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Significance and Novelty

The paper provides the first parallel-in-time method for the time-fractional (partial) differential equations, as
the major novelty of our work. To match the global feature of fractional derivatives, the new method has in
the correction step embraced the history part of the solution. The second contribution is a systematic study
of the convergence behavior in terms of the coarse resolution and the nature of the differential operators.
Thirdly, it is the first time that a multi-domain spectral integrator together with a parareal method has been
used for integral equations, which makes the numerical scheme very efficient. Last but not least, the paper
provides a convergence analysis under the assumption of Lipschitz stability conditions.
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A Parareal Method for Time-fractional Differential Equations

Qinwu Xu ∗ Jan S Hesthaven † Feng Chen ‡

Abstract

In this paper, a parareal method is proposed for the parallel-in-time integration of time-fractional
differential equations (TFDEs). It is a generalization of the original parareal method, proposed for classic
differential equations. To match the global feature of fractional derivatives, the new method has in the
correction step embraced the history part of the solution. We provide a convergence analysis under the
assumption of Lipschitz stability conditions. We use a multi-domain spectral integrator to build the
serial solvers and numerical results demonstrate the feasibility of the new approach and confirm the
convergence analysis. Studies also show that both the coarse resolution and the nature of the differential
operators can affect the performance.

Keywords. fractional calculus, time-fractional, parareal, parallel-in-time, multi-domain spectral.

1 Introduction

Fractional calculus is an old concept that can be dated back to G.W. Leibniz and L. Euler in 1660s. Recently
it has attracted considerable attention within the natural and social sciences due to its ability to model
phenomena dominated by memory effects [11, 10] and problems exhibiting non-Markovian behavior in time.
The speed by which a system relaxes in time can be related to the order of time derivatives in the constitutive
equation, leading to the differential equation of fractional order in time. In this paper, we consider numerical
methods for the following equation:

�
0D

α
t u(t) = λu(t) + f(t), t ∈ Ω,

u(0) = u0,
(1.1)

where Ω = (0, T ] and 0D
α
t is the fractional differential operator in the Caputo sense.

We focus on the time integration of the TFDE as (1.1), where the time-fractional derivative emerges as
an integro-differential operator, defined by the convolution of the classical derivative of the function and a
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singular kernel of fractional power-law type. Hence, the solution to a TFDE at a certain time depends on the
whole history of the solution at previous times. Considering the design of numerical schemes, an immediate
consequence is that the entire past trajectory of the numerical solution must be carried forward and used in
the computation at the current time step. This impacts both the storage and the cost of the numerical method,
both of which may substantially increase over time. These issues will be even more prominent if partial
integro-differential equations are considered. Therefore, it is natural to adopt parallelism in terms of both
storage and computation.

In this paper, we will develop parallel methods based following the idea of the parareal method proposed
by Lion, Maday and Turinici in 2001 [9]. Relying on a computationally inexpensive but inaccurate solver
and an accurate but expensive solver, the parareal method utilizes an iterative, predictor-corrector procedure
that allows the expensive solver to run across many processors in parallel. Under suitable conditions, the
parareal iteration is expected to converge after a small number of iterations to the serial solution [9]. During
the last decade, there has been an explosion of research work on the analysis and applications of the parareal
method to diverse scientific fields, including quantum control [13, 12], plasma simulation [16, 15], fluid
dynamics [6, 5], finance [1], Volterra integral equations [8], and stochastic calculus [17], demonstrating
its potential, accuracy, and robustness. However, there is currently no development of the parallel-in-time
method to fractional differential equations.

This paper is an effort to close the gap between the high computational demand of the TFDE and the
utilization of parallel computing. The original parareal formula for classic ODEs must be be modified to take
into account the memory effect of the TFDE and we propose to include the history part of the solution in the
correction step. On one hand, this generalized parareal method maintains the nice properties of the original
parareal method, i.e., it is guaranteed to recover the fine solution uk after k iterations and the fine solution can
be parallelized across a large number of processors. On the other hand, it has particular advantages for the
TFDE in that the numerical solution on each interval is stored on each processor, thus the memory restriction
is relaxed. In this paper, we provide a convergence analysis of the new method and perform computational
studies of the convergence behavior to further illuminate the importance of various factors such as the coarse
solver and the different orders of derivatives. In general, the parareal method works well for dissipative
problems but instability appears for problems with wave nature [7, 3]. In [8], a similar modification has been
considered for Volterra integral equations with smooth kernels.

