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Abstract
In this paper, we develop high-order asymptotic preserving (AP) schemes for the BGK

equation in a hyperbolic scaling, which leads to the macroscopic models such as the Euler and
compressible Navier-Stokes equations in the asymptotic limit. Our approaches are based on the
so-called micro-macro formulation of the kinetic equation which involves a natural decomposi-
tion of the problem to the equilibrium and the non-equilibrium parts. The proposed methods
are formulated for the BGK equation with constant or spatially variant Knudsen number. The
new ingredients for the proposed methods to achieve high order accuracy are the following:
we introduce discontinuous Galerkin (DG) discretization of arbitrary order of accuracy with
nodal Lagrangian basis functions in space; we employ a high order globally stiffly accurate
implicit-explicit (IMEX) Runge-Kutta (RK) scheme as time discretization. Two versions of
the schemes are proposed: Scheme I is a direct formulation based on the micro-macro de-
composition of the BGK equation, while Scheme II, motivated by the asymptotic analysis for
the continuous problem, utilizes certain properties of the projection operator. Compared with
Scheme I, Scheme II not only has better computational efficiency (the computational cost is
reduced by half roughly), but also allows the establishment of a formal asymptotic analysis.
Specifically, it is demonstrated that when 0 < ε ≪ 1, Scheme II, up to O(ε2), becomes a local
DG discretization with an explicit RK method for the macroscopic compressible Navier-Stokes
equations, a method in a similar spirit to the ones in [Bassi & Rabey 1997, Cockburn & Shu
1998]. Numerical results are presented for a wide range of Knudsen number to illustrate the
effectiveness and high order accuracy of the methods.
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1 Introduction

In this paper, we are interested in numerically solving the BGK equation, a simpler relaxation
model associated with the Boltzmann equation for the kinetic description of gases, introduced
by Bhatnagar, Gross and Krook [7], in a hyperbolic scaling. Knudsen number ε is an important
dimensionless parameter in such description, defined as the ratio of the molecular mean free path
length to a representative physical length scale, characterizing the frequency of molecular colli-
sions hence how rarefied a gas is. In the zero limit of Knudsen number, a sufficient macroscopic
model is the Euler system describing the conservation of mass, moment and energy; when the
Knudsen number is sufficiently small but not necessarily zero, the compressible Navier-Stokes
equations are needed which include a correction term on viscosity and heat conductivity.

By far, there have been many research works in numerically simulating the Boltzmann
and BGK equations with a wide range of Knudsen number. An elegant method based on the
micro-macro decomposition framework was proposed by Bennoune, Lemou, Mieussen [6], and it
correctly captures the macroscopic Navier-Stokes limit when the Knudsen number is sufficiently
small. There are various versions of implicit-explicit schemes proposed for the BGK equations in
[29, 30], as well as for the ES-BGK equation [19]. For the general Boltzmann collisional operator,
a novel BGK-penalization strategy was proposed by Filbet and Jin [18]. These methods are all
related to the asymptotic preserving (AP) concept, for its recent development and review, see
[24]. Particularly AP schemes are designed to mimic the asymptotic limit from the kinetic to
the hydrodynamic models on the PDE level as ε goes to 0. On the other hand, the macroscopic
Navier-Stokes equations have been well studied in the computational fluid dynamics (CFD)
community by many high order shock capturing schemes [31]; among others, the discontinuous
Galerkin methods have been widely used [3, 16, 5, 26, 4]. There is also an interesting work on
developing gas-kinetic BGK schemes for the Navier-Stokes equations by taking advantage of
the kinetic distribution function as the solution of the BGK equation [33].

Our main focus of this work is to develop a family of high order AP schemes for the BGK
equation that works for a wide range of Knudsen number based on the micro-macro decom-
position framework. The proposed methods are presented and numerically tested for constant
Knudsen number ε and spatially variant ε = ε(x). The high order spatial accuracy is achieved
by nodal discontinuous Galerkin (DG) finite element approaches, and the high order temporal
accuracy is achieved by globally stiffly accurate implicit-explicit (IMEX) Runge-Kutta (RK)
methods. The proposed schemes become DG methods with explicit RK time discretizations for
the Euler system in the zero limit of the Knudsen number. In order to capture the compressible
Navier-Stokes limit for sufficiently small ε, some novel ingredient, inspired by the asymptotic
analysis for the continuous problem, is incorporated to further revise the schemes (see Section
3.1). A formal asymptotic analysis shows that the resulting methods not only become DG
approximations of the Euler system as ε → 0, they also give rise to local DG discretizations,
up to O(ε2), of the Navier-Stokes equations, and this is verified by numerical tests in Section
4. These local DG methods are in a similar spirit of that proposed in [3, 16] based on a mixed
formulation of the equations.

DG discretizations are widely-known in many applications in science and engineering for
their advantages of being h-p adaptive, compact, highly efficient in parallel implementations,
and flexible for problems with complicated geometries, see [17, 14] and references therein. When
the methods are applied to solve PDEs with second or higher order spatial derivatives, local
DG methods can be formulated based on the mixed form of the equations [3, 16]. Nodal
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(local) DG methods, on the other hand, can be considered as DG methods with the discrete
spaces represented by Lagrangian nodal basis functions [21]. In the context of solving the
BGK equation based on the micro-macro decomposition, nodal DG methods allow convenient
implementations of a projection operator that is spatially dependent, as well as many kinetic
and macroscopic quantities. In addition, it simplifies the treatment when ε = ε(x) is spatially
dependent. For the time discretization, we treat stiff terms implicitly and non-stiff terms
explicitly by adopting the high order globally stiffly accurate IMEX RK methods developed
in [1, 28]. Our proposed methodology differs from the implicit-explicit strategy in [29, 30]
by working with the macroscopic variables U given in (2.3) as well as the microscopic one
g = (f−MU)/ε (see (2.2)), instead of directly working with the probability distribution function
f . Because of this, the necessity of performing the moments realignment as in [30] is avoided.
Finally, we test the proposed schemes with a collection of smooth and non-smooth examples
for a wide range of Knudsen number which can be spatially dependent. Expected high order
accuracy and correct asymptotic behavior are validated. Superior performance, when compared
with lower order schemes, is observed in terms of accuracy for smooth test cases as well as the
solution resolution when there are shock structures.

The rest of the paper is organized as follows. In Section 2, we provide the BGK equation in
a hyperbolic scaling and its micro-macro decomposition. In Section 3, high order AP schemes
are formulated with a nodal DG spatial discretization and a globally stiffly accurate IMEX
temporal discretization. A formal asymptotic analysis is performed for the proposed methods
to capture the Euler and Navier-Stokes limits. In Section 4, numerical results are presented.
Finally, conclusions are given in Section 5.

2 Formulation

We consider the BGK equation in a hyperbolic scaling:

∂tf + v · ∇xf =
1

ε
(MU − f) (2.1)

with the initial data f0 and suitable boundary conditions, where f = f(x, v, t) is the distribution
function of particles that depends on time t > 0, position x ∈ Ωx ⊂ Rd and velocity v ∈ Rd for
d ≥ 1. The parameter ε > 0 is the Knudsen number proportional to the mean free path. And
MU is a local Maxwellian defined by

MU =MU (x, v, t) =
ρ(x, t)

(2πT (x, t))d/2
exp

(
−|v − u(x, t)|2

2T (x, t)

)
(2.2)

where ρ, u, T represent the macroscopic density, the mean velocity, and the temperature,
respectively, and they are obtained by taking the first few moments of f :

U :=

(
ρ, ρu,

1

2
ρ|u|2 + d

2
ρT

)t

=

∫

Rd

(
1, v,

1

2
|v|2
)t

f(v)dv. (2.3)

Here the components of U represent the density, momentum, and energy. We refer to [10, 11, 12]
for more details on the model.

