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Abstract

We propose an improvement of an oceanographic three dimensional varia-
tional assimilation scheme (3D-VAR), named OceanVar, by introducing a
recursive filter (RF) with the third order of accuracy (3rd-RF), instead of a
RF with first order of accuracy (1st-RF), to approximate horizontal Gaussian
covariances. An advantage of the proposed scheme is that the CPU’s time
can be substantially reduced with benefits on the large scale applications.
Experiments estimating the impact of 3rd-RF are performed by assimilating
oceanographic data in two realistic oceanographic applications. The results
evince benefits in terms of assimilation process computational time, accuracy
of the Gaussian correlation modeling, and show that the 3rd-RF is a suitable
tool for operational data assimilation.

Keywords: Data assimilation, Recursive Gaussian Filter and Numerical
Optimization.

1. Introduction

Ocean data assimilation is a crucial task in operational oceanography, re-
sponsible for optimally combining observational measurements and a prior
knowledge of the state of the ocean in order to provide initial conditions
for the forecast model. How the informative content of the observations is
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spread horizontally in space depends on the operator used to model horizon-
tal covariances. The three-dimensional variational data assimilation scheme
called OceanVar (Dobricic and Pinardi, 2008) represents horizontal covari-
ances of background errors in temperature and salinity by approximate Gaus-
sian functions that depend only on the horizontal distance between the two
model points. In the framework of the Optimal Interpolation, where the
analysis is found by using only the nearest observations, the calculation of
the Gaussian function can be made directly from the distances between the
model point and the typically small number of nearby observations. This
kind of solution may be impractical in the variational framework where it is
necessary to calculate the covariances between each pair of model points in
the horizontal. Instead, variational schemes often use linear operators that
approximate the Gaussian function (e.g., Weaver et al., 2003).
In meteorology, Lorenc (1992) approximated the Gaussian function by apply-
ing one-dimensional recursive filters (RF) with the first-order accuracy suc-
cessively in the two perpendicular directions. In oceanography, Weaver et al.
(2003) used the explicit integration of the two-dimensional diffusion equation.
Purser et al. (2003) developed higher order recursive filters for use in atmo-
spheric models. The OceanVar scheme described in Dobricic and Pinardi
(2008) used the RF of the first order (1st-RF) with imaginary sea points for
the processing on the coast. Mirouze and Weaver (2010) implemented the
implicit integration of one-dimensional diffusion equations.
Successive applications of one-dimensional recursive filters or implicit inte-
grations of the diffusion equation in the two perpendicular directions are
much more computationally efficient than the explicit integration of the dif-
fusion equation (Mirouze and Weaver, 2010). However, the first order accu-
rate operators used in most of these schemes still require several iterations to
approximate the Gaussian function. For example, the 1st-RF in OceanVar
generally applies 5 iterations and is the computationally most demanding
part.
Recursive filters with higher order accuracy require more operations for each
iteration, but only one iteration might be enough to accurately approximate
the Gaussian function. Generally high order recursive filters can be obtain by
means of different strategies e.g. in Purser et al. (2003), Young and Van Vliet
(1995) and Deriche (1987). The main difference among them is the math-
ematical methodology used to obtain the filter coefficients. In meteorology,
Purser et al. (2003) resolve an inverse problem with exponential matrix of
finite differences operator approximating the second derivative d2/dx2 on a
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line grid of uniform spacing δx. They use truncated Taylor expansion to ap-
proximate the exponential matrix and obtain the filter coefficients through
the LLT factorization of the result approximation. The degree of the Taylor
polynomial is the order of RF obtained.
In this study we develop a RF of the third order accuracy (3rd-RF),still
with the use of the imaginary points for treatment on the coast, that needs
only one iteration to approximate the Gaussian function and allows different
length scales. Our approach, based on Young and Van Vliet (1995), deter-
mines the filter coefficients of a 3rd-RF by the matrix-vector multiplication
of gaussian operator for a input field, using a known rational approximation
of the gaussian function. Note that this strategy has been so far exploited
only in signal processing, and represents a completely novel methodology in
geophysical data assimilation. Furthermore, we compare the 3rd-RF perfor-
mance with those of the existing 1st-RF on two different configurations of
OceanVar: Mediterranean Sea and Global Ocean. The new filter should be
at least as accurate as the existing one and it should execute more rapidly on
massively parallel computers. Tests on parallel computer architectures are
especially important because higher order accurate filters compute the solu-
tion from several nearby points, and as a consequence, transfer more data
among processors eventually becoming less efficient.
Section 2 gives a general description of the existing OceanVar data assimila-
tion scheme. Section 3 demonstrates in detail the development of the 3rd-RF.
It also provides all numerical values and the method to calculate the coeffi-
cients of the filter with different length scales. Moreover we give an estimate
of approximation error between the result of a RF and the real Gaussian con-
volution. In Sections 4 and 5 the filter is applied in the operational version of
OceanVar used respectively in the Mediterranean Sea (Pinardi et al., 2010)
and Global Ocean (Storto et al., 2011). Its performance is compared to the
performance of 1st-RF. In Section 5 we present the conclusions and indicate
the future directions of the development of the operator for the horizontal
covariances.
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2. General Description

