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Abstract9

In this work a Discrete Boltzmann Model for the solution of transcritical
2D shallow water flows is presented and validated. In order to provide the
model with transcritical capabilities, a particular multispeed velocity set has
been employed for the discretization of the Boltzmann equation. It is shown
that this particular set naturally yields a simple and closed procedure to de-
termine higher order equilibrium distribution functions needed to simulate
transcritical flow. The model is validated through several classical bench-
marks and is proven to correctly and accurately simulate both 1D and 2D
transitions between the two flow regimes.
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1. Introduction12

In the last two decades, the Lattice Boltzmann Method has known a13

growing popularity for the simulation of a variety of complex flows [3, 2].14

In particular it has been recognized that some Lattice Boltzmann models15

can be deduced by discretising the continuous Boltzmann equation over a16

velocity space of finite dimension and by defining the Equilibrium Distribu-17

tion Function (EDF) as a Taylor series expansion of the Maxwellian EDF18

with respect to the flow velocity [13]. The most commonly employed lattices19

(e.g. 2DQ9 and 3DQ19) guarantee the equivalence of the lattice Boltzmann20

model with the Navier-Stokes equation only in the low Mach number limit.21
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This is due to the fact that the velocity sets connected to such lattices are22

able to exactly reproduce only the lower order hydrodynamic moments of the23

Maxwellian EDF. In order to correctly reproduce higher order hydrodynamic24

moments, more complex discrete EDFs are needed which, in turn, require25

higher dimension velocity spaces [14]. In other words, the highest order of26

the exactly reproduced hydrodynamic moment is related to the truncation27

order of the Taylor series expansion of the Maxwellian EDF, which has to be28

supported by a suitable discretization of the velocity space [20]. A similar29

limitation is shared by the commonly employed 2DQ9 Lattice Boltzmann30

models equivalent to Shallow Water Equations [22]. These models, as for the31

Navier-Stokes equivalent Lattice Boltzmann models, are derived in the limit32

of low Froude number, the hydraulic counterpart of the Mach number. It is33

worth recalling that the Froude number is defined as Fr = U/
√
gh, where U34

is the characteristic depth-averaged flow velocity, h the water depth, and g35

the gravitational acceleration. As far as Navier-Stokes equation is concerned,36

the restriction to low Mach number flows still leaves room for the simulation37

of a number of technically and theoretically interesting flows. On the con-38

trary, in the shallow water framework, the corresponding limitation on the39

Froude number is a serious shortcoming for real-world applications, where40

transcritical flows (i.e. flows for which Fr is greater than one) are commonly41

encountered. A recent work [4] has shown that a 1D transcritical shallow42

water Lattice Boltzmann model can be constructed by means of asymmetri-43

cal lattices. However the extension to 2D is somehow cumbersome. Another44

way to achieve a Boltzmann-based supercritical model consists in directly45

integrating in time and space the continuous (in the velocity space) Boltz-46

mann equation, attaining the so-called Gas Kinetic scheme. This approach47

has been proposed and validated [6, 9, 21, 7], but the intrinsic and intriguing48

simplicity of the lattice Boltzmann model is lost. The aim of this work is to49

present and validate a generic multispeed 2D shallow water Discrete Boltz-50

mann Model (DBM), which partially recovers the original simplicity of the51

Lattice Boltzmann Model, while being able to simulate trans- and supercrit-52

ical shallow water flows. Hereinafter, by ”multispeed”, we mean 2D velocity53

sets with more than 9 elements. An ideal discretization of the velocity space54

should be such to allow for an arbitrary number of velocities, comply with55

the isotropy requirements and preserve exactness of the streaming phase, i.e.56

generate a space filling lattice. The fact that most multispeed discretizations57

yield non space filling lattices [14] is the main shortcoming of such multi-58

speed velocity sets, because the original simplicity of the Lattice Boltzmann59
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method, intrinsically connected to the streaming phase, is lost. In this work60

this shortcoming is overcome by employing a conventional finite difference61

scheme for the solution of the resulting multispeed 2D shallow water DBM.62

The structure of the paper is as follows: first, the Shallow Water Equations63

are briefly recalled for the reader’s convenience; second, the derivation of a64

generic multispeed DBM is shown; third, the ability of the proposed DBM65

is tested by means of some selected benchmark cases; fourth, results are66

discussed and conclusions are drawn.67

2. Shallow Water Equations68

The 2D Shallow Water Equations set is:69

∂U

∂t
+∇ · E = S (1)

where:70

U =

 h
uh
vh

E =

 hu hv
hu2 + gh2/2 huv

huv hv2 + gh2/2

S =

 0
Sx
Sy

 (2)

