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ABSTRACT 

This work presents the second-order forward and adjoint sensitivity analysis procedures (SO-
FSAP and SO-ASAP) for computing exactly and efficiently the second-order functional 
derivatives of physical (engineering, biological, etc.) system responses (i.e., “system 
performance parameters”) to the system’s model parameters. The definition of “system 
parameters” used in this work includes all computational input data, correlations, initial 
and/or boundary conditions, etc. For a physical system comprising Nα  parameters and rN  

responses, we note that the SO-FSAP requires a total of ( )2 / 2 3 / 2N Nα α+  large-scale 

computations for obtaining all of the first- and second-order sensitivities, for all rN  system 
responses. On the other hand, the SO-ASAP requires a total of ( )2 1Nα +  large-scale 
computations for obtaining all of the first- and second-order sensitivities, for one functional-
type system responses. Therefore, the SO-FSAP should be used when rN Nα , while the 
SO-ASAP should be used when rN Nα  . The original SO-ASAP presented in this work 
should enable the hitherto very difficult, if not intractable, exact computation of all of the 
second-order response sensitivities (i.e., functional Gateaux-derivatives) for large-systems 
involving many parameters, as usually encountered in practice. Very importantly, the 
implementation of the SO-ASAP requires very little additional effort beyond the construction 
of the adjoint sensitivity system needed for computing the first-order sensitivities. 
 
KEYWORDS: second-order adjoint sensitivity analysis procedure (SO-ASAP); exact and 
efficient computation of first- and second-order functional derivatives; large-scale systems. 
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1. INTRODUCTION 

 

The purpose of this paper is to present a new method for computing, exactly and efficiently, 

second-order functional derivatives of system responses (i.e., “system performance 

parameters” in physical, engineering, biological systems) to the system’s model parameters, 

which are considered in this work in the most comprehensive sense, i.e., including all input 

data, correlations, initial and/or boundary conditions, etc. This new method builds on the first-

order adjoint sensitivity analysis procedure (ASAP) for nonlinear systems introduced ([1], [2]) 

and developed ([3]-[5]) by Cacuci; see also [6]. The aims and means of sensitivity 

theory/analysis are occasionally confused with the aims and means of optimization theory; 

such confusions usually arise because of some shared terminology, and because some of the 

mathematical derivations underlying sensitivity theory appear (superficially) to be similar to 

those underlying optimization theory. To delineate clearly the aims this work, it is therefore 

useful to recall briefly the terminology and aims of sensitivity theory/analysis, while 

highlighting the distinctions to optimization theory.  

 

In general, a physical system and/or the result of an indirect experimental measurement is 

modeled mathematically in terms of:  

(a) A system of linear and/or nonlinear equations that relate the system's independent 

variables and parameters to the system's state (i.e., dependent) variables;  

(b) Probability distributions, moments thereof, inequality and/or equality constraints 

that define the range of variations of the system's parameters;  

(c) One or several quantities, customarily referred to as system responses (or objective 

functions, or indices of performance), which are computed using the mathematical model. 
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Sensitivity theory/analysis aims at investigating the variation of system responses caused by 

variations in the system’s parameters, while optimization theory aims at optimizing 

(minimizing or maximizing) the system responses of interest. Therefore, both sensitivity 

theory and optimization compute first- and occasionally second-order response derivatives 

with respect to the state functions and/or parameters. The ASAP uses the solution of certain 

adjoint equations, which we call the adjoint sensitivity system, for computing efficiently all of 

the first-order response sensitivities. Adjoint equations also appear in constrained 

optimization algorithms, particularly in those used in control theory and for data assimilation 

in the atmospheric and earth sciences (see, e.g., [7] and [8] for recent expositions), where the 

Lagrange multipliers used to append the constraints to the “objective” response functional are 

determined as the solutions of certain adjoint equations. However, in contrast to optimization 

theory, in which some or all of the first-order response derivatives are driven by the respective 

computational algorithm to zero, sensitivity theory evaluates first- (and occasionally higher-) 

order response derivatives with respect to model parameters at the parameters’ and state 

functions’ nominal values. Thus, the adjoint systems/equations found in constrained 

optimization and, respectively, sensitivity analysis serve different purposes and conceptually 

differ from each other. These important distinctions have been thoroughly analyzed [9] in the 

setting of both local and global optimization and, respectively, local and global sensitivity 

analysis. Since this paper deals exclusively with sensitivity theory, the vast literature dealing 

with the computation of response derivatives for the purposes of system response, or “cost 

functional,” optimization will not be discussed further. 

 

Response sensitivities to model parameters are needed in many activities, including:  

(i) understanding the system by identifying and ranking the importantance of model 

parameters in influencing the response under consideration;  

(ii)  determining the effects of parameter variations on the system’s behavior; 
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(iii) improving the system design, possibly reducing conservatism and redundancy;  

(iv)       prioritizing possible improvements for the system under consideration; 

(v)      quantifying uncertainties in responses due to quantified parameter uncertainties 

(e.g., by using the method of “propagation of uncertainties”);  

(vi)       performing “predictive modeling” (which includes data assimilation and model 

calibration) for the purpose of obtaining best-estimate predicted results with 

reduced predicted uncertainties.  

 

First-order response sensitivities can be computed by either statistical or deterministic 

methods; the most popular of these methods were reviewed in [5]. In practice, sensitivities 

cannot be computed exactly using statistical methods; this can only be done (for obtaining 

exact analytical expressions and/or values computed to machine accuracy, in principle) using 

deterministic methods. For a system comprising Nα  parameters and rN  responses, forward 

deterministic methods require ( )O Nα  large-scale forward model computations while the 

ASAP requires ( )rO N  large-scale adjoint model computations. Therefore, when the number 

of model responses exceeds the number of model responses of interest, forward methods (e.g., 

difference methods using re-computations, the forward sensitivity analysis procedure) are 

computationally most efficient for computing sensitivities. On the contrary, when the number 

of model parameters exceeds the number of responses of interest, which is invariably the case 

in practice for large-scale nonlinear problems, the most efficient method for computing 

sensitivities exactly is the adjoint sensitivity analysis procedure (ASAP). 

