed to be

valid (e.g., see [11, 49] for a general description of the procedure). Previous work [17, 18]

can be used to show that the Navier-Stokes system in models B and C converge to the sharp

interface incompressible Navier-Stokes equations with jump conditions given in Eq. (4).

Outer expansion

Away from Γ(t), which is defined as the zero level-set of ϕ, we assume that all variables

have a regular expansion in ε. For example, the local Lagrange multiplier can be written as

, and likewise for the other variables. Further, away from Γ, we

have ϕ = ±1 to all orders and so ∇ϕ = 0 and P = I to all orders. Define the outer regions to

be Ω+, the exterior of the vesicle, and Ω− the interior of the vesicle. Accordingly, plugging

the expansions into the equations and matching powers of ε, Eq. (24) becomes

(27)

The leading order contribution from Eq. (25) is:

(28)

Inner expansion

Near Γ(t), we introduce a local coordinate system

(29)

where X(s; ε) is a parametrization of the interface, n(s; ε) is the interface normal vector that

points out of the vesicle into Ω+, z is the stretched variable

(30)

and r is the signed distance from the point x to Γ(t), which is taken to be negative inside the

vesicle. We then assume that all variables can be written as functions of z and s and that in

these coordinates the variables have regular expansions in ε. That is, for the velocity field

(31)
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and the inner expansion is

(32)

The definitions and expansions of ϕ̂, λ̂
local and ĉ are analogous. Note that ϕ̂(0) (z, s) = tanh

(−z/√2), which can be justified using the analysis in [17, 18].

Matching conditions

The inner and outer expansions are matched in a region where both expansions are valid. To

obtain the matching conditions, we assume that there is a region of overlap where both the

expansions are valid, e.g. where εz = (1). In particular, if we evaluate the outer expansion

in the inner coordinates, this must match the limits of the inner solutions away from the

interface. This procedure provides boundary conditions for the outer equations.

Summarizing the results for the velocity field (the matching conditions for the other fields

are analogous) we have [49]

(33)

at leading order. At the next order, we obtain

(34)

as z→±∞, and so on. The quantities on the right hand sides in Eqs. (33) and (34) are the

limits from the interior (Ω−) and exterior (Ω+) of the vesicle. Here o (1) means that the

expressions approach equality when z→ ±∞. That is, o (1) is defined such that if some

function f(z) = o (1), then we have limz→ ±∞ f(z) = 0.

Analysis near Γ

In the local coordinate system, the derivatives become

(35)

(36)

(37)

where V is the normal velocity of Γ. Note that in Eq. (35) we have abused notation; what we

mean here is  and analogously for the other variables (e.g., see [11, 49]).
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Define  = P : ∇υ. It can be shown that the inner expansion of this term takes the form

(38)

where the leading term is given by

(39)

Eqs. (38) and (39) are justified in the Appendix. It is also shown in the Appendix that the

leading order velocity field fulfills

(40)

Using this, together with the matching condition (33) we conclude that the outer velocity

v(0) is continuous across the interface. Further, a straightforward calculation shows that

(41)

where  and we do not present the specific forms of the higher order terms.

At leading order O(1/ε), Eq. (24) becomes:

(42)

Since ϕz < 0, we conclude that . Taking the limit as z → ±∞,

using the matching condition and the continuity of the velocity, we obtain the inextensibility

condition

(43)

as claimed.

To analyze Eq. (25) in the inner variables, we use the fact that  and that the interface

moves with the fluid velocity at leading order: V =υ(̂0) · n. See also [17, 18]. Then, Eq. (25)

becomes

(44)

Taking the limit z → ±∞ and using the leading order matching condition (33) we obtain
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(45)

the solution of which provides the boundary condition for Eq. (28).

4. Numerical methods

To solve the system of equations numerically we split the time interval I = [0, T] into

equidistant time intervals 0 = t0 < t1 < … and define the time steps τ := tn+1 − tn. Of course,

adaptive time steps may also be used. We define the discrete time derivative dt · n+1 := (· n+1

− ·n)/τ, where the upper index denotes the time step number.

