
High order operator splitting methods based on an integral
deferred correction framework

Andrew J. Christlieb 1 Yuan Liu2 Zhengfu Xu3

Abstract

Integral deferred correction (IDC) methods have been shown to be an efficient

way to achieve arbitrary high order accuracy and possess good stability properties.

In this paper, we construct high order operator splitting schemes using the IDC

procedure to solve initial value problems (IVPs). We present analysis to show that

the IDC methods can correct for both the splitting and numerical errors, lifting the

order of accuracy by r with each correction, where r is the order of accuracy of the

method used to solve the correction equation. We further apply this framework to

solve partial differential equations (PDEs). Numerical examples in two dimensions

of linear and nonlinear initial-boundary value problems are presented to demonstrate

the performance of the proposed IDC approach.

Key Words: Integral deferred correction, initial-boundary value problem, high-

order accuracy, operator splitting.

1Department of Mathematics and Department of Electrical and Computer Engineering, Michigan
State University, East Lansing, MI 48824, USA. E-mail: christli@msu.edu

2Department of Mathematics, Michigan State University, East Lansing, MI 48824, USA. E-mail:
yliu7@math.msu.edu

3Department of Mathematical Science, Michigan Technological University, Houghton, MI 49931,
USA. E-mail: zhengfux@mtu.edu.

1

ar
X

iv
:1

40
7.

10
02

v1
 [

m
at

h.
N

A
]

 3
 J

ul
 2

01
4

1. Introduction

In this paper we present high order operator splitting methods based on the in-

tegral deferred correction (IDC) mechanism. The methods are designed to leverage

recent progress on parallel time stepping and offer a great deal of flexibility for com-

puting the ordinary differential equations (ODEs). We focus on extending IDC theory

to the case of splitting schemes on the IVP

ut = f(t, u) =
Λ∑
ν=1

fν(t, u), u(0) = u0, t ∈ [0, T], (1.1)

and discuss the application in parabolic PDEs. Here, u ∈ Rn and f(t, u) : R+×Rn →
Rn.

In the case that (1.1) arises from a method of lines discretization of time depen-

dent PDEs which describe multi-physics problems, we encounter high dimensional

computation. For these problems, the splitting methods can be applied to decouple

the problems into simpler sub-problems. Therefore, the main advantage of operator

splitting methods are problem simplification, dimension reduction, and lower compu-

tational cost. Two broad categories can classify many splitting methods: differential

operator splitting [1, 25, 32, 33] and algebraic splitting with the prominent exam-

ple of the alternating direction implicit(ADI) method, which was first introduced in

[9, 7, 30] for solving two dimensional heat equations. The main barrier in designing

high order numerical methods based on the idea of splitting is the operator splitting

error. To obtain high order accuracy via low order splitting method generally adds

complexity to designing a scheme and stability analysis [14, 27, 18, 27, 26, 34, 12].

A recent work in [3] utilizes the spectral deferred correction (SDC) procedure to the

advection-diffusion-reaction system in one dimension in order to enhance the overall

order of accuracy. However, their work does not contain a proof that the corrections

raise the order of the method.

In [10], a SDC method is first proposed as a new variation on the classical deferred

correction methods [2]. The key idea is to recast the error equation such that the

residual appears in the error equation in integral form instead of differential form,

which greatly stabilizes the method. It is proposed as a framework to generate arbi-

trarily high order methods. This family of methods use Gaussian quadrature nodes

in the correction to the defect or error, hence the method can achieve a maximal

order of 2(M − 1) on M grid points with 2(M − 2) corrections. This main feature

of the SDC method made it popular and extensive investigation can be found in

[10, 28, 21, 23, 22, 15, 16, 24]. Following this line of approach, the IDC methods are

2

introduced in [6, 5, 4]. High order explicit and implicit Runge-Kutta (RK) integra-

tors in both the prediction and correction steps (IDC-RK) are developed by utilizing

uniform quadrature nodes for computing the residual. In [6, 5], it is established

that using explicit RK methods of order r in the correction step results in r higher

degrees of accuracy with each successive correction step, but only if uniform nodes

are used instead of the Gaussian quadrature nodes of SDC. It is shown in [5] that

the new methods produced by the IDC procedure are yet again RK methods. It is

also demonstrated that, for the same order, IDC-RK methods possess better stabil-

ity properties than the equivalent SDC methods. Furthermore, for explicit methods,

each correction of IDC or SDC increases the region of absolute stability. Similar

results are generalized to arbitrary order implicit and additive RK methods in [4].

Generally, for implicit methods based on IDC and SDC, the stability region becomes

smaller when more correction steps are employed. It is believed that this is due to the

numerical approximation of the residual integral. The primary purpose of this work

is to apply the IDC methods to the low order operator splitting methods in order to

obtain higher order accuracy.

The paper is organized as follows. In Section 2, we briefly review several classical

operator splitting methods and show how these methods can be cast as additive RK

(ARK) methods. In Section 3 we formulate the IDC methodology for application to

operator splitting schemes. In Section 4, we prove that IDC methods can correct for

both the splitting and numerical errors of ODEs, giving r higher degrees of accuracy

with each correction, where r is the order of the method used in the correction steps.

In section 5, as an interesting example, we will show how to use integral deferred

correction for operator splitting (IDC-OS) schemes as a temporal discretization when

solving PDEs. In Section 6 we carry out numerical simulations based on IDC methods

for both linear and non-linear parabolic equations, and demonstrate that the new

framework can achieve high order accuracy in time. In Section 7 we conclude the

paper and discuss future work. We note that both the parallel time stepping version

of IDC and the work presented in this paper are likely to benefit from the work in

[20], and will be the subject of further investigation.

2. Operator splitting schemes for ODEs

In this section, we review several splitting methods which will serve as the base

solver in the IDC framework. For differential operator splitting, such as Lie-Trotter

splitting and Strang splitting, which happens at continuous level, we will apply ap-

propriate numerical methods to the sub-problems and refer the whole approach as the

3

discrete form of differential splitting. For both the differential splitting and algebraic

splitting, we will show that each of the numerical schemes can be written as an ARK

method. This insight is the first step required to apply the IDC methodology [4] to

operator splitting schemes, which is the primary purpose of the present work.

2.1. Review of ARK methods

For IVP (1.1), when different p-stage RK integrators are applied to each operator

Lν , the entire numerical method is called an ARK method. If we define the numerical

solution after n time steps as υn, which is an approximation to the exact solution

u(tn), then one step of a p-stage ARK method is given by

υn+1 = υn + ∆t
Λ∑
ν=1

p∑
i=1

b
[ν]
i fν(tn + c

[ν]
i ∆t, υ̃i), (2.1)

with υ̃i = υn + ∆t
Λ∑
ν=1

p∑
j=1

a
[ν]
ij fν(tn + c

[ν]
j ∆t, υ̃j). (2.2)

and ∆t = tn+1 − tn. An ARK method is succinctly identified by its Butcher tableau,

as is demonstrated in Table 2.1.

c
[1]
1 · · · c

[Λ]
1 a

[1]
11 a

[1]
12 · · · a

[1]
1p · · · a

[Λ]
11 a

[Λ]
12 · · · a

[Λ]
1p

c
[1]
2 · · · c

[Λ]
2 a

[1]
21 a

[1]
22 · · · a

[1]
2p · · · a

[Λ]
21 a

[Λ]
22 · · · a

[Λ]
2p

... · · · ...
...

...
. . .

... · · · ...
...

. . .
...

c
[1]
p · · · c

[Λ]
p a

[1]
p1 a

[1]
p2 · · · a

[1]
pp · · · a

[Λ]
p1 a

[Λ]
p2 · · · a

[Λ]
pp

b
[1]
1 b

[1]
2 · · · b

[1]
p · · · b

[Λ]
1 b

[Λ]
2 · · · b

[Λ]
p

Table 2.1: Butcher tableau for a p-stage ARK method.

In the following sections, we will explicitly write out the Butcher tableau for each

operator splitting scheme and conclude that each of the operator splitting schemes

considered in this work is indeed a form of ARK method.

2.2. Lie-Trotter splitting

We describe Lie-Trotter splitting for (1.1) in the case of Λ = 2 in the right hand

side functions. We consider a single interval [tn, tn+1] . With first order Lie-Trotter

splitting, (1.1) can be solved by two sub-problems:{
ut = f1(t, u), on [tn, tn+1],

ut = f2(t, u), on [tn, tn+1].
(2.3)

4

0 0 0 0 0 0 0
1 0 1 0 0 0 0
1 0 1 0 0 0 1

0 1 0 0 0 1

Table 2.2: Butcher tableau for Lie-Trotter splitting.