 

The earliest attempts at computing second-order response derivatives to model parameters for 

large-scale systems appear to have been made in the field of nuclear reactor physics, as 

highlighted in [10], [11], which computed functional-type response sensitivities to the 

thousand of neutron and photon cross sections (system parameters) within the context of the 

linear six-dimensional neutron and photon Boltzmann transport equation. The best 



        5 

achievements of these early works was a selective and approximate computation of a few 

second-order sensitivities, obtained essentially by finite-differencing first-order sensitivities 

computed using the adjoint neutron/photon transport equation. The current state-of-the-art 

methods in the geophysical sciences (see, e.g., [12] and references therein), for example, are 

able to compute first-order sensitivities of a user-defined “cost functional” that describes the 

“misfit” between computations and measurements, along with the product between a user-

defined vector and the Hessian matrix of this cost functional with respect to the state variables 

(not the system parameters!). The current methods still require ( )2O Nα  large-scale 

computations for computing all of the second-order response sensitivities (functional 

derivatives) to all Nα  model parameters, which severely strains computational resources 

when Nα  is large. We are not aware of any successful achievements to compute exactly the 

complete matrix of second-order sensitivities (functional derivatives) of a system response to 

all of the model/system parameters, using current methodologies.  

 

This new SO-ASAP computational method presented in this work requires only at most 

( )O Nα , rather than in ( )2O Nα , large-scale computations for quantifying all of the (mixed) 

second-oder response sensitivities for all of the model parameters. As already mentioned, the 

foundation for the SO-ASAP is provided by the first-order adjoint sensitivity analysis 

procedure (ASAP), which was introduced in [1] and [2], and will be recalled in Section 2 of 

this work. Building on the ASAP, Section 3 presents the SO-ASAP. Section 4 concludes this 

work, by highlighting the significance of the SO-ASAP and the directions that we are 

currently pursuing for further generalizing the SO-ASAP, and prepares the stage for the 

comprehensive paradigm application to a particle diffusion problem, which will be presented 

in the sequel, PART II, to this work. 
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2. BACKGROUND: THE FIRST-ORDER ASAP FOR LARGE-SCALE LINEAR 

SYSTEMS 

 

Consider that the physical system is represented mathematically by means of uK  coupled 

linear operator equations of the form 

 

( ) ( ) ( )
1

, 1,..., , ,
uK

ij j i u x
j

L u Q i K
=

= = ∈Ω∑ α x α x    (1.a) 

 

which can be written in matrix form as 

 

( ) ( ) ( ) ,x= ∈Ω      L α x u x Q α x , x     (1.b) 

 

where: 

1. ( )1, ,
xJx x=x   denotes the xJ -dimensional phase-space position vector for the 

primary system; xJ
x∈Ω ⊂x  , where xΩ  is a subset of the xJ -dimensional real vector space 

xJ
 ; 

2. ( ) ( ) ( )1 , ,
uKu u =  u x x x  denotes a uK -dimensional column vector whose 

components are the system’s dependent (i.e., state) variables; ( ) u∈u x E , where uE  is a 

normed linear space over the scalar field F  of real numbers; 

3. ( ) ( ) ( )1 , , Nα
α α =  α x x x  denotes an Nα -dimensional column vector whose 

components are the system’s parameters; α∈α E , where αE  is also a normed linear space; 

4. ( ) ( ) ( )1 , ,
uKQ Q =    Q α x α α  denotes a uK -dimensional column vector whose 

elements represent inhomogeneous source terms that depend either linearly or nonlinearly on 

α ; Q∈Q E , where QE  is also a normed linear space; the components of Q  may be operators, 

rather than just functions, acting on ( )α x  and x ; 

5. ( ) ( )1 , ,
uKL L ≡  L α α  denotes a uK -component column vector whose 

components are operators (including differential, difference, integral, distributions, and/or 

infinite matrices) acting linearly on u  and nonlinearly on α . For notational convenience, all 
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vectors in this work are considered to be column vectors; transposition will be indicated by a 

dagger ( )† . 

 

In view of the definitions given above, L  represents the mapping : Q⊂ →L D E E , where 

u α= ×D D D , u u⊂D E , α α⊂D E , and u α= ×E E E . Note that an arbitrary element ∈e E  is 

of the form ( )e = u,α . If differential operators appear in Eq. (1), then a corresponding set of 

boundary and/or initial conditions (which are essential to define D ) must also be given. Since 

we consider here only systems that are linear in the state function ( ) u∈u x E , the 

accompanying boundary and/or initial condition s must also be linear in ( )u x , so they can 

therefore be represented in operator form as 

 

( ) ( ) , ,
x x∂Ω = ∈∂Ω  B α u - A α 0 x      (2) 

 

where x∂Ω  denotes the boundary of xΩ  while A  and Β  denote operators that act 

nonlinearly on the model parameters α , but ( )B α u acts linearly on u  but nonlinearly on α . 

 

The vector-valued function ( )u x  is considered to be the unique nontrivial solution of the 

physical problem described by Eqs. (1) and (2). The system response (i.e., result of interest), 

associated with the problem modeled by Eqs. (1) and (2) will be denoted here as ( )R u,α ; in 

this work, ( )R u,α  is considered to be a real-valued nonlinear functional of ( )u,α , which can 

be generally represented in operator form as 

 

( ): ,RR ⊂ →u,α D E F      (3) 

 

where F  denotes the field of real scalars.  

