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Abstract

A new numerical method is presented for solving the rotatihgllow water equations on a
rotating sphere using quasi-uniform polygonal meshes. mikthod uses special families of
finite element function spaces to mimic key mathematicgbprties of the continuous equations
and thereby capture several desirable physical propeglated to balance and conservation.
The method relies on two novel features. The first is the ussoofpound finite elements
provide suitable finite element spaces on general polygmeshes. The second is the use of
dual finite element spacems the dual of the original mesh, along with suitably definestebte
Hodge star operators to map between the primal and dual seshabling the use of a finite
volume scheme on the dual mesh to compute potential vorfiaites. The resulting method has
the same mimetic properties as a finite volume method pred@néviously, but is more accurate
on a number of standard test cases.

Keywords: compound finite element, dual finite element, mimetic, slvaivater

1. Introduction

In order to exploit the new generation of massively parallgdercomputers that are becoming
available, weather and climate models will require goo@lbarscalability. This requirement has
driven the development of numerical methods that do notmigpe the orthogonal coordinate
system and quadrilateral structure of the longitudeddstgrid, whose polar resolution clus-
tering is predicted to lead to a scalability bottleneck. gngficant challenge is to obtain good
scalability without sacrificing accuracy; in particulamservation, balance, and wave propaga-
tion are important for accurate modelling of the atmospli8taniforth and Thuburn, 2012).

Building on earlier work |[(Ringler et al., 2010; Thuburn anettér, 2012), Thuburn et al.
(2014) presented a finite volume scheme for the shallow vesfeations on polygonal meshes.
They start from the continuous shallow water equationsérstircalled vector invariant form:

¢t+V'f
U+ gt + V(g + K

0, (1)
0, (2)
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whereg, the geopotential, is equal to the fluid depth times the tgtiohal accelerationyt =

@ + dorog IS the total geopotential at the fluid’s upper surface initigdhe contribution from
orographyyu is the velocity,f = ug¢ is the mass flux, ank = |u[?2/2. The_L symbol is defined
by ut = k x u wherek is the unit vertical vector. Finallyr = ¢/¢ is the potential vorticity
(PV), where¢ = f + £ is the absolute vorticity, withf the Coriolis parameter anél = k -

V x u the relative vorticity, andy = fr is the PV flux. By the use of a C-grid placement
of prognostic variables, and by ensuring that the numeregthod mimics key mathematical
properties of the continuous governing equations (henedetm ‘mimetic’), the scheme was
designed to have good conservation and balance propértiese good properties were verified
in numerical tests on hexagonal and cubed sphere sphergstlen. However, their scheme has
a number of drawbacks. Most seriously, the Coriolis operatbose discrete form is essential to
obtaining good geostrophic balance, is numerically intstest and fails to converge in the,
norm (Weller| 2014; Thuburn etlal., 2014). Also, although dinadient and divergence operators
are consistent, their combination to form the discrete &eiph operator also fails to converge in
theL., norm in some cases. These inaccuracies are clearly visiidealized convergence tests,
and give rise to marked ‘grid imprinting’ for initially symetrical flows. Although they are less
conspicuous in more complex flows, they are clearly undel&ra

Cotter and Shipton (2012) (see also McRae and Cotter, 2adtteGind Thubuin, 2014) showed
that the same mimetic properties can be obtained using aic@tass of mixed finite element
method. The mimetic properties follow from the choice of @prapriate hierarchy of func-
tion spaces for the prognostic and diagnostic variables éectiorf B below), which also pro-
vides a finite element analogue of the C-grid placement oflk#es, or a higher-order gen-
eralization. (The use of such a hierarchy goes by variousesam the literature, including
‘mimetic finite elements’, ‘compatible finite elements’,caffinite element exterior calculus’;
see Cotter and Thuburn (2014) for a discussion of the shallater equation case in the lan-
guage of exterior calculus.) Importantly, the resultingesnes are numerically consistent.

While the mimetic finite element approach appears very@iwe it is not yet clear which
particular choice of mesh and function spaces is most dait&tandard finite element methods
use triangular or quadrilateral elements. For the lowedéiomimetic finite element scheme on
triangles, the dispersion relation for the linearized kivalwater equations sters from extra
branches of inertio-gravity waves, which are badly behauaderical artefacts (Le Roux etlal.,
2007), analogous to the problem that occurs on the trian@#grid (Danilov, 2010). Higher-
order finite element methods also typically exhibit anomalfeatures in their wave dispersion
relations, such as extra branches, frequency gaps, or reup gelocity modes. Some progress
has been made in reducing these problems, at least on guadiiimeshes, through the inclusion
of dissipation or modification of the mass matrix (¢.9. Melet al.| 2013; Ullrich, 2013), though
the remedies are somewhat heuristic except in the mostizddatases. Finally, coupling to
subgrid models of physical processes such as cumulus diomvex cloud microphysics may
be less straightforward with higher-order elements (Pritzen, pers. comm.). These factors
suggest that it may still be worthwhile investigating lowvesder schemes on quadrilateral and
hexagonal meshes.

The above arguments raise two related questions. Can thetroifimite element method in-
spire a development to fix the inconsistency of the mimetitsfivolume method? Alternatively,
can the mimetic finite element method at lowest order be adaptwork on polygonal meshes
such as hexagons? Below we answer the second question bynghthat the mimetic finite
element method can indeed be adapted. In fact, from a cetirpoint the mimetic finite vol-
ume and mimetic finite element schemes have very similarenadlical structure. The notation
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Figure 1: Left: a hexagonal-icosahedral mesh with 162 egits642 degrees of freedom. Right: a cubed-sphere mesh
with 216 cells and 648 degrees of freedom. Continuous liregp@mal mesh edges, dotted lines are dual mesh edges.

below is chosen to emphasize this similalitiloreover, the similarity is siiciently strong that
much of the code of the mimetic finite volume model of Thuburale(2014) could be re-used
in the model presented below. This, in turn, facilitatesdleanest possible comparison of the
two approaches.

The adaptation of the mimetic finite element method emplaystovel features. The first is
the definition of a suitable hierarchy of finite element fumetspaces on polygonal meshes. This
is achieved by defining compound elements built out of tridaugsubelements, and is described
in sectior[8. The second ingredient is the introduction ofial damily of function spaces that
are defined on the dual of the original mesh. This permits #fmition of a spatially averaged
mass field that lives in the same function space as the wyréiod potential vorticity fields; this,
in turn, enables the use of an accurate finite volume schentieeodual mesh for advection of
potential vorticity, and keeps the formulation of the firslement model as close as possible to
that of the finite volume model.

2. Meshes and dual meshes

The scheme described here is suitable for arbitrary tweedsional polygonal meshes on flat
domains or, as used here, curved surfaces approximateadbgrghcets. Two particular meshes
are used to obtain the results in secfibn 5, namely the sarrants@of the hexagonal-icosahedral
mesh and the cubed sphere mesh used by Thuburhlet al. (20b4)eir to facilitate comparison
with their results. Coarse-resolutions versions are shoviig.[1.

Any polygonal mesh has a corresponding dual mesh. (We Vi@l te the original mesh as
the ‘primal’ mesh where necessary to distinguish it fromdbal.) Each primal cell contains one
dual vertex; each dual cell contains one primal vertex; gaithal edge corresponds to one dual
edge and these usually cross each other. Flgure 1 shows fiml pnd dual edges for the two
meshes.

1Readers wishing to compare the two formulations should thatea diferent sign convention is used for the expan-
sion codficients ofkx any vector, such dg+ in (49).
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Figure 2: Schematic showing the function spaces used indhense and the relationships between them. Primal
function spaces are on the bottom row and dual function spaeeon the top row.