The numerical approach for each subproblem is adapted from existing algorithms for the

Navier-Stokes equations and the Helfrich model. We solve the overall system using an

operator splitting approach, with the Navier-Stokes equations being implicitly coupled to the

inextensibility constraint. The phase field variable is solved separately, as are the global

Lagrange multipliers and the relaxation variable c.

We present here the time discretization of the inextensibility model with relaxation (model

C). At each time step we solve

1. The flow problem for vn+1, pn+1 and :

(46)

(47)

(48)

Where ρn = ρ (ϕn), νn = ν (ϕn),  and .

2. The evolution equations for ϕn+1, gn+1,  and fn+1:

(49)

(50)

(51)
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(52)

We further linearize the nonlinear terms using a Taylor series expansion of order

one, e.g. ((ϕn+1)2− 1)ϕn+1 = ((ϕn)2 −1)ϕn+(3(ϕn)2−1)(ϕn+1− ϕn).

3. The equations for the Lagrange multipliers  and :

This system is solvable since the determinant of coefficients on the left hand side is

positive, as long as fn+1 is not a constant function.

4. The advection-diffusion equation for the stretching variable cn+1:

(53)

To solve the system without relaxation (model B), we omit the right hand side in Eq. 48. For

the global area constraint (model A), we additionally omit the last equation of the flow

problem in step 1 and set .

We use the adaptive finite element toolbox AMDiS [63] for discretization in space, with the

P2/P1 Taylor-Hood element for the flow problem, extended by a P2 element for λlocal. For ϕ

and c, P2 elements are used. The resulting linear systems of equations are solved with

UMFPACK [14]. The adaptive mesh refinement and coarsening are controlled by the phase

field variable, for which a specified spatial resolution at the interface that depends on ε is

required. The choices for the numerical parameters η, ξ, ζ and θ are described in the next

section.

5. Numerical results

We perform numerical simulations to test models A, B, and C in 2D. We discuss choices of

the model parameters and quantify the amount of interface stretching as a function of the

interface thickness ε, using two measures of interface stretching. We compare the results

using the different models to determine the effect of the corresponding approaches for

enforcing the inextensibility condition on the vesicle dynamics. We demonstrate

convergence to inextensible evolution as ε → 0. We also investigate the effect of inertia by

varying the Reynolds number. We begin using a single vesicle in shear flow and we then

simulate two vesicles driven together by an extensional flow. Although the models and

numerical methods presented here can be extended to simulate vesicle dynamics in 3D, we

defer such simulations to a future work.
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Regularization and relaxation parameters

In practice, we find that the regularization coefficient ξ in Eqs. (21) and (24) in models B

and C influences the accuracy of the extensibility condition. In particular, increasing ξ leads

to larger errors in the enforcement of the inextensibility condition while making ξ small

tends to increase the region of inextensibility around the membrane. We find that a good

compromise that maintains accuracy while keeping a narrow region of inextensibility is

obtained by taking ξ = 1. Note that in Eqs. (21) and (24), ξ is multiplied by ε2 so that the

overall coefficient of the regularizing term is small and decreases quadratically with ε.

Practical considerations also dictate our choice of the relaxation constant ζ from Eq. (24) in

model C. As ζ increases, the relaxation occurs more rapidly and leads to small time step

restrictions for stability. As ζ decreases, the relaxation occurs more slowly and errors in

inextensibility accumulate more readily. We find that a good compromise that maintains

accuracy and stability is to take ζ = 1/τ. With this choice, errors in inextensibility from the

previous time step are approximately eliminated in the next time step. Finally, for the

surface diffusion coefficient θ from Eq. (25) in model C, analogous tradeoffs between

accuracy (small θ) and stability (large θ) lead us to choose the compromise value θ = ε/3.

Measurement of inextensibility

There are at least two ways of measuring the inextensibility of the vesicle interface. One can

either measure ∇Γ · v at the interface or one can use the concentration variable c. In the

latter case, the value of (c − 1)/c at the interface represents the local stretching accumulated

over time while the former case measures the instantaneous stretching. Hence, to test the

accuracy of our method we introduce the following two measures of interface stretching:

(54)

(55)

Note that ε−1(1 −ϕ2)2 is a (scaled) diffuse interface approximation of the surface delta

function.