The solution calculated from the first equation is used as the initial value of the

second equation. Note that this splitting occurs on the continuous level. In order to

define a discrete solver for (1.1), we need to choose a numerical scheme for solving

each sub-problem. For example, if we use the backward Euler scheme to solve both

equations, we obtain a scheme of the form
υ̃ − υn

∆t
= f1(tn+1, υ̃),

υn+1 − υ̃
∆t

= f2(tn+1, υ
n+1) ,

(2.4)

where υn denotes the numerical approximation for u at time level tn. However, this

approach only produces a first order approximation.

In order to make use of IDC methodology [4] to lift the order of accuracy of (2.4),

we write a Butcher tableau for (2.4) in Table 2.2. Comparing the Butcher tableau

for the Lie-Trotter splitting with the general form of the Butcher tableau of an ARK

method, we can view the discrete form of Lie-Trotter splitting (2.4) as a 2-stage ARK

method. This can be extended to the case of Λ operators, where the resulting Butcher

tableau would be a Λ-stage ARK method.

2.3. Strang splitting

In this section, we consider the second order Strang splitting for the case of three

operators to demonstrate how to construct Butcher tableaus for general differential

operator splitting schemes. The case of Λ = 3 operators can arise when splitting a

stiff ODE into three sub-problems while maintaining second order accuracy in time.

We also focus on a single time step, [tn, tn+1]. Second order Strang splitting for

5

(1.1) reads as

ut = f1(t, u), t ∈ [tn, tn+ 1
2
],

ut = f2(t, u), t ∈ [tn+ 1
2
, tn+1],

ut = f3(t, u), t ∈ [tn, tn+1],

ut = f2(t, u), t ∈ [tn, tn+ 1
2
],

ut = f1(t, u), t ∈ [tn+ 1
2
, tn+1].

(2.5)

Note that this splitting occurs on the continuous level, i.e. the temporal derivative

for each sub-problem in (2.5) has yet to be discretized. If we discretize equations

(2.5) with trapezoidal rule, we obtain an update of the form,

υ̃1 − υn
1
2
∆t

=
1

2
(f1(tn, υ

n) + f1(tn+ 1
2
, υ̃1)),

υ̃2 − υ̃1

1
2
∆t

=
1

2
(f2(tn+ 1

2
, υ̃1) + f2(tn+1, υ̃2)),

υ̃3 − υ̃2

∆t
=

1

2
(f3(tn, υ̃2) + f3(tn+1, υ̃3)),

υ̃4 − υ̃3

1
2
∆t

=
1

2
(f2(tn, υ̃3) + f2(tn+ 1

2
, υ̃4)),

υn+1 − υ̃4

1
2
∆t

=
1

2
(f1(tn+ 1

2
, υ̃4) + f1(tn+1, υ

n+1)),

(2.6)

where tn+ 1
2

= tn + 1
2
∆t. In Table 2.3, we write this scheme in the Butcher tableau.

Comparing this with the Butcher tableau of the ARK methods, again we see that we

can view the Strang splitting as a 5-stage ARK scheme.

0 0
1
2

1
2

0 1
4

1
4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 1
4

1
4

0 0 0 0 0 1
4

1
4

0 0 0 0 0 0 0 0 0

0 0 1 1
4

1
4

0 0 0 0 0 1
4

1
4

0 0 0 0 0 1
2

1
2

0 0
1
2

1
2

0 1
4

1
4

0 0 0 0 0 1
4

1
4

1
4

1
4

0 0 0 1
2

1
2

0 0

1 0 0 1
4

1
4

0 0 1
4

1
4

0 1
4

1
4

1
4

1
4

0 0 0 1
2

1
2

0 0
1
4

1
4

0 0 1
4

1
4

0 1
4

1
4

1
4

1
4

0 0 0 1
2

1
2

0 0

Table 2.3: Butcher tableau for Strang splitting with Λ = 3.

6

0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
2

1
2

1
4

1
4

0 0 0 0 0 0 0 0 0 0

0 1 1
4

1
4

0 0 0 0 0 1
4

1
4

0 0 0
1
2

1
2

1
4

1
4

0 0 0 0 0 1
4

1
4

1
4

1
4

0

1 0 1
4

1
4

0 0 1
4

1
4

0 1
4

1
4

1
4

1
4

0
1
4

1
4

0 1
4

1
4

0 1
4

1
4

1
4

1
4

0 0

Table 2.4: Butcher tableau for Strang splitting when L3 = 0.

2.4. ADI splitting

The ADI method is a predictor-corrector scheme as a typical example of algebraic

splitting, which happens after the discretization of equations. Here we are considering

the discretized ODE version of the Peaceman-Rachford scheme [30] for (1.1). When

Λ = 2, the ADI scheme takes the form
υ̃ − υn

1
2
∆t

= f1(tn+ 1
2
, υ̃) + f2(tn, υ

n),

υn+1 − υ̃
1
2
∆t

= f1(tn+ 1
2
, υ̃) + f2(tn+1, υ

n+1).

(2.7)

The Butcher tableau for the scheme (2.7) is shown in Table 2.5, and clearly, we

see that we can view the ADI splitting scheme as a 2-stage ARK method.

0 0 0 0 0 0 0
1
2

0 1
2

0 1
2

0 0

1 0 1 0 1
2

0 1
2

0 1 0 1
2

0 1
2

Table 2.5: Butcher tableau for ADI scheme.

3. Formulation of IDC-OS schemes

In this section, we review the formulation of IDC-OS presented in [4]. The authors

[4] considered IDC methods for implicit-explicit (IMEX) schemes, where the non stiff

part of the problem was treated explicitly, and the stiff part of the problem was

treated implicitly. At present, our focus is on entirely implicit schemes.

7

We begin with some preliminary definitions. The starting point is to partition the

time interval [0, T] into intervals [tn, tn+1], n = 0, 1, ..., N − 1, that satisfy

0 = t0 < t1 < t2 < · · · < tn < · · · < tN = T. (3.1)

“macro”-time steps are defined by Hn = tn+1−tn, and we permit them to vary with n.

Next, each interval [tn, tn+1] is further partitioned into M sub-intervals [tn,m, tn,m+1],

m = 0, 1, ...,M − 1,

tn = tn,0 < tn,1 < tn,2 < · · · < tn,m < · · · < tn,M = tn+1 (3.2)

with time step size hn,m = tn,m − tn,m−1. If Gaussian quadrature nodes are selected,

as was originally done with the SDC method [10], hn,m varies with m. Here, we

only consider the case of uniform quadrature nodes, i.e. with hn,m = Hn

M
for m =

1, 2, . . . ,M . Thus, without any ambiguity, we will drop the subscript m on hn,m. Note

that in what follows we will use superscript [i] to denote the ith correction at a discrete

set of time points and superscript (i) to denote the continuous approximation given by

passing a M th order polynomial through the discrete approximation. For simplicity,

we drop the n subscript for the description of the IDC procedure on “macro”-time

interval [tn, tn+1]. The whole iterative prediction-correction procedure is completed

before moving on to the next time interval [tn+1, tn+2]. The numerical solution at tn+1

serves as the initial condition for the following interval [tn+1, tn+2].

• Prediction step : Use an r0-th order numerical method to obtain a preliminary

solution to IVP (1.1)

υ[0] = (υ
[0]
0 , υ

[0]
1 , . . . , υ

[0]
m , . . . , υ

[0]
M), (3.3)

which is an r0-th order approximation to the exact solution

u = (u0, u1, ..., um, ..., uM), (3.4)

where um = u(tm) is the exact solution at tm for m = 0, 1, 2, ...,M .

• Correction step : Use the error function to improve the accuracy of the

scheme at each iteration. For k = 1 to cs, (cs is the number of correction steps):

(1) Denote the error function from the previous step as

e(k−1)(t) = u(t)− υ(k−1)(t), (3.5)

where u(t) is the exact solution and υ(k−1)(t) is an M -th degree polyno-

mial interpolating υ[k−1]. Note that the error function, e(k−1)(t) is not a

polynomial in general.

8

(2) Denote the residual function as

ε(k−1)(t) ≡ (υ(k−1))′(t)− f(t, υ(k−1)), (3.6)

and compute the integral of the residual. For example,∫ tm+1

t0

ε(k−1)(τ)dτ ≈ υ
[k−1]
m+1 − u0 − (tm+1 − t0)

M∑
j=0

γm,jf(tj, υ
[k−1]
j), (3.7)

where γm,j are the coefficients that result from approximation of the in-

tegral by quadrature formulas and υ
[k−1]
j = υ(k−1)(tj).

(3) Use an rk-th order numerical method to obtain an approximation to error

vector

e[k−1] = (e
[k−1]
0 , ..., e[k−1]

m , ..., e
[k−1]
M), (3.8)

where e
[k−1]
m = e(k−1)(tm) is the value of the exact error function (3.5) at

time tm and we denote it as

δ[k] = (δ
[k]
0 , ..., δ[k]

m , ..., δ
[k]
M). (3.9)

To compute δ[k] by an operator splitting method consistent with the base

method, we first express the error equation in a form consistent with orig-

inal problem we are solving. We start by differentiating the error (3.5),

together with (1.1)

(e(k−1))′(t) = u′(t)− (υ(k−1))′(t) (3.10)

= f(t, u(t))− f(t, υ(k−1)(t))− ε(k−1)(t)

= f(t, υ(k−1)(t) + e(k−1)(t))− f(t, υ(k−1)(t))− ε(k−1)(t).

