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Abstract

This paper presents an advanced method to synthetically generate flow tur-
bulence via an inflow boundary condition particularly designed for three-
dimensional aeroacoustic simulations. The proposed method is virtually free
of spurious noise that might arise from the synthetic turbulence, which en-
ables a direct calculation of propagated sound waves from the source mecha-
nism. The present work stemmed from one of the latest outcomes of synthetic
eddy method (SEM) derived from a well-defined vector potential function
creating a divergence-free velocity field with correct convection speeds of
eddies, which in theory suppresses pressure fluctuations. In this paper, a
substantial extension of the SEM is introduced and systematically optimised
to create a realistic turbulence field based on von Kármán velocity spectra.
The optimized SEM is then combined with a well-established sponge-layer
technique to quietly inject the turbulent eddies into the domain from the up-
stream boundary, which results in a sufficiently clean acoustic field. Major
advantages in the present approach are: a) that genuinely three-dimensional
turbulence is generated; b) that various ways of parametrisation can be cre-
ated to control/characterise the randomly distributed eddies; and, c) that its
numerical implementation is efficient as the size of domain section through
which the turbulent eddies should be passing can be adjusted and minimised.
The performance and reliability of the proposed SEM are demonstrated by
a three-dimensional simulation of aerofoil-turbulence interaction noise.
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noise

1. Introduction

The generation of synthetic turbulent flows is currently one of the chal-
lenging issues in computational aeroacoustics (CAA). It has a significant
impact on the simulation of important engineering problems such as aerofoil-
turbulence interaction noise that is related to turbofan engines, open rotors,
wind turbines, helicopters, etc. There are a few crucial properties that a syn-
thetic turbulence has to satisfy/offer in order to achieve a successful CAA
simulation: 1) divergence-free condition, 2) synchronised convection with the
mean flow, 3) statistical characteristics of realistic turbulence and 4) gen-
uinely three-dimensional capabilities. Failure to meet all these criteria would
result in either spurious noise that contaminates the far-field acoustic data
or incorrect source mechanisms at the near field. In addition, the generation
of synthetic turbulence should be numerically efficient not to overload the
entire simulation.

Over the past years, various techniques of generating synthetic turbu-
lence have been proposed and they mostly stemmed from incompressible flows
background. Some of them have also been applied to compressible/aeroacoustic
calculations, which can be categorised into: a) Fourier modes [1–6], b) ran-
dom particle meshes [7, 8] and c) synthetic eddy method (SEM) [9–12]. The
Fourier-mode based approach is probably one of the most frequently at-
tempted methods for CAA applications due to its simplicity to generate a
divergence-free velocity field by taking the cross product of the wavenum-
ber and amplitude vectors. The divergence-free condition is crucial for CAA
applications to prevent spurious artefact noise that may emerge from the
synthetically generated turbulence. However, this is not the only criterion to
achieve noise-free turbulence. Sescu and Hixon [12] found that the convection
velocity of the synthetically generated turbulence must be synchronized with
the local mean-flow velocity in order to guarantee a clean aeroacoustic envi-
ronment not interfering with genuine sound waves. Currently the synchro-
nized convection has not been considered in the Fourier-mode approaches. In
the meantime, the random-particle-mesh approach has demonstrated some
promising results for aeroacoustic simulations but a full three-dimensional
(3D) extension is yet to be achieved in the near future.

The synthetic eddy method (SEM) originally proposed by Jarrin et al. [9]
has recently been extended by Sescu and Hixon [12] for aeroacoustic sim-
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ulations. The recent achievement was made by introducing an eddy shape
function (vector potential) and taking the curl of the vector potential to
create a divergence-free velocity field, where the argument function of the
vector potential was properly determined to satisfy the synchronized convec-
tion condition highlighted above. Sescu and Hixon [12] showcased through
benchmark tests that the new SEM could potentially be the first successful
3D method for noise-free synthetic turbulence aimed at CAA simulations.
There still is a significant scope of work to be done to construct “realistic”
turbulence statistics based on the new method and demonstrate its actual
performance in a large-scale 3D CAA simulation, which is the main focus of
this paper.

In this paper, the latest SEM is combined with a sponge-layer tech-
nique [13–15] that was particularly designed for introducing velocity dis-
turbances as well as absorbing spurious noise. With this combination, the
level of spurious noise is kept sufficiently low to guarantee a clean sound field
for CAA simulations. Secondly, new parameters to characterise the ran-
domly distributed eddies (i.e. sizes, locations, directional strengths and the
population per volume) are introduced and effectively optimized by using
Genetic Algorithm to get the resulting turbulence statistics matched with
von Kármán spectra. It should be noted that the optimisation of the eddy
parameters is implemented with inclusion of a periodic boundary condition
across the lateral boundaries of the domain. The current periodic boundary
condition provides C∞-continuity which yields entirely smooth connection
of the two lateral boundaries. Thirdly, the stream of the synthetic eddies
is confined within a narrow channel passing through the near-field area only
rather than the entire domain. This has a significant impact on the numerical
efficiency since otherwise very fine meshes must be maintained throughout
the entire domain in order to resolve the smallest eddies that are normally
much smaller than the corresponding acoustic wavelengths. Lastly, the op-
timized SEM is applied to a 3D simulation of aerofoil-turbulence interaction
noise and the results are compared with existing theoretical prediction and
experimental data.

The organisation of this paper is as follows. Section 2 introduces the theo-
retical background of SEM. Section 3 explains the parametric optimisation of
the eddies in order to obtain realistic 3D von Kármán velocity spectra. Sec-
tion 4 describes the governing equations and the sponge-layer technique used
in this paper for quietly injecting the synthetic turbulence into the computa-
tional domain. In Sec. 5, a numerical test of the present synthetic turbulence
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is carried out in order to verify its low-noise capability and actual turbulence
statistics. Section 6 demonstrates the application of the optimised SEM to a
3D simulation of aerofoil-turbulence interaction noise where the performance
and reliability of the proposed approach is addressed. Finally, concluding
remarks are given in Sec. 7.