5.1. Vesicle in shear flow

We simulate a single elliptical vesicle oriented in the y-direction, with major axis of length

2.5 and minor axis of length 1.0, placed in the center of a domain Ω = [0, 4]2. We prescribe

v = (±10, 0) at the upper/lower boundaries of Ω. Stress-free boundary conditions are

imposed for the fluid flow in the x-direction. We use homogeneous Neumann boundary

conditions for λlocal, fc and ϕ, and the Dirichlet boundary condition c = 1. The initial

velocity is set to zero. The bending capillary number is taken to be Be = 20, the spontaneous

curvature is H0 = 0, the densities of the fluids inside and outside of the vesicle are matched

ρ1/ρ2 = 1 and the viscosity ratio is ν1/ν2 = 10 so that the viscosity of the fluid inside the

vesicle is larger than that of the matrix fluid in the vesicle exterior. To investigate the effect

of Reynolds number, we use Re = 1 and Re = 1/200. Finally, the interface thickness is ε =
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0.03, the spatial mesh is adaptive with a minimum grid size of h = 2 −5 and the time step size

τ = 5.0e−4.

5.2. Convergence study and model validation

We first demonstrate that for model B the measure of instantaneous interface stretching Ev

converges to zero as ε→ 0. We take Re = 1 and decrease ε, where the grid is refined

accordingly to have the same number of grid points across the interface. The results are

shown in Fig. 1 at time t = 0.025, which is taken to be small since a fair comparison between

the results is only possible if the vesicles are at similar positions. We find that the rate of

convergence is between first and second order in ε. Note that results are not shown for

models A and C because in both these cases Ev does not converge to zero as ε → 0, albeit

for different reasons. In model A, only global stretching is enforced and so there is no

control over the amount of local interface stretching. In model C, as indicated by the

asymptotic analysis in Sec. 3, the rate of local stretching converges as ε → 0 to

, which is not necessarily equal to 0. For example, if c − 1 = O(τ), then ζ(c −

1) = O(τ) since ζ = 1/τ. This is what we observe in our simulations of model C (results not

shown), although as we show next, the relaxation in model C prevents interface stretching

from accumulating over time.

In Fig. 2 the accumulated stretching Ec is shown at t = 0.5 for both models B and C. Here,

we also find convergence rates between first and second order in both models. Because the

simulation time is short, the accumulated stretching is similar in both models, although the

accumulated stretching is somewhat smaller in model C as ε is decreased. In Sec. 5.4, we

show that at longer times, there are substantial differences in the accumulated stretching

between the models.

The vesicle volume V(ϕ) and the total interface area A(ϕ) are conserved very well for all

three models, as seen in Fig. 3. The interface area is slightly better conserved by the use of

the local inextensibility constraints in models B and C. The slight drop in interfacial area

around t = 0 is due to the fact that the initial interface is not quite equilibrated since the

initial interface profile is not represented by a hyperbolic tangent in the normal direction

across the interface. Equilibration occurs over the first few time steps. The small variations

at early times in the vesicle volume are also due to the equilibration of the interface. The

desired reference values for area and volume for the Lagrange multipliers are indicated in

Fig. 3 by the dotted black lines and are calculated as the volume and area of the phase field

after the first 10 time steps.

5.3. Computational cost of the models

Because models A, B and C require increasing levels of complexity, it is useful to compare

the CPU-times for the corresponding algorithms. In Tab. 1, we provide the CPU-time per

time step required for each the major subroutines. The CPU-times shown are averaged over

the time interval 0 ≤ t ≤ 0.5 using ε = 0.03. The results show that solving the Navier-Stokes

equation is the most time consuming part of the simulation. Model A, where there is only a

global inextensibility constraint and local inextensibility is not enforced, is the fastest. The
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additional local inextensibility constraint in models B and C slows down the Navier-Stokes

solver by about 30%. In model C the total CPU-time is additionally increased by

approximately 4% by solving the equation for c.