Bring the residual to the left hand side, we have

(e(k−1)(t) +

∫ t

t0

ε(k−1)(τ)dτ)′ = f(t, υ(k−1)(t) + e(k−1)(t))− f(t, υ(k−1)(t)).

(3.11)

We now make the following change of variable,

Q(k−1)(t) = e(k−1)(t) +

∫ t

t0

ε(k−1)(τ)dτ, (3.12)

G(k−1)(t, Q(k−1)(t)) = f(t, υ(k−1)(t) +Q(k−1)(t)−
∫ t

t0

ε(k−1)(τ)dτ)− f(t, υ(k−1)(t)).

9

With this change of variable, we see that the error equation can be ex-

pressed as an IVP of the form,(Q(k−1))′(t) = G(k−1)(t, Q(k−1)(t)), t ∈ [t0, tM],

Q(k−1)(t0) = 0.
(3.13)

This is now in the form of (1.1) and we can apply the same operator split-

ting scheme to (3.13) that we applied to (1.1) and obtain the numerical

approximation to ϑ
[k−1]
m = Q(k−1)(tm). Recovering δ given ϑ is a simple

procedure.

(4) Update the numerical solution as υ[k] = υ[k−1] + δ[k].

Remark 1 (The prediction step): For example, if we apply the discrete

form of first order Lie-Trotter splitting (2.4) to (1.1) with Λ = 2, we have for

m = 0, 1, 2, ...,M − 1,

υ̃ − υ[0]

m

hn
= f1(tm+1, υ̃),

υ
[0]
m+1 − υ̃
hn

= f2(tm+1, υ
[0]
m+1).

(3.14)

Remark 2 (The correction step): As an example, if we use ADI splitting

in the correction step, we will solve (3.13) with Λ = 2, we have for m =

0, 1, 2, ...,M − 1,
ϑ̃− ϑ[k]

m

hn
2

= G
(k−1)
1 (tm +

hn
2
, ϑ̃) +G

(k−1)
2 (tm, ϑ

[k]
m),

ϑ
[k]
m+1 − ϑ̃

hn
2

= G
(k−1)
2 (tm+1, ϑ

[k]
m+1) +G

(k−1)
1 (tm +

hn
2
, ϑ̃),

(3.15)

where

G(k−1)
ν (t, Q(k−1)(t)) = fν(t, υ

(k−1)(t)+Q(k−1)(t)−
∫ t

t0

ε(k−1)(τ)dτ)−fν(t, υ(k−1)(t))

(3.16)

for ν = 1, 2. Moreover, we note that we split the residual term equally for each

operator in implementation.

10

4. Analysis of IDC-OS methods

In this section, we will discuss the error estimate for IDC-OS methods. Our

analysis is similar to previous work of IDC-RK and IDC-ARK [6, 5, 4].

In section 4.1, we will establish that the IDC procedure can successfully reduce

the splitting error for differential operator splitting methods where each sub-problem

is solved exactly. In section 4.2, we continue by leveraging the ideas from the work in

[4], and prove that the overall accuracy for the fully discrete methods is increased, as

expected, with each successive correction. The second set of arguments apply to the

discrete form of the differential operator splitting methods as well as the algebraic

operator splitting methods. We present results for the stability regions of IDC-OS

schemes in section 4.3. We remark that throughout this section, superscripts with a

curly bracket {k} denote the analytical functions related to solutions through differ-

ential splitting methods.

4.1. Splitting error: exact solutions to sub-problems

Differential operator splitting introduces a splitting error. If each sub-problem is

solved exactly, the overall method only contains splitting error. Our starting point

is to prove that IDC framework can reduce this splitting error. The primary result

from this subsection is given by the following theorem.

Theorem 4.1. Assume u(t) is the exact solution to IVP (1.1). Consider one time

interval of an IDC method with t ∈ [0, h]. Suppose Lie-Trotter splitting (2.3) is used

in the prediction step and the successive cs correction steps, and the sub-problems in

each step are solved exactly. If u(t) and fν are at least (cs + 3) differentiable, then

the splitting error is of order O(hcs+2) after cs correction steps.

The proof of Theorem 4.1 follows by induction from the following two lemmas:

Lemma 4.2 for the prediction step and Lemma 4.3 for the correction steps respectively.

Lemma 4.2. (Prediction step) Consider IVP (1.1) on the interval t ∈ [0, h]. If u(t)

and fν satisfy the smoothness requirements in Theorem 4.1, and u{0}(t) is the solution

obtained by applying Lie-Trotter splitting (2.3) to (1.1), and the followed sub-problems

are solved exactly, then the splitting error scales as

‖e(0)‖ = ‖u(h)− u{0}(h)‖ ∼ O(h2), t ∈ [0, h].

The conclusion of Lemma 4.2 is simply a restatement of what the local error of

splitting methods measures. The splitting error is O(h2) for first order Lie-Trotter

splitting [26].

11

Lemma 4.3. (Correction step) Assume u(t) is the solution to IVP (1.1) on the

interval t ∈ [0, h]. Let u(t), and fν satisfy the smoothness requirements in Theorem

4.1. For k ≤ cs, let u{k}(t) be the solution after the prediction step and k-th correction

step via Lie-Trotter splitting method in Theorem 4.1. If ‖e(k−1)‖ ∼ O(hk+1), then

‖e(k)‖ ∼ O(hk+2) after k correction steps.

Proof: We show the proof with the simple case Λ = 2. We have the error equation

(3.13) after prediction and (k − 1) correction steps. Use the Lie-Trotter splitting

method (2.3) to solve (3.13), we have(Q
{k−1}
1 (t))′ = G

(k−1)
1 (t, Q

{k−1}
1 (t)), t ∈ [0, h],

Q
{k−1}
1 (0) = 0,

(4.1)

and (Q
{k−1}
2 (t))′ = G

(k−1)
2 (t, Q

{k−1}
2 (t)), t ∈ [0, h],

Q
{k−1}
2 (0) = Q

{k−1}
1 (h).

(4.2)

with G
(k−1)
ν (t, Q(k−1)(t)) defined in (3.16). Hence Q

{k−1}
2 (h) is the approximation of

Q(k−1)(h) solved by the Lie-Trotter splitting method. It’s easy to see that

e(k)(h) = e(k−1)(h)− e{k−1}(h) = Q(k−1)(h)−Q{k−1}
2 (h), (4.3)

for t ∈ [0, h]. To prove Q(k−1)(h) − Q
{k−1}
2 (h) ∼ O(hk+2), we examine the scaled

variant

Q̄(k−1)(t) =
1

hk
Q(k−1)(t). (4.4)

With this new notation, IVP (3.13) can be equivalently written as(Q̄(k−1)(t))′ = Ḡ(k−1)(t, Q̄(k−1)(t)), t ∈ [0, h],

Q̄(k−1)(0) = 0.
(4.5)

with

Ḡ(k−1)(t, Q̄(k−1)(t)) =
1

hk
G(k−1)(t, hkQ̄(k−1)(t)) . (4.6)

Using the Lie-Trotter splitting method to solve IVP (4.5) will give us(Q̄
{k−1}
1 (t))′ = Ḡ

(k−1)
1 (t, Q̄

{k−1}
1 (t)), t ∈ [0, h],

Q̄
{k−1}
1 (0) = 0,

(4.7)

12

and (Q̄
{k−1}
2 (t))′ = Ḡ

(k−1)
2 (t, Q̄

{k−1}
2 (t)), t ∈ [0, h],

Q̄
{k−1}
2 (0) = Q̄

{k−1}
1 (h) ,

(4.8)

with

Ḡ(k−1)
ν (t, Q̄(k−1)(t)) =

1

hk
G(k−1)
ν (t, hkQ̄(k−1)(t)), ν = 1, 2. (4.9)

Q̄
{k−1}
2 (h) is the approximation to Q̄(k−1)(h) through Lie-Trotter splitting. If e(k−1) ∼
O(hk+1), it is easy to verify that Q(k−1)(t) ∼ O(hk+1) and G(k−1)(t, Q(k−1)(t)) ∼
O(hk+1). Similar as the work of IDC-RK in [6], one can further check that d

dt
Q̄{k−1}(t) ∼

O(1) and Ḡ(k−1)(t, Q̄{k−1}(t)) ∼ O(1) . Therefore,

‖ Q̄(k−1)(h)− Q̄{k−1}
2 (h) ‖∼ O(h2). (4.10)

Notice that IVP (4.1) and (4.7) are both first order ODEs, and hkḠ
(k−1)
1 (t, Q̄

{k−1}
1 (t)) =

G
(k−1)
1 (t, hkQ̄

{k−1}
1 (t)). Since Q̄

{k−1}
1 (t) is the solution to (4.7), hkQ̄

{k−1}
1 (t) is a so-

lution to (4.1). Through the uniqueness of the solution for IVP, one can conclude

that

Q̄
{k−1}
1 (h) =

1

hk
Q
{k−1}
1 (h). (4.11)

Similarly, from IVP (4.2) and (4.8), one can further conclude

Q̄
{k−1}
2 (h) =

1

hk
Q
{k−1}
2 (h). (4.12)

Thus (4.10) is equivalent to

‖ 1

hk
Q(k−1)(h)− 1

hk
Q

(k−1)
2 (h) ‖∼ O(h2), (4.13)

i.e.