2. Synthetic Eddy Model

The present synthetic eddy method (SEM) is based on a vector potential
Ψ(x, t) proposed by Sescu and Hixon [12], which is constructed by superim-
posing contributions from randomly distributed vortical eddies. The result-
ing velocity field induced by the vortical eddies is obtained by taking the curl
of the vector potential, i.e. u′(x, t) = ∇×Ψ(x, t), which is divergence free.
It is suggested in this paper that an artificial turbulence field with realistic
velocity spectra can be constructed by imposing certain regularisations and
constraints on the sizes, shapes and directional strengths of the randomly
distributed eddies in a 3D space. A general form of the vector potential may
be written as:

Ψ(x, t) = a∞

(
AeLe

Ne

)1
3

Ne∑
i=1

[ψx,i(x, t)ex + ψy,i(x, t)ey + ψz,i(x, t)ez] (1)

where a∞ is the ambient speed of sound, Le is the length of a “virtual”
eddy box in which the eddies are created, Ae is the eddy box’s cross-section
area through which the eddies are injected into the computational domain
(hence AeLe is the volume of the virtual eddy box), Ne is the number of
eddies. (AeLe/Ne)

1/3 indicates an average distance between two adjacent
eddies inside the virtual eddy box. ψx, ψy and ψz are a set of dimensionless
shape functions for each individual eddy component. ex, ey and ez are the
directional unit vectors in the Cartesian coordinate system.

In this paper, Gaussian and Mexican Hat profiles are considered for the
shape functions of the eddies. The authors found that the Mexican Hat pro-
file is useful to enhance high-frequency components in the resulting velocity
spectra whereas the Gaussian one is more responsible for the low-frequency
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components. The present shape functions are defined as:

ψξ,i(ri) =

{
εξ,i σ

−1/2

ξ,i exp[−(3σξ,iri)
2] (Gaussian)

εξ,i σ
−1/2

ξ,i [1− (4σξ,iri)
2] exp[−(

√
8σξ,iri)

2] (Mexican Hat)

∀ξ ∈ {x, y, z} & ∀i ∈ {1, · · · , Ne}
(2)

with

ri = ri(x, t) = (x− xo,i − u∞t)2 + (y − yo,i − v∞t)2 + (z − zo,i − w∞t)2 (3)

where (εx, εy, εz) is an amplitude vector to determine the directional strength
of the eddies; (σx, σy, σz) is a set of constants that determines the size of
each eddy component; and, xo = (xo, yo, zo) is the centre location of an
eddy. The subscript ξ ∈ {x, y, z} represents each directional component and
i ∈ {1, · · · , Ne} is an index to denote each individual eddy. The argument
function r(x, t) indicates that the eddies move downstream with the mean
flow u∞ = (u∞, v∞, w∞). The Gaussian and Mexican-hat profiles produce
various length scales ranging from the eddy diameter all the way down to the
grid cell size. The Mexican-hat profile is particularly effective in providing
more small scales as shown in Fig. 1.

It is shown in [12] that the arrangement through Eqs. (1) to (3) satisfies
the linearised Euler momentum equations and therefore genuinely removes
the possibility of causing pressure fluctuations from the synthetic eddies.
The divergence-free condition stand-alone is not a sufficient condition for
zero pressure fluctuations as mentioned earlier.

3. Creating Realistic 3D Turbulence Based on SEM

One of the major objectives of the present work is to construct a realis-
tic turbulent velocity field that can be used to simulate aerofoil-turbulence
interaction noise. Since natural turbulence exhibits randomness in its charac-
teristics, it is reasonable to synthesise the eddies based on random numbers.
However, there should be some constraints in place to harness the random-
ness in such a way that the statistics of the synthetic turbulence resembles
that of the natural one. In the present approach, a total of 15 constraint
parameters are introduced to control and optimise the overall distribution of
random eddies to reproduce von Kármán velocity spectra for homogeneous
isotropic turbulence.

5



Figure 1: Example profiles of velocity spectra created by individual eddies in different
sizes with Gaussian (“——”) and Mexican-hat (“– – –”) shape functions, compared with
a von Kármán spectrum (“– · –” based on 4% integral length scale and 2.5% turbulence
intensity). The symbols represent: R = 0.3 (�); R = 0.2 (�); and, R = 0.1 (+). The
eddy radius (R) is defined in Sec. 3.1.

3.1. Parametrisation and Definition

The 15 constraint parameters introduced in this paper for use with Eqs. (1)
to (3) are defined and listed in Table 1. In the table, the size of an eddy
is defined by R = σ−1/2 (approximate radius) deduced from the shape func-
tions given in Eq. (2). The weighting factor β is introduced to yield a biased
eddy distribution towards either the lower (if β > 1) or the upper bound (if
0 < β < 1) of the eddy size. The superscript “(0)” is used for representing
the Gaussian profile and “(1)” for the Mexican Hat, throughout the paper.
The details of how these constraint parameters are used for the creation of
the synthetic eddies is shown below.

Once the 15 constraint parameters are determined/found (by using an
initial guess and subsequent refinements in an iterative manner – see Sec. 3.4),
eight independent random numbers are generated and made available for each
individual eddy. The random numbers used here are uniformly distributed
between zero and one:

ϕn,i ∈ U(0, 1), ∀i ∈ {1, · · · , Ne}, ∀n ∈ {1, · · · , 8} (4)

where U denotes the uniform distribution which facilitates creating a ho-
mogeneous turbulence within the virtual eddy box. The generated random
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Table 1: Constraint parameters introduced in this paper to optimise synthetic eddies and
create realistic turbulence statistics. “G” and “MH” indicating Gaussian and Mexican
Hat profiles, respectively as defined in Eq. (2).

Parameters Definitions

Ne Total number of eddies created in a virtual eddy box
Le Length of the virtual eddy box
αg Probability of G-eddies (1− αg: probability of MH-eddies)

R
(0)
min, R

(1)
min Lower limits in eddy sizes (radii): G (0) and MH (1)

R
(0)
max, R

(1)
max Upper limits in eddy sizes (radii): G (0) and MH (1)

β(0), β(1) Weighting for biased eddy distributions: G (0) and MH (1)

a
(0)
x , a

(1)
x Upper limits in eddy strength in x−direction: G (0) and MH (1)

a
(0)
y , a

(1)
y Upper limits in eddy strength in y−direction: G (0) and MH (1)

a
(0)
z , a

(1)
z Upper limits in eddy strength in z−direction: G (0) and MH (1)

numbers are then linked with the constraint parameters to determine the
type, size, coordinate and directional strength of each eddy component as
follows:

mi =

{
0 if ϕ1,i ≤ αg

1 if ϕ1,i > αg

}
, ∀i ∈ {1, · · · , Ne}, (5)

⎛
⎝Rx,i

Ry,i

Rz,i

⎞
⎠ = R

(mi)
min + (R(mi)

max −R
(mi)
min )

⎛
⎜⎝ϕβ(mi)

1,i

ϕβ(mi)

2,i

ϕβ(mi)

3,i

⎞
⎟⎠ , (6)