 

The nominal parameter values ( )0α x  are used in Eqs. (1) and (2) to obtain the nominal 

solution ( )0u x  by solving these equations; mathematically, therefore, the nominal value 

( )0u x  of the state-function is obtained by solving 
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( ) ( )0 0 0 , ,x= ∈ΩL α u Q α x     (4) 

 

( ) ( )0 0 0 , .x= ∈∂ΩB α u A α x     (5) 

 

Equations (4) and (5) represent the “base-case” or nominal state of the physical system. After 

solving Eqs. (4) and (5), the nominal solution, ( )0u x , thus obtained is used to obtain the 

nominal value ( )0R e  of the response ( )R e , using the nominal values ( )0 0 0,= ∈e u α E  of the 

model’s state function and parameters. 

 

Next, we consider (a vector of) arbitrary variations ( ), ,u uα α≡ ∈ = ×h h h E E E  with 

( )1, ,
uu K uu uδ δ≡ ∈h  E  and ( )1, , Nαα αδα δα≡ ∈h  E , around ( )0 0 0,= ∈e u α E . The 

variation (sensitivity) of the response R  to variations h  in the system parameters is given by 

the Gâteaux- (G)-differential ( )0;Rδ e h  of the response ( )R e  at ( )0 0 0,=e u α  with increment 

h , which is defined as 

 

( ) ( ) ( ) ( )0 0
0 0

0
0

; lim ,
R RdR R

d ε
ε

ε
d ε

ε ε→
=

+ −  ≡ + =   

ε h ε
ε h ε h   (6) 

 

for ε ∈F , and all (i.e., arbitrary) vectors ∈h E . When the response ( )R e  is functional of the 

form : RR →D F , the sensitivity ( )0;Rδ e h  is also an operator, defined on the same domain, 

and with the same range as ( )R e . The G-differential ( )0;Rδ e h  is related to the total 

variation ( ) ( )0 0R Rε + − ε h ε  of R  at 0e  through the relation 

 

( ) ( ) ( ) ( )0 0 0; ,R R Rε δ+ − = + ∆ε h εε  h h  with  ( )
0

lim 0 .
ε

ε ε
→

∆ =  h   (7) 

 

As discussed in [1] and [2], the most general definition of the first-order sensitivity of a 

response to variations in the model parameter is the G-differential ( )0;Rδ e h  defined in Eq. 

(6). Since the system’s state vector u  and parameters α  are related to each other through Eqs. 

(1) and (2), it follows that uh  and αh  are also related to each other. Therefore, the sensitivity 
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( )0;Rδ e h  of ( )R e  at 0e  can only be evaluated after determining the vector of variations uh  

in terms of the vector of parameter variations αh . The first-order relationship between uh  and 

αh  is determined by taking the G-differentials of Eqs. (1) and (2). Thus, taking the G-

differential at 0e  of Eq. (1) yields  

 

( ) ( ) ( ) ( ) ( )
0 0

0 0

1 1 1
, 1,..., , ,

u uK N K
i ij

ij j j k u x
j k jk k

Q L
L u u i K

α

δ δα
α α= = =

 ∂ ∂
 = − = ∈Ω

∂ ∂  
∑ ∑ ∑

α α
α x x x  

 

which can be written in matrix as 

 

( ) ( ) ( )0 0 0 0 , , ,u xα α α
α

 = − ∈Ω L α h D Q α D L α u h x    (8) 

 

where 

( ) ( )

( ) ( )

( ) ( )

1, 1,
1 11 1

1 1

, ,
1 1 1

1

; .

u u

u u
u u

u u

K K

j j j j
j j

N N

K K
K K

K j j K j j
N j j

N

L u L u
Q Q

Q Q
L u L u

α α

α

α

α α

α α α α

α α

α α

= =

= =

    
∂ ∂    

 ∂ ∂     
   ∂ ∂ ∂ ∂   
   ≡ ≡     ∂ ∂      ∂ ∂      ∂ ∂       

 ∂ ∂ 

∑ ∑

∑ ∑

α α

D Q α D L α u

α α

 

     





 

Taking the G-differential at 0e  of the boundary and initial conditions represented by Eq. (2) 

yields 

( ) ( ) ( )0 0 0 0 , , .u xα α α α
= − ∈∂ΩB α h D A α D B α u h x    (9)  

 

Equations (8) and (9) represent the “forward sensitivity equations” (FSE), which are also 

occasionally called the “forward sensitivity model,” the “forward variational model”, or the 

“tangent linear model.” For a given vector of parameter variations αh  around 0α , the forward 

sensitivity system represented by Eqs. (8) and (9) is solved to obtain uh . Once uh  is available, 

it is in turn used in Eq. (6) to compute the sensitivity ( )0;Rδ e h  of ( )R e  at 0e , for a given 

vector of parameter variations αh . The direct computation of the response sensitivity 



        10 

( )0;Rδ e h  by using the ( αh -dependent) solution uh  of Eqs. (8) and (9) is called [1] the 

Forward Sensitivity Analysis Procedure (FSAP). From the standpoint of computational costs 

and effort, the FSAP requires require ( )O Nα  large-scale forward computations; therefore the 

FSAP is advantageous to employ only if, in the problem under consideration, the number rN  

of responses of interest exceeds the number of system parameters and/or parameter variations 

of interest. This is rarely the case in practice, however, since most problems of practical 

interest are characterized by many parameters (i.e., α  has many components) and 

comparatively few responses. In such situations, it is not economical to employ the FSAP 

since it becomes prohibitively expensive to solve repeatedly the αh -dependent FSE, i.e., Eqs. 

(8) and (9), in order to determine uh  for all possible vectors αh .  