In what follows we derive the fluid equations starting from (2.1). For notational convenience,

we use m = m(v) :=
(
1, v, 1

2
|v|2
)t

and 〈g〉 :=
∫
Rd g(v)dv. It is easy to check that 〈mMU〉 =
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(
ρ, ρu, 1

2
ρ|u|2 + d

2
ρT
)t

= U and hence we see that 〈m(MU − f)〉 = 0, namely the BGK operator
satisfies the conservation of mass, momentum and energy. Moreover, it enjoys the entropy
dissipation: 〈(MU − f) log f〉 ≤ 0. From the conservation properties of the BGK operator, we
get at least formally the local conservation of mass, momentum, and energy:

∂t




ρ
ρu
E


+∇x ·




ρu
ρu⊗ u+ P
Eu+ Pu+Q


 = 0 (2.4)

where E = 1
2
ρ|u|2 + d

2
ρT , the pressure tensor P is given by P = 〈(v − u) ⊗ (v − u)f〉, and

the heat flux vector is given by Q = 1
2
〈(v − u)|v − u|2f〉. When ε → 0 in (2.1), f approaches

the Maxwellian MU in (2.2). Hence, for sufficiently small ε, f can be approximated by this
Maxwellian. In such an approximation, P = pI, with p = ρT and I as the d × d identity
matrix, Q = 0, and thus the above local conservation laws form a closed system, which is
the compressible Euler system. The compressible Navier-Stokes equations are obtained by the
classical Chapman-Enskog expansion [10, 11, 12, 13]. Next we will present the micro-macro
decomposition of (2.1), which has a similar spirit of the Chapman-Enskog expansion, to derive
the compressible Navier-Stokes equations. This decomposition will provide the starting point
of the proposed numerical methods in this work.

2.1 Micro-macro formulation

Let M be a given local Maxwellian. We use L2
M to denote the Hilbert space equipped with the

following weighted inner product

(f, g)M := 〈fgM−1〉.

Then any function f ∈ L2
M can be written as the unique orthogonal decomposition as follows

f = ΠMf + (I− ΠM)f

where I is the identity operator, ΠMf is the orthogonal projection in L2
M ontoN := span {M, vM, |v|2M}

and its explicit form by using the orthogonal basis of N is given by

ΠMf =

(
1

ρ
〈f〉+ 〈(v − u)f〉

ρT
· (v − u) +

2

dρ
〈( |v − u|2

2T
− d

2
)f〉( |v − u|2

2T
− d

2
)

)
M. (2.5)

We are now ready to present the micro-macro decomposition [6, 25] for the BGK equation
(2.1). Here and below, we will use M to denote MU in (2.2). The starting point is to seek the
solution f of (2.1) as

f :=M + εg (2.6)

so that g is only microscopic: 〈mg〉 = 0. In a sense, the solution f is decomposed into the
macroscopic part M and the microscopic part εg. If we insert (2.6) into (2.1), we obtain

∂tM + v ·∇xM + ε(∂tg + v ·∇xg) = −g . (2.7)

The idea of the micro-macro decomposition is to decompose (2.7) through the orthogonal
projections ΠM and I− ΠM . To do so, it is useful to recall the followings:

ΠM g = 0, (I− ΠM) ∂tM = 0, ΠM ∂tg = 0 (2.8)
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which follow from the definition and direct computations (for instance, see Lemma 3.1 in [6]).
The orthogonal projection I−ΠM of the equation (2.7) reads as

(I−ΠM)(∂tM + v ·∇xM) + ε(I− ΠM)(∂tg + v ·∇xg) = −(I− ΠM)g

which in turn can be, by using (2.8), written as

ε∂tg + ε(I− ΠM)(v ·∇xg) = −
(
g + (I− ΠM)(v ·∇xM)

)
. (2.9)

On the other hand, the projection ΠM of the equation (2.7) gives rise to

∂t




ρ
ρu
E


+∇x ·




ρu
ρu⊗ u+ pI
(E + p)u


+ ε∇x ·




〈vg〉
〈v ⊗ vg〉
〈v |v|2

2
g〉


 = 0. (2.10)

Denoting the flux terms in (2.10) by F (U), we have derived the following micro-macro decom-
position of (2.1):

∂tU +∇x ·F (U) + ε∇x ·〈vmg〉 = 0, (2.11a)

ε∂tg + ε(I− ΠM)(v ·∇xg) = −
(
g + (I− ΠM)(v ·∇xM)

)
. (2.11b)

In a more general setting where the Knudsen number ε depends on the position x: ε = ε(x),
since ∇x(εg) 6= ε∇xg in general, the micro-macro formulation (2.11) should be written as
follows:

∂tU +∇x ·F (U) +∇x ·
(
ε(x)〈vmg〉

)
= 0, (2.12a)

ε(x)∂tg + (I−ΠM )∇x ·
(
ε(x)vg

)
= −

(
g + (I− ΠM)(v ·∇xM)

)
. (2.12b)

2.2 Compressible Navier-Stokes limit

The first two terms in (2.10) form the Euler system and we see that as ε → 0, the equations
(2.10) at least formally converge to the Euler system. In this subsection, we want to examine
the contribution of the third term in (2.10) and indeed, we will show that the inclusion of the
leading order (ε term) gives rise to the set of the compressible Navier-Stokes equations. From
(2.9), we see that

g = −(I− ΠM)(v ·∇xM) +O(ε) (2.13)

and the direct computation shows that

(I− ΠM)(v ·∇xM)

M
= B :

(
∇xu+ (∇xu)

t − 2

d
(∇x ·u)I

)
+ A · ∇xT√

T
(2.14)

where

A =

( |v − u|2
2T

− d+ 2

2

)
v − u√
T

and B =
1

2

(
(v − u)⊗ (v − u)

2T
− |v − u|2

dT
I

)
(2.15)
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and therefore, we deduce that

g = −B :

(
∇xu+ (∇xu)

t − 2

d
(∇x ·u)I

)
M −A · ∇xT√

T
M +O(ε). (2.16)

Here X : Y =
∑

i,j XijYij is the Frobenius inner product for matrices. As we insert this
expression (2.16) into (2.10), we obtain

∂t




ρ
ρu
E


+∇x ·




ρu
ρu⊗ u+ pI
(E + p)u


 = ε




0
∇x ·σ

∇x ·(σu+ q)


+O(ε2) (2.17)

where

σ = µ

(
∇xu+ (∇xu)

t − 2

d
(∇x ·u)I

)
and q = κ∇xT (2.18)

and
µ = T 〈B : BM〉 and κ = T 〈A · AM〉.

We refer to [2] for more details on the derivation. The above system (2.17) is the compressible
Navier-Stokes equations if we disregard high order terms O(ε2). We note that when d = 1,
σ = 0 and κ = 3

2
ρT . It is worthwhile pointing out that while the BGK equation shares the basic

properties of hydrodynamics with the Boltzmann equation, the Navier-Stokes equations derived
from those equations display different viscosity and heat conductivity coefficients [10, 11, 12].

Remark 2.1. From our derivation of Euler or Navier-Stokes system from the BGK equation,
we have obtained

p = ρT, E =
1

2
ρ|u|2 + d

2
ρT. (2.19)

On the other hand, in gas dynamics for an ideal polytropic gas, the total energy is given
by E = 1

2
ρ|u|2 + p

γ−1
via the constitutive relation between the pressure and internal energy.

Therefore, we obtain γ = d+2
d

which represents the constant ratio of specific heats.

3 NDG-IMEX Methods

In this section, we propose numerical schemes to solve the system (2.12), and they are based on
nodal discontinuous Galerkin (NDG) methods in space together with implicit-explicit (IMEX)
time discretizations. Since the purpose of the present work is to introduce new algorithms,
we will focus on the one-dimensional case with d = 1, Ωx = [a, b] and Ωv = [−Vc, Vc]. Vc is
chosen sufficiently large so that the Maxwellian defined in (2.2) can be regarded as zero outside
Ωv numerically. Most ingredients of the proposed methods can be applied directly to higher
dimensions (see Remark 3.2).

3.1 Semi-discrete NDG methods

Start with a partition of Ωx, a = x 1

2

< x 3

2

< · · · < xNx+
1

2

= b. Denote an element as

Ii = [xi− 1

2

, xi+ 1

2

] with length hi, and let h = maxNx

i=0 hi. Given any non-negative integer K, we
define a finite dimensional discrete space,

ZK
h =

{
z ∈ L2(Ωx) : z|Ii ∈ PK(Ii), ∀i

}
, (3.1)
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and its vector version is denoted as ZK
h . The local space P

K(I) consists of polynomials of degree
at most K on I. Note that functions in ZK

h are piecewise defined. To distinguish the left and
right limits of a function z ∈ ZK

h at a grid point xi+ 1

2

, we let z±
i+ 1

2

= lim∆x→±0 z(xi+ 1

2

+ ∆x),

and we also let [z]i+ 1

2

= z+
i+ 1

2

− z−
i+ 1

2

as the jump.