(σx,i, σy,i, σz,i) =
(
R−2

x,i , R
−2
y,i , R

−2
z,i

)
, (7)

xo,i =

{
xref − κRx,1 if i = 1
xo,i–1 − κ(Rx,i–1 +Rx,i) if i ≥ 2

}
with κ = Le

/ Ne∑
�=1

2Rx,� , (8)

yo,i = Ry,i

(
ϕ4,i− 1

2

)
, (9)

zo,i = min(Lz, L̂z)
(
ϕ5,i − 1

2

)
with L̂z = 3Lz − 2max(Rx,i, Ry,i, Rz,i), (10)

(εx,i, εy,i, εz,i) =
(
a(mi)
x , a(mi)

y , a(mi)
z

) · (2ϕ6,i−1, 2ϕ7,i−1, 2ϕ8,i−1). (11)

Equation (5) selects the type of the eddies between Gaussian (m = 0) and
Mexican Hat (m = 1) depending on the probability factor αg ∈ [0, 1]. Equa-
tion (6) determines the radii of the eddy components based on the random
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numbers (ϕ1, ϕ2, ϕ3) ∈ U(0, 1) varying from the lower to the upper bounds
pre-determined earlier. The exponent (weighting factor) β in Eq. (6) drives
the eddy distribution towards the upper bound (large sizes for low frequen-
cies) if 0 < β < 1 or towards the lower bound (small sizes for high frequencies)
if β > 1. The streamwise locations of the eddies (xo) are given by Eq. (8) in
such a way that the distance between any two adjacent eddies is proportional
to the sum of their x-component radii and that all the eddies are contained in
the specified length (Le) of the virtual eddy box. The coordinate xref repre-
sents the forefront position of the virtual eddy box (to be clarified in Sec. 4).
Equations (9) and (10) determines the vertical and spanwise locations of the
eddies, where |yo| ≤ Ry/2 and |zo| ≤ Lz/2 (Lz: the span of the domain).
This means that the cross-section area of the box is Ae = 3RmaxLz that is
required in Eq. (1). The origin of the coordinate system (x, y, z) = (0, 0, 0)
always refers to the geometric centre of the body (aerofoil) in this paper.
The buffer variable L̂z in Eq. (10) is introduced to keep the influence of an
eddy within |z| ≤ 3Lz/2 and therefore an efficient construction of a spanwise
periodic boundary condition of class C∞ is allowed (see Sec. 3.2). This also
means that the size of the largest eddy (Rmax) should be smaller than 3Lz/2.
Lastly, Equation (11) indicates that the directional amplitude and its sign
may change randomly within the specified lower and upper limits.

One of the advantages in the present SEM is that the stream of the
convecting eddies is narrowed around the body of interest (aerofoil) and
its vicinity only, where the size of the stream is controlled by Eq. (9), i.e.
y ∈ [−1.5Rmax, 1.5Rmax]. This helps to minimise the computational overhead
in calculating/storing the inflow velocity signals; removes the necessity to lay
out fine meshes in the far field; and, also keeps the far field undisturbed by
the flow turbulence for clean aeroacoustic environment.

3.2. Periodic Boundary Conditions

One of the most common boundary conditions used in 3D simulations of
aerofoil flows is periodic conditions across the spanwise boundaries. A basic
approach to impose such a periodic boundary condition (PBC) when creating
a synthetic turbulence field is to use a blending technique, e.g. f(z) =
g(z) + g(L − z) for z ∈ [0, L] which satisfies f (2n)(0) = f (2n)(L) for n ≥ 0
but f (2n+1)(0) 	= f (2n+1)(L). The discontinuities (particularly of the first
order) may become a critical issue in aeroacoustic simulations where the
order of accuracy of the solution needs to be high (normally fourth order
or higher). Ideally, C∞-continuity in the PBC will remove the possibility
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of causing dispersive errors (eventually radiating as spurious noise) when
numerical differentiation (e.g. a seven-point-stencil central difference) takes
place across the boundaries.

In this paper, a spanwise PBC with C∞-continuity is proposed to ensure
an artefact-free sound field as a result of the current simulation of aerofoil-
turbulence interaction. The proposed strategy to construct the PBC is that
the virtual box of eddies is duplicated and repeated on the left- as well as
the right-hand side of the original box. The induced velocity profile across
the centre box becomes periodic due to the recurrence of eddy distribution
across the span. This process does not affect the divergence-free condition
which is inherently satisfied for each individual eddy. The spanwise PBC is
created by using the following equation:

ΨPBC(x, t) = Ψ(x−Lzez, t) +Ψ(x, t) +Ψ(x+Lzez, t) (12)

where the original vector potential Ψ(x, t) has already been given by Eqs. (1)
to (3) and through the procedure described in Sec. 3.1. The spanwise domain
is z ∈ [−Lz/2, Lz/2]. Equation (12) indicates that the number of eddies and
the size of virtual eddy box triple in order to implement the current spanwise
PBC. As described in Sec. 3.1 based on Eq. (10), the size of the largest eddy
(Rmax) is limited to 3Lz/2 with its centre located at the middle of the span
in order to prevent an eddy in the centre box from reaching beyond the far
sides of the neighbouring boxes. This leads to:

Ψ|
z=±3

2
Lz

=
∂nΨ

∂zn

∣∣∣∣
z=±3

2
Lz

= 0, ∀n = 1, 2, 3, · · · (13)

and therefore,
ΨPBC|

z=±Lz

2

= Ψ|
z=−Lz

2

+ Ψ|
z=

Lz

2

, (14)

∂nΨPBC

∂zn

∣∣∣∣
z=±Lz

2

=
∂nΨ

∂zn

∣∣∣∣
z=−Lz

2

+
∂nΨ

∂zn

∣∣∣∣
z=

Lz

2

∀n ≥ 1, (15)

which proves the C∞-continuity of the proposed PBC across the spanwise
boundaries.

The same approach may be used in order to create temporal periodicity in
the velocity signal. Duplicating the distribution of the eddies in the stream-
wise direction results in a periodic time signal. A similar approach has been
used by Lund et al. [16]. The periodic time signal is beneficial in terms of
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keeping the computational cost (both CPU time and data storage) at a rea-
sonable level and also allowing for efficient post-processing of the simulation
data associated particularly with Fourier transformation routines.