 

In most practical situations, the number of model parameters exceeds significantly the number 

of functional responses of interest, i.e., .rN Nα  In such cases, the ASAP is the most efficient 

method for computing exactly the first-order sensitivities since it requires only ( )rO N  large-

scale computations. To implement the ASAP for computing the first-order G-differential 

( )0;Rδ e h , the spaces uE and QE  will henceforth be considered to be Hilbert spaces and 

denoted as ( )u xΩH  and ( )Q xΩH , respectively. The elements of ( )u xΩH  and ( )Q xΩH  

are, as before, vector-valued functions defined on the open set xJ
xΩ ⊂  , with smooth 

boundary x∂Ω . On ( )u xΩH , the inner product of two vectors (1)
u∈u H  and (2)

u∈u H  will 

be denoted as (1) (2),
u

u u , while the inner product [on ( )Q xΩH ] of two vectors (1)
Q∈Q H  

and (2)
Q∈Q H will be denoted as (1) (2),

Q
Q Q . Furthermore, the ASAP also requires that 

( )0;Rδ e h  be linear in h , which implies that ( )R e  must satisfy a weak Lipschitz condition at 

0e , and also satisfy the following condition 

 

( ) ( ) ( ) ( ) ( )0 0 0 0
1 2 1 2

1 2

;

;u

R R R R o t

α

ε ε ε ε

ε

+ + − + − + + =

∈ × ∈

ε h h ε h ε h ε

h ,h H H F .
  (10) 
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If ( )R e  satisfies the two conditions above, then the total response variation ( )0;Rδ e h  is 

indeed linear in h , and can therefore be denoted as ( )0;DR e h . Consequently, ( )R e  admits a 

total G-derivative at ( )0 0 0,=e u α , such that the relationship 

 

( ) ( ) ( )0 0 0; u uDR R Rα α′ ′= +e h e h e h      (11) 

 

holds, where ( )uR′ 0e  and ( )0Rα′ e  are the partial G-derivatives at 0e  of ( )R e  with respect to 

u  and α . It is convenient to refer to the quantities ( )0
u uR′ e h  and ( )0Rα α′ e h  appearing in Eq. 

(11) as the “indirect effect term” and the “direct effect term,” respectively. The operator 

( )uR′ 0e  acts linearly on the vector of (arbitrary) variations uh , from uH  into F , while the 

operator ( )Rα′
0e  acts linearly on the vector of (arbitrary) variations αh , from uH  into F . 

Since the functional ( )0
u uR′ e h  is linear in uh  and since Hilbert spaces are self-dual, the Riesz 

representation theorem ensures that there exists a unique column vector ( )0
u uR ∈D e H , 

where ( ) ( ) ( )1, ,
uu KR R u R u ≡ ∂ ∂ ∂ ∂ D e e e , which is customarily called the partial 

gradient of ( )R e  with respect to u , evaluated at 0e , such that 

 

( ) ( )0 0 , , .u u u u u uu
R R′ = ∈h D h he e H     (12) 

 

Similarly, the functional ( )0Rα α′ e h  is linear in αh  and since Hilbert spaces are self-dual, the 

Riesz representation theorem ensures that there exists a unique vector ( )0Rα α∈D e H , where 

( ) ( ) ( )1, , NR R R
αα α α ≡ ∂ ∂ ∂ ∂ D e e e , which is customarily called the partial gradientof 

( )R e  with respect to α , evaluated at 0e , such that 

 

( ) ( )0 0 , , ,R Rα α α α α αα
′ = ∈h D h he e H     (13) 

 

where the inner product in the Hilbert space αH  is denoted as ,
α

• • .  
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Following [1], we construct the ASAP by introducing formal adjoint ( )* 0L α  of ( )0L α  and 

recalling from the geometry of Hilbert spaces that the following relationship holds for an 

arbitrary vector Q∈ψ H : 

 

( ) ( ) ( ){ }0 * 0, ;
x

u u uQ u
P

∂Ω
= +ψ L α h L α ψ h h ψ,    (14) 

 

In the above equation, the formal adjoint operator ( )* 0L α  is the u uK K×  matrix 

 

( ) ( ) ( )* 0 * 0 , , 1, , ,ji uL i j K ≡ = L α α      (15) 

 

comprising elements ( )* 0
jiL α  obtained by transposing the formal adjoints of the operators 

( )0
ijL α , while ( ){ };

x
uP

∂Ω
h ψ  is the associated bilinear form evaluated on x∂Ω . The domain 

of ( )* 0L e  is determined by selecting appropriate adjoint boundary and/or initial conditions, 

represented here in operator form as 

 

( ) ( )* 0 0 * 0 , .x− = ∈∂ΩB α ψ A α 0 x      (16) 

 

The above boundary conditions for ( )* 0L e  are obtained by requiring that: 

(a) They must be independent of unknown values of uh  and αh ; 

(b) The substitution of the boundary and/or initial conditions represented by Eqs. (9) 

and (16) into the expression of ( ){ };
x

uP
∂Ω

h ψ  must cause all terms containing 

unknown values of uh  to vanish. 

 

This selection of the boundary conditions for ( )* 0L e  reduces the bilinear concomitant 

( ){ };
x

uP
∂Ω

h ψ  to a quantity that contains boundary terms involving only known values of αh , 

ψ , and, possibly, 0α ; this quantity will be denoted by ( )0ˆ , ;P αh ψ α . In general, P̂  does not 

automatically vanish as a result of these manipulations, although it may do so in particular 
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instances. In principle, P̂  could be forced to vanish by considering extensions of ( )0L α , in 

the operator sense, but this is seldom needed in practice.  