2.1. The OceanVar Computational Kernel

The computational kernel of the OceanVar data assimilation scheme is based
on the following regularized constrained least square problem:

min
D

{J(x) = 1

2
‖x− xb‖2B−1 +

1

2
‖y −H(x)‖2R−1 /x ∈ D} (1)

whereD is a grid domain in R3 . In equation (1) the vector x =
[

T, S, η, u, v
]⊤

is an ocean state vector composed by the temperature T , the salinity S, sea
level η and horizontal velocity field (u, v). The vector xb is the background
state vector, achieved by numerical solution of an ocean forecasting model
and is an approximation of the ”true” state vector xt. The difference between
background xb and any state vector x is denoted by δx:

xb = x+ δx (2)

The vectors x and xb are defined on the same space called physical space. The
vector y in (1) is the observational vector defined on a different space called
observational space and the function H is a non linear operator that converts
values defined in the physical space to values defined in the observational
space. An ocean state vector x is related to observations y by means the
following relation:

y = H(x) + δy (3)

where δy is an effective measurement error. In (1) the matrix R = 〈δyt δyt⊤〉,
with δyt = yt − H(xt), is the observational error matrix covariance and it
is assumed generally to be diagonal, i.e. observational errors are seen as
statistically independent. The B = 〈δxt δxt

⊤〉, with δxt = xb − xt, is the
background error matrix covariances and is never assumed to be diagonal in
its representation.
Problem (1) is solved by minimizing the following explicit form of cost func-
tion J(x):

J(x) =
1

2
(x− xb)

⊤B−1(x− xb) +
1

2
(y −H(x))⊤R−1(y −H(x)). (4)

It is often numerically convenient to exploit the weak non linearity of H by
approximating H(x), for small increments δx , with a linear approximation
around the background vector xb:
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H(x) ≈ H(xb) +Hδx. (5)

where the linear operatorH is theH ’s Jacobian evaluated at x = xb. The cost
function J , using (5), is approximated by the following quadratic function:

J(δx) =
1

2
δx⊤B−1δx+

1

2
(d−Hδx)⊤R−1(d−Hδx) (6)

defined on increment space. In (6) the vector d = y −H(xb) is the misfit.
The minimum of the cost function J(δx) on the increment space may be jus-
tified by posing ∇J(δx) = 0. Then we obtain, as also shown in Haben et al.
(2011), the following preconditioned system:

(

I+BHTR−1H

)

δx = BHTR−1d (7)

To solve the linear equation system (7) iterative methods able to converge
toward a practical solution are needed. Generally, the OceanVar model uses
the Conjugate Gradient Method (Byrd et al., 1995).
The iterative minimizer schema is based essentially on matrix-vector opera-
tion of some vector v =

(

HTR−1H
)

δx with the covariance matrix B. This
computational kernel is required at each iteration and its huge computational
complexity is a bottleneck in practical data assimilation. This problem can
be overcome by decomposing the covariance matrix B in the following form:

B = VVT (8)

However due to its still large size, the matrix V is split at each minimiza-
tion iteration as a sequence of linear operators (Weaver et al., 2003). More
precisely, in OceanVar the matrix V is decomposed as:

V = VDVuvVηVHVV (9)

where the linear operator VV transforms coefficients which multiply verti-
cal EOFs into vertical profiles of temperature and salinity defined at the
model vertical levels, VH and Vη apply respectively the gaussian filtering
to the fields of temperature and salinity, and sea surface. Vuv calculates
velocity from sea surface height, temperature and salinity, and VD applies a
divergence damping filter on the velocity field. A more detailed formulation
of each linear operator is described in Dobricic and Pinardi (2008). In this
paper we focus on operator VH .
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2.2. OceanVar Horizontal Covariances

The OceanVar horizontal error covariances matrix VH is assumed to be
a Gaussian matrix (Dobricic and Pinardi, 2008). In oceanographic mod-
els, isotropic and Gaussian spatial correlations can be relatively efficiently
approximated by an iterative application of a gaussian RF (Lorenc, 1992;
Hayden and Purser, 1995) that requires only a few steps. Moreover, its ap-
plication on a horizontal grid can be split into two independent directions
(Purser et al., 2003). We highlight that the ocean recursive filter scheme is
more complicated than the atmospheric case due to the presence of coastlines.
In this framework, the horizontal error covariances VH is factored as:

VH = GyGx (10)

where Gx and Gy represent the gaussian operators in directions x and y.
In the next section we present a optimal revised RF to compute an ap-
proximation of the image of the temperature and salinity fields by means of
matrices Gx and Gy.