To implement the parareal method, one also needs to be cognizant of the challenge in the serial time
stepping scheme for the TFDE. In this paper, we adopt a recent proposed spectral element approach [4] to
build both the coarse and the fine solvers, needed in the parareal algorithm. The whole time domain will
be decomposed into intervals, on which spectral approximations with low and high order polynomials are
established. As such, the interpolation between two Gaussian grids are needed. For a desired accuracy, this
method requires very low storage since it possesses the hp-convergence.

The paper is organized as follows. In the next section, a brief background on the parareal method and
the TFDE will be provided. In Section 3, we describe the new parareal method and perform a convergence
analysis. Numerical results will be shown in Section 4. We end the paper with a few of concluding remarks
in Section 5.
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2 Preliminaries

In this section, we provide background material on the parareal method for classic ODEs and introduce the
fractional differential equation.

2.1 The Parareal Method

Consider the following scalar ODE:
�

ut = F (u, t), t ∈ Ω := (0, T ],

u(0) = u0,
(2.1)

where u is the unknown solution, and F (u, t) is a given function in u and t. In the following, we describe
the basic settings of the original parareal method (cf. [9]), aiming to solve (2.1) parallel-in-time.

First, the time domain is decomposed into N elements:

0 = T0 < · · · < Tn < · · · < TN = T, Tn = nΔT, ΔT =
T

N
, Ωn := (Tn−1, Tn). (2.2)

Next, we introduce a fine integrator, F , which can integrate the problem forward at the desired accuracy
but possibly at a high computational expense. We also introduce a coarse integrator, G, which is assumed to
have a lower accuracy but providing results at a lower computational cost as compared to the fine solver. As
an example, one can use the same classic fourth-order Runge-Kutta scheme for both F and G but integrate F
using a small step size δt, while G is utilizing a bigger step size Δt (Δt � δt).

Denote FΔT (u;Tn, Tn+1) as the numerical solution obtained by integrating u from Tn to Tn+1 with
Fδt and GΔT (u;Tn, Tn+1) denoting the similar integration forward in time using the coarse solver. Figure 1
provides an illustration. Without ambiguity, we denote them as F and G for short.

�
ΔTT0 TN

�

T1 T2

�coarse grid � �

� ��fine grid � �� � � �

Δt

δt

Figure 1: Decomposition of the time domain in the parareal method for classic differential equations.

In the parareal method, one starts the iterations from an initial guess, {u0
n}Nn=0, obtained from the coarse

integrator G. Assume that {uk
n}Nn=0 are available. The solution at the next iteration is obtained from

uk+1
n+1 = Guk+1

n + Fuk
n − Guk

n, 0 � n � N − 1, k = 0, 1, 2, · · · (2.3)
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It is easy to see that the different Fuk
n’s can be computed in parallel. Therefore, N in (2.2) represents the

number of processors. Assume that F and G are continuous and limk→∞ uk
n exists. By taking the limit of

k → ∞ in (2.3), we obtain:
uk+1
n+1 → un+1 = FΔT (un;Tn, Tn+1). (2.4)

In other words, the parareal solution converges to the solution obtained from the sequential fine integrator.
One terminates the parareal algorithm if k = nmax, i.e., the maximum number of iterations is reached, or, if

|uk
n − uk−1

n | � τ, (2.5)

where τ is a given tolerance. Clearly, the smaller the number of iterations, the more efficient the parareal
method. It is not hard to see that the parareal method is general and can be applied to time-dependent partial
differential equations.

2.2 Fractional Differential Equations

Let us denote the time domain (0, T ) as Ω, and let t ∈ Ω. The fractional integral of order α of a given
function u(t) is defined as

0D
−α
t u(t) � 1

Γ(α)

� t

0
(t − s)α−1u(s)ds, (2.6)

where Γ(x) is the Gamma function. This allows us to define the Caputo fractional derivative of order
α, (0 < α ≤ 1) as

0D
α
t u(t) � 1

Γ(n − α)

� t

0
(t − s)n−1−α d

nu(s)

dsn
ds. (2.7)

which is preferred over alternative definitions to deal with standard initial conditions. This definition can
naturally be extended to higher order as

0D
α
t u(t) � 0D

α−n
t

dnu(t)

dtn
=

1

Γ(n − α)

� t

0
(t − s)n−1−α d

nu(s)

dsn
ds, (2.8)

where n is an integer such that α ∈ (n − 1, n].
With this notation we express the multi-term fractional differential equation as:





m�

k=1

ak(t) 0D
αk
t u(t) = Lu(t) + f(t), t ∈ Ω,

u(k)(0) = uk, 0 � k � n − 1.