and h, u, v are respectively the water depth and depth-averaged velocity com-71

ponents along horizontal directions x and y. In the above, Sx and Sy are the72

components of the external force per unit mass along x and y, usually encom-73

passing various effects (bed slope, bed friction, wind-induced surface stress,74

etc.). The symbol ∇· stands for divergence operator. The homogeneous part75

of (1) can be obtained from the the 3D, free surface formulation of the Euler76

equations, in the limit of ”long waves”, that is, the perturbations of the free77

surface having a length much larger than the undisturbed depth [10].78

3. Systematic derivation of multispeed EDFs79

3.1. Derivation based on Gauss-Hermite quadratures80

Consider the following shallow water Maxwellian EDF:81

f (h,u, c) =
1

πg
e
− (c−u)�(c−u)

c2
h (3)
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where c = (cx, cy) is the particle velocity, ch =
√
gh and u = (u, v). The82

(n + m)th hydrodynamic moment Inm (n = 0, 1 . . . ; m = 0, 1, . . .) is defined83

as the statistical moment of (3):84

Inm =

∫∫ +∞

−∞
f (h,u, c) cnxc

m
y dcxdcy (4)

Inm is a generic tensor, whose order is n + m. Zero, first and second order85

hydrodynamic moments I00, {I10, I01} , {{I20, I11} , {I11, I02}} are a scalar, a86

vector and a second order tensor respectively, namely the water depth, the87

specific discharge and the momentum flux:88

I00 = h
I10 = hu
I01 = hv

I20 = gh2

2
+ hu2

I11 = huv

I02 = gh2

2
+ hv2

(5)

Assuming a finite number of particle velocities (hereinafter referred to as89

velocity set), a set of EDFs is introduced, which can be approximated by an90

expansion of the Maxwellian EDF (3) in flow velocity.91

The usual 2DQ9 lattice and the EDFs used for shallow water flows are92

able to correctly reproduce only the hydrodynamic moments (5) and, conse-93

quently, flows with Fr < 1 [22].94

The systematic derivation of velocity sets and the corresponding EDFs95

able to reproduce high order hydrodynamic moments is based on the Taylor96

series expansion of (3), with respect to u, v:97

f (h,u, c) ≈ 1
πg
e
− c

2
x
c2
h

(
1 + 2 cxu

c2h
− u2

c2h
+ 2

(
cxu
c2h

)2

+ 4
3

(
cxu
c2h

)3

− 2 u3 cx

(c2h)
2 + . . .

)
·

e
−
c2y

c2
h

(
1 + 2 cyv

c2h
− v2

c2h
+ 2

(
cyv

c2h

)2

+ 4
3

(
cyv

c2h

)3

− 2 v3 cy

(c2h)
2 + . . .

)
(6)

The adoption of a n + m truncation order in (6) is a necessary condition to98

exactly reproduce moments up to the n+m order. If the scaling ξ = cx
ch
, η = cy

ch
99

is introduced into (6), the expression of the hydrodynamic moment (4) can100

be factorised as follows:101

Inm = h
cn+m
h

π

(∫ +∞

−∞
ξnp (ξ) e−ξ

2

dξ

)(∫ +∞

−∞
ηmq (η) e−η

2

dη

)
(7)
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p, q are real valued functions defined by:102

p (ξ) = 1 + 2 ξu
ch
− u2

c2h
+ 2

(
ξu
ch

)2

+ 4
3

(
ξu
ch

)3

− 2u3 ξ
c3h

+ . . .

q (η) = 1 + 2ηv
ch
− v2

c2h
+ 2

(
ηv
ch

)2

+ 4
3

(
ηv
ch

)3

− 2 v3 η
c3h

+ . . .

(8)

Integrals in (7) can be approximated by the Gauss-Hermite formula [1]:103

Inm ≈ hcn+m
h

N !M !

N2M2

N∑
i=1

M∑
j=1

2N+M−2(ξi)
n(ηj)

mp (ξi) q (ηj)

(HN−1 (ξi)HM−1 (ηj))
2 (9)

being HN , HM the N th,M th order Hermite polynomials and ξi and ηj the104

ith, jth root of the N th,M th order Hermite polynomials respectively. From105

(9) it is straightforward to obtain the definitions of the velocity vectors and106

of the corresponding EDFs. Indeed, define the integer k as k = ij. The107

Cartesian components of the kth velocity vector are obtained as:108

ck = ch {ξi, ηj} 1 ≤ i ≤ N, 1 ≤ j ≤M, 1 ≤ k ≤ NM (10)

As a consequence, (9) takes the form:109

Inm ≈ h
N×M∑
k=0

cnxkc
m
yk wkf

e
k (11)

where the kth EDF is given by:110

f ek = p (ξi) q (ηj) (12)

and the kth weight coefficient, relative to the kth EDF, by:111

wk = cn+m
h

N !M !