3. Function spaces and compound finite elements

The mimetic properties of the scheme arise from the relakigps between the finite element
function spaces. Three function spaces are used on thelpniesh {/o, V1, andV,), and three
on the dual meshv?, V1, andV?). Figurel2 indicates that* (i.e.k x V) maps fromV, to V4
andV- maps fromV; to V#. More precisely, the primal function spaces satisfy théofing
properties.

Property List 1
eueV; = V.ueV,.
e pcVowith [¢dA=0 = JueVistV-u=g.
e yeVy = ViyeVs.

o VeV, V-V =0,andYu e V1 stV -u =0, 3y € Vg stu = V*y. That is,V+ maps
onto the kernel oV- .

The second condition assumes spherical geometry so thatdhe no lateral boundaries. The
same assumption will be made throughout this paper; inqudati, no boundary terms will arise
when integrating by paﬁs

2NoteV+ andk - Vx (like V andV-) can both be defined as intrinsic operations on a curvedejnigithout reference
to k or a third dimension.
3The most general form of the Helmholtz-Hodge decompositibm vector fieldu in 2D is

U=Ve+V*ty+h,
whereg¢ is a potentialy is a stream function, antis a harmonic vector field, i.e. one satisfying

VV-h+V'k-Vxh=0.
4



In a similar way, FiglR indicates th&tmaps fromV° to V! andk - Vx maps fromv? to V2.
More precisely, the dual function spaces satisfy the falhawproperties.

Property List 2
elleVl = k-VxleV2
o £eV2with [6dA=0 = JheVistk-Vxu=£
e teV? = VpeVvl

e VP eVO k- VxVy=0,andvli e Vistk-VxtG=0, 3y € VOstl = Vg. Thatis,V
maps onto the kernel ¢f- Vx .

As noted earlier, standard finite element schemes in twomsionas typically use triangular
or quadrilateral elements. Several families of mixed fieiements that satisfy Property List 1
on such meshes are known. However, in order to apply our seloenmore general polygonal
meshes we will need to define families of mixed finite elemeatisfying Property List 1 on
those meshes. One way to do this is to asmpound element#&ny polygonal element can be
subdivided into a number of triangular subelements. A Hasistion on the polygonal element
can then be defined as a suitable linear combination of basdibns on the subelements. The
allowed linear combinations are determined by the requérgrno satisfy Property List 1 or 2;
see below.

The desire to use a dual mesh increases the need for finiteelepaces on polygons, and
hence for compound elements. Only in special cases (sutleasibed sphere, Figl. 1) can both
the primal and dual meshes be built of triangles and quaerds; other cases require higher
degree polygons for either the primal or dual mesh (or both).

For a triangular primal mesh, Bia and Christiansen (2007) describe a scheme for the con-
struction of a dual hierarchy of function spaces. The duamsements are compound elements,
similar, though not identical, to those used here. Howeteir scheme is limited to the case of
a triangular primal mesh and a barycentric refinement foctmestruction of the dual.

In a complementary study, Christiansen (2008) describesfimite element basis functions
satifying Property List 1 may be constructed on arbitrarlygonal elements, without the need
to divide into subelements, through a proceshiamonic extensianFor example, ley; be
a basis function fol( associated with primal vertex Definey; to equal 1 at vertel and
zero at all other vertices. Next exteygl harmonically along primal mesh edges; that is, its
second derivative should vanish so that its gradient isteohalong each edge. Then extend
harmonically into the interior of each element; that isysol

V2y i=0 3)

subject to the Dirichlet boundary conditions given by thewn values ofyj on element edges.
In a similar way, letve be a basis function fov; associated with edge Define the normal

The fourth condition in Property List 1 implies that all navetgent fieldsu can be written a¥+y, which rules out the
possibility of harmonic vector fields. This is appropriabe $pherical geometry, since there exist no non-zero haamon
vector fields on the sphere. However, for a doubly periodgléar example, for which a constant vector field is harmonic,
we would have to extend the fourth condition to allow for hanie vector fields. This issue does nditeat any of the
discussion below except for the discrete Helmholtz decaitipa (sectiof 413), which would only need to be extended
in the obvious way to allow for harmonic vector fields.
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component of/. to be a nonzero constant along edgsome arbitrary sign convention must be
chosen to define the positive direction) and zero at all c¢dges. Then exteng harmonically
into the interior of each element; that is, solve

V(V-vg) =0 (4)

and
Vi(k-Vxve)=0 (5)

subject to the known values of the normal component at elesdges, for example by writing
Ve = Vo + V4y, implying V2¢ = ¢ and V2 = ¢, for constants; andc,. The boundary

conditions determine the value of, but notc,. However, condition[{3) along with the fourth
property in List 1 implies that we must choase= 0, so that[(b) reduces to

K-V XVe=0. (6)

For the last function spadé, the basis function associated with delf defined to be a nonzero
constant in cell and zero in all other cells. It may then be verified that thepprties in List 1
do indeed hold for the spaces spanned by these basis fusiction

Although the harmonic extension approach provides a germathod for constructing the
lowest order mimetic finite element spaces on polygonal e®sts drawback is that, except for
the simplest element shapes, the basis functions cannoube finalytically. Even if they are
found numerically, the inner products required for the éritement method cannot be computed
exactly, either analytically or by numerical quadrature.

Here we take inspiration from both Ba and Christiansen (2007) and Christiansen (2008)
to construct spaces of compound finite elements for aripralygonal primal and dual meshes,
by a process that might be calldéscrete harmonic extensiori-or the function spaces on the
primal mesh, in fect, we solve a finite element discretization[df (B), (4), @idon the mesh
of triangular subelements in order to construct the comgdasis elements for the original
polygonal mesh. For this discretization we use the lowed¢iomimetic finite element spaces
on the triangular subelements, in whisty comprises continuous piecewise linear elements,
V1 comprises the lowest order Raviart-Thomas elementsyVarmbmprises piecewise constant
elements; P1-RTO-P§ in standard shorthand. Although only discrete version8pf@), and
(@) are solved, it may be verified that the properties in Libiold exactly. The basis functions
on the triangular subelements are known analytically, &ddompound elements are linear
combinations of these; therefore, integrals of productsasfs functions, for example to compute
entries of a mass matrix, can all be computed exactly.

The resulting compound elements provide a generalizatipoliygonal meshes of the P1-RT0580
hierarchy of spaces, so we will refer to them as compound FA-RPC elements. Like the non-
compound spaces described by Christiansen (2008), thesixpecodficients forV correspond
to mesh vertices, fov; to edges, and fov, to cells. Thus, this hierarchy provides a finite el-
ement analogue of the polygonal C-grid if we choose to repriegelocity inV; and the mass
variable inVs.

The construction of basis elements for the dual spaces @dsde a very similar way, except
that the basis function fov?® is given bykx the solution of [4) and{6). This gives rise to a
compound P1-NO-P¥ hierarchy of spaces, where NO refers to the lowest ordediweensional
Nédélec elements.