Following the general procedure to formulate DG discretizations and the development in
[22], we first propose a semi-discrete DG method for the micro-macro system (2.12). Find
Uh(·, t) ∈ ZK

h and gh(·, v, t) ∈ ZK
h , such that ∀φ, ψ ∈ ZK

h and ∀i,
∫

Ii

∂tUhφdx =

∫

Ii

(F (Uh) + ε(x)〈vmgh〉)
dφ(x)

dx
dx− F̂i+ 1

2

φ−
i+ 1

2

+ F̂i− 1

2

φ+
i− 1

2

− ε(xi+ 1

2

) ̂〈vmgh〉i+ 1

2

φ−
i+ 1

2

+ ε(xi− 1

2

) ̂〈vmgh〉i− 1

2

φ+
i− 1

2

, (3.2a)
∫

Ii

ε(x)∂tghψdx+

∫

Ii

(I−ΠMh
) (Dh,1(ε(x)vgh))ψdx = −

∫

Ii

ghψdx−
∫

Ii

(I− ΠMh
) (Dh,2(vMh))ψdx.

(3.2b)

HereMh =MUh
according to (2.2). In addition, Dh,1(ε(x)vgh)(·, v, t) ∈ ZK

h andDh,2(vMh)(·, v, t) ∈
ZK

h are approximations of the spatial derivative of ε(x)vg and vM , respectively, based on DG
discretizations. Particularly, ∀ψ ∈ ZK

h and ∀i,
∫

Ii

Dh,1(ε(x)vgh)ψdx := −
∫

Ii

ε(x)vgh
dψ

dx
dx+ ε(xi+ 1

2

)(̃vgh)i+ 1

2

ψ−
i+ 1

2

− ε(xi− 1

2

)(̃vgh)i− 1

2

ψ+
i− 1

2

,

(3.3)
where ṽg is an upwind numerical flux consistent to vg,

ṽg :=

{
vg−, if v > 0,
vg+, if v < 0,

(3.4)

and ∫

Ii

Dh,2(vMh)ψdx := −
∫

Ii

vMh
dψ

dx
dx+ vM̂h,i+ 1

2

ψ−
i+ 1

2

− vM̂h,i− 1

2

ψ+
i− 1

2

. (3.5)

The hatted functions in (3.2a) and (3.5) are also consistent numerical fluxes. In this work, we
take one of the following alternating fluxes,

alternating left-right : 〈̂vmg〉 = 〈vmg〉−, M̂ =M+; right-left : 〈̂vmg〉 = 〈vmg〉+, M̂ =M−.
(3.6)

Similarly as in [22], one can also use the central fluxes

central : 〈̂vmg〉 = 1

2
(〈vmg〉+ + 〈vmg〉−), M̂ =

1

2
(M+ +M−). (3.7)

The numerical flux F̂ = F̂ (U−
h , U

+
h ) in (3.2a) is taken to be the global Lax-Friedrichs flux [15].

Here the subscripts i± 1
2
are temporarily omitted for simplicity. From now on, we will call the

numerical method introduced above Scheme I.
An alternative discretization is to take advantage of the relation (2.14), which, in one di-

mension, is

(I− ΠM)(v∂xM) = A
∂xT√
T
M. (3.8)
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With this, the equation (2.12b) is equivalent to

ε(x)∂tg + (I−ΠM)∂x(ε(x)vg) = −
(
g + A

∂xT√
T
M

)
. (3.9)

Our Scheme II is formulated by replacing (3.2b) with the following DG discretization of (3.9):
find gh(·, v, t) ∈ ZK

h , such that ∀ψ ∈ ZK
h and ∀i,

∫

Ii

ε(x)∂tghψdx+

∫

Ii

(I−ΠMh
) (Dh,1(ε(x)vgh))ψdx = −

∫

Ii

ghψdx−
∫

Ii

Ah
rh√
Th
Mhψdx, (3.10)

where rh is to approximate ∂xT through a DG discretization: find rh ∈ ZK
h such that ∀ϕ ∈ ZK

h

and ∀i ∫

Ii

rhϕdx = −
∫

Ii

Th
dϕ

dx
dx+ T̂h,i+ 1

2

ϕ−
i+ 1

2

− T̂h,i− 1

2

ϕ+
i− 1

2

. (3.11)

Here Th, a macroscopic quantity, and Ah can be obtained from Uh based on (2.19) and (2.15).

Similar to Scheme I, choices of fluxes for the pair 〈̂vmg〉 and T̂ include the alternating and the
central ones,

alternating left-right : 〈̂vmg〉 = 〈vmg〉−, T̂ = T+; right-left : 〈̂vmg〉 = 〈vmg〉+, T̂ = T−,

(3.12a)

central : 〈̂vmg〉 = 1

2
(〈vmg〉+ + 〈vmg〉−), T̂ =

1

2
(T+ + T−). (3.12b)

Scheme I is formulated very intuitively, yet Scheme II shows several advantages in both
computational cost and in asymptotic analysis. First of all, by using the analytical formula
(2.14), the projection operator is avoided in actual implementation and this will save some
computational cost. Secondly, the spatial derivative on the right side of (3.8) is for a macroscopic
variable T independent of v, in contrast with the one on the left, this will further reduce the
computational cost of the scheme by computing rh in (3.11) instead of Dh,2(vMh) in (3.5). More
importantly, a formal asymptotic analysis will be available for establishing that the proposed
Scheme II for the micro-macro decomposition of the kinetic equations (2.12a) and (3.9) becomes
a local DG discretization for the Navier-Stokes system, a discretization in a similar spirit to
that proposed in [3] (see Section 3.3 for the analysis and for more discussions).

To implement the proposed schemes, we further use the nodal basis to represent functions in
the discrete space ZK

h , in conjunction with rewriting and/or approximating the integrals in the
schemes by numerical quadratures. Note that the discrete space ZK

h |Ii is simply PK(Ii). We
particularly choose the local nodal basis (also called Lagrangian basis) {φk

i (x)}Kk=0 associated
with the K + 1 Gaussian quadrature points {xki }Kk=0 on Ii, defined as below

φk
i (x) ∈ PK(Ii), and φk

i (x
k′

i ) = δkk′, k, k′ = 0, 1, · · · , K. (3.13)

Here δkk′ is the Kronecker delta function. We further let {ωk}Kk=0 denote the corresponding
quadrature weights on the reference element (−1

2
, 1
2
).

Once the basis functions are specified, Scheme I in the integral form, defined by (3.2)-
(3.3) and (3.5), can be equivalently stated with the test functions φ, ψ both being taken as
φk
i , k = 0, 1, · · · , K. We also replace all the integral terms in (3.2)-(3.3) and (3.5) by their
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numerical integrations based on (K+1)-point Gaussian quadrature. The scheme now becomes:
find Uh(·, t) ∈ ZK

h and gh(·, v, t) ∈ ZK
h , with Uh(x, t)|Ii =

∑K
k=0 U

k
i (t)φ

k
i (x), gh(x, v, t)|Ii =∑K

k=0 g
k
i (v, t)φ

k
i (x), such that ∀i, k,

ωkhi
dUk

i

dt
=

K∑

k′=0

ωk′hiF (U
k′

i )
dφk

i (x)

dx

∣∣
x=xk′

i

− F̂i+ 1

2

φk
i (x

−
i+ 1

2

) + F̂i− 1

2

φk
i (x

+
i− 1

2

)

+
K∑

k′=0

ωk′hiε(x
k′

i )〈vmgk
′

i 〉
dφk

i (x)

dx

∣∣
x=xk′

i

− ε(xi+ 1

2

) ̂〈vmgh〉i+ 1

2

φk
i (x

−
i+ 1

2

)