3.3. Optimisation Target: von Kármán Velocity Spectra

Based on the arrangements described above, an optimisation of the 15
constraint parameters (defined in Sec. 3.1) is performed in order to construct
realistic von Kármán velocity spectra as a result. The von Kármán spectra
for a homogeneous isotropic velocity field are given by [17]:

Φij(k) = A(k)

(
δij − kikj

k2

)
, ∀i ∈ {1, 2, 3} & ∀j ∈ {1, 2, 3} (16)

with

A(k) =
55L5

0Γ(5/6)u
′2
rmsk

2

36π3/2Γ(1/3) (1 + L2
0k

2)
17/6

& L0 =
Γ(1/3)√
πΓ(5/6)

Lt (17)

where ki’s are wavenumbers, k2 = kiki, u′2
rms = u′

iu
′
i/3, Γ is the gamma

function and Lt is the integral length scale. The power spectral density
function for each velocity component can be calculated by

EVK
11 (k1) = 2

∞�
−∞

Φ11(k)dk2dk3, (18)

EVK
22 (k1) = EVK

33 (k1) =
1

2

(
EVK

11 (k1)− k1
dEVK

11

dk1

)
(19)

which yields

EVK
11 (k1) =

u′2
rmsLt

π (1 + L2
0k

2
1)

5/6
, EVK

22,33(k1) =
u′2
rmsLt (3 + 8L2

0k
2
1)

6π (1 + L2
0k

2
1)

11/6
(20)

for the longitudinal and transverse velocity spectra, respectively. The super-
script “VK” denotes “von Kármán”. In this paper EVK

ii (k1) are multiplied by
a factor of 2 to convert them to one-sided spectra. In addition, the spectra
are transformed into a dimensionless frequency domain via:

f ∗ =
fLc

a∞
=

k1
2π

LcM∞. (21)
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where Lc is the reference length in this paper (aerofoil chord) and M∞ is the
free-stream Mach number.

In this work, the velocity spectra required at the position where an aero-
foil’s leading-edge would be located are characterised by u′

rms/u∞ = 0.025
(2.5% turbulence intensity) and Lt/Lc = 0.04. These data were obtained
from an experimental measurement of grid turbulence carried out in an ane-
choic wind tunnel at the Institute of Sound and Vibration Research (ISVR)
of the University of Southampton. The wind speed was u∞ = 80m/s
(M∞ = 0.24) and the aerofoil chord was Lc = 15 cm (hence Re∞ = 8.6× 105

based on u∞ and Lc). It was confirmed that the measured velocity spectra
matched very well with the corresponding von Kármán spectra [18]. Since
the synthetic turbulence is generated at the inflow boundary, the target ve-
locity spectra at the inlet should be different from those at the aerofoil’s
leading-edge position. Under the present numerical set-up, u′

rms/u∞ = 0.04
(4% turbulence intensity) and Lt/Lc = 0.04 are set as the target to achieve
at the inlet, which is found to lead to the desired experimental condition at
the aerofoil’s leading-edge position.

3.4. Optimising Eddy Constraint Parameters

Once the target von Kármán velocity spectra are identified, an optimisa-
tion of the 15 constraint parameters:

φ = (Ne, Le, αg, R
(0)
min, R

(0)
max, R

(1)
min, R

(1)
max, β

(0), β(1), a(0)x , a(0)y , a(0)z , a(1)x , a(1)y , a(1)z )
(22)

is carried out in order to find a local minimum of the following L∞-norm
error function:

E (φ) =
3

max
i=1

f∗
b

max
f∗=f∗

a

∣∣∣∣log10 〈Eii(f
∗)〉

EVK
ii (f ∗)

∣∣∣∣ (23)

with

〈Eii(f
∗)〉 = 1

Lz

∫ Lz/2

−Lz/2

Eii(f
∗, z)

∣∣
(x,y)=(xmin,0)

dz (24)

where f ∗ ∈ [f ∗
a , f

∗
b ] is the range of frequencies considered in the optimisation.

In the current optimisation platform, f ∗
a = 0.1 and f ∗

b = 2.5 are selected,
which correspond to 228Hz and 5690Hz, respectively. The numerical spectra
Eii(f

∗,x) are calculated from the vector potential ΨPBC given by Eq. (12)
that includes both the spanwise and temporal periodic conditions. The error
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function E (φ) returns the largest deviation of the spanwise-averaged numer-
ical spectra from the desired von Kármán ones within the specified frequency
range.

In this work, the number of eddies and the length of the virtual eddy
box are fixed at Ne = 300 and Le = 5.76Lc for computational efficiency
although more eddies and a longer box would help improving the result.
The time required for an eddy to travel the distance of Le is therefore (in
a dimensionless form) a∞t/Lc = M−1

∞ Le/Lc = 24, which is sufficiently long
for a statistical analysis. In the meantime, the smallest eddy size relative
to the aerofoil chord (R

(1)
min/Lc) is limited at an affordable level (0.1 in this

work) since the grid density at the inflow boundary should be sufficiently
high to resolve the smallest eddy. The rest of the constraint parameters
are determined when a gradient-based optimisation technique converges to
a local minimum ∂E /∂φi = 0 (if failing to find the global minimum) of the
error function in Eq. (23). The gradient-based optimisation is accelerated
by adopting Genetic Algorithm (via MATLAB Toolbox) and therefore each
cycle of the optimisation is completed within a reasonable length of time. The
optimisation is repeated with updating the random numbers (ϕ1, · · · , ϕ8)
required in Eq. (4) until the most satisfactory velocity spectra are obtained.
It should be noted that Equation (23) is calculated on the horizontal plane
(y = 0) that covers the aerofoil planform area, and the Ensemble average of
the spectra over the span is taken into account in the iterative optimisation
process in order to get sufficiently uniform spectra across the span. The
length of span is fixed at Lz/Lc = 0.26 in the present work (see Sec. 6 for
the reason). The resulting constraint parameters revealed at the completion
of the optimisation are listed in Table 2.

The resulting velocity signals and their spanwise-averaged spectra ob-
tained are plotted in Fig. 2 and Fig. 3 for each velocity component. It
is shown that the synthetic turbulence spectra are overall in good agree-
ment with the corresponding von Kármán ones across the frequency range
f ∗ ∈ [0.1, 2.5] although the streamwise component (u′) exhibits a fast decay
compared to the vertical (v′) and spanwise (w′) ones (v′ being mainly re-
sponsible for the source mechanism of aerofoil-turbulence interaction noise).
The fast decay in the streamwise component has already been expected from
Fig. 2 where the u′ signal shows significantly less frequent fluctuations than
those of v′ and w′. The decay from the von Kármán spectra can be delayed if
more plentiful eddies in smaller sizes are employed, which leads to increased
cost in actual simulations due to finer meshes required to resolve the small-
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Table 2: Optimised constraint parameters for Eqs. (5) to (11) with spanwise periodic
boundary condition based on Eq. (12) and Lz/Lc = 0.26, in order to obtain von Kármán
velocity spectra at inflow boundary for M∞ = 0.24, u′

rms/u∞ = 0.04 and Lt/Lc = 0.04.