3. Recursive Filters for a 3D-VAR Assimilation Scheme

Because of the separability of the two-dimensional (2D) Gaussian function
(that is e−(x2+y2) = e−x2

e−y2), a 2D-RF can be obtained applying a 1D-RF
on each row and column of the discrete domain. Then we will consider the
properties of the RFs only on one dimensional (e.g., Oppenheim et al., 1983).
The application of a one-dimensional n-th order RF on a grid of m points
requires two main steps:

pki = βsk−1
i +

n
∑

j=1

αjp
k
i−j i = n+ 1, m : +1, k = 1, .., K (11)

ski = βpki +

n
∑

j=1

αjs
k
i+j i = m,n + 1 : −1, k = 1, .., K (12)

where K is the total filter iterations number, s0 is the input distribution, pk

is the k-th output vector of the forward procedure (11) and sk is the k-th
output vector of the backward procedure (12), corresponding to the input
distribution for the (k + 1)-th forward procedure. At last, αj , j = 1, ..., n
and β are the filter smoothing coefficients.
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3.1. The 1st-RF and 3rd-RF in OceanVar

In the previous OceanVar scheme, it was implemented a 1st-RF algorithm of
Hayden and Purser (1995); Purser et al. (2003) along the x and y directions.
The revised scheme uses a 3rd-RF based on the works of Young and Van Vliet
(1995); Vliet et al. (1998). OceanVar model computes for each grid point the
filter coefficients that depend on the correlation radius R(x, y) and the grid
distances ∆x and ∆y. Then OceanVar allows to use different length-scale
for the gaussian covariance functions.
The one dimensional 1st-RF version is composed by the following rules:

pk1 = β1s
k−1
1 , k = 1, ...., K (13)

pki = βis
k−1
i + αip

k
i−1 i = 2, m : +1, k = 1, ...., K (14)

skm = βmp
k
m, k = 1, ...., K (15)

ski = βip
k
i + αis

k
i+1 i = m− 1, 2 : −1, k = 1, ..., K (16)

where the parameter αi, βi ∈ (0, 1) and βi = (1−αi) are the filter coefficients
at the i− th grid point. In order to obtain the filter smoothing coefficients αi

and βi, the crucial relationship in Hayden and Purser (1995) is considered:

R2
i = 2K

αi

(1− αi)2
∆x2

i . (17)

where Ri and ∆xi are respectively the correlation radius and the grid distance
at the i− th grid point. By means of the equation (17), it follows that:

(1− αi)
2 = 2K

(

∆x2
i /R

2
i

)

− 2K
(

∆x2
i /R

2
i

)

(1− αi). (18)

Calculating the roots βi = (1 − αi) from the equation (18), we obtain that
αi and βi are:

αi = 1 +
K∆x2

i

R2
i

−
√

K∆x2
i

R2
i

(

K∆x2
i

R2
i

+ 2

)

(19)

βi = −K∆x2
i

R2
i

+

√

K∆x2
i

R2
i

(

K∆x2
i

R2
i

+ 2

)

(20)

In the following we are considering a 3rd-RF that approximates quite success-
fully in just one iteration the gaussian convolution considered in Mirouze and Weaver
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(2010) and that allows different length scales for each grid point of computa-
tional domain . It is based on the works of Young and Van Vliet (1995) and
Van Vliet et al. (1998) and is widely used for the blurring in digital image
and never used in geophysical data assimilation.
In the next theorem we are presenting a simple and accurate adapted version
of this 3rd-RF for OceanVar scheme in a one-dimensional grid.

Theorem 3.1. For each i − th grid point of a finite one-dimensional grid
with correlation radius Ri and grid spacing ∆xi, a normalized 3rd-RF is given
by:

pi = βis
0
i + αi,1pi−1 + αi,2pi−2 + αi,3pi−3 i = 4, m : +1 (21)

si = βipi + αi,1si+1 + αi,2si+2 + αi,3si+3. i = m− 3, 1 : −1. (22)

where the function s0i is the input distribution, αi,1 = ai,1/ai,0, αi,2 = ai,2/ai,0,

αi,3 = ai,3/ai,0 and βi =
4

√

2π
(

Ri/∆xi

)2(
1−

(

αi,1+αi,2+αi,3)
)

are the filtering

coefficients and:

ai,0 = 3.738128 + 5.788982

(

Ri

∆xi

)

+ 3.382473

(

Ri

∆xi

)2

+ 1.000000

(

Ri

∆xi

)3

ai,1 = 5.788982

(

Ri

∆xi

)

+ 6.764946

(

Ri

∆xi

)2

+ 3.000000

(

Ri

∆xi

)3

ai,2 = −3.382473

(

Ri

∆xi

)2

− 3.000000

(

Ri

∆xi

)3

ai,3 = 1.000000

(

Ri

∆xi

)3

Proof The procedure to obtain the 3rd-RF coefficients is given in Appendix A. �

By the Theorem 3.1 the filtering strategy is the following:

• the input data s0i are first filtered in the forward direction as suggested
by the difference equation in (21) to get pi.

• The output of this result pi is then filtered in the backward direction ac-
cording to the difference equation corresponding to backward equation
in (22) in order to get si.
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To complete the statements in (21) and (22) we fix the following heuristic
initial conditions for the forward and backward procedures:

forward conditions

p1 = β1s
0
1

p2 = β2s
0
2 + α2,1p1

p3 = β3s
0
3 + α3,1p2 + α3,2p1

backward conditions

sm = βmpm
sm−1 = βm−1pm−1 + αm−1,1sm
sm−2 = βm−2pm−2 + αm−2,1sm−1 + αm−2,2sm

(23)
Now we give some remarks on the accuracy and the computational costs of
a RF.