‖ e(k) ‖=‖ Q(k−1)(h)−Q{k−1}
2 (h) ‖∼ O(hk+2). (4.14)

We now complete the proof of Lemma 4.3 for the case of Lie-Trotter splitting. �

The conclusion in Theorem 4.1 also holds for Strang splitting method (2.5) and

the proof is essentially the same as Lie-Trotter splitting. We have now demonstrated

that IDC can lift the order of accuracy when each sub-problem is solved exactly,

however, in practice, we usually do not have access to analytical solutions for these

sub-problems. We will consider the fully discrete scheme in the next section.

13

4.2. Local truncation error: discrete solutions to sub-problems

A fully discrete solution introduces additional error beyond the splitting error. In

this section, we turn to analyzing fully discrete IDC-OS schemes and begin with some

preliminary definitions [6].

Definition 4.4. (Discrete differentiation) Consider the discrete data set, (~t, ~ψ) =

{(t0, ψ0), ..., (tM , ψM)}, with {tm}Mm=0 defined as uniform quadrature nodes in (3.2).

We denote LM as the M-th degree Lagrangian interpolant of (t, ψ):

LM(t, ψ) =
M∑
m=0

cm(t)ψm, cm(t) =
∏
n 6=m

t− tn
tm − tn

. (4.15)

An s-th degree discrete differentiation is a linear mapping that maps ~ψ to
−→
d̂sψ, where

(d̂sψ)m =
∂s

∂ts
LM(t, ψ) |t=tm . (4.16)

This linear mapping can be represented by a matrix multiplication
−→
d̂sψ = D̂s · ~ψ, where

D̂s ∈ <(M+1)×(M+1) and (D̂)mn = ∂s

∂ts
cn(t) |t=tm, m,n = 0, ...,M.

Definition 4.5. The (Ŝ,∞) Sobolev norm of the discrete data set (~t, ~ψ) is defined as

‖~ψ‖Ŝ,∞
.
=

Ŝ∑
s=0

‖
−→
d̂sψ ‖∞=

Ŝ∑
s=0

‖ D̂s · ~ψ ‖∞, (4.17)

where
−→
d̂sψ = Id · ψ̂ is the identity matrix operating on ψ̂.

Definition 4.6. (smoothness of a discrete data set) A discrete data set (~t, ~ψ) =

{(t0, ψ0), ..., (tM , ψM)} possesses Ŝ(Ŝ ≤ M) degrees of smoothness if ‖ ~ψ ‖Ŝ,∞ is

bounded as h→ 0, with h defined as the step size in the sub-interval (tm, tm+1) where

m = 0, 1, · · · ,M − 1.

As discussed in section 2, all the listed operator splitting schemes are a form of

ARK methods. Therefore, we can use the framework of the IDC-ARK schemes in [4]

to enhance the order of the discretized scheme. Hence, we shall describe only what is

needed for clarity when extending the results of the work in [4] to the fully implicit

case under consideration here. For further details, we refer the reader to [5, 4]. The

theorems below apply to lifting the order of algebraic splitting as well as the discrete

form of differential splitting. The splitting error discussed in Theorem 4.1 is directly

related to the local truncation error. We note that the results in the following theorem

can be generalized to all IDC-OS schemes which can be written as a form of ARK

method and the proof is quite similar.

14

Theorem 4.7. Let u(t) be the solution to IVP (1.1). Assume u(t), f(t, u) and

fν(t, u) are at least σ differentiable with respect to each argument, where σ ≥M + 2.

Consider one time interval of an IDC method with t ∈ [0, H] and M + 1 uniformly

distributed quadrature points. Suppose an r0-th order ARK method (2.1) is used in the

prediction step and (r1, r2, ..., rcs)-th order ARK methods are used in the successive cs

correction steps. Let sk = Σk
j=0rj. If scs ≤ M + 1, then the local truncation error is

of order O(hscs+1) after cs correction steps.

The proof of Theorem 4.7 follows by induction from the following lemmas for the

prediction and correction steps. For clarity, similar as [4], we will sketch a proof for

Lie-Trotter splitting.

Lemma 4.8. (prediction step) Consider an r0-th order ARK method for (1.1) on

[0, H], with (M+1) uniformly distributed quadrature points. u(t) and fν satisfy the

smoothness requirement in Theorem 4.7 and let υ[0] = (υ
[0]
0 , υ

[0]
1 , ...υ

[0]
m , ..., υ

[0]
M) be the

numerical solution. Then,

(1) The error vector e[0] = u− υ[0] satisfies ‖e[0]‖∞ ∼ O(hr0+1).

(2) The rescaled error vector ē[0] =
1

hr0
e[0] has min(σ− r0,M) degrees of smoothness

in the discrete sense.

Proof: (1) is obvious. We will prove (2) next. We drop the superscript [0] as there

is no ambiguity. Applying the discrete form of the Lie-Trotter splitting (2.4) to IVP

(1.1) with Λ = 2, we have
υ̃ − υm
h

= f1(tm+1, υ̃),

υm+1 − υ̃
h

= f2(tm+1, υm+1),

(4.18)

i.e.

υm+1 = υm + hf1(tm+1, υ̃) + hf2(tm+1, υm+1). (4.19)

Performing Taylor expansion of f1(tm+1, υ̃) at t = tm, we get

υm+1 = υm + hf1(tm, υm) + hf2(tm+1, υm+1) +
σ−2∑
i=1

hi+1

i!

dif1

dti
(tm, υm) +O(hσ), (4.20)

15

on the other hand, the exact solution satisfies

um+1 = um +

∫ tm+1

tm

f1(τ, u(τ))dτ +

∫ tm+1

tm

f2(τ, u(τ))dτ (4.21)

= um + hf1(tm, um) +
σ−2∑
i=1

hi+1

(i+ 1)!

dif1

dti
(tm, um)

+ hf2(tm+1, um+1) +
σ−2∑
i=1

(−1)i+1hi+1

(i+ 1)!

dif2

dti
(tm+1, um+1) +O(hσ).

Subtracting (4.20) from (4.21) gives

em+1 = em + h(f1(tm, um)− f1(tm, υm)) + h(f2(tm+1, um+1)− f2(tm+1, υm+1))

+
σ−2∑
i=1

hi+1

(i+ 1)!

dif1

dti
(tm, um) +

σ−2∑
i=1

(−1)i+1hi+1

(i+ 1)!

dif2

dti
(tm+1, um+1)−

σ−2∑
i=1

hi+1

i!

dif1

dti
(tm, υm)

+ O(hσ),

where em+1 = um+1 − υm+1 is the error at tm+1. Denote

lm = (f1(tm, um)− f1(tm, υm)) + (f2(tm+1, um+1)− f2(tm+1, υm+1)) (4.22)

and

rm =
σ−2∑
i=1

hi+1

(i+ 1)!

dif1

dti
(tm, um)+

σ−2∑
i=1

(−1)i+1hi+1

(i+ 1)!

dif2

dti
(tm+1, um+1)−

σ−2∑
i=1

hi+1

i!

dif1

dti
(tm, υm).

(4.23)

We will use an inductive approach with respect to the degree of the smoothness s to

investigate the smoothness of the rescaled error vector ē = e
h
, and

(d1ē)m =
ēm+1 − ēm

h
=
lm
h

+
rm
h2

+O(hσ−2). (4.24)

First of all, ē has at least zero degrees of smoothness in the discrete sense since

‖ē‖ ∼ O(h). Assume ē has s ≤ M − 1 degrees of smoothness, we will show d1ē

has s degrees of smoothness, from which we can conclude ē has (s + 1) degrees of

smoothness.

lm = (f1(tm, um)− f1(tm, υm)) + (f2(tm+1, um−1)− f2(tm+1υm+1)), (4.25)

=
σ−2∑
i=1

1

i!
(em)i

∂if1

∂ui
(tm, um) +

σ−2∑
i=1

1

i!
(em+1)i

∂if2

∂ui
(tm+1, um+1)

+ O((em)σ−1) +O((em+1)σ−1)

=
σ−2∑
i=1

hi

i!
(ēm)i

∂if1

∂ui
(tm, um) +

σ−2∑
i=1

hi

i!
(ēm+1)i

∂if2

∂ui
(tm+1, um+1)

+ O((hēm)σ−1) +O((hēm+1)σ−1).