(NM)2

2N+M−2

(HN−1 (ξi)HM−1 (ηj))
2 (13)

It is interesting to observe that, for any given N and M , the following112

properties hold for the weights and the velocity vectors (10):113 ∑N×M
k=0 wk = 1∑N×M

k=0 wkcxk =
∑N×M

k=0 wkcyk = 0∑N×M
k=0 wkc

2
xk =

∑N×M
k=0 wkc

2
yk =

c2h
2∑N×M

k=0 wkcxkcyk = 0

(14)
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The third formula in (14) gives the “sound” velocity cs associated to the114

chosen velocity set: c2
s = c2

h/2 as in in Zhou [22]. Equation (10) allows for115

the definition of an arbitrary number of velocity sets and of the correspond-116

ing EDFs. As stated above, not all such multispeed sets generate Cartesian117

lattices. But this is not the major shortcoming. Indeed, such a systematic118

procedure for the definition of sets with an arbitrary number of velocities119

cannot be adopted in the shallow water framework because the velocity com-120

ponents in (10) depend on the water depth h and thus are not constant. This121

implies that the set of the Boltzmann-Bhatnagar Gross and Krook (BGK)122

kinetic equations:123

∂fk
∂t

+ ck · ∇fk =
f ek − fk

τ
(1 ≤ k ≤ N ×M) (15)

in force of (10) is not equivalent to the homogeneus part of the Shallow124

Water Equations (1), being ck dependent on h and thus on space and time.125

In other words, in close analogy with thermal flows, a space-time dependent126

sound-speed rules out the use of standard equilibria obtainable by the above127

Gauss-Hermite quadrature, despite the fact that high order hydrodynamic128

moments can be exactly recovered by using (11).129

3.2. Derivation based on the matching of hydrodynamic moments130

A velocity set with NT + 1 elements and the corresponding set of EDFs,131

to be used in the shallow water framework, can be defined starting from132

a polynomial expression of the kth EDF [20]. In the present work, such133

polynomial expression retains terms up to fourth order:134

f ek = h

(
Ak +Bk

u·ck
c2h

+ Ck
u·u
c2h

+Dk

(
u·ck
c2h

)2

+ Ek

(
u·ck
c2h

)3

+

Fk
(u·u)(u·ck)

(c2h)
2 +Gk

(
u·u
c2h

)2

+Hk
(u·u)(u·ck)2

(c2h)
3 + Ik

(
u·ck
c2h

)4
) (16)

The unknown constants Ak, . . . , Ik have to be determined by matching the135

discrete hydrodynamic moments of the EDFs (16) with the exact expressions136

(4):137

NT∑
k=0

c̃mxkc̃
n
ykf

e
k =

1

πg

∫∫ +∞

−∞
cmx c

n
ye
− (c−u)�(c−u)

c2
h dcxdcy (17)

where c̃xk, c̃yk are the Cartesian components of the kth velocity c̃k, k =138

0, . . . , NT . It is necessary to obtain a number of matching conditions from139
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(17) equal to the number of unknown coefficients. Depending on the choice of140

the velocity set, the problem can be underdetermined. However, it is possible141

to reduce the number of constants by exploiting the isotropy properties of142

the velocity sets [20]. Indeed, velocities having the same magnitude share the143

same set of constants Ak, . . . , Ik. For this reason, it is useful to group them144

into subsets, hereinafter referred to as shells, based on their magnitude. In145

the following we will assume two shells of velocity vectors and the vanishing146

velocity:147

c̃k ≡


{0, 0} ,
a c0

{
cos
(

4π
NT
k
)
, sin

(
4π
NT
k
)}

,

b c0

{
cos
(

4π
NT
k
)
, sin

(
4π
NT
k
)}

,

k = 0

1 ≤ k ≤ NT

2
NT

2
< k ≤ NT

(18)

being a, b the dimensionless velocity magnitudes of the two shells, scaled by148

the constant velocity c0. In Fig. B.1 an example with NT = 16, is shown.149

[Figure 1 about here.]150

The number of constants appearing in the definition of the EDFs (16)151

depends only on the number of shells and on the highest order of terms152

appearing in (16). Generally speaking, if ns is the number of shells, the153

definition of EDFs in (16) need 3 + 9ns constants. In appendix Appendix A154

the expressions of the 21 constants relative to the two velocity shells (18) are155

reported: these expressions, obtained imposing matching conditions (17), are156

valid for any given a, b, c0, NT . It is worth noting that coefficients Ak satisfy157