Remark 1 For an arbitrary input distribution s0i , a measure for accuracy of
a RF is given by the following inequality:

‖ǫsi‖2 ≤ ‖ǫhi
‖2‖s0i ‖2 (24)

where:

• ‖ǫsi‖2 is the euclidean norm of the difference between the discrete con-
volution s∗i = gi ⊗ s0i (with gi normalized gaussian function) and the
function si, obtained by the RF applied to s0i .

• ‖ǫhi
‖2 is the euclidean norm of the difference between the gaussian gi

and the function hi (called impulse response), obtained by a RF applied
to Dirac function;

• ‖s0i ‖2 is the euclidean norm of the input function s0i .

Proof The proof is shown in Appendix A �

By the Remark 1 we observe that the approximation error ‖ǫsi‖2 of s∗i , is
smaller than arbitrary ǫ > 0 if and only if ‖ǫhi

‖2 < ǫ/‖s0‖2. Then to get a
good approximation of the gaussian convolution s∗i , it is necessary that the
RF determines a good approximation hi of gaussian function gi.
We highlight some practical considerations about the convergence of RF,
applying it to a Dirac function . We choose a one-dimensional grid ofm = 300
points , a constant correlation radius R = 12000 m and a constant grid space
δx = 6000 m. In Figure 1 we have the impulse response hi, obtained by the
1st-RF and 3rd-RF, to reconstruct a Gaussian function with non-dimensional
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length scale σ = R/δx. In the left panel of Figure 1 we observe the slow
convergence of the 1st- RF that needs an high number of iterations to reach
a good approximation of gaussian function gi. In the right panel of Figure
1, we show the same with the 3rd-RF. For this case, it is needed just one
iteration to obtain an accurate approximation hi of the gaussian function gi.

Figure 1: Left - The Impulse response hi (red) resulting from the application of
equations (14) and (16) for K = 1, 5, 10 and the true gaussian function gi (blue)
with non-dimensional length scale σ = R/δx and mean µ = 0
Right - The Impulse response hi (red) resulting from the application of equations
(28) and (29) for K = 1 and the true gaussian function gi (blue) with non-
dimensional length scale σ = R/δx and mean µ = 0

About the computational cost of RF we consider the following Remark 2.

Remark 2 The computational time of a n−th order accuracy RF is given
by the following formula:

T (n,K,m) ≈ 2 (2n+ 1) m K tcalc. (25)

where tcalc is the time for a floating point operation.

It immediately follows that the time complexity of the 1st-RF is:

T (1, K,m) ≈ 6mK tcalc (26)
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Unfortunately, the 1st-RF needs a high step number K to determine a good
approximation of the convolution function. We underline that this is a huge
obstacle in the OceanVar framework since the RF iterations are too much
expensive from a computational point of view for real applications. Although
the 3rd-RF complexity is

T (3, K,m) ≈ 14 mK tcalc (27)

we have good approximation of the convolution kernel within just one itera-
tion. Note that by comparing the time complexities given by (26) and (27)
it follows that the theoretical computational time of the 1st-RF is less than
that of the 3rd-RF only if 1 or 2 iterations are used, which however provides
a very inaccurate approximation of the Gaussian function.
In the next section, we prove it through numerical experiments, confirming
that the new 3rd-RF in OceanVar can improve the entire performance of the
data assimilation software.

4. Experimental Results of OceanVar using 1st-RF and 3rd-RF in

Mediterranean Sea Implementation

In this section we test the OceanVar set-up in the Mediterranean Sea with
both 1st-RF and 3rd-RF from a numerical point of view. Either 1st-RF and
3rd-RF allow to use different filtering scales as we will show in the next sec-
tion for global applications but in this configuration we fix a constant length
scale. This set-up follows the configuration of Dobricic and Pinardi (2008),
but the horizontal resolution is two times higher. In particular, the model
has 72 horizontal levels, and the horizontal resolution is about 3.5 km in
the latitudinal direction and between 3 km and 2.5 km in the longitudinal
direction with an horizontal grid of (1, 742, 506) points. The Mediterranean
Sea has a relatively large variability of the bathymetry, with both deep ocean
basins, like the Ionian Sea, the Levantine and the Western Mediterranean,
and extended narrow shelves.
In this configuration we apply the 1st-RF and the 3rd-RF with the assimila-
tion of only Argo floats profiles (Poulain et al., 2007). We compare accuracy,
computational time and the memory usage. The numerical tests are carried
out on a parallel IBM cluster (with 30 IBM P575 nodes, 960 cores Power6
4.7GHz, Infiniband 4x DDR interconnection, Operating system AIX v.5.3).
In the following we start to compare the accuracy of horizontal covariances
in temperature by means of the two different RFs.
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In Figure 2, we report analysis increment obtained using only one iteration
of 3rd-RF on the Mediterranean Sea, for the temperature at 300m, assuming
isotropic and Gaussian spatial correlations by means a constant correlation
radius (R = 15000m). The impression in Figure 2 is that the 3rd-RF re-
constructs quite successfully the horizontal covariances in just one iteration.
The long range correlation shows more a diamond-like shape but the inner
part, the most intense part of the field, has the right shape and amplitude.
Moreover we underline that the 3rd-RF models the horizontal covariances
near the costs using the same number of the imaginary sea points used for
the 1st-RF (Dobricic and Pinardi, 2008) because the approximate gaussian
functions built by both the RFs have the same length scales.
Then we compute the horizontal temperature covariances at same depth
by means of the 1st-RF using K=1 iteration (1st-RF-K=1) in Figure 3a,
1st-RF, K=5 iterations (1st-RF-K=5) in Figure 3b and 1st-RF, K=10 iter-
ations (1st-RF-K=10) in Figure 3c. We can note that only with the 1st-RF
K=10 (Figure 3c) the horizontal covariances became isotropic and Gaussian.
Figure 4 shows the absolute differences between the horizontal temperature
covariances computed by 1st-RF-K=1,5,10 and the 3rd-RF. Observing the
maximum values of the differences in the three case, it is evident that the
same accuracy of the 3rd-RF can be achieved only with a large number of
iterations of the other one . Qualitatively the results for the salinity are the
same as for temperature and hence we do not show them.