(2.9)

Here we assume that 0 � α1 < α2 < · · · < αm and αm ∈ (n− 1, n]. On the right hand side of the equation,
L can be either a scalar function for the time-fractional differential equation (TFDE) case or an operator in
a spatial domain for the time-fractional partial differential equation (TFPDE) case. We refer to [14] for a
introduction to fractional calculus.
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3 The Parareal Method for TFDEs

In this section, we first describe how to generalize the original parareal method to fractional differential
equations and then prove that the parareal solution converges to the fine solution.

3.1 Description of the Method

Without the loss of generality, consider the same domain decomposition in (2.2) and Figure 1. Denote the
fine grid on Ωn as {tn1 , tn2 , · · · , tnM}. Let un be a solution vector of length M , with each component the
numerical approximation to u(tni ). Furthermore, u1:n indicate a concatenation of {u1,u2, · · · ,un}. To
recover un+1, the time integrators G and F of the TFDE require the entire history part, u1:n, as the input.
Hence, the parareal method for the TFDE is given as

uk+1
n+1 = Guk+1

1:n + Fuk
1:n − Guk

1:n, 1 � n � N − 1, k = 0, 1, 2, · · · (3.1)

It can be easily verified that uk+1
n+1 → Fu1:n as k → ∞, if limk→∞ uk+1

n+1 exists. Since G and F are defined
on different grids, interpolations between the coarse and fine solutions may be needed to perform (3.1). Like
the parareal method for classic ODEs in (2.3), the new parareal method in (3.1) goes forward in a sequential
way. Unlike the classic case, however, the new parareal method uses the history part of the solution at each
step (Figure 2). Another difference between the original parareal method in (2.3) and the new parareal

�
T0 TN

�

T1 T2
�

T0 TN
�

T1 T2

classic fractional

Figure 2: At each iteration, both two methods go sequentially element by element. In the fractional case, the
history part is needed.

method in (3.1) is that (2.3) updates only the parareal solution at the right end point of the current element,
i.e., the solution at Tn. while (3.1) updates a solution vector uk

n containing solutions at two end points as
well as interior points on the fine grid of Ωn. This is natural since the solution at the current time depends on
solutions at all previous times in the TFDE case.

3.2 Analysis of the Method

Suppose u(t) is the exact solution to (1.1) and denote {un}Nn=1 as the numerical solution obtained from the
fine propagator F , i.e., un+1 = Fu1:n. Introduce the following two kinds of errors:

ekn = uk
n − u(tΩn), θk

n = uk
n − un, (3.2)
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where u(tΩn) = (u(tn1 ), u(t
n
2 ), · · · , u(tnM ))T , a vector of exact solutions on the fine grid. We denote a

generic, nonnegative constant c independent of n or k. An important tool is the discrete Gronwall lemme
suitable for integral equations (cf. [2]):

Lemma 3.1 (Discrete Gronwall Lemma). Let a, b � 0. Assume that {φn} is a nonnegative sequence
satisfying

φn � b + a
n−1�

s=0

φs, n = 1, 2, · · · . (3.3)

Then it holds that
φn � b exp(na). (3.4)

Assumption 3.2 (Convergence of F and G). Let F and G denote the fine and coarse numerical propagators,
respectively, and let u(tΩn) be the vector of exact solutions defined in Section 3.1. Assume that

�Fu1:n − u(tΩn+1)� � �F ,

�Gu1:n − u(tΩn+1)� � �G,
(3.5)

where �F and �G decay with the order of the scheme.

Assumption 3.3 (Lipschitz condition of F and G). Let F and G denote the fine and coarse numerical
propagators, respectively, and let {φn,ψn} be two discrete sequences defined on Ω. We assume that

�Fφ1:n −Fψ1:n� � cΔT

n�

j=1

�φj −ψj�,

�Gφ1:n − Gψ1:n� � cΔT

n�

j=1

�φj −ψj�.