the same properties (14) of coefficients wk:158 ∑NT
k=0 Ak = 1∑NT

k=0 Akc̃xk =
∑NT

k=0Akc̃yk = 0∑NT
k=0 Akc̃

2
xk =

∑NT
k=0Akc̃

2
yk =

c2h
2∑NT

k=0 Akc̃xkc̃yk = 0

(19)
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4. External forces159

External forces of various types can be introduced as source terms in (15)160

by means of the following expression:161

φk = 2
F · c̃k∑NT

j=0 (c̃j · c̃j )
(20)

being F the vector of the external forces. This study only deals with the162

force induced by the bed slope, whose expression is:163

F = −gh∇zb (21)

where zb = zb (x, y) is the bottom elevation. Cartesian components Fx, Fy of164

the external force are obtained as:165

Fx =
∑NT

k=0 φkc̃xk
Fy =

∑NT
k=0 φkc̃yk

(22)

Then the kinetic equations (15) with external forces take the form:166

∂fk
∂t

+ c̃k · ∇fk =
fek−fk
τ

+ φk k = 0, . . . , NT (23)

The most important property of the multispeed set (18) and the correspond-167

ing set of EDFs (16) is the ability of exactly reproducing the hydrodynamic168

moments up to fourth order. This property, when employed in a Chapman-169

Enskog expansion of the kinetic equations (23) [15], allows to prove that the170

kinetic equations (23) are equivalent to the Shallow Water Equations, with171

an approximation error proportional to ε3, being ε the smallness parameter172

of the Chapman-Enskog expansion. The calculations are standard but rather173

tedious and are briefly reported in appendix Appendix B for the sake of con-174

ciseness. The exact representation of higher order hydrodynamic moments175

is crucial in providing the model with the ability of simulating transcritical176

flows, in close analogy with the case of high Mach number flows [14].177

5. Results178

The NT + 1 kinetic equations (23) are solved by means of a conventional179

finite difference numerical algorithm on a structured staggered 2D uniform180

Cartesian grid, employing an explicit first order discretization of the time181
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derivative and a first order upwind discretization of the space derivative [8].182

Equilibrium boundary conditions are employed as in Ubertini et al. [19].183

Stability is ensured by keeping the Courant number Umax∆t/∆ lower than184

1, being Umax the highest flow velocity in the domain and ∆ = ∆x = ∆y185

the grid spacing. In addition to the abovementioned stability condition on186

Courant number, the underlying Boltzmann dynamics requires the usual con-187

dition on the relaxation time τ ∗ (τ ∗ = τ
∆t

> 1
2
) to be fullfilled [17]. It has188

been previously shown that stable Lattice Boltzmann-based shallow water189

simulations require high values for the relaxation time, and the resulting190

viscosity can restrict the field of applicability of such models [12]. For the191

cases considered here the minimum value for the relaxation time ensuring192

stability always resulted to be lower than one. In order to assess the ability193

of the multispeed DBM defined by the EDFs (16), the velocity set (18) and194

the kinetic equations (23) in simulating transcritical and supercritical shal-195

low water flows, the following benchmark cases have been considered: 1) the196

one-dimensional (1D) dam-break over a flat surface, 2) the 1D steady flow197

over an uneven bottom profile and 3) the 2D dam break over a horizontal198

bed.199

5.1. 1D dam-break200

The 1D dam break over a flat bottom is a very simple and yet effective201

case in assessing accuracy and reliability of any numerical method for the202

shallow water equations. It deals with the transient evolution of an initial203

discontinuity of the water level around the position x = 0. At t = 0 the204

water level h is equal to hm, for x ≤ 0, and to hv, for x > 0. This Riemann205

problem admits the analytical solution of Stoker [16]:206

h =


hm,
1
9g

(
2
√
ghm − x

t

)2
,

h∗,

hv,

u =


um,
2
3

(√
ghm + x

t

)
,

u∗,

uv

x < t
√
ghm

t
√
ghm ≤ x < (u∗ − c∗) t

(u∗ − c∗) t ≤ x < st

st ≤ x

(24)
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where s is the shock’s propagation speed, which is a function of the interme-207

diate water depth and velocity, h∗, u∗ according to the following relations:208 
u∗ = s− ghv

1+
√

1+ 8s2

ghv

4s

h∗ = − s
u∗−shv

u∗ + 2
√
gh∗ = 2

√
ghm

(25)

The typical shape of the Stoker’s solution for the 1D dam-break flow is shown209

in Fig. B.2, where it is compared to the DBM results in terms of depth, flow210

velocity and Froude number. Numerical results are normalized by hm (water211

depth),
√
ghm (flow velocity) and L (channel’s length).212

[Figure 2 about here.]213

The agreement is considerably good and it has been quantified by the mean214

absolute error, whose definition for a generic variable q is:215

Err [q] =

∫
|qref (x)− q(x)|dx∫

qref (x)dx
(26)