 

Introducing now Eqs. (8), (9), and (16) into Eq. (14) and re-arranging the resulting equation 

yields 

 

( ) ( ) ( ) ( )* 0 0 0 0 0ˆ, , , , ; .u u Q
Pα α α αα

= − −L α ψ h ψ D Q α D L α u h h ψ α   (17) 

 

Since ψ  is not completely defined yet, we now complete its definition by requiring that the 

left-side of Eq. (17) and the right-side of Eq. (12) represent the same functional, which is 

accomplished by imposing the relationship 

 

( ) ( )* 0 0 0 ,uR=L α ψ D e      (18) 

 

where the superscript “zero” emphasizes the fact that the function 0ψ  satisfies Eqs. (18) and 

(16) for the nominal parameter values 0α . Note that the well-known Riesz representation 

theorem ensures that the above relationship, where 0ψ  satisfies the adjoint boundary 

conditions given in Eq. (16), holds uniquely. The construction of the requisite adjoint system, 

consisting of Eqs. (18) and (16), has thus been accomplished. Furthermore, Eqs. (11) through 

(18) can now be used to obtain the following expression for the total sensitivity ( )0;DR e h  of 

( )R e  at: 

 

( ) ( ) ( ) ( ) ( )

( ) ( )

0 0 0 0 0 0 0 0

0 0 0 0 0 0

1

ˆ; , , , , ;

, , , , ,
N

i i
i

DR R P

S
α

α α α α α αα α ψ

α δα
=

= + − −

≡ =∑

e h D h ψ D Q α D L α u h h ψ α

S u α ψ h u α ψ

e
  

 (19) 

 

where ( ) ( )†0 0 0
1, , ,..., NS S

α
≡S u α ψ , and where the ith-partial first-order sensitivity (G-

derivative), ( )0 0 0, ,iS u α ψ , of ( )R e  with respect to the ith-model parameter iα , 1, ,i Nα=  , 

is given by the expression 
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( ) ( ) ( ) ( ) ( )

( )
( )

( ) ( )

( )

( )

( )0 0 0 0 00 0 0

0 0 0 0 0 0 0 0 0 0

, , ;, ;

ˆ, , , , ,

ˆ, , , ,
, , 1, , .

i i i i

i i i i

S R P

R P
i N

α α α α
ψ

α

ψ
α α α α

   ≡ + − −   

 ∂  ∂ ∂ ∂  = + − − = ∂ ∂ ∂ ∂  u α u ψ αu ψ α

u α ψ D ψ D Q α D L α u D u ψ α

L α uu α Q u α u ψ α
ψ 

  (20) 

 

All partial derivatives in the above expressions are to be understood as partial G-derivatives, 

of course. As Eq. (20) indicates, the desired elimination of all unknown values of uh  from 

the expressions of the sensitivities ( ), , , 1, , ,iS i Nα=u α ψ  of ( )R e  at 0e  has been 

accomplished. Note that we have designated the space ( )Q xΩH  as ( )xψ ΩH , in order to 

emphasize that we are dealing with the Hilbert space on which the adjoint function ψ is 

defined. The sensitivities ( ), ,iS u α ψ  can therefore be computed by means of Eq. (20), after 

solving only once the adjoint sensitivity system, consisting of Eqs. (16) and (18), to obtain the 

adjoint function ψ . It is very important to note that this adjoint system is independent not 

only of the functions uh  but also of the nominal values 0u  of u . This means that the adjoint 

system, namely Eqs. (16) and (18), can be solved independently of the solution 0u  of the 

original equations. In turn, this fact simplifies considerably the choice of numerical methods 

for solving the adjoint system. It is also important to note that this advantageous situation 

arises if and only if the original equations that model the physical problem, i.e., Eqs. (1) and 

(2), are linear in the state-variable u . 

 
 

 

3. THE SECOND-ORDER FORWARD AND ADJOINT SENSITIVITY ANALYSIS 

PROCEDURES FOR LARGE-SCALE LINEAR SYSTEMS 

 

We now note the very important fact that, since Eq. (20) holds for any nominal parameter 

values, 0α , it follows that the first-order sensitivities ( ), , , 1, , ,iS i Nα=u α ψ   can be 

generally considered as functionals of the original state-function ,u the parameters ,α and the 

adjoint function ψ , namely 
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( ) ( ) ( ) ( ) ( )ˆ, , , ,
, , , , 1, , ,i

i i i i

R P
S i Nα

ψ
α α α α

∂  ∂ ∂ ∂ = + − − =
∂ ∂ ∂ ∂

L α uu α Q u α u ψ α
u α ψ ψ 

 (21) 

 

where the original state-function u  satisfies Eqs. (1) and (2), while the adjoint function ψ  

satisfies Eqs. (16) and (18) for any physically-defined values of the parameters ,α  i.e., 

 

( ) ( )* , , ,u xR= ∈ΩL α ψ D u α x     (22) 

  

together with the corresponding adjoint boundary and/or initial conditions 

 

( ) ( )* * , .x− = ∈∂ΩB α ψ A α 0 x     (23) 

 

 

3.1. The Second-Order Forward Sensitivity Analysis Procedure (SO-FSAP) for Large-Scale 

Linear Systems 

 

 

Hence, as Eq. (21) indicates, the first-order sensitivities are functionals of the form 

( ) ( ) ( ), , :
ii R u x xS α ψ⊂ Ω × × Ω →u α ψ D H H H F . Hence, it is possible to define the first-

order G-differential, ( )0 0, ,iSδ e ψ g , of any of the functionals ( ), ,iS u α ψ , at the point 

( )0 0,e ψ  in the usual manner, namely  

 

( ) ( )0 0 0 0 0

0

, ; , , ,i i u
dS S

d ψ α
ε

d ε ε ε
ε =

  ≡ + + +   
ε ψ g u h ψ h α h   (24) 

 

For an arbitrary scalar ε ∈F , and all (i.e., arbitrary) vectors 

( ) ( ) ( ), ,u u x xα ψ α ψ≡ ∈ Ω × × Ωg h h h H H H . Applying the above definition to the expression 

of ( ), ,iS u α ψ  given by Eq. (21) yields 

 