Constraint Parameters Optimised Values

Ne 300 (fixed)
Le/Lc 5.76 (fixed)
αg 0.45087254

R
(0)
min/Lc 0.14648081

R
(0)
max/Lc 0.30203081

R
(1)
min/Lc 0.1 (limited)

R
(1)
max/Lc 0.19325727

β(0) 0.54655705

β(1) 2.12271470

a
(0)
x 0.01509330

a
(0)
y 0.01800811

a
(0)
z 0.01064091

a
(1)
x 0.00821648

a
(1)
y 0.01668158

a
(1)
z 0.01797790
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est eddies. The extra computational effort, however, might not be critically
necessary if there is a sufficient space in the computational domain where the
turbulence can travel freely and becomes increasingly realistic after a certain
distance from the inflow boundary, which is shown in Sec. 5.3. In the mean-
time, it has been checked that the time signals from the two end-span points
are identical as expected due to the spanwise periodic condition imposed by
Eq. (12).

It should be noted that all the spectra are calculated based on periodic
time signals – with the period of T ∗

P = (Le/Lc)/M∞ = 24 – created by the
temporal periodic condition mentioned in Sec. 3.2. The frequency of the
periodic turbulence (f ∗

P = 1/24 = 0.04167) is not far from the lowest eddy
frequency (f∗

a = 0.1 set in the current optimisation) albeit still lower by a
factor of two. The value of f ∗

P can be reduced by extending the length of the
virtual eddy box and allocating more eddies in it, which requires a higher
computational cost. In the current simulation (aerofoil-turbulence interac-
tion), the physics of interest (noise reduction due to a geometric change)
takes place at a much higher frequency (f ∗ > 1). Therefore, the authors
considered that the current value of f ∗

P was adequate in this particular case.
However, a more careful consideration will be necessary if a generic flow
turbulence is studied where much broader spectra are of interest.

4. Governing Equations and Sponge Layers

This section describes the governing equations that are used for the
present simulation of aerofoil-turbulence interaction noise and the sponge-
layer technique for absorbing spurious wave reflections as well as injecting
the synthetic turbulence into the domain through the inflow boundary. The
present governing equations are full 3D compressible Euler equations in a
conservative form transformed into a generalised coordinate system:

∂(Q/J)

∂t
+

∂(E/J)

∂ξ
+

∂(F/J)

∂η
+

∂(G/J)

∂ζ
= −a∞

Lc

S

J
(25)

where the vectors of conservative variables and fluxes are

Q=

⎛
⎜⎜⎜⎜⎝

ρ
ρu
ρv
ρw
ρet

⎞
⎟⎟⎟⎟⎠,E=

⎛
⎜⎜⎜⎜⎝

ρU
ρuU+ξxp
ρvU+ξyp
ρwU+ξzp
(ρet+p)U

⎞
⎟⎟⎟⎟⎠,F=

⎛
⎜⎜⎜⎜⎝

ρV
ρuV +ηxp
ρvV +ηyp
ρwV +ηzp
(ρet+p)V

⎞
⎟⎟⎟⎟⎠,G=

⎛
⎜⎜⎜⎜⎝

ρW
ρuW+ζxp
ρvW+ζyp
ρwW+ζzp
(ρet+p)W

⎞
⎟⎟⎟⎟⎠ (26)
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Figure 2: Synthetic turbulent velocity signals obtained at (x, y) = (xmin, 0) to be imposed
via inflow boundary conditions. Calculation of the signals based on the parameters listed
in Table 2. Plots for two different spanwise locations: mid-span (z = 0) and end-span
(z = ±Lz/2).
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Figure 3: Spanwise-averaged velocity spectra of the synthetic turbulence obtained at the
inflow boundary (x, y) = (xmin, 0) based on the parameters listed in Table 2, in comparison
with the corresponding von Kármán spectra for M∞ = 0.24, u′

rms/u∞ = 0.04 and Lt/Lc =
0.04.
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with the internal energy, the contravariant velocities, the coordinate trans-
formation metrics and Jacobian given by

et =
p

(γ − 1)ρ
+

1

2
(u2 + v2 + w2), (U, V,W )T = A−1(u, v, w)T ,

A−1 =

⎛
⎝ξx ξy ξz
ηx ηy ηz
ζx ζy ζz

⎞
⎠ , J = |A|−1 where A =

[
∂(x, y, z)

∂(ξ, η, ζ)

]
.

(27)

The additional terms on the right-hand side of Eq. (25) for the sponge layers
suggested in [13, 14] are

S =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

σs(x, y)

⎛
⎜⎜⎜⎜⎝

ρ− ρ∞
λs(x)ρ(u− utarget)
λs(x)ρ(v − vtarget)
λs(x)ρ(w − wtarget)

p− p∞

⎞
⎟⎟⎟⎟⎠ for x ∈ Ωsponge

0 for x ∈ Ωphysical

(28)

with
σs(x, y) =

σo

2
(1 + cos[πA(x)B(y)]), (29)

A(x) = 1−max [(xa − x)/(xa − xmin), 0]−max [(x− xb)/(xmax − xb), 0],

B(x) = 1−max [(ya − y)/(ya − ymin), 0]−max [(y − yb)/(ymax − yb), 0],

and

λs(x) = (1+δ)[1−tanh(x/Lc)]+1 with δ = min[2M∞/(1+M∞), 1] (30)

where Ωphysical = {x | x ∈ [xa, xb], y ∈ [ya, yb], z ∈ [−1
2
Lz,

1
2
Lz]} defines a

physical domain in which meaningful simulation data are obtained, and the
rest of the domain is used as a sponge layer (Ωsponge = Ω∞ − Ωphysical) sur-
rounding the physical domain. For the present aerofoil-turbulence interac-
tion simulation, xa = −5Lc, xb = 6Lc and ya = −yb = 5Lc are selected
and the entire domain is Ω∞ = {x | x/Lc ∈ [−7, 11], y/Lc ∈ [−7, 7], z/Lc ∈
[−0.13, 0.13]}. The current computational domain set-up is shown in Sec. 5
(see Fig. 4). The overall sponge coefficient is set to σo = 3 in Eq. (29).
Details about the sponge-layer technique can be found in [13, 14].