5.4. Vesicle morphologies and comparison of models at longer times

The vesicle morphologies using the different models with ε = 0.03 and Re = 1 and Re =

1/200 are shown in Fig. 4. The red curves correspond to model A, the green to model B and

the blue to model C. When Re = 1 (top graphs) the vesicle is in the tank-treading regime and

assumes a stationary state around t = 2.0 for all models. At short times (t ≈ 0.5) the local

inextensibility constraints in models B and C lead to a faster rotation and thus a smaller

inclination angle of the vesicle. This effect is reversed at later times (t ≈ 2.0) where the

inclination angle from the stationary vesicle obtained from model A is approximately 0.07

radians smaller than that obtained from models B and C (see Fig. 5 below). Overall, because

the vesicle is tank-treading, all the models produce very similar results.

When Re = 1/200 (bottom graphs), the vesicle is in the tumbling regime. The vesicle is thus

harder to resolve because of the unsteady dynamics. As a result, there are larger differences

between the models. The local inextensibility constraints in models B and C significantly

delay the time when the vesicle tumbles and decreases the tumbling frequency. This is

quantified in Fig. 5 where the inclination angles of the vesicles are shown for the different

models with Re = 1 and Re = 1/200.

The accumulated stretching Ec for these simulations is presented in Fig. 6. As expected, the

amount of interface stretching rapidly accumulates in model A, is non-monotone in time and

saturates when the vesicle tank-treads (Re = 1). When the vesicle tumbles (Re = 1/200), the

stretching errors are similarly non-monotone but are larger and appear to accumulate

without bound with the most error occurring during the time at which the vesicle rotates

rapidly (see the inclination angles in Fig. 5). The local inextensibility constraint in model B

suppresses this significantly, but still the stretching accumulates over time. The local

relaxation in model C effectively controls the accumulation of stretching. Although a small

amount of stretching is observed around t ≈ 5 when the vesicle in model C tumbles, the

stretched vesicle interface is rapidly driven back to an unstretched state by the relaxation

mechanism. The corresponding spatial distributions of c on the interface Γ(t) are shown at

time t = 1 in Fig. 7. The interfaces in models A and B are compressed at the vesicle tips

while the sides are stretched. On the other hand, in model C the concentration c ≈ 1 all

along the vesicle interface, indicating that there is little overall stretching of the interface.

Note that the color scales are different in each case and that the most stretching is observed

in model A, as expected.

5.5. Two vesicles in extensional flow

Enforcing local inextensibility becomes more crucial for simulations involving multiple

vesicles. To demonstrate this, we use the models to simulate the interactions of two vesicles

in an extensional flow and compare the results. A Dirichlet boundary condition is used: v(x,

y) = 5(2−x, y−2) at the boundaries of the computational domain Ω = [0, 4]2. This

corresponds to inflow at the side boundaries and outflow at the upper and lower boundaries.
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Two elliptical vesicles, oriented in the y-direction, are initially placed at (1,2) and (3,2). The

axis lengths are √;2 and 1.0. The remaining parameters are as in Sec. 5.2 with ε = 0.03.

Fig. 8 shows the membranes colored by the values of the surface concentration c and the

flow streamlines for the different models. The extensional flow drives the two vesicles to the

center of the domain. The results from models B and C are very similar whereas model A

predicts behavior that is very different from the other two. At early times (t ≈ 0.005, left

column) the streamlines are observed to fan out near the membranes (and vesicle interior)

when model A is used, which indicates stretching of the membranes along their sides and

compression at their tips. This is even more apparent at later times (middle and right

columns) through the values of c. In contrast, the streamlines in models B and C are roughly

parallel throughout the vesicles, which indicates that there is little stretching and

compression of the membranes. Accordingly, c remains approximately 1 throughout the

evolution. At around t = 0.4 the two vesicles in model A meet and finally merge at around t

= 0.515. This merging is not seen in the inextensible models, which can be explained as

follows. In order for the vesicles to be driven into contact, the fluid in between them has to

be squeezed out of the near contact region. When the vesicles are close enough, this process

requires a nonzero tangential velocity at the vesicle interfaces. Local inextensibility,

however, does not allow such flow, since it would stretch the vesicle interface in the near

contact region. Here, this effect is further magnified by the fact that the vesicle interfaces

flatten as they approach one another, making it even harder to squeeze the fluid out of the

near contact region. Therefore vesicle contact (and coalescence) is inhibited by the local

inextensibility in models B and C.