16

By assuming that f1 and f2 have at least σ degrees of smoothness, we can conclude
∂if1
∂ui

and ∂if2
∂ui

have at least σ− i−1 degrees of smoothness, which implies hi−1 ∂if1
∂ui

and

hi−1 ∂if2
∂ui

have at least σ−2 degrees of smoothness. Therefore lm
h

will have min(σ−2, s)

degrees of smoothness. Also, rm
h2

will have at least s degrees of smoothness. Therefore,

d1ē has s degrees of smoothness. Therefore, ē has (s+1) degrees of smoothness. Notice

that σ ≥ M + 2, we complete the inductive approach and conclude ē has M degrees

of smoothness. �

Before investigating the correction step for IDC-OS schemes, we describe some de-

tails for the error equations first. Notice that the error equation after (k-1) correction

steps has the form of (3.11), with the notation Q(k−1)(t), we actually implement the

problem (3.13) on time interval [tm, tm+1] via discrete Lie-Trotter splitting as follows
ϑ̃− ϑ[k]

m

h
= G

(k−1)
1 (tm+1, ϑ̃),

ϑ
[k]
m+1 − ϑ̃
h

= G
(k−1)
2 (tm+1, ϑ

[k]
m+1),

(4.26)

through which ϑ
[k]
m+1 is updated. Furthermore, we can update δ

[k]
m+1 by (3.12) and

(3.7). Similarly, if we apply Lie-Trotter splitting to the scaled error equation (4.5)

over the time interval [tm, tm+1], we have
˜̄ϑ− ϑ̄[k]

m

h
= Ḡ

(k−1)
1 (tm+1,

˜̄ϑ),

ϑ̄
[k]
m+1 − ˜̄ϑ
h

= Ḡ
(k−1)
2 (tm+1, ϑ̄

[k]
m+1),

(4.27)

from which we obtain ϑ̄
[k]
m+1 and further δ̄

[k]
m+1.

Lemma 4.9. (correction step) Let u(t) and Lν satisfy the smoothness requirements in

Theorem 4.7. Suppose e[k−1] ∼ O(hsk−1+1) and ē[k−1] =
1

hsk−1
e[k−1] has (M +1−sk−1)

degrees of smoothness in the discrete sense after the (k− 1)-th correction step. Then,

after the k-th correction step using an rk-th order ARK method and k ≤ kcs,

(1) ‖e[k]‖∞ ∼ O(hsk+1).

(2) The rescaled error vector ē[k] =
1

hsk
e[k] has M + 1− sk degrees of smoothness in

the discrete sense.

Proof: The proof of Lemma 4.9 is similar as Lemma 4.8, but more tedious. Similar

as in [4], we outline the proof here and present the difference between the proof of

IDC-OS and IDC-RK, IDC-ARK in Proposition 4.10, we refer the reader to [5] for

details.

17

1. Substract the numerical error vector from the integrated error equation

e
[k]
m+1 = e

[k−1]
m+1 − δ

[k]
m+1 (4.28)

and make necessary substitution and expansion via the rescaled equations.

2. Bound the error e[k] by an inductive approach.

The following proposition is about the equivalence of the rescaled error vector

and unscaled error vectors for Lie-Trotter splitting. We remark that the proof of this

proposition shows the difference of the proof between IDC-OS and IDC-RK in [5],

IDC-ARK in [4].

Proposition 4.10. Consider a single step of an IDC scheme constructed with the

Lie-Trotter splitting scheme for the error equation, assume the exact solution u(t),

and Lν satisfies the smoothness requirement in Theorem 4.7, then for a sufficiently

smooth error function e(k−1)(t), the difference between the Taylor series for the exact

error e(k−1)(tm+1) and the numerical error δ
[k]
m+1 is O(hk+2) after k correction steps.

Proof: Notice that the left and right hand side terms of the rescaled error equation

(4.5) is O(1), applying the discrete form of Lie-Trotter splitting scheme (2.4) to (4.5)

will result in

Q̄
[k−1]
m+1 − ϑ̄

[k]
m+1 ∼ O(h2). (4.29)

Since

Q̄
[k−1]
m+1 =

1

hk
Q

[k−1]
m+1 =

1

hk
(e

[k−1]
m+1 −

∫ tm+1

tm

ε(k−1)(τ)dτ). (4.30)

The proof is complete if the following argument holds.

hkδ̄[k]
m = δ[k]

m +O(hσ), m = 0, 1, 2, ...,M, (4.31)

which is also equivalent to

hkϑ̄[k]
m = ϑ[k]

m +O(hσ), m = 0, 1, 2, ...,M. (4.32)

We will prove (4.32) by induction. (4.32) holds for m = 0 since the initial condition

for the error equation is set as 0. Assume (4.31) holds for m, then˜̄ϑ = ϑ̄[k]
m + hḠ

(k−1)
1 (tm+1,

˜̄ϑ), (4.33)

= ϑ̄[k]
m + h

σ−1∑
i=0

hi

i!

di

dti
Ḡ

(k−1)
1 (tm, ϑ̄

[k]
m) +O(hσ)

= ϑ̄[k]
m + h

σ−1∑
i=0

hi

i!

di

dti

(
1

hk
G

(k−1)
1 (tm, h

kϑ̄[k]
m)

)
+O(hσ)

=
1

hk

(
ϑ[k]
m + h

σ−1∑
i=0

hi

i!

di

dti
G

(k−1)
1 (tm, h

kϑ̄[k]
m)

)
+O(hσ).

18

On the other hand, Taylor expanding ϑ̃ at tm will give us

ϑ̃ = ϑ[k]
m + hG

(k−1)
1 (tm+1, ϑ̃) (4.34)

= ϑ[k]
m + h

σ−1∑
i=0

hi

i!

di

dti
G

(k−1)
1 (tm, h

kϑ̄[k]
m) +O(hσ).

Compare (4.33) and (4.34), we can conclude

ϑ̃ = hk˜̄ϑ+O(hσ). (4.35)

Similar approach to the second equation in (4.26) and (4.27) will result in

ϑ
[k]
m+1 = hkϑ̄

[k]
m+1 +O(hσ), (4.36)

which completes the inductive proof for (4.32). �

4.3. Stability

In this subsection, we study the linear stability of the proposed IDC-OS numerical

schemes. As is common practice [13], we consider the test problem

ut = λu, (4.37)

and observe how the numerical scheme behaves for different complex values of λ.

Without loss of generality, we will assume that u(0) = 1, and we’ll consider a single

time step of length ∆t = 1. The stability region of a numerical method is then defined

as

D := {λ ∈ C : |u (1)| ≤ 1}. (4.38)

An additional complication comes from the fact that an operator splitting scheme

requires a splitting of the right hand side of (4.37) into Λ parts. For simplicity, we’ll

consider the special case of Λ = 2 with λ = λ1 + λ2, and we further assume that

λ1 = λ2 for simplicity.

In Figure 4.1 we present stability regions for IDC-OS methods based on three

separate base solvers: Lie-Trotter splitting, Strang splitting and ADI splitting. The

stability region of Lie-Trotter splitting with IDC procedure is everywhere outside the

curves, and the stability regions for Strang splitting and ADI is the finite region inside

the curves. The number in the legend denotes the order of the method. For example,

“IDC4” represents fourth order methods achieved by the IDC-OS schemes; for Lie-

Trotter splitting, we require three correctors to attain fourth-order accuracy, whereas

19

Strang and ADI splitting only require a single correction. Our first observation is

that of the three base solvers, Lie-Trotter splitting is the only solver that retains an

infinite region of absolute stability, whereas Strang splitting and ADI reduce to finite

regions of absolute stability.

Consistent with other implicit IDC methods, the stability regions for our implicit

IDC-OS methods decreases as the number of correction steps increases. We have

observed that larger stability regions can be found if we include more quadrature

nodes for evaluating the integral of the residual.4 This leads us to conjecture that a

more accurate numerical approximation of the residual integral is important in finding

larger stability regions.

−20 0 20 40 60 80

−60

−40

−20

0

20

40

60

Real Axis

Im
a

g
in

a
ry

 A
x
is

Predictor
IDC2
IDC4
IDC6
IDC8
IDC10

(a)

−1000 −500 0 500
−800

−600

−400

−200

0

200

400

600

800

Real Axis

Im
a

g
in

a
ry

 A
x
is

Predictor
IDC4
IDC6
IDC8
IDC10

(b)

−1500 −1000 −500 0 500
−2000

−1500

−1000

−500

0

500

1000

1500

2000

Real Axis
Im

a
g

in
a

ry
 A

x
is

Predictor
IDC4
IDC6
IDC8
IDC10

(c)

Figure 4.1: Stability region for IDC-OS schemes with different number of corrections.
(a) Lie-Trotter splitting; (b) Strang splitting; (c) ADI splitting.