The target velocity field for Eq. (28) in the sponge layer is specified by

utarget(x, t) = u∞ +H(x)∇×ΨPBC(x, t) for x ∈ Ωsponge (31)
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where the heavyside step function that is switched on in the zone of eddy
production is defined by

H(x) =

{
1 for x ∈ Ωeddy

0 for x ∈ Ωsponge − Ωeddy
(32)

and the zone of the eddy production is given by

Ωeddy = {x | x ∈ [xmin, xa] & y ∈ [−2Rmax, 2Rmax]}. (33)

Therefore a small portion of the sponge layer (Ωeddy ⊂ Ωsponge) is used to
inject the inflow turbulence into the domain. The height of Ωeddy is set to
4Rmax which is larger than that of Ae (3Rmax as indicated in Sec. 3.1) in
order to ascertain smooth transition between Ωeddy and Ωsponge. Considering
the vertical distribution (y-coordinates) of the eddies given by Eq. (9), the
top and bottom boundaries of Ωeddy are sufficiently distant from the eddies,
where the induced velocity converges to zero, hence smoothly restoring the
uniform mean flow u∞ without discontinuity in Eqs. (28) and (31).

Following up on Sec. 3.1, the parameter xref in Eq. (8) is set to xref =
1
2
(xmin + xa + Le) so that the centre of the virtual eddy box is located at

the centre of Ωeddy at the start of the simulation. The time signal of the
eddy-induced velocity is obtained at each grid point in Ωeddy as the virtual
eddy box moves downstream with the mean flow. In practice, two different
options of calculating the induced velocity may be considered: 1) instanta-
neous values are calculated along with the simulation at each and every time
step (and sub-iterative stages between the time steps as necessary); and, 2)
a full-length time signal with a reasonable time interval is pre-calculated and
stored in a separate binary datafile before the simulation starts which can
be accessed fast whenever required. Since Eq. (2) involves exponential oper-
ators that are slow in execution, the second option is recommended over the
first one although it requires an additional (but not exhaustive) local inter-
polation routine. The second option is also beneficial as the same datafile
(once created) can be re-used for repeating simulations as far as the meshes
remain unchanged inside Ωeddy. In the current computing set-up described
in Sec. 5.1, the wall-clock time taken to create the time signal datafile based
on the second option is typically under an hour without employing any ex-
tra parallelisation or GPU acceleration techniques which might significantly
reduce the pre-processing time.
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5. Numerical Test of the New Synthetic Turbulence

In this section, the proposed method of 3D synthetic turbulence gen-
eration is numerically implemented to test its genuine feasibility for direct
aeroacoustic simulations. The primary viewpoint in this section is the level
of spurious noise that may develop from the synthetic eddies injected into
the computational domain. The eddy vector potential given by Eq. (1) is an
exact solution to the linearised Euler equations free of entropy and acoustic
perturbations [12]. Applying it to the full nonlinear Euler equations may give
rise to the entropy/acoustic waves (spurious noise) in the present simulations.
Also, there is a certain level of dispersive errors existing in the numerical so-
lution that may radiate as spurious noise as well. The objectives in this
section are 1) to ensure that the level of spurious noise is sufficiently low
and 2) to find a suitable grid resolution to achieve this. In the meantime,
it is checked if the statistics of the synthetic turbulence obtained inside the
computational domain matches well with the desired von Kármán spectra at
the position where an aerofoil is to be placed in the next section.

5.1. High-order Computational Aeroacoustic Simulation

In this work, the full 3D Euler equations with the sponge layers described
in Sec. 4 are solved by using high-order accurate numerical methods specif-
ically developed for aeroacoustic simulations on structured grids. The flux
derivatives in space are calculated based on fourth-order pentadiagonal com-
pact finite-difference schemes with seven-point stencils [19]. Explicit time ad-
vancing of the numerical solution is carried out by using the classical fourth-
order Runge-Kutta scheme with the CFL number of 0.95. The numerical
stability is maintained by implementing sixth-order pentadiagonal compact
filters for which the cut-off wavenumber (normalised by the grid spacing) is
set to 0.87π [20]. In addition to the sponge layers used, characteristics-based
non-reflecting boundary conditions [21] are applied at the far boundaries in
order to prevent any outgoing waves from returning to the computational
domain. Periodic conditions are used across the spanwise boundary planes
as indicated earlier.

The computation is massively parallelised via domain decomposition and
message passing interface (MPI) approaches. The compact finite-difference
schemes and filters used are implicit in space due to the inversion of penta-
diagonal matrices involved, which requires a precise and efficient technique
for the parallelisation in order to avoid numerical artefacts that may appear
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at the subdomain boundaries. A recent parallelisation approach based on
quasi-disjoint matrix systems [22] offering super-linear scalability is used in
the present paper. The entire domain Ω∞ indicated in Sec. 4 is decomposed
and distributed onto 312 separate computing nodes/subdomains (26×12×1
in the streamwise, vertical and spanwise directions, respectively). This par-
allel computing set-up is maintained throughout the paper.

A snapshot of the resulting pressure (p′/p∞) and velocity (v′/a∞) fields
obtained at the end of a test calculation is shown in Fig. 4. The calculation
ran up to t∗ = a∞t/Lc = 80 which is sufficiently long to reach a fully devel-
oped flow (after a transient phase from the initial condition) and to obtain
a statistically stationary result when the time signals are sampled for the
duration of T ∗

P = 24 indicated at the end of Sec. 3.4. The present synthetic
turbulence described in Figs. 2 and 3 is created and injected into the ambient
field through the zone of eddy production Ωeddy. The calculation is performed
on a stretched grid with rectangular meshes. The smallest meshes with the
size of Δx = Δy = 0.008333Lc (with Δz depending on the number of cells
used in the spanwise direction) are located at (x, y) = (±0.5Lc, 0) where an
aerofoil will be placed in Sec. 6. The meshes are gradually stretched within
the central (near-field) domain and kept almost uniform in the mid- and
far-field domain (except the downstream sponge zone). A close-up view on
the synthetic turbulence is presented in Fig. 5 based on iso-contour surfaces
of vorticity magnitude, where entirely three-dimensional turbulence struc-
tures are displayed. It shows randomly coiling worm-like structures which
characterise homogeneous isotropic turbulence as reported by Chakraborty
et al. [23].