+ ε(xi− 1

2

) ̂〈vmgh〉i− 1

2

φk
i (x

+
i− 1

2

), (3.14a)

ε(xki )ωkhi∂tg
k
i =(I− Πk

i )

(
v

K∑

k′=0

ωk′hiε(x
k′

i )g
k′

i

dφk
i (x)

dx

∣∣
x=xk′

i

− ε(xi+ 1

2

)(̃vgh)i+ 1

2

φk
i (x

−
i+ 1

2

)

+ ε(xi− 1

2

)(̃vgh)i− 1

2

φk
i (x

+
i− 1

2

)

)
− ωkhig

k
i + (I− Πk

i )v

(
K∑

k′=0

ωk′hiM
k′

i

dφk
i (x)

dx

∣∣
x=xk′

i

− M̂h,i+ 1

2

φk
i (x

−
i+ 1

2

) + M̂h,i− 1

2

φk
i (x

+
i− 1

2

)

)
. (3.14b)

Here Mk′

i = Mh|x=xk′

i

and Πk
i = ΠMk

i

. Similarly, for Scheme II in the integral form, instead of

the equation (3.14b), we have nodal discretizations of equations (3.10)-(3.11) given below,

ε(xki )ωkhi∂tg
k
i = (I− Πk

i )

(
v
∑K

k′=0 ωk′hiε(x
k′

i )g
k′

i
dφk

i
(x)

dx

∣∣
x=xk′

i

− ε(xi+ 1

2

)(̃vgh)i+ 1

2

φk
i (x

−
i+ 1

2

)

+ε(xi− 1

2

)(̃vgh)i− 1

2

φk
i (x

+
i− 1

2

)

)
− ωkhig

k
i + Ak

i ωkhir
k
iM

k
i /
√
T k
i , (3.15)

where the nodal values of T k
i = Th|x=xk

i

and Ak
i = Ah|x=xk

i

are obtained from Uk
i based on (2.19)

and (2.15), and rki = rh|x=xk

i

is computed with the following scheme,

ωkhir
k
i = −

K∑

k′=0

ωk′hiT
k′

i

dφk
i (x)

dx

∣∣
x=xk′

i

+ T̂h,i+ 1

2

φk
i (x

−
i+ 1

2

)− T̂h,i− 1

2

φk
i (x

+
i− 1

2

). (3.16)

Note our final Scheme I ((3.14a)-(3.14b)) and Scheme II ((3.14a),(3.15), (3.16)) in their
nodal forms are obtained by applying (K +1)-point Gaussian quadrature to the integral terms
in the original scheme (3.17). Since such quadrature rule is exact for polynomials of degree up
to 2K + 1, the final schemes will maintain the same formal accuracy as (3.17) (see [17]).

Due to 〈mg〉 = 0, the first two components of 〈vmg〉, namely with m = 1, v, are zero for
the exact solution g. In our numerical implementation, we still keep these two components of
〈vmg〉 in (2.12a) and in (3.2a), (3.14a). To implement the proposed methods, we also need to
discretize the v-direction. In this work, Ωv = [−Vc, Vc] is discretized uniformly with Nv points,
{vj}Nv

j=1. For the integration in v, the mid-point rule is applied, which is spectrally accurate
for smooth functions with periodic boundary conditions or with a compact support [9]. Such
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approach does not preserve the conservation properties of mass, moment and energy at the
discrete level as in [27], yet we have found it is a sufficiently accurate discretization for all test
cases that we have performed. We also demonstrate how such conservation quantities behave
over time in the numerical section.

Remark 3.1. One advantage to work with the nodal basis with respect to (K + 1) Gaussian
quadrature points is to avoid inverting element mass matrix in (3.2b) when ε(x) is not a
constant function. With the nodal DG discretization, we also greatly simplify the treatments
of the projection operator I−ΠMh

and many kinetic and macroscopic quantities such as Ah,Mh

and Th in the scheme.

Remark 3.2. Though the proposed method is formulated for one dimension, most ingredients
can be extended directly to higher dimensions. More specifically, Scheme I in its integral form,
(3.2)-(3.3) and (3.5), can be formulated for high dimensional cases straightforwardly. To get
the nodal version as defined in (3.14a)-(3.14b), one would need to choose the points to define
the nodal basis functions. Tensor-structured Gaussian points can be used directly on Cartesian
meshes when the approximating functions are piecewise tensor polynomials. One can refer to
[21] for more discussions on higher dimensions. As for Scheme II, the relation in (3.8) needs to
be replaced by the general one in (2.14). It can be discretized similarly as in one dimensional
case, with a few more numerical fluxes to be specified.

Remark 3.3. The proposed spatial discretization above shares some similarity with the method
proposed in [6] in terms of utilizing the micro-macro decomposition framework. The proposed
nodal DG methods belong to the class of finite element methods and can be designed to be of
arbitrary order of accuracy; the methods are based on one set of computational grid. This is in
contrast to the first order finite difference method in [6] with U and g defined on different meshes.
Moreover, the novel ingredient newly proposed for Scheme II offers not only computational
saving, but also an asymptotical analysis to capture the compressible Navier-Stokes limit for
small ε, see Sections 3.3 and 4 for more discussion.

3.2 IMEX time discretization

In this section, we will formulate the IMEX Runge-Kutta (RK) time discretizations for the
semi-discrete schemes introduced in Section 3.1. With similarity and for notational clarity, this
will be presented only for Scheme II in its integral form. Scheme I and the nodal form of Scheme
II can be discussed similarly. Note that Scheme II in the integral form can be given compactly
as follows. Find Uh(·, t) ∈ ZK

h , gh(·, v, t), rh(·, t) ∈ ZK
h , such that ∀φ, ψ, ϕ ∈ ZK

h and ∀i,

(∂tUh, φ) + Fh(Uh, φ) = Dh(ε(x)gh, φ), (3.17a)

(ε(x)∂tgh, ψ) + bh,v(ε(x)gh, ψ) = s
(1)
h (gh, ψ) + s

(2)
h,v(Uh, rh, ψ), (3.17b)

(rh, ϕ) = Hh(Uh, ϕ), (3.17c)

10



where

Fh(Uh, φ) = −
∫

Ωx

F (Uh)
dφ(x)

dx
dx−

∑

i

F̂h,i+ 1

2

[φ]i+ 1

2

, (3.18a)

Dh(ε(x)gh, φ) =

∫

Ωx

ε(x)〈vmgh〉
dφ(x)

dx
dx+

∑

i

ε(xi+ 1

2

) ̂〈vmgh〉i+ 1

2

[φ]i+ 1

2

, (3.18b)

bh,v(ε(x)gh, ψ) =

∫

Ωx

(I−ΠMh
)Dh,1(ε(x)vgh)ψdx, (3.18c)

s
(1)
h (gh, ψ) = −

∫

Ωx

ghψdx, s
(2)
h,v(Uh, rh, ψ) = −

∫

Ωx

Ah
rh√
Th
Mhψdx, (3.18d)

Hh(Uh, ϕ) = −
(∫

Ωx

Th
dϕ

dx
dx+

∑

i

T̂h,i+ 1

2

[ϕ]i+ 1

2

)
∣∣
Th=Th(Uh)

. (3.18e)

To discretize in time for the scheme in (3.17), we start with a first order IMEX scheme to
introduce our implicit-explicit strategy. Given Un

h ∈ ZK
h and gnh ∈ ZK

h that approximating the
solutions U and g at t = tn, respectively, we look for Un+1

h ∈ ZK
h and gn+1

h , rn+1
h ∈ ZK

h , such
that ∀φ, ψ, ϕ ∈ ZK

h ,

(
Un+1
h − Un

h

∆t
, φ

)
+ Fh(U

n
h , φ) = Dh(ε(x)g

n
h , φ), (3.19a)

(
ε(x)

gn+1
h − gnh
∆t

, ψ

)
+ bh,v(ε(x)g

n
h , ψ) = s

(1)
h (gn+1

h , ψ) + s
(2)
h,v(U

n+1
h , rn+1

h , ψ), (3.19b)

(rn+1
h , ϕ)= Hh(U

n+1
h , ϕ). (3.19c)

This fully discrete scheme can be implemented efficiently. Specifically, one can solve the equa-
tion (3.19a) for macroscopic variables Un+1

h at the updated time level first, then solve for rn+1
h

from (3.19c). Finally one can solve for gn+1
h from (3.19b).