An important detail concerns the number of subelementseteeld may appear natural to
subdivide am-gon cell inton triangular subelements. However, it will be necessary toutate
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Figure 3: Example of part of a hexagonal primal mesh (satidd) with its triangular dual mesh (dashed lines) and the
supermesh of triangular subelements (all lines) used tstaast the compound elements.

integrals on the overlap between primal and dual elemeatgi¢[4.2). In order to be able to
do this when the domain is a curved surface approximateddnegtiangular subelement facets,
both the primal and dual compound element meshes must kefrouil triangular subelements
of the the same supermesh. To achieve this we diwiden cells (whether primal or dual) into

2n subelements (Fifl 3).
It is convenient to normalize the basis functions as foltows

@ €Vsy: f o dA = §jir; (7)
cell i’

Ve€ V7! f Ve Ndl = See; (8)
edgee

vi € Vo yilvertexj’ =0jj; 9)

BieV?: f BidA= jj; (10)
dualcell j

Wee V! f We - mdl = See; (11)
dualedgee’

Xi € Vo Xildual vertexir = Oii’- (12)

Heren is the unit normal vector to primal edgeandm is the unit tangent vector to dual edge

e, with m andn pointing in the same sense (ire: m > 0, though they need not be parallel if

the dual edges are not orthogonal to the primal edges), lahuburn and Cotter (2012). The

normalization is chosen so that degrees of freedom for fields, andV? correspond to area
7
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Figure 4: Typical compound basis elements of the functi@tep on a square mesh (left) and a hexagonal mesh (right).
structures. Top row; € Vo; middle rowve € V1; bottom rowy; € Vo. In the middle row, at subelement edges the
normal components of the basis vectors are continuous.

integrals of scalars over primal cells and dual cells, retpely, degrees of freedom for a field
in V1 correspond to normal fluxes integrated along primal edgegregs of freedom iv?
correspond to circulations integrated along dual edgetsdegrees of freedom for fields Wy
andV?° correspond to nodal values of scalars at primal verticescaradi vertices respectively.
Again, this corresponds closely to the framework of Thukamd Cotter((2012).

Melvin and Thuburni(2014) have analyzed the wave dispersioperties for finite element
discretizations of the linear shallow water equationsgitirese compound elements. That paper
gives explicit expressions for thé; andV, compound element basis functions for the cases
of a square mesh and a regular hexagonal mesh on a plane. Fergemweral meshes it is
straightforward and convenient to construct the compolgment basis functions numerically.
Figure[4 shows typical basis elements for the three primahnignction spaces for quadrilateral
and hexagonal cells.

The fields used in the computation are represented as ewpansi terms of these basis
elements. For example,

¢ = Z dici € Vo, (13)

U=>" Ueve eVy (14)
e
8



for the prognostic geopotential and velocity fields, and

£=> & €Vo (15)
i

for the relative vorticity field. Here the sums are global sumaer all basis elements in the rele-
vant spaces. In some cases it will be useful to introduceshaae representations of fields; these
will be indicated by a hat symbol where necessary to distsigthem from the corresponding
primal space representations. For example,

¢ = Z dixi e VO, (16)

0= 0w eVl (17)

£=>4B; € V2 (18)
i

The fieldsp and¢ have the same number of degrees of freedom, and it is possibkruct
a well-conditioned and reversible map between them by deingrthat they agree when inte-
grated against any test function in the primal spageSimilarly, the fieldss and( have the same
number of degrees of freedom, and it is possible construelbomnditioned and reversible map
between them by demanding that they agree when integragéasa@ny test function in the pri-
mal space/. It will also be useful to introduce spatially averaged ians of some fields. For
example,

$=> i € Vo, (19)
]

¢=> 0B e V2 (20)
j

Here,$ and¢$ have the same number of degrees of freedom, and it is possib&ruct a well-
conditioned and reversible map between them by demandatghiey agree when integrated
against any test function in the primal spa&g ¢ or ¢ can be obtained from by demanding that
they agree when integrated against any test functioryinn effect this provides an averaging
operation fromV, to Vg or V2. (However, we should not expect to be able to obgafrom ¢
or ¢, as this would require an un-averaging operation, whichbilill-conditioned if it exists at
all.)

It will be convenient to be able to refer to the vector of degref freedom for any field. To
do this, we will use the same letter (with hat, tilde or baréeded) but in upper case. Thus, for
example® will be the vector of valuess, ¢, ...)", U will be the vector of values; s, .. .)T,
etc.

4. Finite element scheme

Finite element schemes solve the governing equations bypgippating the solution in the
chosen function spaces, written as expansions in termssi$ hanctions (e.g[(13)[((14)), and

9



demanding that the equations be satisfied in weak form, shattien multiplied by any test
function in the appropriate space and integrated over theaito In this approacij1) becomes

fa/i (e +V-f) dA=0 VajeV,, (21)

or, regarding the integral as an inner product for which weituce angle backet notation,

{aj, ) +{a;,V-f) =0 Va; € V,. (22)
Similarly, (2) becomes
fve Aue+ gt + V(g + K dA=0 VveeVy, (23)
or
(Ve, Up) + (Ve, 0) + Ve, V(g7 + K)) = 0. (24)

(The construction of the nonlinear terimg andk is discussed in sectign 4.6 below.) The method
generally leads to a system of algebraic equations for tkeawn codficients in the expansion
of the solution.

The following subsections show how the mimetic finite eletmeathod can be re-expressed
in terms of certain matrix operators acting on thefiioent vectorsb, U, etc. The notation is
chosen to highlight the similarity to the finite volume scleeofi Thuburn et &l. (2014).

4.1. Matrix representation of derivatives — strong derivas

The velocity basis elements are constructed and normadized to have constant divergence
over the cell upwind of the edge where the degree of freedsides, with area integral equal to
1, and constant divergence over the cell downwind of thiseedgth area integral equal tel,
with zero velocity and hence zero divergence in all othdscé&hus

V Ve = Z Neii €V, (25)
i

whereng; is equal to 1 when the normal at edgeoints out of celli, equal to—1 when the
normal at edge points into celli, and is zero otherwise. We will writ®, for the matrix whose
transpose has componengs D is called an incidence matrix because it describes sometsspe
of the grid topology. Hence, the divergenief an arbitrary velocity fieldi is

Zéiai =6=V-U=ZUQV~VQ=Zueneiai. (26)
i e ei

Equating cofficients ofa; gives

0 = Z Neile, (27)
e

or, in matrix-vector notation
A = DyU. (28)

Note we could have demanded tHatl(26) should hold when iatedrgainst any test function
in V,, to obtain the same result. However, this would obscureabethat[[26) actually holds at

10



every point in the domain (except on cell edges where allseara discontinuous), not just when
integrated against a test function. In this seise, V, — V; is astrongderivative operator.
Similarly, the basis elements Wy are constructed so that

VJ_'yl = Z _te jVe, (29)
e

wheret, j is defined to equal 1 if edgeis incident on vertex and the unit tangent vectorat
edgee points towards vertex, —1 if it points away from vertey, and zero otherwise. The unit
normal and unit tangent at any edge are related byk x n. Hence, a stream function is
related to the corresponding rotational velocity fieldy

Z UeVe = U = V'y = Z YiVtyj = Z —Yite Ve (30)
e j je

Equating co#ficients ofve and definingD; to be the matrix whose entries alg gives the
matrix-vector form
U=-D1¥. (31)

Equation[(3D) holds pointwise (again with the exceptionistdntinuities), s&v* : Vo — V1 is
a strong derivative operator.

The matrice®; andD, are exactly the same as in the finite volume framework of Thubnd Cotter
(2012). In particular, they have the property that

Dg D]_ = O, (32)

giving a discrete analogue of the continuous prop®rtW-+ = 0.
Analogous relations hold on the dual spaces.