Figure 2: Analysis increments of temperature at 300 m of depth for the
Mediterranean Sea configuration using 3rd-RF.

4.1. Performance Results in Mediterranean Sea Implementation

In previous section we show that the use of a more accurate RF needs less
iterations in order to obtain isotropic and Gaussian spatial horizontal covari-
ances.
In this subsection we report the benefits and disadvantages of the 3rd-RF

12



Figure 3: Analysis increments of temperature at 300 m of depth for the
Mediterranean Sea configuration using 1st-RF-K=1 (3a), 1st-RF-K=5 (3b)
and 1st-RF-K=10 (3c).

from a computational point of view. In particular here we give some infor-
mation on the execution time and the memory usage in the parallel version
of the 1st-RF and 3rd-RF of Oceanvar in Mediterranean Sea configuration.
The parallel implementation of the RF in Oceanvar uses communication
strategies based on the pipeline method (e.g., Aoyama and Nakano, 1999),
because RF is a typical algorithm with flow dependences, where each itera-
tion has to be strictly executed in a pre-fixed order. OceanVar in Mediter-
ranean Sea configuration implements the pipeline method for the RF by using
a column-row-wise block distribution of processors and blocking mpi-send

and mpi-receive communication functions to transfer the boundary condi-
tions. All the other operators in OceanVar (vertical EOFs, Vv, barotropic
operator, Vn, velocities operator, Vuv, and divergence damping filter, Vd),
along with the computations in observation space (misfits update, etc.) fol-
low a Cartesian domain decomposition. The parallel implementation is also
completely independent from that of the ocean model used for the forecasts.
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Figure 4: Absolute Differences for the temperature at 300 m of depth for
the Mediterranean Sea configuration between 1st-RF-K=1 and 3rd-RF (4a),
1st-RF-K=5 and 3rd-RF (4b), 1st-RF-K=10 and 3rd-RF (4c).

We modify OceanVar by substituting the 1st-RF with the 3rd-RF, without
modifying the pipeline method.
As 3rd-RF needs only one iteration, it requires a smaller number of mpi-
communications. This results in a sensible reduction in the latency in the
communications. However 3rd-RF has to transfer a larger amount of data in
each iteration. For example in the case of 1st-RF, in the forward filtering,
the left processor sends only data on its last column to the right processor
while in the case of 3rd-RF, the left processor sends data on its last three
columns to the right processor.
Figure 5 shows the execution time in seconds and the memory usage in Gbyte
of the OceanVar with 1st-RF-K=1, 1st-RF-K=5, 1st-RF-K=10 and 3rd-RF
on the IBM cluster using 64 processors. In particular we report the OceanVar
and the RF wall clock times. To estimate the RF times in the software we
synchronize all the processes in our mpi-communicator by using MPI-Barrier,
before and after the implementation of RF.
Figure 5 shows that Oceanvar with the 3rd-RF gives the best results in terms
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of the execution time if we consider the accuracy on the horizontal covariances
discussed in previous section. The 3rd-RF compared to the 1st-RF-K=5 and
the 1st-RF-K=10 reduces the wall clock time of the software respectively of
about 27% and 48%. The execution time is reduced because the new RF
decreases the sequential time of each process in the mpi-communicator and
needs only one mpi-send and mpi-receive communication for each process.
The 3rd-RF algorithm uses twice as much memory than 1st-RF, because it
has twice the number of the filter coefficients. However, this did not repre-
sent a problem on our cluster because the maximum memory allowed was
about 250 Gb.

Figure 5: Performance results (execution time and memory usage) for the
recursive filter tests within the Mediterranea Sea implementation of Ocean-
Var.