This implicit-explicit procedure can be easily extended to high order globally stiffly accurate
IMEX schemes, which can be characterized by a double Butcher Tableau

c̃ Ã

b̃t
c A
bt
, (3.20)

where Ã = (ãij) is an s × s lower triangular matrix with zero diagonal for an explicit scheme,
and A = (aij) is an s×s lower triangular matrix with the diagonal entries not all being zero for
a diagonally implicit RK (DIRK) method. The coefficients c̃ and c are given by the standard
relations

c̃i =
i−1∑

j=1

ãij , ci =
i∑

j=1

aij , (3.21)

and vectors b̃ = (b̃j) and b = (bj) represent the quadrature weights for internal stages of the
RK method. The IMEX RK scheme is defined to be globally stiffly accurate if c̃s = cs = 1 and
asj = bj , ãsj = b̃j , ∀j = 1, · · · , s. The fully-discrete scheme using the Butcher notation can be
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written as follows. Given Un
h ∈ ZK

h and gnh ∈ ZK
h , we look for Un+1

h ∈ ZK
h and gn+1

h ∈ ZK
h , such

that ∀φ, ψ ∈ ZK
h ,

(
Un+1
h , φ

)
= (Un

h , φ)−∆t
s∑

l=1

b̃l

(
Fh(U

(l)
h , φ)−Dh(ε(x)g

(l)
h , φ)

)
, (3.22a)

(
ε(x)gn+1

h , ψ
)
= (ε(x)gnh , ψ)−∆t

s∑

l=1

b̃lbh,v(ε(x)g
(l)
h , ψ) + ∆t

s∑

l=1

bl

(
s
(1)
h (g

(l)
h , ψ) + s

(2)
h,v(U

(l)
h , r

(l)
h , ψ)

)
.

(3.22b)

Here the approximations at the internal stages of one RK step, U
(l)
h ∈ ZK

h and g
(l)
h , r

(l)
h ∈ ZK

h

with l = 1, · · · , s, satisfy

(
U

(l)
h , φ

)
= (Un

h , φ)−∆t
l−1∑

j=1

ãlj

(
Fh(U

(j)
h , φ)−Dh(ε(x)g

(j)
h , φ)

)
, (3.23a)

(
ε(x)g

(l)
h , ψ

)
= (ε(x)gnh , ψ)−∆t

l−1∑

j=1

ãljbh,v(ε(x)g
(j)
h , ψ) + ∆t

l∑

j=1

alj

(
s
(1)
h (g

(j)
h , ψ) + s

(2)
h,v(U

(j)
h , r

(j)
h , ψ)

)
,

(3.23b)

(r
(l)
h , ϕ)= Hh(U

(l)
h , ϕ), (3.23c)

for any φ, ψ, ϕ ∈ ZK
h . Similar to the first order IMEX scheme, in a stage-by-stage fashion for

l = 1, · · · , s, one can first solve U
(l)
h explicitly from the equation (3.23a), then plug U

(l)
h into

(3.23c) to solve r
(l)
h , and finally solve g

(l)
h from (3.23b).

The third order IMEX scheme we use in our simulations is the globally stiffly accurate
ARS(4, 4, 3) scheme [1] with a double Butcher Tableau

0 0 0 0 0 0
1/2 1/2 0 0 0 0
2/3 11/18 1/18 0 0 0
1/2 5/6 −5/6 1/2 0 0
1 1/4 7/4 3/4 −7/4 0

1/4 7/4 3/4 −7/4 0

0 0 0 0 0 0
1/2 0 1/2 0 0 0
2/3 0 1/6 1/2 0 0
1/2 0 −1/2 1/2 1/2 0
1 0 3/2 −3/2 1/2 1/2

0 3/2 −3/2 1/2 1/2

(3.24)

3.3 Formal asymptotic analysis

It is straightforward to see that when ε goes to 0, the proposed Schemes I and II will give rise
to a DG method satisfied by Uh with the Lax-Friedrichs flux for the Euler system (see (2.10)
with ε = 0), and in fact the DG scheme in the limit is essentially the same as the one in [15].
This can be easily shown for both the semi-discrete and fully-discrete versions of the methods
in their integral or nodal form.

In this subsection, we will focus on the formal asymptotic analysis to capture the com-
pressible Navier-Stokes limit for small ε. It is assumed that Knudsen number ε is constant,
and the v-direction is continuous without being discretized. Though both Schemes I and II
perform well numerically for a wide range of Knudsen number (see Section 4), only Scheme
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II can be formally shown to have the correct compressible Navier-Stokes limit. More specif-
ically, in Proposition 3.4 below, we will establish a formal asymptotic analysis, showing that
for 0 < ε ≪ 1, the fully-discrete DG-IMEX Scheme II in its nodal form will become a local
DG method in its nodal form with some explicit RK time discretization, up to O(ε2), for the
compressible Navier-Stokes system. The limiting scheme is in a similar spirit to the highly cited
work proposed by Bassi and Rebay in 1997 [3] which was later generalized and analyzed in [16].

To establish such connection, we first formulate a local DG method with an explicit RK
time discretization for the compressible Navier-Stokes system (2.17), which in one dimension is
given as follows,

∂t




ρ
ρu
E


+ ∂x




ρu
ρu2 + pI
(E + p)u


 = ε∂x




0
0

3
2
ρT∂xT


 . (3.25)

The semi-discrete local DG method is to find Uh(·, t) ∈ ZK
h and rh(·, t) ∈ ZK

h , such that
∀φ, ϕ ∈ ZK

h

(∂tUh, φ) + Fh(Uh, φ) = εF
(vis)
h (Uh, rh, φ), (3.26a)

(rh, ϕ) = −
∑

i

(∫

Ii

Th
dϕ

dx
dx+ T̂h,i+ 1

2

[ϕ]i+ 1

2

)
. (3.26b)

Here F
(vis)
h (Uh, rh, φ) = (0, 0, f

(vis)
E,h )t with

f
(vis)
E,h = −3

2

∑

i

(∫

Ii

ρhThrh
dφ

dx
dx+ ̂(ρhThrh)i+ 1

2

[φ]i+ 1

2

)
, (3.27)

where Th is obtained from Uh based on (2.19). Note that the right hand side of (3.26b) is
just Hh(Uh, ϕ) defined in (3.18), and it is explicitly written here to emphasize that (3.26b) is
to approximate the auxiliary variable r := ∂xT . The numerical fluxes in (3.26b) and (3.27)
can be taken to be either alternating or central fluxes. Via the method of line approach, the
local DG scheme (3.26) can be evolved in time by an explicit RK method characterized by a

Butcher table Ã, b̃ and c̃ in (3.20) as follows: find Un+1
h (·, t), U (l)

h ∈ ZK
h and r

(l)
h (·, t) ∈ ZK

h with
l = 1, · · · , s, such that ∀φ, ϕ ∈ ZK

h ,

(
Un+1
h , φ

)
= (Un

h , φ)−∆t
s∑

l=1

b̃l

(
Fh(U

(l)
h , φ)− εF

(vis)
h (U

(l)
h , r

(l)
h , φ)

)
, (3.28)

with
(
U

(l)
h , φ

)
= (Un

h , φ)−∆t
l−1∑

j=1

ãlj

(
Fh(U

(j)
h , φ)− εF

(vis)
h (U

(j)
h , r

(j)
h , φ)

)
, (3.29)

and

(r
(l)
h , ϕ) = −

∑

i

(∫

Ii

T
(l)
h

dϕ

dx
dx+ T̂

(l)

h,i+ 1

2

[ϕ]i+ 1

2

)
. (3.30)

The method above can be further given in its nodal form similarly as in Section 3.1, and this is
omitted for brevity. Next we will state and show a formal asymptotic analysis for the proposed
Scheme II in its nodal form. We consider the third order IMEX scheme ARS(4, 4, 3) as an
example to illustrate the analysis, while the result can be extended to general IMEX methods
of type A, CK or ARS (for definitions of these types see [8]).
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Proposition 3.4. For the BGK equation based on the micro-macro formulation (2.11), we
consider the fully discrete DG-IMEX scheme (3.22)-(3.23), with operators specified in (3.18)
for Scheme II in its nodal form, and the third order globally stiffly accurate IMEX time dis-
cretization ARS(4,4,3) characterized by the double Butcher table (3.20) and given in (3.24).
For 0 < ε ≪ 1, the scheme is asymptotically equivalent, up to O(ε2), to the local DG method
(3.28)-(3.30) in its nodal form for compressible Navier-Stokes equations (3.25), coupled with
the explicit RK time discretization characterized by the Butcher table Ã, b̃ and c̃ in (3.20).