Vyi=- Z NeiWe (33)
e
implies that the discrete analogue of
a=vp (34)
is o
U =D;P, (35)
whereD; = —DJ. Similarly
K-V xWe= ) te ) (36)
j
implies that the discrete analogue of
is o
= =DyU, (38)

whereD; = Dj. Again, these are strong derivative operators.
The matriced; andD, have the property

D,D; =0, (39)

giving a discrete analogue in the dual space of the contisivelationk - V x V = 0.
11



4.2. Mass matrices and other operators
Define the following mass matrices for the primal functioasgs:

Lii: = i, aj) = fa/icyi/ dA (V2 - Vo), (40)
Mee = <Ve,Ver> = fve . Ver dA (Vl g V]_), (41)
Njj =y i) = fym‘f dA (Vo = Vo). (42)

The expressions in parentheses indicate lthapsV, to itself, etc. (Analogous mass matrices
may be defined for the dual spaces; however, they will not led@e here.)
The following matrices are also needed.

Rji = (yj, @), (V2 = Vo), (43)

Wee = —(Ve, Vé> =-Wee, (Vl - Vl)’ (44)
Hee = (Ve,We), (Vl - V), (45)

Jijr =By (V2 > Vo). (46)

For completeness we may also define
i =i xi),  (VO— Vo), (47)

though we will not need to employ this matrix in the shallowtevascheme.
One further operator will be needed to construct the kirestiergy per unit mass. Itis

Tieezf Ve Ve dA= Aaj,Ve-Ve) (V1®V1 — V). (48)
celli

whereA; = (Li;) ! is the area of primal cell
All of these matrices can be precomputed, so that no quaéragéeds to be done at run time.
Moreover, they are all sparse, so they canfieiently stored as lists of stencils and €ib@ents.
Let U+ be the coficients of the expansion of the projectionwsf into V1:

(Ve: ) UgVe) = (Ve, )" UeVg) = (Ve, Uy WVee V1. (49)
(=4 (=4

Using [41) and[(44) gives the discrete version of theperator:
MU* = -WU. (50)

Demanding agreement betweEn|(13) (16) when integrgsedst any test function X,
leads to .
LD = 10. (51)

Similarly, demanding agreement between (14) (17) witegiated against any test function
in V1 gives )
MU = HU, (52)
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while demanding agreement betweken] (15) (18) when mtedjagainst any test function in
Vo gives )
NE = JZ. (53)

The relations[(51),[(82)[(53) provide invertible maps bedw the primal and dual function
spaces. Thus, they are examples of discrete Hodge startorsefe.gl Hiptmair, 2001). They
may be contrasted with the analogous relations employedhubdrn and Cotter (2012) and
Thuburn et al.[(2014) for the finite volume case, which do nebive mass matrices.
Demanding agreement betweEn](18)] (19), (20) wherratmtjagainst any test function
in Vg leads to
NO = JO = Rd. (54)

This is the matrix representation of the averaging opedismussed in sectidd 3.

4.3. Matrix representation of derivatives — weak derivagiv

A field in V3 is discontinuous, so its gradientWy can only be defined in weaksense, by
integrating against all test functionsVh. For example,

g=Ve¢ (55)

must be approximated as
(Ve @) = (Ve, V§) ¥Ve € V1, (56)

where¢ € Vo, g € V1. Expanding both andg in terms of basis elements and integrating by
parts then leads to the matrix form .
MG = D;L®. (57)

Similarly, the curl of a vector field ilV; must be defined by integration against all test
functions inVo. For example, the discrete analogue of

E=k-Vxu, (58)

after expanding in basis functions and integrating by péts

N= = D,MU. (59)
Combining these two results, the discrete analogue of

z=K-Vx V¢ (60)

NZ = D,D;L®, (61)

which is identically zero.

These derivative operators can be combined to obtain thiatiap of a scalar. For a scalar
¢ € V,, the discrete Laplacian i®;M~'D;L®. For a scalai € Vo, the discrete Laplacian
is -N"'D,MD;¥. The operators introduced above lead to a discrete versitreddelmholtz
decomposition, in which an arbitrary vector field is decosgminto its divergent and rotational
parts:

U=M71D;L® - Dy¥. (62)

Figure[ summarizes how the operators introduced here mapeber the dierent function
spaces.
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Figure 5: Schematic showing the function spaces used indfense and how the various matrices introduced above
map between them.

4.4. Some operator identities

The operators defined above satisfy some key relations ttarpin the mimetic properties
of the scheme. We have already seen that

D2 D]_ =0 (63)

and o
D2D1 = O, (64)

leading to discrete analoguesWf V* =0 andk - Vx V = 0.
Next, note that the basis elemefiive a partition of unity, that is

D.m=t (65)
J

at every point in the domain. Consequently

D Rji=(Lay=1 (66)

j
and

Dl =By =1 (67)

j
Now let
(//:Z(//j)/j € Vo. (68)
j

By considering the projection &fy into V1

(Ve, (V) = —(Ve, V) (69)
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and integrating by parts and using the matrices defined iosstZ.] and4]2, we obtain
— D,W = RDs. (70)

This identity is key to obtaining the steady geostrophic mptbperty (section 4.5.3 below). A
rough interpretation is that averaging velocities to cargtthe Coriolis termsW) then taking
their divergenceld,) gives the same result as computing the velocity divergébgpefollowed
by averaging td/, (R). One consequenceBWD; = —-RD;D; = 0.

An identical formula to[{70) relatin@k andW was obtained by Thuburn and Cotter (2012)
for the finite volume case. The result was originally derif@dthe construction of the Coriolis
terms on orthogonal grids by Thuburn et al. (2009),land Thuband Cotter| (2012) showed that
it could be embedded in a more general framework applicabiemnorthogonal grids. Moreover,
Thuburn et al.[(2009) showed that, for any givemith the appropriate stencil (which we have
here) and satisfying (66), there is a unique antisymmetriatisfying [70), and gave an explicit
construction forlW in terms of R. Thus, although the context and interpretation are skghtl
different here, we can, nevertheless, use the Thuburn et akrectitn in implementing the
mixed finite-element version of th& operator!

Now consider the two representations of any vector fietdV 1, 0 € V? related by

(v,uy =¢v,0)y Vv eV, (72)
so that A
MU = HU. (72)
SinceVty; € Vy,
(VEyj,u) =(Vhyj, 0) Vyj € Vo, (73)
and integrating by parts gives
—(yj, k- Vxu) = —(yj,k-Vx0) Yyj e V. (74)
Hence . L
- D,MU = -JD,U. (75)

Finally, substituting from{72) and noting thédtis arbitrary gives
D,H = JDs. (76)

The interpretation of this identity is that, for a velocitgli in V1, taking the curl followed by
mapping to the primal space is equivalent to mapping thecitglfield to the primal space then
taking its curl. One consequence is tBeHD; = JD,D; = 0.

Finally, lety € V, andy € V° be two discrete representations of a scalar field related by

(@, x) ={a,x) Ya € Va, (77)
so that A
LX = IX. (78)
SinceV - ve € V; for anyve € V;, we have
<V'V69X> = <V'V69/%>9
Ve, Vx) = (Ve Vi),
DiLX = HD:X, (79)
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or, using [78) and noting that is arbitrary,
D;l = HD.. (80)

Using these identities and the Hodge star operators, it eaeén that taking a weak deriva-
tive in the primal space is equivalent to applying a Hodge tstanap to the dual space, taking
a strong derivative in the dual space, and applying anotbelgd star to map back to the primal
space:

M™DiL = (M*H)D;(17ML); (81)
N-1D,M (N1J) Dy (H™Mm) (82)
(Cotter and Thuburn, 2014). Thus, certain paths in[Hig. Sroate. Weak derivative operators

in the dual space can be defined by demanding a similar equialwith primal space strong
derivatives; however, the resulting formulas are lessaglegnd, in any case, will not be needed.