( ) ( ) ( )0 0, ; ,i i idirect indirect
S S Sddd  = +e ψ g     (25) 
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where ( )i direct
Sd denotes the “direct-effect term” and ( )i indirect

Sd  denotes the “indirect-effect 

term.” The “direct-effect term,” ( )i direct
Sd , is defined as  

 

( )

( ) ( ) ( ) ( ){ }
( )0 0 0, ;

,

ˆ, , , , , ,

i idirect

i

S S

R P

α α α

α α α α αψ α

d

α

≡

∂
= − + −   ∂ u ψ α

D h

D u α D u ψ α ψ D Q α D L α u h
    (26) 

 

and can be computed immediately at this stage, without needing any additional large-scale 

computations. On the other hand, the “indirect-effect term”, ( )i indirect
Sd , is defined as  

 

( ) ( ) ( )
( ) ( )0 0 0

†

, ;

, ,
, ,

, ,
u i

i uindirect
i

S
S

Sψ
ψ

d
   ≡   
    u ψ α

D u ψ α
h h

D u ψ α
   (27) 

where 

 

( ) ( ) ( ) ( )ˆ, , , ,i
i

S Pψ ψα
∂  ≡ − − ∂

D u ψ α Q α L α u D u ψ α ,   (28) 

 

( ) ( ) ( ) ( )ˆ, , , , , , ,u i u u
i

S R P
α
∂  ≡ − − ∂

D u ψ α D u α D u ψ α Λ ψ α   (29) 

with 

( ) ( ) ( ) ( ) ( )
1

1
, , , ; , ; 1, , .

u

u

K
jk

K k j u
j k

L
k Kψ

α=

∂
≡ L L L ≡ =

∂∑
α

Λ ψ α ψ α x    (30) 

 

Note that the “indirect-effect term” cannot be computed at this stage, since the vectors of 

variations uh  and ψh  are unknown. Recall that the vector uh  is the αh –dependent solution of 

the forward sensitivity system expressed by Eqs. (8) and (9), which represent large-scale 

systems that are computationally impractical to solve for large-scale systems with many 

parameters. On the other hand, the vector of variations ψh  around the nominal value 0ψ  will 

be the solution of the system of operator equations that will result from applying the 

definition of the G-differential to the adjoint sensitivity system Eqs. (22) and (23), namely  
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( ) ( ) ( ){ }* 0 0 0 0

0

, , ,u u x
d R

d α ψ α
ε

ε ε ε ε
ε =

  + + − + + = ∈Ω   
L α h ψ h D u h α h 0 x  (31) 

 

( ) ( ) ( ){ }* 0 0 * 0

0

, .x
d

d α ψ α
ε

ε ε ε
ε =

  + + − + = ∈∂Ω   
B α h ψ h A α h 0 x   (32) 

 

As the above equations clearly show, the vector of variations ψh  (around the nominal value 

0ψ ) will depend on the parameters variations αh . Together, the forward sensitivity equations, 

namely Eqs. (8) and (9), and the G-differentiated adjoint sensitivity system, namely Eqs. (32) 

and (33), can be written in the following block-matrix-operator form: 

 

( )
( ) ( )

( ) ( )
( ) ( )

0 0 00

2 0 * 0 2 0 * 0 0

,
, ,

,

u
x

uu u
R R

α α α
α

ψ
α α

α

  −       = ∈Ω    −    −     

D Q α D L α u hL α 0 h
x

hD L α D L α ψ he e
 (33) 

 

together with the corresponding G-differentiated boundary and/or initial conditions 

 

( )
( )

( ) ( )
( ) ( )

0 0 00

* 0 * 0 * 0 0

,
, .

,

u
x

α α α
α

ψ
α α α

α

  −       = ∈∂Ω        −     

D A α D B α u hB α 0 h
x

h0 B α D A α D B α ψ h
 (34) 

 

In Eq. (33), the operators ( )2 0
uu RD e  and, respectively, ( )2 0

u RαD e  are matrices of partial G-

derivatives, of the form 

( )

( ) ( )

( ) ( )
( )

( ) ( )

( ) ( )

2 2 2 2

2
1 1 1 1 1

2 2

2 2 2 2

2
1 1

; .
u

u u u u

N N

u uu

N N N N N

R R R R
u u u u u

R R
R R R R

u u u u u

α

α

α

α α

α α

   ∂ ∂ ∂ ∂
   
∂ ∂ ∂ ∂ ∂ ∂ ∂   

   ≡ ≡   
   ∂ ∂ ∂ ∂
      ∂ ∂ ∂ ∂ ∂ ∂ ∂   

D D

 

     

 

e e e e

e e
e e e e

  (35) 

 

The block matrix Eq. (33) together with the boundary and/or initial conditions represented by 

Eq. (34) constitute the second-order forward sensitivity system. These equations can be solved 

to obtain the vectors uh  and ψh , which can, in turn, be used in Eq. (27) to compute the 

indirect-effect term, ( )i indirect
Sd . In view of Eq. (25), this indirect effect term would then be 
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added together with the already computed direct-effect term, ( )i direct
Sd , to obtain the vector, 

( ), ,iS u α ψ , of partial mixed second-order sensitivities of the form 

( ){ }( )0 0

2

,
, , 1,..., .j iR j Nαα α∂ ∂ ∂ =

u α
u α  Thus, starting to solve Eqs. (33) and (34) for 

( )1 , , , 1,S for i =u α ψ the process of solving these operator equations for 

( )2 , , , 2,S for i =u α ψ  would be continued/repeated until ending with 

( ), , , .NS for i N
α α=u α ψ   

 

Clearly, the computational process just described would yield the complete set of all second-

order responses sensitivities, ( ){ }( )0 0

2

,
, j iR α α∂ ∂ ∂

u α
u α , to all of the system parameters, 

parameters, in ( )2O Nα  large-scale forward computations. Of course, such a computational 

burden would be impractical for large-scale systems, with millions of parameters, as are 

routinely encountered in neutron/photon transport problems. Note that although the forward 

sensitivity system and the G-differentiated adjoint system have been written in block matrix 

form [cf., Eqs. (33) and (34)] as though they were coupled, they are actually not coupled and 

can be solved independently of one another. This uncoupling occurs only when the original 

system is linear in the state-function u ; for nonlinear systems in u , Eqs. (33) and (34) would 

be coupled, in general.   