5. Application of IDC-OS schemes to parabolic PDEs

In this section, we will discuss how to apply the IDC-OS framework to the

parabolic problem of the form
ut = ∇ · (a(x, y)∇u) + s(t, u), (x, y) ∈ Ω

u(0, x, y) = u0(x, y),

u = g, (x, y) ∈ ∂Ω.

(5.1)

The methods can be generalized to a high dimensional setting, but in this work we

restrict our attention to two dimensions. For differential splitting methods, it is quite

straightforward to apply IDC-OS schemes if we solve (5.1) via method of lines. One

can obtain semi-discrete ODE systems which have the same form as (1.1) after spatial

4For all simulations used in this work, we use 13 uniformly distributed interior nodes for evaluating
the residual integral in the error equation.

20

discretization. It is natural to assume one operator, say L1 is related to the terms

in x−direction, while L2 is related to the terms in y−direction. As for algebraic

splitting, one major difficulty for applying the IDC-OS framework to PDEs is how to

handle the boundary and initial conditions for the error equation. In the following

context, we will introduce one ADI formulation which can effectively deal with those

issues. For simplicity, we only discuss the case when there is no nonlinear source in

(5.1), i.e. s(t, u) = 0.

Classical ADI starts by applying second-order Crank-Nicholson time discretization

to the continuous PDE (5.1), this process produces a semi-discrete scheme

un+1 − un

∆t
=
a

2
(un+1

xx + unxx) +
ax
2

(un+1
x + unx) +

a

2
(un+1

yy + unyy) +
ay
2

(un+1
y + uny), (5.2)

where ∆t = tn+1−tn is the time step, a = a(x, y), ax = ax(x, y) and ay = ay(x, y). On

a two dimensional structured mesh, we choose to use the central difference approxi-

mation (of orders 2, 4 or 6) for approximating the spatial operators ∂
∂x2

, ∂
∂x

, ∂
∂y2

and
∂
∂y

, and we denote them by Ax, Bx, Ay, By, respectively. If the spatial discretization is

performed on an Nx×Ny grid, there are Nx×Ny equations in the form of (5.2). We

denote Υ as the unknowns in vector form, then we can write these Nx×Ny equations

into matrix multiplication where boundary conditions are also incorporated,

Υn+1 −Υn

∆t
=

a

2
(AxΥ

n+1 + AxΥ
n) +

ax
2

(BxΥ
n+1 +BxΥ

n)

+
a

2
(AyΥ

n+1 + AyΥ
n) +

ay
2

(ByΥ
n+1 +ByΥ

n)

+
a

2
(gn+1
Ax

+ gnAx
) +

ax
2

(gn+1
Bx

+ gnBx
) (5.3)

+
a

2
(gn+1
Ay

+ gnAy
) +

ay
2

(gn+1
By

+ gnBy
) ,

where gAx , gBx , gAy , and gBy are the boundary terms. Notice that, different from [8],

we enforce the boundary conditions strictly in the scheme. It is easy to verify that

the method given in (5.3) is second order accurate in time. Specifically, if we use six

order central difference for spatial derivatives such as in the numerical simulations,

the local truncation error of (5.3) is O(∆t∆x6 + ∆t3). Denoting

J1 =
∆t

2
(aAx + axBx),

J2 =
∆t

2
(aAy + ayBy), (5.4)

S =
a

2
(gn+1
Ax

+ gnAx
) +

ax
2

(gn+1
Bx

+ gnBx
) +

a

2
(gn+1
Ay

+ gnAy
) +

ay
2

(gn+1
By

+ gnBy
) ,

(5.3) is equivalent to

(I − J1 − J2)Υn+1 = (I + J1 + J2)Υn + ∆tS. (5.5)

21

To set up an ADI scheme, we follow [8] by adding one term J1J2Υn+1 to both sides

of (5.5), which results in

(I − J1− J2 + J1J2)Υn+1 = (I + J1 + J2 + J1J2)Υn + J1J2(Υn+1−Υn) + ∆tS. (5.6)

Then it is straightforward to factor (5.6) as

(I − J1)(I − J2)Υn+1 = (I + J1)(I + J2)Υn + J1J2(Υn+1 −Υn) + ∆tS. (5.7)

Let us consider the second term on the right hand side of (5.7). Observe that

Υn+1 = Υn +O(∆t), (5.8)

and that J1 and J2 both carry a ∆t in them, we see that the term J1J2(Υn+1−Υn) ∼
O(∆t3). Hence, the second term on the right hand side of (5.7) is the same order as

the truncation error, thus can be dropped. Therefore, the scheme reduces to

(I − J1)(I − J2)Υn+1 = (I + J1)(I + J2)Υn + ∆tS. (5.9)

To solve (5.9), a two-step method was proposed in [9, 30],(I − J1)Υ̃n+ 1
2 = (I + J2)Υn + ∆t

2
S, x-sweep,

(I − J2)Υn+1 = (1 + J1)Υ̃n+ 1
2 + ∆t

2
S, y-sweep.

(5.10)

However, to be symbolically consistent, symmetric and suited for IDC method, we

choose to split the boundary values S in the following way,(I − J1)Υ̃n+ 1
2 = (I + J2)Υn + S1, x-sweep,

(I − J2)Υn+1 = (1 + J1)Υ̃n+ 1
2 + S2, y-sweep,

(5.11)

with boundary terms defined asS1 = ∆t
2

(agn+1
Ax

+ axg
n+1
Bx

+ agnAy
+ ayg

n
By

),

S2 = ∆t
2

(agnAx
+ axg

n
Bx

+ agn+1
Ay

+ ayg
n+1
By

).
(5.12)

It should also be pointed out that the boundary values S are associated with

boundary functions g at time t = tn and t = tn+1, instead of tn+ 1
2
, therefore there is

no error introduced from intermediate values Υ̃ on the boundary. This is important

for setting the boundary conditions when solving the error equation of IDC when we

combine the ADI scheme with the IDC methodology. Because the Dirichlet boundary

conditions of (5.1) are exact and accounted for in the formulation of the prediction,

therefore, the boundary terms will not show up in the correction steps.

22

6. Numerical examples

In this section, we present numerical results for the proposed implicit IDC-OS

schemes on a variety of examples of the parabolic initial-boundary value problem

(5.1), where our aim is to demonstrate the efficiency of the proposed time-stepping

methods. We begin with two linear examples of (5.1), and then present an example

of the heat equation with a nonlinear forcing term. Our final two examples come

from mathematical biology: the Fitzhugh-Nagumo reaction-diffusion model and the

Schnakenberg model.

Our present work is in two-dimensions, and every result is performed on a square

domain with a cartesian grid. We solve (5.1) using 6-th order central difference for the

spatial discretization in order that the temporal error is dominant in the measured

numerical error.

Example 1. Linear example: Dirichlet boundary conditions. We solve initial

boundary value problem (5.1) with constant coefficient a(x, y) = 1 in the domain

[−1, 1]× [−1, 1]. Initial condition is taken as u0(x, y) = (1− y)ex and time dependent

boundary conditions are g(x, y, t) = (1 − y)et+x. Therefore, (5.1) has the exact

solution u(x, y, t) = (1 − y)et+x. Nx,y = Nx = Ny represents the number of spatial

grids in x- and y-direction. Nt is the time steps used in the time interval [0, T] where

T is end time. cs is the number of correction steps. u is the exact solution and

υ as the numerical solution. We solve Example 1 by first order Lie-Trotter splitting

(2.4), second order Strang splitting (2.6) and ADI splitting (5.11) and all the splitting

performed via dimensional fashion, the numerical error are shown in Table 6.6, Table

6.7 and Table 6.8 respectively. We can clearly conclude that the schemes achieve the

designed order with IDC methodology, i.e. with one more correction step, the order

of the scheme increases by 1 for Lie-Trotter splitting, while the order of the scheme

increases by 2 for Strang splitting and ADI splitting.

Nx,y = 45 Number of time steps Nt

Correction Nt = 60 order Nt = 80 order Nt = 100 order Nt = 120 order
cs = 0 1.53e-5 – 1.15e-5 0.99 9.24e-6 0.98 7.70e-6 1.00
cs = 1 1.90e-7 – 1.09e-7 1.93 7.08e-8 1.93 4.94e-8 1.97
cs = 2 3.10e-9 – 1.47e-9 2.59 8.06e-10 2.69 4.87e-10 2.76

Table 6.6: Linear example with Dirichlet boundary conditions. Errors ‖ u − υNt ‖∞
for Lie-Trotter splitting method, T = 0.025.

Example 2. Linear example: periodic boundary conditions. In this example,

we will solve (5.1) when a(x, y) = 2 + 0.5 sin(π(4x + y)), and the initial condition

23

Nx,y = 45 Number of time steps Nt

Correction Nt = 60 order Nt = 80 order Nt = 100 order Nt = 120 order
cs = 0 3.02e-5 – 1.69e-5 2.02 1.08e-5 2.01 7.55e-6 1.96
cs = 1 7.15e-7 – 2.45e-7 3.72 1.04e-7 3.84 5.20e-8 3.80
cs = 2 3.64e-10 – 8.06e-11 5.24 2.28e-11 5.66 7.16e-12 6.35

Table 6.7: Linear example with Dirichlet boundary conditions. Errors ‖ u − υNt ‖∞
for Strang splitting method, T = 0.025.