4.5. Linear shallow water equations

We first examine the spatial discretization of the lineatlsthawater equations to illustrate
how some key conservation and balance properties ariserotding shallow water equations
(@), (2) when linearized about a resting basic state wittstaort geopotentialy and with constant
Coriolis parametef become

0, (83)
0. (84)

By writing these in weak form (analogous [0122) and (24)pandingy andu in terms of basis
functions, and using the notation and operators definedealvey obtain

(i)+¢0D2U = 0, (85)
MU - fWU+D;L® = O. (86)

¢t + V - (dou)
U + fut + Vo

4.5.1. Mass conservation

Mass conservation is trivially satisfied (for both the linaad nonlinear equations) because
the discrete divergence is a strong operator, so the domigigral of the discrete divergence of
any vector field vanishes.

4.5.2. Energy conservation
For the linearized equations the total energy is given by

E = %f¢2+¢ou-udA
1 1. 1
= SOTLO + ShUTMU. (87)
Hence, the rate of change of total energy is
‘fj—'tz = O'LD+ ¢oU"MU

~o®"LD,U + ¢oUT (fWU — Dy L)
= 0 (88)

where we have used the fact thaandM are symmetric\V is antisymmetric, an®; = -D;.
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4.5.3. Steady geostrophic modes

The linear shallow water equations support steady nongire flows in geostrophic bal-
ance. A numerical method must respect this property in dodlee able to represent geostrophic
balance. However, it is non-trivial to achieve this propdrtcause several ingredients must fall
into place.

e The geopotentiap must be steady. The steadinesspofollows immediately from the
assumption tha? - u = 0.

e The relative vorticity¢ must be steady; neither the pressure gradient nor the Gotieéom
should generate vorticity. First note that, from Properistl, U = —D;¥ for someY.
Taking the curl of the momentum equation then gives

NE = D;MU = Dy(- fWDy¥ — D1L®). (89)

The pressure gradient term does not contribute bedapBe = 0, and the Coriolis term
does not contribute becauBgWD; = 0.

e There must exist a geopotentimthat balances the Coriolis term so that the divergence is
steady. Taking the divergence of the momentum equatiors gineedivergence tendency

A = DM Y= fWDY - D1). (90)

If we define® = fL-1RT¥ and use the transpose bf[70) we find thaloes indeed vanish;
thus the requireg does exist.

Consequently, the scheme does support steady geostroptisnfor the linearized equations.
(Note, it is not necessarily true that any giverfield can be balanced by some non-divergent
velocity field. On some meshes, particularly those withnigiglar primal cells, there might not
be enough velocity degrees of freedom to balance all passifitlds.)

4.5.4. Linear PV equation

A generalization of the steady geostrophic mode propertiydsthe scheme should have a
suitable PV equation. In this section we consider the limeae; the nonlinear case is dealt with
in sectio4.6.8.

The mass fields and the vorticity field¢ live in different spaces. To construct a suitable
discrete PV we need an averaged mass fieldat lives in the same space &sThe linearized
PV should be independent of time. For this to hglénd$ must see the same divergence field.

For a general (possibly divergent) velocity fieldthe vorticity equatior (89) becomes

NE = fD,WU. (91)

Define¢ using [54). Then the evolution gfis given by

NOd = RO
-¢poRDU
$oDWU, (92)

(using [Z0)). Thusz and® see the same divergene®,WU; consequently the linearized PV
E/¢o — f®/43 is independent of time.
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4.6. Nonlinear shallow water equations

The nonlinear rotating shallow water equations hfe (1) BpdWriting these in weak form
(22) and[[24), and letting, Q, andK be the vectors of cdicients for the discrete representations
of the mass flux = ug, the PV fluxg = fr, and the kinetic energy per unit mdss u - u/2, the
nonlinear discretization becomes

® + DyF
MU + MQ* + D1 L(®7 + K)

0, (93)
0. (94)

The remaining issue is how to construct suitable valuesethiree nonlinear terms, F, and

Q-

4.6.1. Constructing K

The discretization ok follows the standard finite element construction, whicloiptoject
Vkinto V. It may easily be verified that this is equivalent to projegk into V, before taking
the weak gradient. Using the operator defined in sectidn 4.2, the expansiorfiatientsK of
the projectedk are given by

1
ki = E;Tieeueue’- (95)

4.6.2. Constructing F

Because the field is approximated as piecewise constant, its degreeseetldbm can be
interpreted as primal cell integrals. Similarly, the dexgref freedom of the field are the inte-
grals of the normal velocity fluxes across primal cell edges] theD, operator looks exactly
like a finite volume divergence operator. Thus, it is stréfigfward to use a finite volume advec-
tion scheme for advection @f The mass flux is constructed using a forward in time advactio
scheme, identical to that usedlby Thuburn et al. (2014) gusia fluxedJ and the mass field
as input. We write this symbolically as

F = adw (U, ®). (96)

The subscript 1 indicates that this version of the adved@®eme operates on the primal mesh
and works with densities or concentrations.

4.6.3. Constructing €
So far we have not needed to use the dual mesh representigionfield. However, in order
to use the same finite volume advection scheme as Thuburn(804dk) to compute PV fluxes,
we need a piecewise constant representation of the PV fieddalrcells, and a representation of
the mass flux field in terms of components normal to dual celesd These are naturally given
by the dual function spaces: _
= +&)/¢ eV?, (97)

and _
fe e VL% (98)

Applying (50) followed by[(5R) to the mass flux gives

HFL = MF* = -WFE (99)
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Now consider the evolution of the dual mass figld
JO = N® = D;WF = —D,HFL = —JD,FL, (100)
ie. .
® + DoFL =0. (101)

Since D, acts exactly like a finite volume divergence operator on thal anesh,¢ behaves
exactly as if it were evolving according to a finite volume adion scheme.

Next, in order for PV to evolve in a way consistent with the mfsld ¢, we construct PV
fluxes inV?! using the dual mesh finite volume advection scheme:

QL = adw(FL,II) (102)

The subscript 2 indicates that this version of the advedahreme operates on the dual mesh and
works with quantities analogous to mixing ratios (such asA#PVFinally, these dual mesh PV
fluxes are mapped to the primal mesh for use in the momentuatiequ

HQL = MQ*. (103)

It may be verified that the resulting vorticity equation t%n's indeed analogous t6 (101),
involving the potential vorticity fluxQ+. Using [53),[(59),[(94) and(76), we have

JB = NE = DMU = -D,MQ*
= -DHQ* = -JD,Q".
Hence, .
Z+D,QL =0, (104)

which is of the desired form. The similarity df (1104) aiid (] Okeans that it is possible to
construct PV fluxes from the dual mass flu¥essuch that the evolution of the PV is consistent
with the evolution ofD.

4.7. Time integation scheme
The same time integration scheme as in Thuburnlet al. (28146d.
O™ @ "+D,F = 0, (105)

= e ¢
MU™! - MU" + HQ* + D1L(® + K) 0. (106)

Here,Gt indicates the usual (possiblyfecentred) Crank-Nicolson approximation to the integral
over one time interval:

U= ey + punat (107)
(for any fieldy) wherea + 8 = 1. All results presented below uge= g = 0.5.

F is an approximation to the time integral of the mass flux acposnal cell edges computed
using the advection scheme. The velocity field used for theettbn isU. We write this
symbolically as

F = Advy(T', o). (108)
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(The notation Ady, as distinct from adyin (@), indicates that here we are working with time
integralsU’ andF.)