Proof. It is sufficient to prove the equivalence of the discretizations, namely, the nodal forms
of the Dh term in (3.22)-(3.23) and the εF

(vis)
h term in (3.28)-(3.29), for the viscous term in

(3.25) for sufficiently small ε. Consider the fully discrete scheme (3.22)-(3.23) in its nodal form
(e.g. see equations (3.14a), (3.15), (3.16)), when 0 < ε≪ 1 and for the RK stage, l = 2, · · · , s,
we have

(gki )
(l) = −(Ak

i )
(l)(rki )

(l)(Mk
i )

(l)/
√

(T k
i )

(l) +O(ε), ∀i = 1, · · · , Nx, k = 0, · · · , K (3.31)

with (rki )
(l) obtained from the equation (3.16). Applying 〈vm·〉 to the above equation gives

〈vm(gki )
(l)〉 = −〈vm(Ak

i )
(l)(Mk

i )
(l)〉(rki )(l)/

√
(T k

i )
(l) +O(ε),

= (0, 0,
3

2
(ρki ))

(l)(T k
i )

(l)(rki )
(l))t +O(ε), ∀i = 1, · · · , Nx, k = 0, · · · , K. (3.32)

Here the second equality is obtained along the same line of deriving the viscous term in the
equation (3.25). Since the IMEX method is globally stiffly accurate, (gki )

n+1 = (gki )
(s), hence

(3.31) holds also at tn+1. Such property is needed to justify (3.31) for l = 1 when a11 = 0
for the next time step evolution, see the Butcher table (3.24). Now one can plug (3.32) into
the last term in (3.22a) and in (3.23a) in the nodal form (see e.g. (3.14a)), and up to O(ε2),

this will result in εF
(vis)
h (·, ·, ·) in (3.28)-(3.29) in its nodal form. This, in addition to (3.16),

determines the discretization of the viscous term up to O(ε2). The explicit part of the IMEX
time discretization will be naturally carried over.

Remark 3.5. The local DG method in (3.28)-(3.30) is in a similar spirit to, yet different from
the one proposed in [3]. In [3], auxiliary variables S := ∂xU are introduced and approximated
together with U by local DG discretizations with central fluxes, while here only one auxiliary
variable r := ∂xT is introduced for one-dimensional problems.

4 Numerical Examples

In this section, we consider the proposed nodal DG methods with the IMEX time discretizations
for solving the micro-macro decomposed equations (2.11) with constant ε, or (2.12) with variable
ε(x). The alternating left-right numerical flux is taken. We use NDG(K) to denote the method
formulated based on K-point Gaussian quadrature, while in time the third order IMEX scheme
in Section 3.2 is applied. The time step is chosen to be ∆t = CCFL∆x/max(Λ, Vc) for K =
1, 2, 3, and ∆t = CCFLx

4/3/max(Λ, Vc) for K = 4, where Λ = ‖|u| + √
γT‖∞ is the maximal

absolute eigenvalue of ∂F (U)/∂U over the spatial domain, and the CFL number CCFL is taken
to be 0.2, 0.1, 0.05, 0.01 for K = 1, 2, 3, 4 respectively. The velocity domain Ωv = [−Vc, Vc] is set
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to be large enough. For the one dimensional problem considered in this paper, γ = d+2
d

= 3,
and the numerical examples are slightly different from the classical ones with γ = 1.4 [32], see
particularly the setup of the initial conditions and the final time t. For discontinuous solutions,
the TVB limiter [15] is used and it is only applied on Uh, with the TVB parameter Mtvb = 20
unless otherwise specified.

As discussed in Section 3.1, Scheme II is computationally more efficient than Scheme I.
Numerically, we observe that around half CPU time is saved when Scheme II is used. Both
schemes produce similar results. In the following, we will only present the results from Scheme
II.

Example 4.1. (Accuracy tests.) We first consider an example with smooth exact solutions.
The initial conditions are

ρ(x, 0) = 1 + 0.2 sin(x), p = 1, u = 1, (4.1)

with

g(x, v, 0) = −A∂xT√
T
M, (4.2)

on the domain [−π, π]× [−12, 12] with periodic boundary conditions in the x direction. Ωv =
[−12, 12] is discretized with Nv = 100 uniform points. Since the exact solution is not available,
the L1 errors are computed as the difference of the numerical solutions on two consecutive
meshes,

L1 error of ρ (h) =
1

2π

∑

i

∫

Ii

|ρh(·, T )− ρh/2(·, T )|dx , (4.3a)

L1 error of g (h) =
1

2πNv

∑

i,j

∫

Ii

|gh(·, vj, T )− gh/2(·, vj, T )|dx . (4.3b)

Here wh is the numerical solution when the mesh size is h, with w to be ρ or g, and Ii is an
element from the finer mesh with the mesh size h/2. The corresponding convergence order is
computed by

order =
log (L1 error of w (h)/L1 error of w (h/2))

log 2
. (4.4)

We show the L1 errors and orders of NDG(K), with ε = 1, 10−2, 10−6 and K = 1, 2, 3, 4, at time
t = 0.001 in Table 4.1 with initial conditions (4.1) and (4.2). From these results, we can see that
K-th order of accuracy for ρ has been obtained for NDG(K). However, for g, only (K − 1)-th
order can be observed except for the case of K = 1. For this smooth problem, we also show the
conserved properties of the methods by presenting ε〈mg〉 from NDG3 with m = (1, v, |v|2/2)t
for ε = 1 and ε = 10−6 in Fig. 4.1. Analytically 〈mg〉 = 0 however numerically they are often
not. We can see that the conservation errors can be greatly improved by doubling the domain
Ωv, even with Nv unchanged. Similar results hold for the other examples in this section.

Example 4.2. Next we consider the Sod shock tube problem with the initial conditions for the
density, the mean velocity and the pressure to be

(ρ, u, p) =

{
(1, 0, 1), 0 ≤ x ≤ 0.5,

(0.125, 0, 0.1), 0.5 < x ≤ 1.
(4.5)
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Table 4.1: L1 errors and orders for ρ and g of Example 4.1 with initial conditions (4.1) and
(4.2). t = 0.001.

N L1 error
of ρ

order L1 error
of g

order L1 error
of ρ

order L1 error
of g

order

NDG1 NDG2

ε = 1

10 1.97E-02 – 6.63E-04 – 1.52E-03 – 5.12E-05 –
20 1.00E-02 0.98 3.30E-04 1.01 3.76E-04 2.02 1.32E-05 1.95
40 5.00E-03 1.00 1.65E-04 1.00 9.42E-05 2.00 3.37E-06 1.97
80 2.50E-03 1.00 8.25E-05 1.00 2.38E-05 1.98 8.78E-07 1.94
160 1.25E-03 1.00 4.13E-05 1.00 6.08E-06 1.97 2.39E-07 1.88

ε = 10−2

10 1.97E-02 – 6.60E-04 – 1.52E-03 – 7.94E-05 –
20 1.00E-02 0.98 3.30E-04 1.00 3.76E-04 2.02 3.27E-05 1.28
40 5.00E-03 1.00 1.65E-04 1.00 9.42E-05 2.00 1.51E-05 1.11
80 2.50E-03 1.00 8.25E-05 1.00 2.38E-05 1.98 7.29E-06 1.05
160 1.25E-03 1.00 4.13E-05 1.00 6.08E-06 1.97 3.48E-06 1.07