5. Experimental Results of OceanVar using 1st-RF and 3rd-RF in

a Global Implementation

In this section we describe experimental results of the 3rd-RF in a Global
Ocean implementation of OceanVar that follows Storto et al. (2011). The
model resolution is about 1/4 degree and the horizontal grid is tripolar, as
described by Madec and Imbard (1996). This configuration of the model is
used at CMCC for global ocean physical reanalysis applications (Ferry et al.,
2012). The model has 50 vertical depth levels. The three-dimensional model
grid consists of 73614100 grid-points. The comparison between the 1st-RF
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Figure 6: Zonal (left) and meridional (right) correlation length-scales for
temperature at 100 m of depth for the Western Pacific Area.

and the 3rd-RF is here carried out for a realistic case study, where all in-
situ observations of temperature and salinity from Expendable bathyther-
mographs (XBTs), Conductivity, Temperature, Depth (CTDs) Sensors, Argo
floats and Tropical mooring arrays are assimilated. The observational profiles
are collected, quality-checked and distributed by Coriolis (Cabanes et al.,
2013). The global application of the recursive filter accounts for spatially
varying and season-dependent correlation length-scales (CLSs), unlike the
Mediterranean Sea implementation. Correlation length-scale were calculated
by applying the approximation given by Belo Pereira and Berre (2006) to a
dataset of monthly anomalies with respect to the monthly climatology, with
inter-annual trends removed. The two panels of Figure 6 shows an example
of zonal and meridional temperature correlation length-scales at 100 m of
depth, respectively, for the winter season in the Western Pacific. Typically,
areas characterized by strong variability (e.g. Kuroshio Extension) present
shorter correlation length-scales of the order of less than 100 Km that lead to
very narrow corrections, while in the Tropics the length-scales are longer and
may reach up to 350 Km, thus broadening the 3DVAR corrections. Further-
more, at the Tropics, it is acknowledged that zonal correlations are longer
than the meridional ones (e.g. Derber and Rosati, 1989). The analysis in-
crements from a 3DVAR applications that uses the 1st-RF with 1, 5 and 10
iterations and the 3rd-RF are shown in Figure 7, with a zoom in the same
area of Western Pacific Area as in Figure 6, for the temperature at 100 m
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of depth. The figure also displays the differences between the 3rd-RF and
the 1st-RF with either 1 or 10 iterations. The patterns of the increments are
closely similar, although increments for the case of 1st-RF-K=1 are generally
sharper in the case of both short (e.g. off Japan) or long (e.g. off Indonesian
region) CLSs. The panels of the differences reveal also that the differences
between 3rd-RF and the 1st-RF-K=10 are very small, suggesting once again
that the same accuracy of the 3rd-RF can be achieved only with a large
number of iterations for the first order recursive filter.

5.1. Performance Results in Global Implementation

In this subsection we present the performance results of the 3rd-RF with
respect to the 1st-RF for the Global Ocean case study. OceanVar is run on
a parallel IBM cluster, each of the 482 nodes with two eight-core Intel Xeon
processors. We use a cluster different from the one previously introduced
for the Mediterranean Sea configuration, in an attempt of presenting perfor-
mance results also in different computing environments. The global ocean
implementation of OceanVar has a parallel implementation that differs from
the pipeline method previously presented: it exploits hybrid MPI-OpenMP
parallelism, where OpenMP acts over the vertical level loops while MPI over
the horizontal grid. This strategy has the advantage of limiting the MPI
communication when exploiting the same number of cores, with the short-
coming of being not very flexible (due to the limitations of the cores-per-
node number of threads for the OpenMP vertical parallelism). We have used
5 nodes for our tests: 5 MPI processes, 16 threads for a total of 80 cores
used. Results are summarized in Figure 8, when the number of iterations of
the 3DVAR minimizer is fixed to 30, as in realistic applications. Generally,
relative performances of the two recursive filters are comparable with those
of the Mediterranean Sea implementation. 3rd-RF reduces the total wall
clock time of OceanVar by 28 % and 51% with respect to 1st-RF-K=5 and
1st-RF-K=10, respectively. This reduction increases up to 42 % and 65 % if
we consider only the recursive filter routines. On the other hand, the total
memory usage increases from 36.4 Gb (7.3 Gb per node) to 47.6 Gb (9.5
Gb per node), i.e. by 30 %. Thus, the third order recursive filter is able to
significantly reduce the execution time at the price of an affordable increase
of memory usage.
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Figure 7: Analysis increments of temperature at 100 m of depth for the West-
ern Pacific for different configurations of the recursive filter (first two rows
of panels). Differences of 100 m temperature analysis increments between
3rd-RF and 1st-RF-K=1 and between 3rd-RF and 1st-RF-K=10 (bottom
panels).
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Figure 8: Performance results (execution time and memory usage) for the
recursive filter tests within the Global Ocean implementation of OceanVar.