Nx,y = 150 Number of time steps Nt

Correction Nt = 60 order Nt = 80 order Nt = 100 order Nt = 120 order
cs = 0 3.68e-5 – 2.07e-5 2.00 1.32e-5 2.00 9.20e-6 2.00
cs = 1 4.49e-7 – 2.08e-7 2.67 1.03e-7 3.13 5.07e-8 3.91
cs= 2 1.18e-7 – 1.69e-8 6.74 4.74e-9 5.71 1.59e-9 5.98

Table 6.8: Linear example with Dirichlet boundary conditions. Errors ‖ u − υNt ‖∞
for IDC-OS based on ADI splitting, T = 0.025.

u0(x, y) = sin(2π(x + y)). We compute errors using the difference between two suc-

cessive refinements:

error =‖ υNt − υNt
2
‖∞, (6.1)

where Nt describes the number of time steps.

Again, we present results using three splitting options: Lie-Trotter, Strang and

ADI splitting. Convergence studies are presented in Tables 6.9, 6.10 and 6.11, and we

can also observe that the schemes achieve the designed order. Note that the numerical

error for the two correctors when Nt = 320 is not reliable in the cases of Strang and

ADI splitting because of precision limitation.

Nx,y = 45 Number of time steps Nt

Correction Nt = 40 order Nt = 80 order Nt = 160 order Nt = 320 order
cs = 0 4.65e-3 – 2.35e-3 0.98 1.18e-3 0.99 5.94e-4 0.99
cs = 1 1.85e-4 – 5.68e-5 1.70 1.63e-5 1.80 4.44e-6 1.88
cs = 2 3.47e-6 – 6.55e-7 2.41 1.19e-7 2.46 1.88e-8 2.66

Table 6.9: Linear example with periodic boundary conditions. Errors ‖ υNt − υNt
2
‖∞

for Lie-Trotter splitting method, T = 0.025.

Example 3. Nonlinear equation with Dirichlet boundary conditions. We

now test the proposed IDC-OS methods on a nonlinear example of (5.1) with a known

exact solution.

24

Nx,y = 45 Number of time steps Nt

Correction Nt = 40 order Nt = 80 order Nt = 160 order Nt = 320 order
cs = 0 5.24e-5 – 1.31e-5 2.00 3.29e-6 1.99 8.22e-7 2.00
cs = 1 3.30e-9 – 2.06e-10 4.00 1.29e-11 4.00 8.04e-13 4.00
cs = 2 5.80e-12 – 4.90e-14 6.89 7.77e-16 5.98 1.11e-16 2.81

Table 6.10: Linear example with periodic boundary conditions. Errors ‖ υNt−υNt
2
‖∞

for Strang splitting method, T = 0.025.

Nx,y = 200 Number of time steps Nt

Correction Nt = 40 order Nt = 80 order Nt = 160 order Nt = 320 order
cs = 0 7.77e-5 – 1.94e-5 2.00 4.85e-6 2.00 1.21e-6 2.00
cs = 1 1.93e-8 – 1.20e-9 4.00 7.52e-11 4.00 4.70e-12 4.00
cs = 2 1.43e-11 – 2.23e-13 6.01 3.56e-15 5.96 1.04e-16 5.10

Table 6.11: Linear example with periodic boundary conditions. Errors ‖ υNt−υNt
2
‖∞

for ADI splitting method, T = 0.05.

{
ut = uxx + uyy − u2 + e−2t cos2(πx)cos2(πy) + (2π2 − 1)e−t cos(πx) cos(πy),

u(0, x, y) = cos(πx) cos(πy),

(6.2)

on the domain (x, y) ∈ [−1, 1] × [−1, 1]. The exact solution to this problem is

u(x, y, t) = e−t cos(πx) cos(πy). Given that we have an exact solution, all our nu-

merical tests use exact boundary conditions from this solution.

An IDC-OS solver for (6.2) requires a definition for how the splitting will be

performed. Here, we choose to split the problem into three pieces: L1 and L2 are the

same as linear case, while L3 contains the remaining non-linear terms,

L3(t, u) = −u2 + e−2t cos2(πx)cos2(πy) + (2π2 − 1)e−t cos(πx) cos(πy). (6.3)

We use Newton-iteration to solve the discretized version of ut = L3(t, u).

In Tables 6.12 and 6.13 we present results from applying the IDC-OS method

with Lie-Trotter and Strang splitting as the base solvers. In each case, we can see

the successful increase of order after each correction: one in the case of Lie-Trotter

splitting, and two in the case of Strang splitting.

In this work, we do not present results for IDC-OS methods based on ADI split-

ting for non-linear problems due to their computational complexity. The high-order

25

differential operator splitting methods discussed here are much simpler than what

would arise from using even low-order ADI splitting.

Nx,y = 45 Number of time steps Nt

Correction Nt = 60 order Nt = 80 order Nt = 100 order Nt = 120 order
cs = 0 6.88e-3 – 5.16e-3 1.00 4.13e-3 1.00 3.44e-3 1.00
cs = 1 7.31e-4 – 4.33e-4 1.82 2.87e-4 1.84 2.03e-4 1.90
cs = 2 1.60e-5 – 6.95e-6 2.90 3.59e-6 2.96 2.06e-6 3.05

Table 6.12: Nonlinear example with Dirichlet boundary conditions. Errors ‖ u −
υNt ‖∞ for IDC-OS based on Lie-Trotter splitting, T = 0.025.

Nx,y = 100 Number of time steps Nt

Correction Nt = 60 order Nt = 80 order Nt = 100 order Nt = 120 order
cs = 0 9.21e-5 – 5.20e-5 1.99 3.34e-5 1.98 2.33e-5 1.99
cs = 1 3.04e-6 – 8.96e-7 4.25 3.38e-7 4.37 1.56e-7 4.24
cs = 2 1.87e-8 – 3.22e-9 6.11 8.33e-10 6.06 2.84e-10 5.90

Table 6.13: Nonlinear example with Dirichlet boundary conditions. Errors ‖ u −
υNt ‖∞ for IDC-OS based on Strang splitting, T = 0.01.

Example 4. Fitzhugh-Nagumo reaction-diffusion model. A simple mathemat-

ical model of an excitable medium is Fitzhugh-Nagumo (FHN) equations [11]. FHN

equations with diffusion can be written as
∂u

∂t
= Du∇2u+

1

δ
h(u, v),

∂v

∂t
= Dv∇2v + g(u, v),

(6.4)

where Du, Dv are the diffusion coefficients for activator u and inhibitor v respectively,

and δ is a real parameter. We consider the classical cubic FHN local dynamics [19, 29]h(u, v) = Cu(1− u)(u− a)− v,

g(u, v) = u− dv,
(6.5)

where C, a and d are dimensionless parameters. We perform the numerical experi-

ment for (6.4) and (6.5) on the domain [−20, 20]× [−20, 20] with periodic boundary

conditions. The parameters are chosen as following, Du = 1, Dv = 0, a = 0.1, C = 1,

d = 0.5, and δ = 0.005. The initial condition is

26

u(x, y, 0) =

0, if {x < 0}

⋃
{y > 5};

1

(1 + e4(|x|−5))2
− 1

(1 + e4(|x|−1))2
, otherwise.

(6.6)

v(x, y, 0) =

{
0.15, if {x < 1}

⋂
{y > −10};

0, otherwise.
(6.7)

The domain is partitioned with a 200 × 200 grid. Figure 6.2 shows the numerical

solution to the concentration of the activator u solving by Lie-Trotter splitting scheme,

with three operators similar as Example 3. We observe the spiral waves at T = 2, 5, 10,

which show a good agreement with the reference solutions. The computational step

size is ∆t = 0.005 in all cases. We remark that, because the lower order schemes

suffer more from the numerical error of diffusion than higher order ones, the pattern

for T = 10 look more consistent if we take a smaller computational time step size or

a more refined mesh. Similar patterns can also be obtained by IDC-OS scheme based

on Strang splitting.

Remark. Figure 6.3 shows the order of accuracy for Fitzhugh-Nagumo reaction-

diffusion model (6.4) at t = 0.025, in which we clearly observe the order increase of

IDC-OS scheme with successive correction steps. However, for a more stiff param-

eter such as δ = 10−10, order reduction phenomena is observed in the convergence

study. Similar observation is made in the Example 5 on Schnakenberg model. How

to approximate the residual integral and design a robust solver for stiff ODEs is an

open question. Recently work in [20], the authors proposed a highly accurate solver

based on an approximation of the integral of the residual as a linear combination of

exponentials on uniform quadrature nodes. Their method is shown to do a good job

of attaining high order of accuracy with correction steps and preserving the stability

region of the original implicit time integrator which is used as the base scheme.