For the case considered Err[h] ∼ 10−2. The agreement between numerical216

and analytical flow velocity is as good as for the water depth, the corre-217

sponding error Err[u] having the same order of magnitude. The comparison218

in terms of Froude number shows a discrepancy between numerical and ana-219

lytical results near the shock which heavily influences the value of a lumped220

error measure such as (26). The overall agreement is anyway remarkable. It221

is worth observing the ability of the proposed DBM to smoothly simulate222

the sub-supercritical transition, without any instability issue, in a case for223

which the maximum Froude number is equal to: Fr = 5.74. The simulation,224

though intrinsically 1D, has been performed in a 2D domain discretized by225

1000× 5 nodes. Free-slip boundary conditions are imposed everywhere.226

Three different velocity sets have been implemented, obtained by increas-227

ing the number of allowed velocities: 21, 41, 81.It is worth noting that, no228

significant improvement of numerical results has been observed by increas-229

ing the number of allowed velocities, as long as it is higher than a minimum230

value, below which the simulation becomes unstable. Hence, unless otherwise231

specified, a 21 velocity set model has been used for all the simulations.232

It is worth noting that instabilities are generated only if a critical tran-233

sition (Fr = 1) occurs. The spatial resolution affects the accuracy of the234
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front position, i.e. the lower the height hv the finer the grid needs to be for235

an accurate representation of the front position, as usual for the numerical236

solution of shallow water models. Values of the parameters a, b, c0 have been237

set to 1, 2,
√
ghm respectively. The minimum value of the relaxation time238

ensuring stability was 0.8.239

5.2. 1D steady flow over a bottom profile240

In this benchmark the ability of simulating a transcritical flow induced241

by external forces is tested. More specifically, a steady state solution with a242

known analytical formulation is considered. Consider a 1D straight channel of243

length L, described by the x abscissa, and having the following bed elevation244

profile:245

zb (x) = αe−(x−x1σ )
2

+ βe−(x−x2σ )
2

+ γe−(x−x3σ )
2

(27)

which consists of three consecutive Gaussian bumps, whose crests are respec-246

tively located at x1, x2, x3, with elevations α, β, γ, and common variance σ.247

Fixing the specific (per unit width) discharge q0 over the whole domain, the248

critical depth can be calculated as:249

hc =

(
q0√
g

) 2
3

(28)

Imposing that the current goes through critical depth over the top of the sec-250

ond and third bump (i.e. at x = x2, x = x3), it is possible, under the hypothe-251

sis of no energy dissipation, to analitically derive the steady water depth pro-252

file shown in Fig. B.3. This steady motion consists of a subcritical-subcritical253

flow over the first bump at x = x1, followed by two subcritical-supercritical254

transitions over the second and third bump at x = x2, x = x3 respectively.255

Dowstream of the first sub-supercritical transition a super-subcritical tran-256

sition, i.e. a hydraulic jump, occurs. The hydraulic jump occurs where the257

upstream supercritical specific thrust equals the downstream subcritical one,258

that is where: F (hu, q0) = F (hd, q0), the thrust being defined as:259

F (h, q0) = ρ
(
gh3 + 2q2

0

)
/2h (29)

hu, hd, ρ are the water depths upstream and downstream of the hydraulic260

jump and the density of water respectively. The steady state DBM numerical261

profile is obtained evolving from an initial uniform water depth, keeping262

the upstream water depth and discharge fixed. The numerical solution is263
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considered to be steady when the normalized maximum increment Is between264

two consecutive timesteps n and (n− 1):265

Is = max
i

∣∣hni − hn−1
i

∣∣
hn−1
i

(30)

satisfies the condition: Is < 10−8. The steady state is reached at t ∼ 100s.266

In the upper panel of Fig. B.3 the nondimensional analytical and numerical267

water depth profiles are shown. The water depth scale is the critical depth268

(28). In the lower panel of Fig. B.3 the analytical and numerical Froude269

number profiles are shown. All profiles in Fig. B.3 employ a horizontal length270

scaling equal to σ. The agreement between numerical and analytical data is271

remarkably good. For the case considered the error (26) is: Err[h] ∼ 10−3.272

The super-subcritical transition occurs as a discontinuity, i.e. as an abrupt273

elevation, of the water depth. This behavior is reflected in the plot of the274

Froude number shown in Fig. B.3: immediately downstream the smooth sub-275

supercritical transition occurring over the second bump at x = x2, the inverse276