Finally, Q* is an approximation to the time integral of the PV flux acrosaladges com-
puted using the advection scheme. Dual grid time integnai@st fluxes are calculated from the
primal grid time integrated mass fluxes as

HFL = —WF. (109)

These are then used in the dual grid advection scheme to d¢erntautime integrated PV fluxes:
QL = Adv,(FL,TI". (110)

4.8. Incremental iterative solver

The system[{105)(106) is nonlinear in the unknowfist, U™, It can be solvedficiently
using an incremental method; this may be viewed as a Newtdhadewith an approximate
Jacobian. Aftel iterations [106) and (106) will not be satisfied exactly biit vave some
residualsRy, Ry defined by:

Ry = oV -a@"+D,F, (111)
= -t
Ry MUD — MU" + HQ* + D1L(® + K) . (112)

Here®® andu®) are the approximations afteiterations tocD”*1 andU™? and it is understood
that these have been used in evaluaEan?l andD;L(® + K) We then seek updated values

o =0 4+, UMY =y 41U, (113)
that will reduce the residuals, where the incremaritdJ)’ satisfy
@ + aAtD2¢*U’ = —Ry, (114)

U’ + aAtM D1 LD’ = -MIRy. (115)

Here,¢* is a reference value af; in the current implementation it is given gy} interpolated
to cell edges. To avoid the appearance of the non-sparsexnvtt in the Helmholtz problem
below, a sparse approximationi~! has been introduced. The constructionf? is briefly
discussed in the Appendix.

EliminatingU’ leaves a Helmholtz problem fdr':

@’ APDyp* MID1 LD’ — @' = Ry, — AtD2¢* MIRy. (116)

In the current implementation, the Helmholtz problem issedlusing a single sweep of a full
multigrid algorithm. This gives diicient accuracy to avoid harming the convergence rate of the
Newton iteration. Oncé’ is found,U’ is obtained by backsubstitution in{115). Finally, (1L13)
is used to obtain improved estimates for the unknowns.

Testing to date has given satisfactory results with 4 Neut&yations. The algorithm requires
the inversion of several of the linear operators represeatematrices above. The appendix
describes how this is done.
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Table 1: Convergence of the scalar Laplacian on hexagouataired sphere grids.

Hex Cube
Ncells | L. err L, err Ncells | L. err L, err
42 | 0.14 0.074 54| 0.12 0.064
162 | 0.033 0.019 216| 0.030 0.016
642 | 0.0090 | 0.0049 864 | 0.0077 | 0.0043
2562 | 0.0026 | 0.0012 3456 | 0.0038 | 0.0012
10242 | 0.00082| 0.00031 13824 | 0.0022 | 0.00037
40962 | 0.00036| 0.000081| 55296| 0.0012 | 0.00012
163842| 0.00018| 0.000022| 221184| 0.00062| 0.000039

5. Results

The same tests were applied to the finite element shallowrwadelel as were applied to
the finite volume model cf Thuburn etal. (2014). Only a sulifetesults are shown here to
emphasize the ffierences between the two models. Other aspects are theifudlow

e Stability. All experimentation to date suggests the two models havesgnee stability
limit: with no temporal d¢f-centring ¢ = 8 = 0.5) the models are stable for large gravity
wave Courant numbers and advective Courant numbers lesd tha

e Advection. The same advection scheme is used in the two models to cormasts, PV,
and tracer fluxes on primal and dual meshes. In particulamibdels share the consistency
between mass and PV, between mass and tracers, and betieahnpass and dual mass
discussed by Thuburn etl/al. (2014).

e Balance. The balance test discussed in section 6.8 of Thuburn et@l4{2vas repeated
for the finite element shallow water model. The results o tlo¢ hexagonal and cubed
sphere meshes were very similar to those for the finite volomodel and the ENDGame
semi-implicit semi-Lagrangian model (Zerroukat etlal.09)) implying that any spurious
numerical generation of imbalance is extremely weak.

e Computational Rossby modesThe experimentto test the ability of the scheme on hexag-
onal meshes to handle grid-scale vorticity features wasapetated here. However, given
the general argumentslin Thuburn et al. (2014) (see alseW1?), and the similari-
ties between the numerics of the finite volume and finite efemedels, the results are
expected to be very similar for the finite element model.

For the remaining tests discussed below, the same meshitiesgland time steps were used as
in[Thuburn et al.[(2014).

5.1. Convergence of the Laplacian

The discrete Laplacian defined in secfion 4.3 was appliduet¥' s representation of the field
cosy sinA on the unit sphere, whekgis latitude andl is longitude, and thé., andL, errors
computed on dferent resolution meshes. The results are shown inftable 1.

On both the hexagonal and cubed sphere meshels dterrors converge at first order. On
the hexagonal mesh the errors converge at close to second order, while on the culifeets
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Table 2: Convergence of the Coriolis operator on hexagamakabed sphere grids.

Hex Cube
Ncells | L. err L, err Ncells | L err L, err
42 | 0.018 0.0092 54| 0.0079 | 0.0049
162 | 0.0049 | 0.0026 216 | 0.0055 | 0.0021

642 | 0.0018 | 0.00066 864 | 0.0039 | 0.00092

2562 | 0.00078| 0.00017 3456 | 0.0022 | 0.00037

10242 | 0.00036| 0.000042| 13824| 0.0012 | 0.00014
40962 | 0.00017| 0.000011| 55296 | 0.00060| 0.000050

mesh the convergence rate is between first and second ordethd-cubed sphere mesh the
convergence of the discrete scalar Laplacian is significdgtter than for the finite volume
scheme of Thuburn et al. (2014) (their table 4).

5.2. Convergence of the Coriolis operator

The convergence of the Coriolis operator was investigasefbdlows. A stream function
equal to cog sind was sampled at dual vertice¥) enabling exact dual edge normal fluxes
ULl =-D,¥tobe computed. The same stream function was also sampleidnat pertices {),
enabling exact primal edge normal fludds= —D; ¥ to be calculated; approximate dual edge
normal fluxes are then given by the Coriolis operatd)ﬂzapproﬁ MUépproﬁ -WU = WD, V.

The diference between the two estimaw®, ¥ + HD,¥ gives a measure of the error in the
Coriolis operator.

Values of the error at flierent resolutions on the two meshes are shown in fdble 2. @n bo
meshes the.., errors converge at first order. The errors converge at second order on the
hexagonal mesh and between first and second order on the spibexdt mesh. This consistency
of the Coriolis operator, in contrast to the finite volumeestie of Thuburn et all (2014), was
one of the primary motivations for investigating the finiteraent approach.

5.3. Solid body rotation

Test case 2 of Williamson etlal. (1992) tests the ability ofdels to represent large-scale
steady balanced flow. The exact solution is known, allowirgrs in¢ andu to be computed.
The errors on the two meshes after 5 days are given in[fablergj avith the time steps used at
different resolutions.

On the hexagonal mesh the convergence rate is close to semterdbr better. On the cubed
sphere mesh it is between first and second ordet fdu) and close to second order for the
other error measures. The errors are considerably smh#arfor the finite volume scheme of
Thuburn et al.[(2014) (their table 6).