ε = 10−6

10 1.97E-02 – 7.04E-04 – 1.52E-03 – 6.20E-04 –
20 1.00E-02 0.98 3.54E-04 0.99 3.76E-04 2.02 3.20E-04 0.96
40 5.00E-03 1.00 1.78E-04 0.99 9.42E-05 2.00 1.63E-04 0.97
80 2.50E-03 1.00 8.87E-05 1.00 2.38E-05 1.98 8.42E-05 0.95
160 1.25E-03 1.00 4.44E-05 1.00 6.08E-06 1.97 4.43E-05 0.93

NDG3 NDG4

ε = 1

10 7.76E-05 – 3.73E-06 – 3.79E-06 – 2.62E-07 –
20 1.00E-05 2.96 4.75E-07 2.97 2.35E-07 4.01 1.77E-08 3.89
40 1.31E-06 2.93 6.15E-08 2.95 1.46E-08 4.00 1.16E-09 3.93
80 1.79E-07 2.87 8.31E-09 2.89 9.16E-10 4.00 1.05E-10 3.47
160 2.56E-08 2.81 1.23E-09 2.76 5.75E-11 3.99 2.49E-11 2.08

ε = 10−2

10 7.76E-05 – 5.80E-06 – 3.79E-06 – 3.87E-07 –
20 1.00E-05 2.96 1.08E-06 2.43 2.35E-07 4.01 3.79E-08 3.35
40 1.31E-06 2.93 2.29E-07 2.23 1.46E-08 4.00 4.11E-09 3.21
80 1.79E-07 2.87 5.05E-08 2.18 9.16E-10 4.00 4.58E-10 3.16
160 2.56E-08 2.81 1.09E-08 2.22 5.75E-11 3.99 4.86E-11 3.24

ε = 10−6

10 7.76E-05 – 4.05E-05 – 3.79E-06 – 2.81E-06 –
20 1.00E-05 2.96 9.50E-06 2.09 2.35E-07 4.01 3.63E-07 2.95
40 1.31E-06 2.93 2.23E-06 2.09 1.46E-08 4.00 4.76E-08 2.93
80 1.79E-07 2.87 5.14E-07 2.12 9.16E-10 4.00 6.34E-09 2.91
160 2.56E-08 2.81 1.18E-07 2.12 5.75E-11 3.99 8.48E-10 2.90
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Figure 4.1: ε〈mg〉 for Example 4.1 with NDG3 on the spatial domain [−π, π]. Measured as the
maximal value over x. Nx = 100 and Nv = 100. Top: ε = 1; Bottom: ε = 10−6. Left: Vc = 6;
Right: Vc = 12.

The initial distribution function f is the Maxwellian (2.2) with g(x, v, 0) = 0. The spatial
domain [−0.2, 1.2] is discretized with Nx = 50 grid points and the velocity domain [−4.5, 4.5] is
discretized with Nv = 100 uniform points. The boundary conditions are taken to be the initial
constant values at both ends in the x direction. We compute the solutions with NDG3 up to
time t = 0.14. In Fig. 4.2, we show the distribution function f at x = 0.5. It can be seen that
when ε approaches 0, the computed f becomes close to a Maxwellian. The density, the mean
velocity, the temperature and the rescaled heat flux Qε are presented in Fig. 4.3, which are

similar to the results in [6]. Here the rescaled heat flux is defined as Qε =
Q
ε
=
〈

|v−u|2

2
(v − u)g

〉
,

and it approximates −q in (2.18). The conserved properties are demonstrated by plotting
ε〈mg〉 in Fig. 4.4, with m = (1, v, |v|2/2)t and for ε = 1 and ε = 10−6. For this problem
with discontinuous solutions, the conservation errors of ε〈mg〉 can also be greatly improved by
doubling the domain Ωv.

We also take the Sod problem as a representative example to show that the proposed NDG3-
IMEX method for the BGK equation is asymptotically equivalent, up to O(ε2), to the 3rd
order local DG method as described in Section 3.3 with K = 3 for directly solving (3.25) when
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0 < ε ≪ 1. In Fig. 4.5, the relative differences between the density, velocity and temperature
versus ε are plotted in the logarithmic scale. When ε≪ 1, the expected second order difference
with respect to ε is observed. The relative difference is computed as

relative difference of w =

∑
i,k ωk|w1(x

k
i )− w2(x

k
i )|∑

i,k ωk|w1(xki )|
, (4.6)

where w1 is the numerical solution of NDG3 solving the BGK equation, and w2 is the numerical
solution of the 3rd order local DG method for the compressible Navier-Stokes system, with w
to be ρ, u and T , xki and ωk are the Gaussian quadrature point and corresponding weight in
cell Ii. Here we take the domain [−0.2, 1.2] × [−9, 9] and t = 0.01. The mesh is Nx = 50
and Nv = 100. For both schemes, the TVB limiter is not used. Similar results hold for other
examples with constant ε.
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Figure 4.2: Distribution function f for the Sod problem (4.5) at x = 0.5 as a function of
v ∈ [−4.5, 4.5]. Nx = 50 and Nv = 100 for NDG3 at t = 0.14. As ε goes to 0, f becomes close
to a Maxwellian. With TVB limiter and Mtvb = 20.

Example 4.3. In this example we take the initial conditions for the density, the mean velocity
and the pressure to be the same as the classic Lax shock tube problem [20, 32], which are

(ρ, u, p) =

{
(0.445, 0.698, 3.528), 0 ≤ x ≤ 0.5,

(0.5, 0, 0.571), 0.5 < x ≤ 1.
(4.7)

We compute the solutions with NDG3 up to time t = 0.1. The initial distribution function f
is the Maxwellian (2.2) with g(x, v, 0) = 0. The spatial domain [−0.5, 1.5] is discretized with
Nx = 100 grid points, and the velocity domain [−8, 8] is discretized with Nv = 100 uniform
points. The boundary conditions are taken to be the initial constant values at both ends in
the x direction. We show the distribution function f at x = 0.5 in Fig. 4.6. The density, the
mean velocity, the temperature and the rescaled heat flux are shown in Fig. 4.7. The conserved
properties are demonstrated by plotting ε〈mg〉 in Fig. 4.8, with m = (1, v, |v|2/2)t and for
ε = 1 and ε = 10−6.
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Figure 4.3: Numerical solutions for the Sod problem (4.5) at t = 0.14 with NDG3. Nx = 50
and Nv = 100 on the domain [−0.2, 1.2] × [−4.5, 4.5]. Top: density, mean velocity; Bottom:
temperature, rescaled heat flux. With TVB limiter and Mtvb = 20.

Example 4.4. The Shu-Osher problem [32] is a pure right moving shock with a sine wave
structure at the shock front. In this example, we keep the right states of the shock and the
ratio of the pressures to be the same as in [32]. The left states are obtained by the Rankine-
Hugoniot shock jump condition with γ = 3. Specifically, they are

(ρ, u, p) =

{
(1.756757, 2.005122, 10.333333), x ≤ −2,

(1 + 0.1 sin(x), 0, 1), x > −2.
(4.8)

Initially the shock is located at x = −2 and g(x, v, 0) = 0. The solutions are computed with
NDG3 up to time t = 1. We take a large enough spatial domain [−12, 12] and it is discretized
with Nx = 200 grid points. The boundary values outside the computational domain in the x
direction are extrapolations of the initial values. The velocity domain [−10, 10] is discretized
with Nv = 100 uniform points. We show the distribution function f at x = 0 in Fig. 4.9.
The density, the mean velocity, the temperature and the rescaled heat flux are shown in Fig.
4.10. The conserved properties are further illustrated by plotting ε〈mg〉 in Fig. 4.11, with
m = (1, v, |v|2/2)t and for ε = 1 and ε = 10−6.
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Figure 4.4: ε〈mg〉 for the Sod problem (4.5) with NDG3 on the spatial domain [−0.2, 1.2].
Measured as the maximal value over x. Nx = 50 and Nv = 100. Top: ε = 1; Bottom: ε = 10−6.
Left: Vc = 4.5; Right: Vc = 9. With TVB limiter and Mtvb = 20.