6. Conclusions

In this paper we describe the development and implementation of a revised
scheme to compute the horizontal covariances of temperature and salinity in
an oceanographic variational scheme.
The existing recursive filter (RF) of the first order (1st-RF) is substituted
with a recursive filter of the third order (3rd-RF). Numerical experiments
in Mediterranean Sea and Global Ocean demonstrated that a 3rd-RF can
significantly reduce the total computational time of the data assimilation
scheme maintaining the same level of accuracy.
In addition we provide the full theoretical development of the new filter, based
on the study by Young and Van Vliet (1995) and Van Vliet et al. (1998), who
formulated the filter in the context of signal processing. We adapt it for a
3D-VAR oceanographic scheme with the detailed description of the process
to obtain the 3rd-RF coefficients for different length scales. .
Our implementation is different to that by Purser et al. (2003), since we have
applied a different mathematical methodology to calculate the filter coeffi-
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cients. The new RF is faster than the previous one because it requires only
one iteration to compute the horizontal covariances. Therefore, we may as-
sume that it will be faster than other first order accurate methods that need
several iterations like the one described by Mirouze and Weaver (2010). This
hypothesis is tested with the pipeline method of Mediterranean Sea imple-
mentation and hybrid MPI-OpenMPI parallelization strategy of the Global
Ocean configuration presented in the previous sections. By applying some
other parallelization strategy the relative performance of the new filter may
differ. However, we believe that other parallelization strategies are overall
much less efficient than those presented.
The future improvement of the 3rd-RF scheme in OceanVar will be the im-
plementation of different mathematical boundary conditions at the coasts
and a formulation of 3rd-RF for spatially inhomogeneus and anisotropic co-
variances.
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8. Appendix A

Theorem 3.1 For each i−th grid point of a finite one-dimensional grid with
correlation radius Ri and grid spacing δxi, a normalized 3rd-RF is given by:

pi = βis
0
i + αi,1pi−1 + αi,2pi−2 + αi,3pi−3 i = 4, m : +1 (28)

si = βipi + αi,1si+1 + αi,2si+2 + αi,3si+3. i = m− 3, 1 : −1. (29)

where the function s0i is the input distribution, αi,1 = ai,1/ai,0, αi,2 = ai,2/ai,0,

αi,3 = ai,3/ai,0 and βi =
4

√

2π
(

Ri/δxi

)2(
1−

(

αi,1+αi,2+αi,3)
)

are the filtering
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coefficients and:

ai,0 = 3.738128 + 5.788982

(

Ri

δxi

)

+ 3.382473

(

Ri

δxi

)2

+ 1.000000

(

Ri

δxi

)3

ai,1 = 5.788982

(

Ri

δxi

)

+ 6.764946

(

Ri

δxi

)2

+ 3.000000

(

Ri

δxi

)3

ai,2 = −3.382473

(

Ri

δxi

)2

− 3.000000

(

Ri

δxi

)3

ai,3 = 1.000000

(

Ri

δxi

)3

Proof. In order to obtain an efficient RF such that approximates the gaussian convolution
(as considered in Mirouze and Weaver (2010)):

s(x) = g(x)⊗ s0(x) =

∫ +∞

−∞

g(x− τ)s0(τ)dτ, (30)

we apply the Fourier transformation to the equation in (30), where g(x) = exp(− x2

2σ2 ) is the
normalized gaussian function of mean µ = 0 and non-dimensional length-scale σ = Ri/δxi

associated to i−th grid point. Hence we obtain:

S(w) = G(w)S0(w) w ∈ R (31)

where S(w), G(w) and S0(w) in (31) are respectively the Fourier transformations of the
function s(x), g(x), and s0(x). For the Fourier transformation of g(x), we have the well-
note result:

G(w) =
√
2πσe−

(σω)2

2 . (32)

Using a rational approximation of the gaussian function in Abramowitz and Stegun (1965):

1√
2π

e−
t
2

2 =
1

b0 + b2t2 + b4t4 + b6t6
+ ǫ(t), t ∈ R (33)

where b0 = 2.490895, b2 = 1.466003, b4 = −0.024393, b6 = 0.178257 and ǫ(t) < 2.7 ∗ 10−3,
then we can approximate the G(w) function as:

G(w) ≈ Hσ(w) =
2πσC2

b0 + b2(σw)2 + b4(σw)4 + b6(σw)6
(34)

where C2 is a square of a normalization constant that we will choose later. The absolute
error |ǫ(w)| between G(w) and Hσ(w) is less than 5.4πσ× 10−3. Moreover we can rewrite
the Hσ(ω) as a function in the complex field:

Hσ(s) =
2πσC2

b0 − b2(σs)2 + b4(σs)4 − b6(σs)6
, with s = iω ∈ C (35)
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Through the non linear Newton Formula (e.g., Quarteroni et al., 2007), we determinate
two real solution s = ±1.16680481/σ of the polynomial b0 − b2(σs)

2 + b4(σs)
4 − b6(σs)

6.
After we divide it for

(

(σs)2 − 1.66804812
)

and obtain a polynomial quotient that is
difference between a polynomial of fourth degree and second one. Hence the rational
polynomial Hσ(s) can be decomposed in the following way:

Hσ(s) = Hσ,b(s)Hσ,f (s) (36)

where

Hσ,f (s) =

√

(2πσ)C

(1.166805+ σs)(3.203730 + 2.215668σs+ (σs)2)
(37)

Hσ,b(s) =

√

(2πσ)C

(1.166805− σs)(3.203730− 2.215668σs+ (σs)2)
. (38)