Figure[® shows the pattern of geopotential errors after 5 dathe second highest resolution
in the table. The errors clearly reflect the mesh structin@ysig a zonal wavenumber 5 pattern
on the hexagonal mesh and a zonal wavenumber 4 pattern onlikd sphere mesh. However,
in contrast to the finite volume model, which shows errorscemitrated along certain features of
the mesh, the error pattern here is large scale and almosttsmo
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Table 3: Geopotential errors &s12) and velocity errors (ms) for the solid body rotation test case.
Ncells | At (s) | La(¢) Loo(®) | Lao(u) Loo(U)
Hex
642 | 7200 | 19.62 43.40| 0.290 0.774
2562 | 3600 8.59 14.52| 0.0940 | 0.217
10242 | 1800 2.27 4.01| 0.0244 | 0.0551
40962| 900 0.584 1.13| 0.00609| 0.0144
Cube
864 | 7200 | 35.04 87.48| 0.212 0.569
3456 | 3600 | 10.16 18.06| 0.0754 | 0.235
13824 | 1800 2.57 4.65| 0.0194 | 0.0692
55296 | 900 0.639 1.17 | 0.00484| 0.0257

phierr Min -4.014 Max 3.648 phierr Min -3.488 Max 4.652

—~—

Figure 6: Geopotential error #s2) after 5 days for the solid body rotation test case. Leftagenal mesh, 10242 cells.
Right: cubed sphere mesh, 13824 cells. In each case 11 eyaabe contours (i.e. 10 intervals) are used between the
minimum and maximum values. (The coarse resolution mestmersas background are for orientation only.)
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Table 4: Height errors (m) for test case 5.

Ncells | At (s) [ La(h) | La(h) | Loo(h)
Hex
642 | 1800 | 36.37| 50.91| 191.47
2562| 900 | 11.62| 15.83| 66.84
10242| 450 3.12 4.11| 15.06
40962 | 225 1.27 1.82 9.28
Cube
864 | 1800 | 44.11| 64.93| 291.35
3456| 900 | 17.57| 25.14)| 100.66
13824 450 3.75 5.25| 21.42
55296 | 225 1.08 1.46 6.47

5.4. Flow over an isolated mountain

Test case 5 of Williamson etlal. (1992) involves an initididgbody rotation flow impinging
on a conical mid-latitude mountain, leading to the generatif gravity and Rossby waves and,
eventually, a complex nonlinear flow. There is no analytscdlition for this test case, so a high-
resolution reference solution was generated using the-seplict, semi-Lagrangian ENDGame
shallow water model (Zerroukat et al., 2009). The finite edatimodel runs stably with the time
steps given in tablg 3, but, as discussed by Thuburn et dl4j&0r the finite volume model and
for ENDGame itself, the errors are then dominated by the sepiicit treatment of the large
amplitude gravity waves present in the solution. At any gix@solution, the errors look almost
identical for all combinations of model and mesh tested. fEsewas therefore repeated with the
time steps reduced by a factor 4. The resulting height eatodsy 15 are shown in tallé 4. The
errors on the two meshes are generally very similar, and ist wases are a little smaller than
those produced by the finite volume model (Thuburn et al.42€ible 7).

Maps of height error at day 15 are shown in [Elg. 7. The errazdyced by the finite element
model are of comparable size to those from ENDGame, thowglrtior patterns arefiierent in
the three cases. Comparison with figure 6 of Thuburnlet al.£pEonfirms that the errors in the
finite element model are somewhat smaller than those in the fiolume model.

This test case was also run to 50 days at the highest reswitidabld # and several diag-
nostics relevant to the mimetic properties of the scheme walculated. The results are very
similar to those shown in figure 8 of Thuburn et al. (2014). yroenfirm that mass is conserved
to within rounddt error, and that changes in the total available energy @vailpotential energy
plus kinetic energy) are much smaller than the conversiensden available potential energy
and kinetic energy. The dissipation of available energy poigntial enstrophy is associated
almost entirely with the inherent scale-selective digsgpein the advection scheme,; it is very
small, of order 1 part per thousand, during the first 20 daysjritreases subsequently as PV
contours begin to wrap up and nonlinear cascades beconiBesigh implying that the inherent
dissipation adapts automatically to the flow complexity ireasonable way. A dual-mass-like
tracer remains consistent with the diagnosed dual massdigdwithin 2 parts in 16, and a
PV-like tracer remains consistent with the diagnosed Pd fiel within 3 parts in 18 The small
errors result from imperfect convergence of various iteeaaispects of the solver, and can be
reduced by taking more iterations.

24



h error time 0001296000 Min —15.06 Max 14.4

h error time 0001296000 Min = -18.14 Max = 19.68

P

Figure 7: Height errors (m) at day 15 for the isolated moumtast case. Top: hexagonal mesh, 10242 cells. Middle:
cubed sphere mesh, 13824 cells. Bottom: ENDGame on a rdgniitude-latitude mesh, 16980 cells. The contour
interval is 6 m, and zero and negative contours are bold. Bltedircle indicates the position of the mountain.
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5.5. Barotropically unstable jet

The test case proposedby Galewsky ét al. (2004) followswbleiton of a perturbed barotrop-
ically unstable jet. The case tests the ability of modelsatodbe the complex small scale vorticity
features produced by the rapidly growing instability. Theults are very sensitive to spurious
triggering of the instability by error patterns relatedhe tesh structure.

Figure[8 shows the relative vorticity field at day 6 for the &aganal mesh with 10242 cells
and 163842 cells, the cubed sphere mesh with 13824 cells2Arid2 cells, and, for comparison,
from ENDGame on a 648 320 longitude-latitude mesh. In all cases the vorticitydfiisl free
of noise and spurious ripples. However, at coarse resaltlie finite element model solutions
show distinct ‘grid imprinting’, with a zonal wavenumber &tfern on the hexagonal mesh and
a zonal wavenumber 4 pattern on the cubed sphere mesh. Ardis@ution the solutions are
more similar to the ENDGame solution, but still show sigmrifitdevelopment in the longitude
rangern/2 to © where the jet in the ENDGame solution remains quiescent. sbhaions on
the hexagonal mesh, especially at the finer resolution,eamarkably similar to those from the
finite volume modell(Thuburn etal., 2014, figure 9). On theeothand, the solutions on the
cubed sphere mesh show some noticalfiiedinces from the finite volume model. At the finer
resolution, outside the region stronglffected by the spurious devleopment, the structure of
vorticity features is slightly more accurate in the finiterakent model.

6. Conclusions and discussion

A method of constructing low-order mimetic finite elemerasgs on arbitrary two-dimensional
polygonal meshes, using compound elements, has been @salong with corresponding dis-
crete Hodge star operators for mapping between primal aatifdoction spaces. The method
has been used as the basis of a numerical model to solve flenstvater equations on a rotating
sphere. The model has the same mimetic properties, whickrpimthe ability to capture impor-
tant physical properties, as the finite volume model of Thatat al. (2014), but with improved
accuracy.

The finite volume model af Thuburn etlal. (2014) relies on @arproperties of the mesh
for accuracy, namely the Heikes and Randall (1995b) opétitn on the hexagonal mesh and
the placement of primal vertices relative to dual verticeghe cubed sphere mesh. Although
identical meshes have been used here to ensure the cleasstil@ comparison, the mimetic
finite element scheme does not depend on such mesh progdert&scuracy; thus it provides
greater flexibility in the choice of mesh.