6. Conclusions

We presented a new diffuse interface model for the dynamics of inextensible vesicles in a

viscous fluid. Following previous work [6, 7, 8], we used a local Lagrange multiplier to

generate a tension force needed to make the vesicle inextensible. However, we introduced a

new equation for the local Lagrange multiplier that essentially provides a harmonic

extension of the local Lagrange multiplier off the interface while maintaining the local

inextensibility constraint near the interface. This is different from the approach taken in [7,

8] where a time-dependent advection-diffusion-reaction equation was used. To make the

method more robust we introduced a local relaxation scheme that dynamically corrects

stretching/compression errors. In the relaxation scheme, a version of Hooke's law is used

where the restoring forces are proportional to the amount of stretching/compression, which

is detected by evolving a (surface) concentration field (initialized to one everywhere) and

identifying regions where the concentration field deviates from one. Asymptotic analysis

demonstrated that our new system converges to a relaxed version of the inextensible sharp

interface system.

Compared to the classical sharp interface model for inextensible membranes, our diffuse

interface model includes five additional parameters: the interface thickness ε, the mobility η,

the regularization ξ, the relaxation rate ζ and the surface diffusion coefficient θ. The first two

parameters are present in all diffuse interface models while the latter three parameters are

new. We discussed how tradeoffs between accuracy and stability can be used to choose the
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values of these parameters. Importantly we demonstrated that our new models converge as ε

→ 0 to inextensible evolution.

To solve the equations numerically we developed an efficient algorithm using an operator

splitting approach such that the Navier-Stokes equations were implicitly coupled to the

diffuse-interface inextensibility constraint. The phase field equations and the local

concentration field were solved separately. Spatial discretization was performed using the

adaptive finite element toolbox AMDiS [63] with the P2/P1 Taylor-Hood element being

used for the flow problem, extended by a P2 element for the local Lagrange multipliers. P2

elements were also used for the phase field and concentration variables. The resulting

nonlinear system was linearized and solved using UMFPACK [14].

We compared the results from our new model with local inextensibility constraints and

relaxation (model C) to a model without relaxation (model B) and a previously derived

diffuse interface model [17, 18] that conserved only the total surface area (model A).

Focusing on the dynamics of a single vesicle in shear flow in 2D, we demonstrated that

inextensible evolution is achieved in the sharp interface limit of models B and C. We found

that the local inextensibility constraints lead to a larger inclination angle in the tank-treading

regime (Re =1). Large differences in the dynamics are observed in the tumbling regime (Re

= 1/200) where the local inextensibility constraints in models B and C delay the time at

which the vesicle tumbles significantly and increase the length of the tumbling period. The

results show that errors in the local inextensibility in models A and B tend to occur during

the fast dynamics of tumbling and accumulate over time. The local relaxation in model C

prevents this accumulation very effectively. Similar behavior can be observed in sharp

interface models (see [59]).

A study of two vesicles driven together by an extensional flow showed a further effect of

local inextensibility: the inhibition of close vesicle contact. Fluid drainage out of the near

contact region requires tangential forces, which are inhibited by local inextensibility. As a

consequence, vesicles were found to remain separated by a finite distance when models B

and C were used. But, when model A was used, the vesicles came into close contact and

merged precisely because model A does not enforce local inextensibility of the interface.

Future work will use the algorithms presented here to analyze the dependence of the

dynamical states of vesicles (tank-treading, tumbling, trembling) on the Reynolds number

and other physical parameters (viscosity ratio, density ratio, etc), and the local

inextensibility of the interface. We will compare our results with those obtained previously

(e.g., [6, 8, 30, 34, 54]). We also plan to extend our algorithms to 3D, replacing the direct

UMFPACK solver with a more efficient preconditioned iterative solver for the coupled

system, and to incorporate membrane elasticity to provide a more realistic model of red

blood cells.
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Appendix

Here, we provide justifications for the claims made in Sec. 3. In particular, we show that in

the inner variables  has a regular expansion in  , where the leading order term is ∇Γ · v(0),

and that .