Using standard approximations as the backward and forward differences for the Z trans-
formation (e.g., Oppenheim et al., 1983) to switch from continuous to discrete problem,
we replace s = 1 − z−1 in (37) and s = z − 1 in (38) as in Young and Van Vliet (1995).
Hence we obtain:

Hσ,f (z
−1) =

√

(2πσ)C
(

1.166805+ σ(1 − z−1)
)(

3.203730+ 2.215668σ(1− z−1) + (σ(1 − z−1))2
)

Hσ,b(z) =

√

(2πσ)C
(

1.166805− σ(z − 1)
)(

3.203730− 2.215668σ(z − 1) + (σ(z − 1))2
)

Both previous equations can be rewritten respectively as standard polynomials in z−1 and
z:

Hσ,f (z
−1) =

√

(2πσ)C
(

ai,0 − ai,1z−1 − ai,2z−2 − ai,3z−3
) (39)

Hσ,b(z) =

√

(2πσ)C
(

ai,0 − ai,1z1 − ai,2z2 − ai,3z3
) . (40)

where we can determinate the following coefficients for (39) and (40):

ai,0 =
(

3.738128+ 5.788982σ+ 3.382472σ2 + 1.000000σ3)

ai,1 =
(

5.788824σ+ 6.764946σ2 + 2.999999σ3)

ai,2 =
(

− 3.382472σ2 − 2.999999σ3)

ai,3 =
(

1.000000σ3)

(41)

The normalized constant C can be specified by using the constrain that the approximation
gaussian function Hσ(ω) must be

√
2πσ for ω = 0 (see the equations (32) and (34)) hence

Hσ,f (z
−1) = 1 ∧Hσ,b(z) =

4
√

(2πσ2) for z−1 = 1 ∧ z = 1 . Follows that:
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C =

(

ai,0 − (ai,1 + ai,2 + ai,3)
)

4
√

(2π)
(42)

Place P (z) = Hσ,f(z)S
0(z) and S(z) = Hσ,b(z)P (z), we have:

Hσ,f (z) =
P (z)

S0(z)
=

4
√

(2πσ2)
(

ai,0 − (ai,1 + ai,2 + ai,3)
)

(

ai,0 − ai,1z−1 − ai,2z−2 − ai,3z−3
) (43)

Hσ,b(z) =
S(z)

P (z)
=

4
√

(2πσ2)
(

ai,0 − (ai,1 + ai,2 + ai,3)
)

(

ai,0 − ai,1z − ai,2z2 − ai,3z3
) (44)

from which we obtain respectively:

(

ai,0 − ai,1z
−1 − ai,2z

−2 − ai,3z
−3

)

P (z) = 4
√

(2πσ2)
(

ai,0 − (ai,1 + ai,2 + ai,3)
)

S0(z), (45)

(

ai,0 − ai,1z
−1 − ai,2z

−2 − ai,3z
−3

)

S(z) = 4
√

(2πσ2)
(

ai,0 − (ai,1 + ai,2 + ai,3)
)

P (z). (46)

Antitransforming, by means of the Z−1 transformation, the equations (45)
and (46) and by the theorem of the delay (e.g., Oppenheim et al., 1983), we
obtain the following forward and backward finite difference equations:

pi = βs0i + αi,1pi−1 + αi,2pi−2 + αi,3pi−3. (47)

si = βpi + αi,1si+1 + αi,2si+2 + αi,3si+3. (48)

where the functions pi and si are respectively the Z−1 transformations of
P (z) and S(z) functions and the filtering coefficients are αi,1 = ai,1/ai,0,

αi,2 = ai,2/ai,0, αi,3 = ai,3/ai,0 and βi =
4

√

(2πσ2)
(

1 − (αi,1 + αi,2 + αi,3)
)

.
Remembering that σ = Ri/δxi and observing the equations (41), (47) and
(48) and the values of the filtering coefficients αi,1, αi,2, αi,3 and βi, then we
obtain the thesis. �

Remark 1 For an arbitrary input distribution s0i , a measure for accuracy of
a RF is given by the following inequality:

‖ǫsi‖2 ≤ ‖ǫhi
‖2‖s0i ‖2 (49)

where:
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• ‖ǫsi‖2 is the euclidean norm of the difference between the discrete con-
volution s∗i = gi ⊗ s0i (with gi normalized gaussian function) and the
function si, obtained by the RF applied to s0i .

• ‖ǫhi
‖2 is the euclidean norm of the difference between the gaussian gi

and the function hi (called impulse response), obtained by a RF applied
to Dirac function;

• ‖s0i ‖2 is the euclidean norm of the input function s0i .

Proof The error in the output per sample when we substitute the true convolution s∗i
with an approximation si is given by

ǫsi = s∗i − si = (gi − hi)⊗ s0i = εhi
⊗ s0i . (50)

Hence it holds the following:
‖ǫsi‖2 = ‖ǫhi

⊗ s0i ‖2 (51)

and applying the Cauchy-Schwarz inequality to the right-hand side of equation (51), it
gives the thesis:

‖ǫsi‖2 ≤ ‖ǫhi
‖2‖si‖2 (52)

�
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