(3.6)

Denote E as the exact propagator corresponding to (1.1). We define δF = E − F and similarly for δG.
Assumption 3.4 (Lipschitz condition of δF and δG). Let F and G be the fine and coarse numerical
propagators, respectively, and let {φn,ψn} be two discrete sequences defined on Ω. We assume that

�δFφ1:n − δFψ1:n� � cΔT�F

n�

j=1

�φj −ψj�,

�δGφ1:n − δGψ1:n� � cΔT�G

n�

j=1

�φj −ψj�.

(3.7)

Theorem 3.5 (Convergence of the Parareal Method). The error of the parareal method in (3.1) for the TFDE
in (1.1) satisfies

�ekn� � (cTn)
k exp(cTnk)�k+1

G + �F , (3.8)

where �G and �F were defined in Assumption 3.2.
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Proof. First, use the triangle inequality and Assumption 3.2 to recover

�ekn� � �θk
n�+ �un − u(tΩn)� � �θk

n�+ �F . (3.9)

Step 1. Using the parareal formula, we have

θk
n = (Guk

1:n−1 − Gu1:n−1) + (Gu1:n−1 − Guk−1
1:n−1) + (Fuk−1

1:n−1 −Fu1:n−1)

= (Guk
1:n−1 − Gu1:n−1) + (δGu1:n−1 − δGuk−1

1:n−1) + (δFuk−1
1:n−1 − δFu1:n−1)

(3.10)

Apply the triangle inequality, Assumption 3.3, and Assumption 3.4, to obtain

�θk
n� � �Guk

1:n−1 − Gu1:n−1�+ �δGu1:n−1 − δGuk−1
1:n−1�+ �δFuk−1

1:n−1 − δFu1:n−1�

� cΔT

n−1�

j=1

�θk
j �+ c�GΔT

n−1�

j=1

�θk−1
j �.

(3.11)

Step 2. Apply the discrete Gronwall Lemma (Lemma 3.1) to (3.11) in n, to obtain

�θk+1
n � � cΔT�G exp(c(n − 1)ΔT )

n−1�

j=1

�θk
j �. (3.12)

By noticing nΔT = Tn, we have

�θk+1
n � � cTn�G exp(cTn)max

j
�θk

j �. (3.13)

Step 3. A simple induction in k to (3.13) provides

�θk+1
n � � (cTn)

k+1 exp(cTn(k + 1))�k+1
G max

j
�θ0

j�. (3.14)

Now notice that �θ0
j� ∼ �G and use (3.9) to complete the proof.

Remark 3.6. In (3.8), the growth factor (cTn)
k exp(cTnk) can be controlled and the parareal method

converges. This is the case for most of the diffusion dominated problems, because c is typically negative
and real. For wave problems, in which case c can have dominating imaginary component, the non-normal
behavior of (cTn)

k exp(cTnk) becomes significant and may lead to an instability of the parareal method.

4 Numerical Examples

Wr first introduce a robust and efficient spectral method for time-fractional differential equations as the
serial numerical propagator although we emphasize that one can use any type of serial solvers in the parareal
method. In the second subsection, we provide the main numerical results.
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4.1 Description of the Serial Solver

Before providing numerical examples for the parareal method, we describe the fine and coarse solvers used
subsequently. More details can be found in [4].

First, decompose the time domain Ω into:

0 = t0 < t1 < · · · < tK = T, Ωi = [ti−1, ti], hi = ti − ti−1, 1 � i � K. (4.1)

The model equation (1.1) takes the form:




ti−1
Dα

t u(t) +

i−1�

k=1

tk−1
D̃α

tk
u(t) = λu(t) + f(t), t ∈ Ωi, 1 � i � K,

u(0) = u0,

(4.2)

where D̃α is defined as

aD̃
α
b u(t) :=

1

Γ(n − α)

� b

a
(t − s)n−α−1 dn

dsn
u(s)ds, t > b. (4.3)

Next, define the approximating space:

XN = {u ∈ C(Ω);u|Ωi ∈ PN , 1 � i � K}, (4.4)

where PN is the polynomial space of degree N defined on Ωi, i.e., we represent the global solution as
piecewise polynomials. For simplicity, we consider a uniform decomposition (hi ≡ h) and the same number
of degrees of freedom on each element. The numerical solution can be expressed as

uh(t) =
N�

l=0

ûi
lPl(t̃), t ∈ Ωi, (4.5)

where

t =
1− t̃

2
ti−1 +

1 + t̃

2
ti, t̃ ∈ [−1, 1], (4.6)

and Pl(t̃) is the l-th order Legendre polynomial defined on [−1, 1].
Insert (4.5) into (4.2), and enforce the equation to hold at a set of collocation points ξij , to recover

ti−1
Dα

t uh(ξ
i
j) +

i−1�

k=1

tk−1
D̃α

tk
uh(ξ

i
j) = λuh(ξ

i
j) + f(ξij), 0 � j � N, 1 � i � K, (4.7)

We assume that {ξij}Nj=0 is the Legendre-Gauss-Lobatto points on Ω
i but this can be relaxed. Using the affine

transformation in (4.6), we introduce the following matrices:
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(M̂0)jl = (
h

2
)−α

−1D
α
t Pl(ξj), 0 � j, l � N,

(M̂i−k)jl = (
h

2
)−α

−1D̃
α
1Pl(ξ̃

i
j), 0 � j, l � N, 1 � k � i − 1,

(4.8)

where

ξij =
1− ξ̃ij

2
tk−1 +

1 + ξ̃ij
2

tk. (4.9)

The multi-domain spectral method may now be expressed as follows. Assume that {ûk}i−1
k=1 were solved on

previous elements, i.e., the history is known. Then (4.7) is equivalent to the following linear system in ûi:

M̂0û
i +

i−1�

k=1

M̂i−kû
k = λVûi + f i, (4.10)

where (f i)j = f(tij). The expression for {M̂i} is provided in [4].
In practice, it is preferred to work directly in physical space. Hence, we write (4.10) as

N0u
i +

i−1�

k=1

Ni−ku
k = λ(

h

2
)αui + (

h

2
)αf i, (4.11)

where
Nk = (

h

2
)αM̂kV−1, 0 � k � i − 1. (4.12)

To complete the method, one needs to enforce the initial condition on each element: the first row of (4.11)
is replaced by (1, 0, · · · , 0) and the first element of the right hand side vector is replaced by uh(t

i−1
N ). If

α ∈ (1, 2), the second row of (4.11) also needs to be replaced by the first row of the first-order differentiation
matrix, and the right hand side vector is changed accordingly.

The above method yields the desired hp-convergence as a spectral element method provided the solution
has sufficient smoothness. When N = 1, it is equivalent to a low-order finite difference method (linear
piecewise basis in use).

Based on the multi-domain spectral method, we define the fine and coarse integrators that are used
in the subsequent examples (see Figure 3 for an illustration). On each Ωn, we use NG + 1 quadrature
points for the coarse grid, and NF + 1 for the fine grid. For simplicity, the quadrature points are chosen as
Legendre-Gauss-Lobatto points. Denote the numerical solution on the fine grid of each Ωn as un, which is a
vector of length NF + 1. The parareal method remains the form of (3.1) with interpolation between the fine
and the coarse solutions needed.

4.2 Numerical results of the fractional parareal method

We use the parareal method in (3.1) and the multi-domain spectral method in (4.12) to solve the time-fractional
differential equation, (1.1). Let α < 1. All the errors and differences are calculated on the last element and
measured in the maximum norm.
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�
ΔTT0 TN

�

T1 T2

�� �coarse grid (NG) � �

�� � �� � �� �fine grid (NF )

Figure 3: Decomposition of the time domain of serial solvers in the parareal method for time-fractional
differential equations.

Example 4.1. In the first example, we illustrate the convergence rate and show that the rate depends on the
coarse resolution determined by NG. We choose the exact solution to be u(t) = sin(t), and the right hand
side function f(t) is calculated accordingly. In this example, the following parameters are used:

T = 4π, λ = −1, α = 0.6, N = 16, NF = 16. (4.13)

First, we consider the difference between the parareal solution and the fine solution, as shown in Figure
4(a). The parareal solution converges to fine solution at a rate as O(�kG), consistent with Theorem 3.5. The
method reaches machine accuracy after a few of iteration steps. The error between the parareal solution and
exact solution is shown in Figure 4(b). In all cases, �F ∼ 10−10.