transition is revealed by a sudden decrease of the Froude number, caused by277

an abrupt increase of the depth and a corresponding decrease of the flow278

velocity, i.e. a bore or hydraulic jump occurring at 31.3 ≤ x/σ ≤ 31.4. It is279

worth noting that the bed profile has been chosen in such a way to make this280

super-subcritical transition occur at a location where the bed slope, though281

very small, is not null: the analytical solution for both the depth and the flow282

velocity profile immediately downstream the hydraulic jump thus consists in a283

smooth variation toward the downstream horizontal profile. The simulation,284

though intrinsically 1D, has been performed in a 2D domain discretized by285

1000×5 nodes. Free-slip conditions have been imposed on all boundaries. For286

this test case, the parameters a, b, c0 have been set to 1, 2,
√
gh0 respectively.287

A set of 81 velocities has been employed. The relaxation time was chosen as288

τ ∗ = 0.8.289

[Figure 3 about here.]290

It is interesting to observe that the numerical steady flow agrees remarkably291

well with the analytical solution, which has been obtained in the assumption292

of no dissipative force acting. This suggests that the main source of numerical293

viscosity for the model under consideration seems to stem from the first order294

time discretization, and not from the spatial one, which does have some295

effects, as the next test will show. This test and the previous one demonstrate296
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how the proposed model is able to flawlessly simulate supercritical shallow297

water regimes with Froude number much higher than any other Boltzmann-298

based models so far presented in literature.299

5.3. 2D dam-break300

The 2D dam break test of Fennema & Chaudhry [5] is here considered. It301

consists of the propagation of a wave triggered by the instantaneous collapse302

of a lock separating two parts of the domain, each one with a different initial303

water level at rest (see the sketch in Fig. B.4 for reference). The square304

domain has a side of 200m, is divided into two equal parts by a 10m thick305

wall. The wall has a 75m wide breach, extending from y = 95m to y = 170m.306

[Figure 4 about here.]307

The initial water level is equal to hm on the left of the wall (namely x ≤308

95m), and to hv on the right of the wall (namely x > 95m). At t =309

0s the breach is considered open and a 2D dam break flow is generated.310

Numerical simulations described in the following are relative to a case with311

hm = 10m,hv = 0.3m. Such markedly high difference was chosen to produce312

transcritical 2D shocks. The simulation is characterized by the propagation313

of a weak, rounded-shaped shock traveling almost perpendicularly to the314

dividing wall, meanwhile, a rarefaction wave spreads radially into the left315

part of the domain with a speed which is almost half of the shock’s one ((24)316

gives a close estimate of such celerities). The shock impacts on the opposite317

wall and is reflected in the form of a strong, wide and backward travelling318

hydraulic jump; the accumulation of water along the opposite wall spreads319

laterally and impinges into both lateral walls creating a complicated system320

of waves traveling back toward the breach and propagating upwind through321

the aperture into the still basin.322

[Figure 5 about here.]323

No analytical solution is available for this benchmark thus in this work a324

well established and validated numerical model has been considered as ref-325

erence. The reference numerical model integrates the 2D Shallow Water326

Equations (1) by means of a Finite Volume, shock capturing scheme over327

an unstructured triangular mesh [11]. It employs a second order Total Vari-328

ation Diminishing, Weighted Average Flux method [18]. Such scheme has329
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been developed in order to guarantee correct propagation speed of discon-330

tinuous solutions, while maintaining a second order accuracy over smooth331

ones.332

[Figure 6 about here.]333

The DBM simulation has been carried out on a 100×100 grid. Values of the334

parameters a, b, c0 have been set to 1, 2,
√
ghm respectively. The employed335

velocity set retained 81 elements and τ ∗ was set to 0.8. The finite volume336

numerical simulation has been carried out on an unstructured mesh of 3574337

triangular cells.338

The assessment of the accuracy of the present model is carried out com-339

paring the time histories of depth and Froude number (Fig. B.5), and specific340

discharges qx, qy (Fig. B.6) at points P1, P2, P3, P4 (see Fig. B.4 for points’ lo-341

cations), with the results yielded by the reference model. Specific discharges342

qx, qy are defined as: qx = uh, qy = vh and scaled with q0 = hm
√
ghm.343

The two models substantially yield the same results, being the shape of344

the time histories very similar at most of the measuring points. The propa-345

gation of steep shocks, observable at P2 for example, is well reproduced both346

in terms of strength and speed, with a slight advance of the proposed model347

for what concerns the bore reflected by the front wall. It is worth noting348

that the flow becomes markedly supercritical, as can be seen by inspecting349

the Froude number values attained at points P1 and P2 in Fig. B.5. The350

proposed model shows a marked numerical viscosity compared to the refer-351

ence model, due both to the adopted time-space integration of the governing352

(23) and to the value of the relaxation time.353

[Figure 7 about here.]354

The main purpose of this benchmark is, as stated above, to check for the abil-355