Regular expansion for 

Recall that  = P:∇v, where P = I − n⊗n is the tangential projection operator. A

straightforward calculation shows that

(56)

Therefore, in the inner variables, we obtain

(57)

since Pz = 0 and n· (Pυ̂
z) = 0. Plugging the inner expansion for υ̂ into Eq. (57) we obtain a

regular expansion  = (0)+ε (1) +… and we recognize the first term as

(58)

as claimed (assuming ).

Behavior of υ̂(0)

Writing the incompressibility condition ∇·v =0 in the inner region, we obtain

(59)

We thus obtain

(60)

(61)

and so on. To complete the claim, we need to show that the tangential components of the

velocity, namely Pυ̂(0), are also independent of z. This follows from the viscous term in the

Navier-Stokes equations. It can be shown that this term provides the highest order terms in
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the inner expansion of the Navier-Stokes equations (see [17, 18]). Thus at the leading order,

O(1/ε2), the Navier-Stokes equations become

(62)

Since the first term is zero, we conclude that ν∂z (P υ̂(0)) = constant. Taking z →±∞ and

using the leading order matching condition (33), we find that the constant is equal to zero,

which proves the claim.
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Figure 1.
Convergence study showing a super-linear decrease of the instantaneous stretching Ev in Eq.

(54) as a function of the interface thickness ε for model B.
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Figure 2.
Convergence study showing a super-linear decrease of the accumulated stretching Ec in Eq.

(55), as a function of the interface thickness ε, for models B (left) and C (right).
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Figure 3.
The interfacial area (ϕ) (left), from Eq. (16), and vesicle volume (ϕ) (right), from Eq.

(15), for the different models as labeled, with Re = 1. The dotted black line gives the

prescribed reference values o and o.
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Figure 4.
Time evolution of vesicles in a shear flow with Re = 1 (top) and Re = 1/200 (bottom) using

model A (red), model B (green) and model C (blue). The local inextensibility constraints in

models B and C tend to slow the rotation of the vesicle, which is particularly noticeable

when Re = 1/200.
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Figure 5.
The inclination angles (radians) for Re = 1 (left) and Re = 1/200 (right) corresponding to the

vesicle dynamics shown in Fig. 4.
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Figure 6.
The accumulated stretching Ec (55) with Re = 1 (left) and Re = 1/200 (right) corresponding

to the vesicle dynamics shown in Fig. 4.

Aland et al. Page 30

J Comput Phys. Author manuscript; available in PMC 2015 November 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 7.
The value of c along the vesicle interfaces for the different models with Re = 1/200 at time t

= 1. Note the different scales indicating minimum and maximum value of c as well as the

desired value 1.0. The amount of local stretching/compression decreases from model A to

model B to model C.
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Figure 8.
Two vesicles in extensional flow for model A (top row), model B (middle row) and model C

(bottom row) at times t = 0.005, 0.18, 0.4, 0.515 (from left to right). The interfaces are

colored according to the local values of the surface concentration c. The flow streamlines

(grey) are colored by the velocity magnitude |v|. It can be seen that in model A, the

interfaces are compressed at the vesicle tips and stretched along the sides. The local

inextensibility in models B and C inhibits close contact of the vesicles whereas the local

interface stretching in model A enables the vesicles to come into contact and coalesce.
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Table 1

The CPU-times for the different models. The values indicate the times (in seconds) for a single solve of the

Navier-Stokes equations (46)-(47) with Eq. (48) for models B and C, the Willmore equation (49)-(52) and for

model C the advection-diffusion equation for c (53).

model A model B model C

NS (incl. inextensibility) 5.12 6.77 6.83

Willmore 2.01 2.05 2.07

equation for c - - 0.32

total 7.13 8.82 9.22
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