In the following examples (Example 4.2-4.5), we consider
�

0D
α
t u(t) = λu(t) + esin(t), t ∈ (0, T ],

u(0) = 1.
(4.14)

For this equation, it is hard to obtain the exact solution for long time integrations. We assume that a
sufficiently good solution can be obtained using the fine solver and use this as the surrogate for the exact
solution.

Example 4.2. Besides NG, the convergence rate also depends on α. In Figure 5, we still use parameters in
(4.13) with NG fixed as 1. In general, the larger the α is, the faster the convergence rate is. It is caused by
the fact that the solution decays exponentially as α → 1.

Example 4.3. We now show that the performance can be improved by increasing the number of processors
as would be a clear advantage for the large scale parallelization. In the two plots of Figure 6, we solve (4.14)
with the following parameters:

T = 15π, λ = 1, α = 0.6, NG = 2, NF = 16. (4.15)

As indicated in previous examples, the solution converges when N is fixed. In this example, it is shown that
the error decreases algebraically as N increases, when k is fixed. This is a result ofΔT decreasing so the
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Figure 4: Convergence results of Example 4.1. Different coarse accuracies lead to different convergence
rates. Left: difference between the parareal solution and the fine solution. Right: difference between the
parareal solution and the exact solution.

coarse accuracy is improved. Therefore, we have three ways to improve the accuracy: increasing the number
of iterations, improving the accuracy of the coarse solver, and increasing the number of processors.

Example 4.4. In this example, we focus on the impact of α on the convergence rate when �(λ) = 0. In
Figure 7, the following parameters are used:

T = 15π, λ = i, N = 15, NG = 1, NF = 16, α = 0.1, 0.2, · · · , 0.9, 1.0. (4.16)

When λ is a purely imaginary number, the TFDE tends to have wave nature. From Figure 7, the solution
is seen to oscillate as α → 1. It coincides with the well-known instability of the parareal method for wave
equations [7, 3]. As α decreases, the parareal solution recovers stability.

Example 4.5. Continuing Example 4.4, we demonstrate that the stronger the dissipation is, the better the
parareal method works. In Figure 8, we consider the case where �(λ) � 0 and use following parameters:

T = 15π, N = 15, NG = 1, NF = 16, α = 0.95, λ = i,−0.5 + i,−1 + i,−2 + i. (4.17)

Example 4.6. In the last example, we consider a TFPDE - a time-fractional diffusion equation:
�

0D
α
t u(x, t) = Δu(x, t) + f(x, t), (x, t) ∈ (0, 2π)× (0, T ],

u(x, 0) = u0(x),
(4.18)
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Figure 5: Convergence results of Example 4.2. Different α values lead to different convergence rates.

subject to 2π-periodic boundary condition. Here we choose u(x, 0) = 0 and

f(x, t) = exp(cos(x)− 0.05t) sin(0.2t).

Since u and f are periodic in the spatial domain, their numerical approximations are expressed as

uh(x, t) =
�

|k|≤M/2

ûk(t)e
ikx, fh(x, t) =

�

|k|≤M/2

f̂k(t)e
ikx, (4.19)

where i =
√
−1 and f̂k(t) can be obtained through the fast Fourier transform (FFT).

Inserting (4.19) into (4.18) and requiring the equation to be satisfied in a Fourier Galerkin sense yields a
set of time-fractional differential equations:

∀k : 0D
α
t ûk(t) = −k2ûk(t) + f̂k(t), (4.20)

for which we apply the multi-domain spectral method and the new parareal method in the temporal direction.
Once ûk’s are recovered, uh are obtained through the inverse fast Fourier transform. We fix the following
parameters in the numerical experiments:

T = 100, α = 0.3, NG = 2, NF = 20, N = 40, M = 40. (4.21)

The numerical solution and the convergence rate of the parareal method are shown in Figure 9.
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Figure 6: Convergence results with different numbers of processors in Example 4.3.

5 Conclusions

We have proposed and studied a new parareal method, suitable for time-fractional differential equations. We
proved that the parareal method converges under mild assumptions and confirmed the analysis through a
number of numerical experiments. This also exposed other factors influencing the overall performance. The
parareal method works well for dissipative problems, but appears unstable for problems with wave nature,
similar to what is known for the standard parareal method. Nevertheless, for a large class of problems, the
robustness and versatility of the method has been demonstrated and sets the stage for the evaluation on more
complex problems.
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