5.2. Spurious Noise Level

It is shown in Fig. 4 that the resulting synthetic turbulence exhibits very
little influence in the far field even at the low contour levels. In order to
examine the level of spurious noise that may exist at the far field, the time
history of pressure fluctuations is recorded at an observer point x = (0, 5Lc, 0)
(point A denoted in Fig. 4) and the normalised power spectral density (PSD)
of the sound pressure level (SPL) is calculated as

Spp(fn) =
2

p2∞

∫ T/2

−T/2

p′(t)p′(t+ τ)e−2πifnτdτ =
2

Tp2∞
P (fn)P̃ (fn) (34)

where fn = n/T (n is a positive integer). The overline and the tilde denote
time averaging and complex conjugate, respectively. The PSD of the periodic
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Figure 4: Contour plots of perturbed pressure (top) and velocity (bottom) fields due to the
turbulent stream convecting downstream (left to right) at M∞ = 0.24 in an ambient field.
Snapshots obtained at a∞t/Lc = 80 and taken from an xy−plane at the mid-span (z = 0).
Synthetic turbulence generated within Ωeddy based on 4% intensity (u′

rms/u∞ = 0.04) and
4% length scale (Lt/Lc = 0.04) as designed in Sec. 3.4. A total of 24,710,400 grid cells
used in 3D domain. Contour levels up to ±2×10−4 for pressure and ±2×10−3 for velocity.
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Figure 5: Iso-contour surfaces of normalised vorticity magnitude ωLc/a∞ (ω = |∇ × u|)
obtained from the result shown in Fig. 4. A close-up view around the centre of the domain
where an aerofoil is to be placed (see Sec. 6). Four contour levels from 0.5 to 2.

pressure signal is obtained by

P (fn) =

∫ T/2

−T/2

p′(t)e−2πifntdt. (35)

The factor 2/T in Eq. (34) is required to achieve
∫∞
0

Spp(f)df = p′2/p2∞.
The resulting sound pressure spectra are shown in Fig. 6 and the sound

pressure level is listed in Table 3. Four different cases with various grid resolu-
tion are tested in order to find out the minimum number of grid cells required
to resolve the smallest eddies injected into the domain keeping the spurious
noise at a tolerable level. The total number of grid cells used for each case
is listed Table 4. It is clear from Table 3 and Fig. 6 that the spurious noise
decreases as the grid resolution increases, particularly in the mid-to-high fre-
quency range. The grid-dependency test does suggest that about 10 cells
across Rmin is required to keep the level of the spurious noise sufficiently low
in the mid-to-high frequency range. Henceforth, this criterion (10 cells/Rmin,
i.e. 100 cells/Lc in Ωeddy) is applied to the simulation of aerofoil-turbulence
interaction noise in Sec. 6. This criterion (20 cells per eddy “diameter”) is
in line with the result of a previous study [22] which indicated that a single
vortex would be under-resolved with 12.3 cells and over-resolved with 28.7
cells per its diameter for the same spatial discretization used.
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Figure 6: The PSD of spurious noise generated by synthetic turbulence convecting in an
ambient domain. Pressure signals obtained at the observer point A shown in Fig. 4. Four
different levels of grid resolution used (Rmin indicating the radius of the smallest eddy
specified in Table 2).

Table 3: The level of spurious noise generated by synthetic turbulence convecting in an
ambient domain. Tests with four different levels of grid resolution against the small-
est eddy size. Based on pressure signals recorded at the observer point A denoted in Fig. 4.

Minimum number of cells used Resulting spurious noise level

per smallest eddy’s radius (Rmin) (p′2/p2∞)

6 5.157×10−13 (71.1dB)
8 3.876×10−13 (69.9dB)
10 3.701×10−13 (69.7dB)
12 3.900×10−13 (69.9dB)

Table 4: Total number of cells used in the simulation of convecting synthetic turbulence
shown in Fig. 4 for four different levels of grid resolution.

Minimum number of cells used Total number of cells used
per smallest eddy’s radius (Rmin) for the entire domain

6 5, 778, 432 (912×396×16)
8 13, 039, 488 (1176×528×21)
10 24, 710, 400 (1440×660×26)
12 41, 836, 608 (1704×792×31)
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5.3. Mid-domain Velocity Spectra

The synthetic turbulence produced at the inflow boundary region is bound
to change due to the interaction between eddies at the integral scale (e.g.
vortex dynamics) and eventually develops more realistic turbulence char-
acteristics as it convects downstream. In this work, it is aimed to repro-
duce the same turbulence statistics at the position (the observer point B at
x = (−0.5Lc, 0, 0) denoted in Fig. 4) where a previous experimental mea-
surement was carried out (mentioned in Sec. 3.3). For this purpose, velocity
signals are recorded and their spectra are calculated at the observer point B
corresponding to the leading edge of the aerofoil to be located. The resulting
spectra are shown in Fig. 7 and they are overall in good agreement with
the desired von Kármán ones. Also, it is clear by comparing Figs. 3 and 7
that the spectral bandwidth has expanded to f ∗ ∈ [0.1, 5] at the mid domain
from [0.1, 2.5] that was obtained at the inflow boundary. The improvement
in the u′ spectrum is of particular significance. The expanded bandwidth is
attributed to the natural development of the turbulence that takes place as
it travels a sufficient distance from the inflow boundary. The effectiveness of
the proposed synthetic eddy method is successfully demonstrated.

On another note, the success of synthetic turbulence might also be mea-
sured based on how fast the turbulence becomes realistic. This type of mea-
sure will be much more relevant in the context of internal flows where the
distance that the turbulence travels before turning realistic may be a primary
factor to determine the length of the computational domain and therefore
significantly related to the cost of the simulation.

6. Application to Aerofoil-Turbulence Interaction Noise

In this section, the new synthetic turbulence is applied to the simulation
of aerofoil-turbulence interaction (ATI) noise and the results are compared
against a well-known theoretical prediction model and existing measurement
data from a recent anechoic wind-tunnel experiment. ATI is one of the
fundamental source mechanisms of aerofoil noise predominantly generated
by surface pressure fluctuations taking place at the leading edge in exchange
with rapid distortion of the vorticity field impinging on the aerofoil [24, 25].
As ATI can be regarded as a purely inviscid mechanism [24, 25], the present
simulations are based on the Euler equations as described in Sec. 4 and slip
wall boundary conditions [26] are imposed on the aerofoil surface. The Euler
simulation is also preferred in order to isolate the ATI noise from self-noise
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Figure 7: Spanwise-averaged velocity spectra of the evolving turbulence obtained at the
observer point B: (x, y) = (−0.5Lc, 0) (denoted in Fig. 4), in comparison with the corre-
sponding von Kármán spectra for M∞ = 0.24, u′

rms/u∞ = 0.025 and Lt/Lc = 0.04.
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components associated with viscous effects, e.g. scattering of boundary-layer
vortical disturbances inro sound waves at the trailing edge [27].