ity of the model to correctly compose multidirectional transcritical shocks:356

based on the outcome of the comparison, it can be concluded that the model357

possesses such feature. In addition to such quantitative assessment, a gen-358

eral idea on the ability of the proposed multispeed DBM can be gleaned from359

Fig. B.7, which shows the distribution of the water surface elevation in the360

whole domain at t = 26.9s. In Fig. B.7 both the horizontal and the vertical361

lenghtscale are expressed in meters. All the most important flow structures362

are very similar in both panels, in particular the shape and the position of363

the curved shock.364

14



6. Conclusions365

In this work a Discrete Boltzmann Model able to solve the 2D transcrit-366

ical Shallow Water Equations has been developed and validated. The model367

employs an original discretization of the continuous particle velocity space368

consisting of two sets of velocities grouped on the basis of their magnitude.369

The particular structure of the chosen velocity set allows to significantly re-370

duce the number of unknown coefficients of a fourth order polynomial expres-371

sion of the Equilibrium Distribution Functions: the coefficients are obtained372

by matching discrete hydrodynamics moments up to fourth order with their373

continuos counterparts. The ability of the model to reproduce high order mo-374

ments is found to provide transcritical capabilities. The benchmarks carried375

out allowed for a thorough assessment of the ability of the proposed DBM376

to correctly converge to the solution of the Shallow Water Equations when377

1D or 2D strongly supercritical flow structures develop: flows with Froude378

number up to Fr ∼ 6 have been accurately simulated. This study shows that379

Boltzmann-based methods can be extended to the simulation of trans- and380

supercritical shallow water flows, frequently found in real-world applications.381

Appendix A. Definition of the EDF coefficients.382

If we define φ = c0/
√
gh, for k = 0:383

A0 = 1− (a2 + b2 − 2

φ2
)/(φ2a2b2) (A.1)

384

C0 = (
4

φ2
− a2 − b2)/(a2b2) (A.2)

385

G0 = 1/(a2b2) (A.3)

Defining β = 1/[NT (a2 − b2)], for 1 ≤ k ≤ NT
2

:386

Ak = β
2(2− φ2b2)

a2φ4
(A.4)

387

Bk = β
4(2− φ2b2)

a2φ2
(A.5)

388

Ck = −β 2(2− φ2b2)

a2φ2
(A.6)
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389

Dk = β
8(3− φ2b2)

a4φ2
(A.7)

390

Ek = β
16

3a4
(A.8)

391

Fk = 0 (A.9)
392

Gk = −β 1

a2
(A.10)

393

Hk = 0 (A.11)
394

Ik = β
8

a6
(A.12)

For NT
2

+ 1 ≤ k ≤ NT :395

Ak = β
2(a2φ2 − 2)

b2φ4
(A.13)

396

Bk = β
4(a2φ2 − 2)

b2φ2
(A.14)

397

Ck = −β 2(a2φ2 − 2)

b2φ2
(A.15)

398

Dk = β
8(a2φ2 − 3)

b4φ2
(A.16)

399

Ek = β
16(2a2 − 3b2)

3b6
(A.17)

400

Fk = −β 8(a2 − b2)

b4
(A.18)

401

Gk = β
1

b4
(3a2 − 2b2) (A.19)

402

Hk = −β 24(a2 − b2)

b6
(A.20)

403

Ik = β
8

b8
(3a2 − 4b2) (A.21)
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Appendix B. Chapman-Enskog expansion of the kinetic equations404

(23)405

Consider the scaling:406

t̃ = c0t
L

∇̃ = L∇
τ̃ = τ

tc

ε = c0tc
L

ĉk = c̃k
c0

f̃k = fk
H
, f̃ ek =

fek
H

(B.1)

where H,L, tc are respectively the macroscopic vertical and horizontal407

lengthscales and the mesoscopic timescale, i.e. the time interval between two408

successive collisions. Applying the scaling (B.1) to time and space deriva-409

tives in (23) and expanding them in perturbative series with respect to the410

smallness parameter ε, (namely the Knudsen number, provided a convective411

scaling is assumed), the following expressions can be obtained:412

f̃k = f̃ ek + εf 1
k + ε2f 2

k + ε3f 3
k + ε4f 4

k + . . .
∂
∂t̃

= ∂
∂t1

+ ε ∂
∂t2

+ ε2 ∂
∂t3

+ ε3 ∂
∂t4

+ . . .