For this example, we also compare the performance of the proposed methods with different
accuracy orders on a relatively coarser mesh Nx = 50 and Nv = 100 in Fig. 4.12. The reference
solution is NDG3 on a mesh of Nx = 800 and Nv = 200. Here we take the TVB parameter
Mtvb = 1 and we can see that the higher order schemes NDG2 and NDG3 perform much better
than NDG1.

Example 4.5. Finally we consider an example with a variable ε(x),

ε(x) = ε0 +
1

2

(
tanh(1− a0x) + tanh(1 + a0x)

)
. (4.9)

The initial distribution function f is far away from the Maxwellian, which is

f(x, v, 0) =
ρ̃

2(2πT̃ )1/2

[
exp

(
−|v − ũ|2

2T̃

)
+ exp

(
−|v + ũ|2

2T̃

)]
, (4.10)

with
ρ̃(x) = 1 + 0.875 sin(wx), T̃ (x) = 0.5 + 0.4 sin(ωx), ũ(x) = 0.75, (4.11)
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Figure 4.5: The relative differences (in the logarithmic scale) for the Sod problem (4.5) between
the solutions by NDG3 solving the BGK equation and those by the third order local DG
method in (3.28)-(3.30) for the compressible Navier-Stokes system. Top left: density. Top right:
velocity. Bottom: temperature. Nx = 50 and Nv = 100 on the domain [−0.2, 1.2] × [−9, 9].
Without TVB limiter.

on the spatial domain x ∈ [−L, L], where ω = π/L and L = 0.5. From the definition (2.3), the
initial macroscopic variables are

ρ(x, 0) = ρ̃(x), u(x, 0) = 0, T (x, 0) = T̃ (x) + ũ(x)2, (4.12)

and the initial Maxwellian distribution is

MU (x, v, 0) =
ρ(x, 0)

(2πT (x, 0))1/2
exp

(
−|v − u(x, 0)|2

2T (x, 0)

)
. (4.13)

Periodic boundary conditions are used for both U and g in the x direction. This example has
a similar spirit as the one in [18]. The velocity domain is taken to be Ωv = [−10, 10].

In Fig. 4.14, we first show the distribution function f , the density ρ, the mean velocity
u and the temperature T at time t = 0.1, 0.3, 0.45, with a wide peak of ε(x) in (4.9) where
a0 = 11 and ε0 = 10−6 (Fig. 4.13 dashed line). Nx = 40 and Nv = 100 are used. Discontinuities
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Figure 4.6: Distribution function f for the Lax problem (4.7) at x = 0.5 as a function of
v ∈ [−8, 8]. Nx = 100 and Nv = 100 for NDG3 at t = 0.1. As ε goes to 0, f becomes close to a
Maxwellian. With TVB limiter and Mtvb = 20.

can be observed in the solutions, while overall the solution structures are simple. For the three
methods with different accuracy, NDG2 is close to NDG3, with both matching the reference
solutions of NDG3 with Nx = 200 and Nv = 200 very well, and they are observed to perform
much better than NDG1. For this case, we also show the L1 errors and orders, which are
computed as in (4.3) and (4.4), for NDG3 at a short time t = 0.001 in Table 4.2. At least the
2nd order accuracy can be observed for both ρ and g in this mixed regime problem.

Fig. 4.15 has a similar setting to those of Fig. 4.14, but with a narrower peak of ε(x) where
a0 = 40 (Fig. 4.13 solid line). Discontinuities can be observed in the solutions. We can see
that on the relatively coarser mesh with Nx = 40 and Nv = 100, the results from NDG2 and
NDG3 are comparable to the solid lines of NDG3 on a finer mesh with Nx = 200 and Nv = 200.
Again, NDG2 and NDG3 perform much better than NDG1.

For the case of a0 = 40, we also take a bigger ε0 = 10−3 and compare the results of
NDG3 with the one obtained by explicitly solving the BGK model (2.1) with NDG1 spatial
discretization and the first order Euler forward time discretization on the mesh of Nx = 1000
and Nv = 100. The results in Fig. 4.16 match each other very well.

Table 4.2: L1 errors and orders for ρ and g of the mixed regime problem with ε(x) in (4.9).
a0 = 11 and ε0 = 10−6. NDG3. t = 0.001. Vc = 20.

N L1 error of ρ order L1 error of g order
20 5.12E-05 – 1.44E-03 –
40 7.30E-06 2.81 2.62E-04 2.46
80 1.08E-06 2.76 3.65E-05 2.84
160 2.06E-07 2.39 9.03E-06 2.01
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Figure 4.7: Numerical solutions for the Lax problem (4.7) at t = 0.1 with NDG3. Nx = 100
and Nv = 100 on the domain [−0.5, 1.5] × [−8, 8]. Top: density, mean velocity; Bottom:
temperature, rescaled heat flux. With TVB limiter and Mtvb = 20.

5 Conclusion

The work in this paper is a continuation of our research effort in [22, 23] to develop and
analyze high order asymptotic preserving schemes for kinetic equations in different scalings.
We here propose high order DG-IMEX schemes for the BGK equation in a hyperbolic scaling.
Specifically, we employ high order nodal DG spatial discretizations coupled with a high order
globally stiffly accurate IMEX scheme in time for the equivalent micro-macro decomposition
of the BGK equation. Two versions of the schemes are proposed. While the first one is more
straightforward based on the micro-macro decomposition and can be formally shown to be
asymptotically equivalent to a widely used RK DG schemes for the Euler equations in the limit
of ε → 0; the second version is computationally more efficient, and more importantly it allows
a formal asymptotic analysis that shows the equivalence, up to O(ε2), with a local DG scheme
to the compressible Navier-Stokes equations when 0 < ε ≪ 1. Extensive numerical examples
are presented to demonstrate the effectiveness of the proposed methods. Extension to kinetic
equations with more general collisional operators will be explored in the future.
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Figure 4.8: ε〈mg〉 for the Lax problem (4.7) with NDG3. Measured as the maximal value over
x. Nx = 100 and Nv = 100 on the spatial domain [−0.5, 1.5]. Top: ε = 1; Bottom: ε = 10−6.
Left: Vc = 8; Right: Vc = 16. With TVB limiter and Mtvb = 20.
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Figure 4.12: Numerical solution of density for the Shu-Osher problem (4.8) at t = 1 on the
domain [−12, 12] × [−10, 10]. Solid line: reference solution of NDG3 with Nx = 800 and
Nv = 200; Symbols with Nx = 100 and Nv = 100: square NDG3, diamond NDG2, delta NDG1.
With TVB limiter and Mtvb = 1.
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Figure 4.14: Mixed regime problem with ε(x) in (4.9) with a0 = 11 and ε0 = 10−6 on the
domain [−0.5, 0.5] × [−10, 10]. Nx = 40 and Nv = 100. Symbols: square NDG3, diamond
NDG2, delta NDG1. Solid line: reference solution of NDG3 with Nx = 200 and Nv = 200.
From left to right: time t = 0.1, 0.3, 0.45. From top to bottom, the distribution function f at
x = 0 along v direction, the density ρ, the mean velocity u and the temperature T . With TVB
limiter and Mtvb = 20.
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Figure 4.15: Mixed regime problem with ε(x) in (4.9) with a0 = 40 and ε0 = 10−6 on the
domain [−0.5, 0.5] × [−10, 10]. Nx = 40 and Nv = 100. Symbols: square NDG3, diamond
NDG2, delta NDG1. Solid line: reference solution of NDG3 with Nx = 200 and Nv = 200.
From left to right: time t = 0.1, 0.3, 0.45. From top to bottom, the distribution function f at
x = 0 along v direction, the density ρ, the mean velocity u and the temperature T . With TVB
limiter and Mtvb = 20.
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Figure 4.16: Mixed regime problem with ε(x) in (4.9) with a0 = 40 and ε0 = 10−3 on the domain
[−0.5, 0.5] × [−10, 10]. Symbols: Nx = 40 and Nv = 100 with NDG3. Solid line: Nx = 1000
and Nv = 100 with NDG1 in space and the Euler forward in time to explicitly solve the BGK
model (2.1). From left to right: time t = 0.1, 0.3, 0.45. From top to bottom, the distribution
function f at x = 0 along v direction, the density ρ, the mean velocity u and the temperature
T . With TVB limiter and Mtvb = 20.
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