 

 
 

3.2. The Second-Order Adjoint Sensitivity Analysis Procedure (SO-ASAP) for Large-Scale 

Linear Systems 

 

The large number of large-scale computations involved in the SO-FSAP are needed for the 

computation of the indirect-effect term, ( )i indirect
Sd , just as was the case in Section 2, where 

the first-order ASAP was reviewed. The second-order adjoint sensitivity analysis procedure 

(SO-ASAP) will aim precisely at avoiding the forward computation of ( )i indirect
Sd , by 

computing it, alternatively, using an appropriately developed adjoint system. For this purpose, 

consider now two vectors ( )(1) (1) (1), uψ≡ ∈v u ψ H  and ( )(2) (2) (2), uψ≡ ∈v u ψ H  in the Hilbert 
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space ( ) ( ) ( )u x u x xψ ψΩ ≡ Ω × ΩH H H , endowed with the inner product (1) (2),
uψ

v v  defined 

as  

 

( )(1) (2) (1) (2) (1) (2), .
x

u
d

ψ
Ω

≡ +∫v v u u ψ ψ x      (36) 

 

Next, we form the above inner product of Eq. (33) with a yet undefined vector ( )†(1) (2),ψ ψ  to 

obtain the sequence of equalities shown below: 

 

( )
( )
( ) ( )

( )
( ) ( )
( ) ( )

( ) ( ) ( )
( )

( ){ }

0

(1) (2)

2 0 * 0

0 0 0

(1) (2)

2 0 * 0 0

** 0 2 0 (1)
0 0 (1) (2)

2(2)0

,

,
,

,

, , ; , , ; , , ,
x

u

uu
u

u
u

uu
u u x

u

R

R

R
P

ψ
ψ

α α α
α

α α
α ψ

ψ ψ α

ψ

∂Ω

     −   

  −   =   −   

  −    = + ∈Ω     

L α 0 h
ψ ψ

hD L α

D Q α D L α u h
ψ ψ

D L α ψ h

L α D ψ
h h u α h h h ψ ψ x

ψ0 L α

e

e

e

 (37) 

 

where ( ) *2 0
uu R  D e  denotes the formal adjoint of ( )2 0

uu RD e  and 

( ){ }0 0 (1) (2)
2 , ; , , ; ,

x
uP ψ α ∂Ω

u α h h h ψ ψ  denotes corresponsing the bilinear concomitant on 

x∈∂Ωx . Folowing the same principles as in Section 2, we require the first term on the right-

side of the last equality in Eq. (37) to represent the same functional as the right-side of Eq. 

(27), which yields the block-matrix equation 

 

( ) ( )
( )

( )
( )

* 0 0 0* 0 2 0 (1)

(2) 0 0 00

, ,

, ,

u iuu

i

SR

Sψ

    −      =         

D u ψ αL α D ψ
ψ D u ψ α0 L α

e
    (38.a) 

 

or, in component form 
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( ) ( )
( ) ( ) ( )

0 (2) 0 0 0

** 0 (1) 0 0 0 2 0 (2)

, , ,

, , .

i

u i uu

S

S R

ψ=

 = +  

L α ψ D u ψ α

L α ψ D u ψ α D ψe
   (38.b) 

 

The definition of the functions (1)ψ  and (2)ψ  can now be completed by requiring them to 

satisfy adjoint boundary conditions denoted as  

 

( )
( )

* (1) (2) 0
1

* (1) (2) 0
2

, , , ,

, , , .

x

x

= ∈∂Ω

= ∈∂Ω

B ψ ψ α 0 x

B ψ ψ α 0 x
     (39) 

 

The above adjoint boundary and/or initial are determined following the same principles as 

described in Section 2, namely that:  

(a) They must be independent of unknown values of , , andu ψ ah h h ; 

(b) The substitution of the boundary and/or initial conditions represented by Eqs. (34) 

and (39) into the expression of ( ){ }0 0 (1) (2)
2 , ; , , ; ,

x
uP ψ α ∂Ω

u α h h h ψ ψ  must cause all 

terms containing unknown values of uh  and ψh  to vanish, which will reduce the 

bilinear concomitant to an expression that will contain only known values of αh ; we 

denote this expression as ( )0 0 (1) (2)
2̂ , ; , ;P αu α ψ ψ h  . 

 

Once the adjoint functions (1)ψ  and (2)ψ  have been determined by solving Eqs. (38) and (39), 

they can be used in conjunction with Eq. (37) to represent the “indirect-effect term”, 

( )i indirect
Sd , defined in Eq. (27) in the form 

 

( ) ( )
( ) ( )
( ) ( )

( )
0 0 0

(1) (2) 0 0 (1) (2)
2

2 0 * 0 0

,
ˆ, , ; , ; .

,
i indirect

u
u

S P
R

α α α
α

α

α α
α ψ

d
  −   = −  −   

D Q α D L α u h
ψ ψ u α ψ ψ h

D L α ψ he

 (37) 

 

In terms of the adjoint functions (1)ψ  and (2)ψ , the complete expression of the second-order 

mixed sensitivities ( ) ( )i i idirect indirect
S S Sddd  = +  is obtained by adding the above expression to 

the previously computed “direct effect term” from Eq. (26), to obtain  
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( ) ( ) ( )

( ) ( ) ( ) ( ){ }
( )

( )
( ) ( )
( ) ( )

( )

0 0 0

0 0 0 (1) (2)

, ;

0 0 0

(1) (2) 0 0 (1) (2)
2

2 0 * 0 0

, , , , ;

ˆ, , , , ,

,
ˆ, , ; , ; .