∇̃ = ∇1 + ε∇2 + ε2∇3 + ε3∇4 + . . .

(B.2)

The following equations are obtained at each order:413

ε0)
∂f̃ek
∂t1

+∇1 ·
(
ĉk f̃

e
k

)
= −f1k

τ̃

ε1)
∂f1k
∂t1

+∇1 · (ĉkf
1
k ) +

(
∂f̃ek
∂t2

+∇2 ·
(
ĉk f̃

e
k

))
= −f2k

τ̃

ε2)
∂f2k
∂t1

+∇1 · (ĉkf
2
k ) +

(
∂f1k
∂t2

+∇2 · (ĉkf
1
k )
)

+
(
∂f̃ek
∂t3

+∇3 ·
(
ĉk f̃

e
k

))
= −f3k

τ̃

ε3)
∂f3k
∂t1

+∇1 · (ĉkf
3
k ) +

(
∂f2k
∂t2

+∇2 · (ĉkf
2
k )
)

+
(
∂f1k
∂t3

+∇3 · (ĉkf
1
k )
)

+
(
∂f̃ek
∂t4

+∇4 ·
(
ĉk f̃

e
k

))
= −f4k

τ̃

...
(B.3)

Summing (B.3) with respect to k and accounting for the fact that:414 ∑NT
k=0 f̃

e
k = h

H∑NT
k=0 ĉk f̃

e
k = hu

c0H∑NT
k=0 f

i
k = 0; i = 1, 2, . . .∑NT

k=0 ĉkf
i
k = 0; i = 1, 2, . . .

(B.4)
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it is straightforward to obtain the shallow water mass balance equation, which415

in dimensional form is given by:416

∂h

∂t
+∇ (hu) = 0 (B.5)

Multiplying each (B.3) by ĉk, summing with respect to k and accounting for417

the definitions of the hydrodynamic moments:418

=2 =
∑NT

k=0 ĉk ĉk f̃
e
k = 1

c20H

(
hu⊗ u + g h

2

2
I
)

=3 =
∑NT

k=0 ĉk ĉk ĉk f̃
e
k

=4 =
∑NT

k=0 ĉk ĉk ĉk ĉk f̃
e
k

where symbol ⊗ indicates the dyadic product of the vector u with itself419

and I is the identity matrix, the following form of the macroscopic momentum420

balance equation is obtained:421

∂hu
∂t

+∇ ·
(
hu⊗ u + g h

2

2
I
)

=
c20H

L

[
ετ̃∇1 ·

(
∂=2

∂t1
+∇1 · =3

)
+

ε2τ̃∇2 ·
(
∂=2

∂t1
+∇1 · =3

)
+ ε2τ̃∇1 ·

(
∂=2

∂t2
+∇2 · =3

)
−

−ε2τ̃∇1 ·
(
∂2=2

∂t21
+ 2 ∂

∂t1
∇1 · =3 +∇1 · ∇1 · =4

)
+ ε3 . . .

] (B.6)

Thus (23), together with the velocity set (18) and the EDFs (16) are equiva-422

lent to the shallow water momentum balance equation (2). The equivalence423

is meant in the limit of small ε. The approximation error is proportional to424

ε3, due to the fact that the proposed EDFs (16) together with the velocity set425

(18) are able to reproduce exactly all the hydrodynamic moments appearing426

at right hand side of (B.6): i.e. the first term which is not correctly repro-427

duced in (B.6) is proportional to ε3. This is the reason of the ability of the428

proposed discrete Boltzmann equation in simulating trans- and supercritical429

shallow water flows.430
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Figure B.1: Sketch of the velocity set
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Figure B.2: 1D dam-break, comparison between analytical (solid traces) and numerical
results (markers): upper panel, nondimensional water depth (black traces) and fluid ve-
locity profiles (grey traces); lower panel, Froude Number profile. t∗ = 0.12: �; t∗ = 0.17:
4; t∗ = 0.29: ©; where t∗ = t

√
ghm/L
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Figure B.3: 1D Steady flow profiles over gaussian bumps, comparison between analytical
(solid traces) and numerical (markers) results: upper panel, nondimensional water depth;
lower panel, Froude number.
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Figure B.4: Sketch of the 2D dam break benchmark of Fennema & Chaudhry [5].
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Figure B.5: Time histories of nondimensional water depth (black trace) and Froude number
(grey trace) at gauge locations. Comparison between numerical model (solid traces) and
reference solution (dashed traces).
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model (solid traces) and reference solution (dashed traces).
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Figure B.7: 2D plot of the water depth in the whole domain at t = 29s. Left panel: DBM
numerical results. Right panel: numerical reference results. Distances and water depth
values are expressed in meters.
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