For the present work, non-lifting thin aerofoils (with zero thickness) with
two different leading-edge profiles are considered: a straight (SLE) and a
wavy leading edge (WLE). The latter is based on a sinusoidal function of z
(spanwise coordinate) that specifies the local position of the leading edge:

xLE(z) = −1
2
Lc + hLE sin [2π(z − 1

2
Lz)/λLE] for z ∈ [−1

2
Lz,

1
2
Lz] (36)

where hLE and λLE are the amplitude and the wavelength of the leading-edge
profile, respectively. The WLE case is presented in this paper to test and
showcase the genuine three-dimensionality of the current approach in both
the geometry and the synthetic turbulence. In this paper, hLE = 0.067Lc

and λLE = 0.5Lz = 0.13Lc are selected as were the case in the counterpart
experiment (carried out in the ISVR anechoic wind tunnel mentioned in
Sec. 3.3). It has recently been studied by Lau, Haeri and Kim [15] that WLE
profiles are effective in reducing ATI noise compared to the SLE case but the
existing study relied only on a simple form of vortical gusts (single-frequency
velocity excitations). A more comprehensive study based on a realistic 3D
turbulence may be achieved by adopting the present SEM approach. It is
envisaged that the present result will form an enhanced scope of advanced
research associated with ATI noise.

The aerofoil geometries and their surface meshes used in the current sim-
ulations are shown in Fig. 8. In both SLE and WLE cases, 660, 120 and 660
cells are used in the upstream; across the chord; and, in the downstream of
the aerofoil, respectively. Also, 660 cells are located in the vertical direction
(330 above and below the aerofoil each). The total number of cells used is
24,710,400 (with the periodic span covered by 26 cells). This is in fact the
same grid set-up used and tested in the previous section for the validation
of the synthetic turbulence except that the smallest grid cell size is slightly
reduced to Δx = Δy = 0.00625Lc (with Δz = 0.01Lc) at the leading and
trailing edges. Based on the same solution procedure described in Sec. 5.1,
the generation and propagation of ATI noise is successfully simulated and
the results are plotted in Fig. 9.

Broadband acoustic response to the impinging turbulence is qualitatively
visualised in Fig. 9 where it is clearly shown that strong dipole sound waves
are emitted from the leading edge of the aerofoil with the secondary scattering
event appearing at the trailing edge. It should be noted that the contour

26



Figure 8: Planform views on two different aerofoil geometries and their surface meshes
used in the present study. SLE (top) and WLE (bottom). WLE based on Eq. (36) with
hLE = 0.067Lc and λLE = 0.13Lc (Lz = 0.26Lc).

levels of Fig. 9 are kept the same as those in Fig. 4 (top), which means that
the sound field shown in the current plot do not contain any visible sign of
interference due to the spurious noise of the synthetic turbulence. In the
meantime, it is apparent in Fig. 9 that the WLE case displays weaker sound
waves (particularly for those with small wavelengths, i.e. high frequencies)
compared to the SLE case plotted on the same scale. This result does agree
with the early investigation by Lau, Haeri and Kim [15].

Sound power spectra obtained at the observer point A (denoted in Fig. 4)
for both the SLE and WLE cases are plotted in Fig. 10 where a theoretical
prediction by Amiet et al. [24, 28, 29] and an experimental measurement per-
formed at the University of Southampton are also included for comparison.
It should be noted that the experimental result includes a shear-layer correc-
tion and has been scaled up by (rexp/Lc)

2/(rsim/Lc) to match the distance
to the observer position and to compensate the 3D decaying rate (p′3D ∝ r &
p′2D ∝ √

r).
Figure 10 shows that the overall levels and shapes of the spectra from

the three different (theoretical, experimental and numerical) approaches are
in good agreement. However, the numerical result exhibits more pronounced
dips and humps in the spectral shape than others, which might indicate that
the velocity spectra of the present synthetic turbulence are not sufficiently
smooth (see Figs. 3 and 7). Although this anomaly can be reduced by em-
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Figure 9: The result of ATI noise simulation obtained at a∞t/Lc = 80 and taken from
an xy−plane at the mid-span (z = 0). For two different aerofoil geometries: SLE (top)
and WLE (bottom). Based on the synthetic turbulence shown in Fig. 7. Same contour
levels for both cases up to ±2 × 10−4. The location of the aerofoil (of zero thickness) is
highlighted with a thick borderline for clarity.
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ploying more eddies (and increasing the size of the virtual eddy box) as men-
tioned at the end of Sec. 3.4, the authors see the current set-up reasonably
accurate and efficient for the study of ATI noise and its reduction mecha-
nisms associated with WLE. The effect of WLE is evident in the bottom
graph of Fig. 10 where both the simulation and the measurement manifest
significant noise reduction (by up to 10dB) particularly in the high-frequency
range. It should be noted that the measurement data (particularly in the
WLE case) contained a noticeable level of self-noise contributions that seem
to have led to a flatter broadband spectrum with a little higher level in the
high-frequency range compared to the simulation data. Finally, Fig. 11 is
plotted to re-confirm that the spurious noise due to the present synthetic
turbulence is sufficiently negligible (20 to 60dB lower than the ATI noise in
the entire frequency range resolved).

7. Conclusions

In this paper, an advanced form of SEM (synthetic eddy method) has
successfully been developed particularly for 3D aeroacoustic simulations of
ATI (aerofoil-turbulence interaction) noise. A total of 15 new constraint
parameters to impose an adequate level of control over the randomly dis-
tributed eddies were introduced and systematically optimised to create a
realistic turbulence statistics based on von Kármán velocity spectra. The
full 3D capabilities of the proposed approach with inclusion of spanwise peri-
odic boundary conditions were effectively demonstrated through large-scale
numerical simulations. Using the stream of eddies which was narrowed down
to target the aerofoil and its vicinity was numerically efficient in three as-
pects: a) that the amount of computational overhead to create the eddies
was minimised; b) that fine meshes to resolve the smallest eddies was not
required at the mid and far fields; and c) that an undisturbed clean acoustic
environment was preserved in the far field. Under the current computational
set-up, it was found that 10 or more number of cells per eddy radius was
required to keep the level of spurious noise minimal particularly in the high-
frequency range. The new SEM combined with a sponge-layer technique
resulted in spurious noise that was 20 to 60dB lower than ATI noise across
the entire frequency range. The overall performance of the proposed SEM
was successfully demonstrated through the simulation of ATI noise, which
was well compared against existing theoretical and experimental data with
some moderate discrepancies in the sound spectra. It is envisaged that the
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Figure 10: ATI sound spectra obtained at the observer point A shown in Fig. 4. Com-
parison of the present results with Amiet’s theoretical prediction [24, 29] and existing
experimental data.
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Figure 11: The level of spurious noise generated by the present synthetic turbulence in
comparison to those from the physical mechanism of ATI noise.

discrepancies were attributed to the fact that the current velocity spectra
were not entirely smooth as those in the counterpart theory and experiment.
There is a scope of work in the future to refine the velocity spectra without
an excessive increase in the eddy population overburdening the computa-
tional cost. In conclusion, the present work offers a solid ground on which
numerical simulations can now provide highly reliable data to discover and
explain the control mechanisms of ATI noise associated with wavy leading
edges.
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