An important practical consideration is the computaticzwsdt of the method. As a rough
guide, the cost of the finite element model on a single pracessied between 3.3 and 4.6 times
the cost of ENDGame for the cubed sphere mesh and betweemd.2.a times the cost of
ENDGame for the hexagonal mesh, at the resolutions &s(édr comparison, the cost of the
finite volume model varied between 2.7 and 3.7 times the ddsN®Game for the cubed sphere
mesh and between 3.3 and 4.9 times the cost of ENDGame foextagbnal mesh.) The greater
cost on the hexagonal mesh compared to the cubed spheits fesul a combination of a greater
stencil size for some operators and, in the current impleatiem, a less cache-friendly mesh
numbering (the latter could straightfowardly be optimize@iven the potential to optimize the

4Martin Schreiber (pers. comm.) reports that the cost of thiefielement model can be significantly reduced, by
roughly a factor 2, by reordering the dimensions of a coupley arrays to improve cache usage.
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Vorticity Min -6.601e-05 Max 9.333e-05

Figure 8: Relative vorticity field at day 6 for the barotrofistability test case. Row 1: hexagonal mesh, 10242 cells,
At = 900s. Row 2: hexagonal mesh, 163842 cells= 225s. Row 3: cubed sphere mesh, 13824 calis: 900s.
Row 4: cubed sphere mesh, 221184 celisz 225s. Row 5: ENDGame, 640320 cells At = 225 s. The plotted region

is O° to 360 longitude, 10 to 8 latitude. The contour interval is2107°s™1.
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implementation and the expected gains in parallel scétabibm the quasi-uniform mesh, these
figures suggest that, despite the need for indirect addigeasid the need to invert several linear
operators, the finite element method need not be prohibjtesxpensive compared to methods
currently used for operational forecasting, typified by EBHine.

Computing integrals over compound elements is more congiexcostly than for the usual
triangular or quadrilateral elements. In the current inm@atation, all the operatots M, H,

J, R, W, andT are precomputed, thus avoiding the need for any run-timelrgtiare in the
finite element parts of the calculati&ns(Also, once these operators are computed, there is no
need to retain the details of how the compound elements weéheflom subelements.) This
precomputation is possible because all but one of thesatyperare linear; the only nonlinear
term (other than advection) is a simple quadratic nonliityear the kinetic energy. In a system
with more complex nonlinearities, such as the pressureigmaterm in a compressible three-
dimensional fluid, precomputation might not be possible smale run time quadrature would
be unavoidable. Even so, in a high performance computing@mment it is not clear whether
precomputation or run-time quadrature would be mé#tient, given the relative cost of memory
access and computation (David Ham, pers. comm.).

The mathematical similarity of the finite element and finitduwne formulations has been
emphasized, the principalféérence being the appearance of mass matrices in the finitepte
formulation. The similarity is made even clearer if we UsE)(452) and[(8D) to rewritd (94) in
the equivalent dual space form

U+0l+Dy(d+K) =0 (117)

The velocity degrees of freedom then correspond to dual eilgalations, andJ can be iden-
tified with theV of Thuburn et al.[(2014). Equatiorfs{93) add {[117) explditiolve only the
topological derivative operatoi3, andDs; the metric enters through the Hodge star operators
needed to map between primal and dual function spaces. ppi®ach of isolating the metric
from the purely topological operators in order to construsherical methods with mimetic prop-
erties on complex geometries or meshes has been advocassénal authors (e.g. Bossavit,
1998; Hiptmair, 2001; Palha etlal., 2014, and referencesitie

Itis also worth emphasizing that the roles of primal and duiattion spaces are not symmet-
rical here. Although any given field may be represented ih bio primal and dual spaces, with
a reversible Hodge star map between them, only primal sgestdunctions are ever used, and
so only primal space mass matrices appear, and dual spa&edegeaatives are never needed.
(An interesting alternative would be to use only dual spase functions; then the prognostic

equations remaif(93) arld (117), Hutl(51)}(53) are replayed

1o = Lo, (118)
HTU = MU, (119)
J'z = NE, (120)

wherel, M andN are the mass matrices for the spaZ@sV! andV?, respectively.)

Only the lowest order polygonal finite element spaces are lisge: compound P1-RT0-P9,
An interesting question is whether the approach can be ég&teto higher order. The har-
monic extension idea of Christiansen (2008) has been estetadhigher order by Christiansen

5Some run-time quadrature is done in the advection schenempute swept area integrals.
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(2010). It appears plausible that higher order compounohetes could be built from con-
strained linear combinations of, for example, the’ /BDFM1-P1°¢ elements recommended
by|Cotter and Shipton (2012), but the details have yet to bdx@gbout. A more subtle question
is whether suitable higher order dual spaces can be cotetruc

Another, more straightforward, extension of the compouethent approach is to three di-
mensions. The compound elements used here can be extrudgmbipgonal prisms; we have
made some initial progress in working out the details of gsnch a scheme for the compress-
ible Euler equations. (In atmosphere and ocean models é@ssable, for several reasons, to use
a columnar mesh.) Fully three-dimensional compound elésngan also be constructed using
the discrete harmonic extension approach. These mightdfalufor example, to implement a
finite element version of the cut cell method for handlingtdat topography (e.qd. Lock etlal.,
2012, and references therein) while retaining a columnahme

Besides their ability to use arbitrary polygonal meshestlaar potentially useful property of
the compound elements used here is that the function spexésilt directly in physical space,
without the need for Piola transforms. Thus, for examplebglly constant functions are always
contained inV. In this way, the compound elements avoid the reduced cgenee rate, and
even loss of consistency, discussed by Arnold et al. (2CGrt),so provide an alternative to the
rehabilitationtechnique of Bochev and Ridzal (2008).
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Appendix A. Operator inverses and sparse approximateM inverse

Inverses of théd andJ operators are needed at the beginning of every time stepnesges
of H and M are needed at every Newton iteration. These are computedrel- or over-
relaxed) Jacobi iteration based on a diagonal approximatidhe relevant operator. E.g., to
solveAx = R, define

x = (A) IR (A1)

whereA* is a diagonal approximation #, then iterate:
XD = X0 4 gAY YR - AXY). (A.2)

A diagonal approximatiod* to the operatod is defined by demanding that, for every dual
cell j, J* andJ should give the same result in dual cgWhen acting on th&'? representation of
a constant scalar field. A diagonal approximatihto the velocity mass matrii is defined by
demanding that, for every edgeM* andM should give the same result at edgghen acting on
theV representation of a solid body rotation velocity field whosimum velocity is normal
to primal edgee. A diagonal approximatiotd* to the operatoH is defined by demanding
that, for every edge, H* andH should give the same result at edgehen acting on thé/?!
representation of a solid body rotation velocity field whasaximum velocity is tangential to
dual edgee.
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Table A.5: Relaxation parameters used for Jacobi iterdGooperator inverses.
Grid [ J7T [ MT]HT
Hex | 14| 14 | 14
Cube| 14| 09 | 14

Optimal values of the relaxation parametexere found to depend on the operator and mesh
structure. The values used are given in tébld A.5. For thersms that occur once per time step,
10 Jacobi iterations are used. For those that occur at evamdw iteration, 2 Jacobi iterations
are used taking the solution obtained at the previous Neitaoation as the first guess (&r (A.1)
on the first Newton iteration).

A sparse approximate invergd ! of theV; mass matrix is needed for the Helmholtz prob-
lem. On the hexagonal mesh it isfBoient to use a diagonal approximation

ML= (M)t (A.3)

However, on the cubed sphere mesh, whose dual and primad edg@ot mutually orthogonal,
such a diagonal approximation is less accurate and limitstmvergence of the Newton itera-
tions. Therefore we use instead an approximation based imgla Sacobi iteration towards the
inverse ofM:

M= (M) (L + pld - pM(M) 7, (A.4)

where Id is the identity matrix. This approximate inverseas diagonal but has the same stencil
asM itself.
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