,

i i idirect indirect

i

u
u

S S S

R P

P
R

α

α α α α αψ α

α α α
α

α

α α
α ψ

ddd 

α

= +

∂
= − + −   ∂

  −   + −  −   

u ψ α

u α ψ ψ ψ h

D u α D u ψ α ψ D Q α D L α u h

D Q α D L α u h
ψ ψ u α ψ ψ h

D L α ψ he

    (38) 

 

It is convenient to call Eqs. (38) and (39) second adjoint sensitivity system (SASS), since, 

although it itself is not of “second-order”, it is paramount for computing the adjoint functions 

needed for computing the ith-row ( ){ }( )0 0

2

,
, , 1,..., ,j iR j Nαα α∂ ∂ ∂ =

u α
u α  of second-order 

response sensitivities. Note that the SASS is independent of parameter variations αh . 

Therefore, these equations need to be solve only once to compute the adjoint functions (1)ψ  

and (2)ψ . Thus, the exact computation of all second-order sensitivities, 

( ){ }( )0 0

2

,
, , , 1,..., ,j iR i j Nαα α∂ ∂ ∂ =

u α
u α  using the SASS requires 2Nα  large-scale (adjoint) 

computations, rather that ( )2O Nα  large-scale computations as would be required by forward 

methods. It is also important to note that the construction and solution of the second adjoint 

sensitivity system (SASS) requires very little effort beyond that already invested in solving the 

original forward Eq.(1) for the state variable ( )u x  and the adjoint sensitivity Eq. (22) for the 

adjoint function ψ . This is because, as Eq. (38.b) indicates, the equation for determining the 

adjoint function (2)ψ  is the same as that for determining ( )u x , except for a different source 

term, while the equations to be solved for determining the adjoint function (1)ψ  is the same as 

the adjoint equation for determining the adjoint function ψ , again save for a different source 

term.  
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4. CONCLUSIONS 

 

This work has presented the second-order forward and adjoint sensitivity analysis procedures 

(SO-FSAP and SO-ASAP) for computing exactly and efficiently the second-order functional 

derivatives of general (physical, engineering, biological, etc) system responses (i.e., “system 

performance parameters”) to the system’s model parameters. The definition of “system 

parameters” used in this work include, in the most comprehensive sense, all computational 

input data, correlations, initial and/or boundary conditions, etc. The SO-ASAP builds on the 

first-order adjoint sensitivity analysis procedure (ASAP) for nonlinear systems introduced ([1], 

[2]) and developed ([3]-[5]) by Cacuci; see also [6]. For a physical system comprising Nα  

parameters and rN  responses, we note the following essential computational properties of the 

SO-FSAP and SO-ASAP, respectively: 

(i)  The SO-FSAP requires Nα  large-scale forward model computations to obtain all of 

the first-order response sensitivities ( ){ }( )0 0,
, , 1,..., ,iR i Nαα∂ ∂ =

u α
u α  and an 

additional number ( )1 / 2N Nα α +  of large-scale computations to determine the 

sensitivities ( ){ }( )0 0

2

,
, , , 1,..., ,j iR i j Nαα α∂ ∂ ∂ =

u α
u α for a total of 

( )2 / 2 3 / 2N Nα α+  large scale computations for obtaining all of the first- and 

second-order sensitivities, for all rN  system responses;  

(ii) The SO-ASAP requires one large-scale adjoint computation for computing all of the 

first-order response sensitivities ( ){ }( )0 0,
, , 1,..., ,iR i Nαα∂ ∂ =

u α
u α  and an 

additional number of 2Nα  large-scale computations to determine the sensitivities 

( ){ }( )0 0

2

,
, , , 1,..., ,j iR i j Nαα α∂ ∂ ∂ =

u α
u α for a total of ( )2 1Nα +  large scale 

computations for obtaining all of the first- and second-order sensitivities, for one 

functional-type  system responses. 

 

The above considerations clearly highlight the fact that the SO-FSAP should be used when 

rN Nα , while the SO-ASAP should be used when rN Nα  , which is the most often 

encountered situation in practice. The SO-ASAP presented, in premiere, in this work should 

enable the hitherto intractable exact computation of all of the second-order response 

sensitivities (i.e., functional Gateaux-derivatives) to the large-number of parameters that are 
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characteristically encountered in the large-systems of practical interest. Additional work is 

currently in progress to generalize the SO-ASAP to computing efficiently and exactly the 

third- and higher-order response sensitivities. In the accompanying PART II [13], we present 

an illustrative application of the SO-ASAP to a paradigm particle diffusion problem that 

admits a unique analytical solution, thereby making transparent the mathematical derivations 

presented in this paper. Very importantly, this illustrative application will show that:  

(i) The construction and solution of the second adjoint sensitivity system (SASS) requires 

very little additional effort beyond the construction of the adjoint sensitivity 

system needed for computing the first-order sensitivities; and  

(ii) The actual number of adjoint computations needed for computing all of the first- and 

second-order response sensitivities is considerably less than 2Nα  per response. 

As a final comment, we note that the SO-ASAP has been developed in this work using real (as 

opposed to complex) Hilbert spaces; this has been done because real Hilbert spaces provide 

the natural mathematical setting for computational purposes. This setting does not restrict, in 

any way, the generality of the AO-ASAP theory presented here. The AO-ASAP theory can be 

readily set in complex Hilbert spaces by simply changing some terminology, without 

affecting its substance.  
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