Example 5. Schnakenberg model. The Schnakenberg system [31] has been used

to model the spatial distribution of a morphogen. It has the following form
∂Ca
∂t

= D1∇2Ca + κ(a− Ca + C2
aCi),

∂Ci
∂t

= D2∇2Ci + κ(b− C2
aCi),

(6.8)

where Ca and Ci represents the concentration of activator and inhibitor, with D1

and Da as the diffusion coefficients respectively. κ, a and b are rate constants of

27

−20 −10 0 10 20
−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(a1)
−20 −10 0 10 20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(a2)
−20 −10 0 10 20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(a3)

−20 −10 0 10 20
−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(b1)
−20 −10 0 10 20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(b2)
−20 −10 0 10 20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(b3)

−20 −10 0 10 20
−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(c1)
−20 −10 0 10 20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(c2)
−20 −10 0 10 20

−20

−10

0

10

20

0

0.2

0.4

0.6

0.8

1

(c3)

Figure 6.2: Numerical simulations of the concentration of activator u for Fitzhugh-
Nagumo reaction-diffusion model at different times. (a1-a3) t = 2; (b1-b3) t = 5;
(c1-c3) t = 10. (a1-c1) Lie-Trotter without corrector; (a2-c2) Lie-Trotter with two
correctors; (a3-c3) Lie-Trotter with three correctors.

biochemical reactions. Following the setup in [17], we take the initial conditions as

Ca(x, y, 0) = a+ b+ 10−3e−100((x− 1
3

)2+(y− 1
2

)2), (6.9)

Ci(x, y, 0) =
b

(a+ b)2
, (6.10)

and the boundary conditions are periodic. The parameters are κ = 100, a = 0.1305,

b = 0.7695, D1 = 0.05 and D2 = 1. The computational domain is [0, 1]× [0, 1]. The

numerical simulations with Lie-Trotter splitting is performed on a 200 × 200 spatial

grid and the numerical dynamical process of the concentration of the activator Ca

28

−8.5 −8.4 −8.3 −8.2 −8.1 −8 −7.9 −7.8
−3

−2.5

−2

−1.5

−1

−0.5

0

log dt

lo
g
 e

rr
o
r

 Lie−Trotter

 IDC1

 IDC2

IDC3

Figure 6.3: Accuracy study for Fitzhugh-Nagumo reaction-diffusion model. t = 0.025

at different times are shown in Figure 6.4, we can observe that the initial data are

amplified and spreads, leading to thew formation of spot pattern. The computational

time step size is chosen as ∆t = 0.001. We also note that similar patterns can be

obtained by IDC-OS scheme based on Strang splitting.

7. Conclusion

In this paper, we have provided a general temporal framework for the construction

of high order operator splitting methods based on the integral deferred correction pro-

cedure. The method can achieve arbitrary high order via solving correction equation

whereas reduce the computational cost by taking the advantage of operator splitting.

Error analysis and numerical examples for IDC-OS methods are performed to show

that the proposed IDC framework successfully enhances the order of accuracy in time.

A study on order reduction for very stiff problems will be part of our future work.

Acknowledgments

AJC supported in part by AFOSR grants FA9550-11-1-0281, FA9550-12-1-0343

and FA9550-12-1-0455, NSF grant DMS-1115709, and MSU Foundation grant SPG-

RG100059. ZX is supported by NSF grant DMS-1316662. Additionally, the authors

would like to thank Prof. William Hitchon and Dr. David Seal for helpful comments

on this work.

29

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(a1)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(a2)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(a3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(b1)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(b2)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(b3)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(c1)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(c2)
0 0.5 1

0

0.2

0.4

0.6

0.8

1

0

0.5

1

1.5

2

2.5

3

(c3)

Figure 6.4: Numerical simulations of the concentration of activator Ca for Schnaken-
berg reaction-diffusion model at different times. (a1-a3) t = 0.5; (b1-b3) t = 1; (c1-c3)
t = 1.5. (a1-c1) Lie-Trotter without corrector; (a2-c2) Lie-Trotter with one corrector;
(a3-c3) Lie-Trotter with two correctors.

References

[1] K. Bagrinovskii and S. Godunov. Difference schemes for multidimensional prob-

lems (in russian). Doklady Akademii Nauk, 115:431–433, 1957.

[2] K. Bohmer and H. Stetter. Defect correction methods. Theory and Applications

Springer-Verlag, Wien, 1984.

[3] A. Bourlioux, A. Layton, and M. Minion. High-order multi-implicit spectral

30

deferred correction methods for problems of reactive flow. Journal of Computa-

tional Physics, 189(2):651–675, 2003.

[4] A. Christlieb, M. Morton, B. Ong, and J.-M. Qiu. Semi-implicit integral deferred

correction constructed with additive runge–kutta methods. Communications in

Mathematical Sciences, 9:879–902, 2011.

[5] A. Christlieb, B. Ong, and J.-M. Qiu. Comments on high order integrators em-

bedded within integral deferred correction methods. Communications in Applied

Mathematics and Computational Science, 4(1):27–56, 2009.

[6] A. Christlieb, B. Ong, and J.-M. Qiu. Integral deferred correction methods con-

structed with high order runge-kutta integrators. Mathematics of Computation,

79(270):761–783, 2010.

[7] J. Douglas. On the numerical integration of ∂2u
∂x2

+ ∂2u
∂y2

= ∂u
∂t

by implicit methods.

Journal of the Society for Industrial and Applied Mathematics, 3(1):42–65, 1955.

[8] J. Douglas and S. Kim. On accuracy of alternating direction implicit methods

for parabolic equations. Preprint, 1999.

[9] J. Douglas and D. Peaceman. Numerical solution of two-dimensional heat-flow

problems. AIChE Journal, 1(4):505–512, 1955.

[10] A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods

for ordinary differential equations. BIT Numerical Mathematics, 40(2):241–266,

2000.

[11] P. C. Fife et al. Mathematical aspects of reacting and diffusing systems. Springer

Verlag., 1979.

[12] J. Geiser. Higher-order difference and higher-order splitting methods for 2d

parabolic problems with mixed derivatives. 2(67):3339–3350, 2007.

[13] E. Hairer, S. Nørsett, and G. Wanner. Solving ordinary differential equations,

volume 2. Springer, 1991.

[14] E. Hansen and A. Ostermann. High order splitting methods for analytic semi-

groups exist. BIT Numerical Mathematics, 49(3):527–542, 2009.

31

[15] J. Huang, J. Jia, and M. Minion. Accelerating the convergence of spectral de-

ferred correction methods. Journal of Computational Physics, 214(2):633–656,

2006.

[16] J. Huang, J. Jia, and M. Minion. Arbitrary order krylov deferred correction

methods for differential algebraic equations. Journal of Computational Physics,

221(2):739–760, 2007.

[17] W. Hundsdorfer and J. Verwer. Numerical solution of time-dependent advection-

diffusion-reaction equations, volume 33. Springer, 2003.

[18] H. Jia and K. Li. A third accurate operator splitting method. Mathematical and

Computer Modelling, 53(1):387–396, 2011.

[19] J. Keener and J. Sneyd. Mathematical Physiology: I: Cellular Physiology, vol-

ume 1. Springer, 2010.

[20] D. Kushnir and V. Rokhlin. A highly accurate solver for stiff ordinary differential

equations. SIAM Journal on Scientific Computing, 34(3):A1296–A1315, 2012.

[21] A. Layton. On the choice of correctors for semi-implicit picard deferred correction

methods. Applied Numerical Mathematics, 58(6):845–858, 2008.

[22] A. Layton and M. Minion. Implications of the choice of quadrature nodes for

picard integral deferred corrections methods for ordinary differential equations.

BIT Numerical Mathematics, 45(2):341–373, 2005.

[23] A. Layton and M. Minion. Implications of the choice of predictors for semi-

implicit picard integral deferred correction methods. Communications in Applied

Mathematics and Computational Science, 2(1):1–34, 2007.

[24] Y. Liu, C.-W. Shu, and M. Zhang. Strong stability preserving property of the

deferred correction time discretization. Journal of Computational Mathematics,

26(5):633–656, 2008.

[25] G. Marchuk. Some application of splitting-up methods to the solution of math-

ematical physics problems. Aplikace Matematiky, 13(2):103–132, 1968.

[26] R. McLachlan and G. R. Quispel. Splitting methods. Acta Numerica, 11:341–434,

2002.

32

[27] R. McLachlan and G. R. Quispel. Geometric integrators for odes. Journal of

Physics A: Mathematical and General, 39(19):5251, 2006.

[28] M. Minion. Semi-implicit spectral deferred correction methods for ordinary dif-

ferential equations. Communications in Mathematical Sciences, 1(3):471–500,

2003.

[29] D. Olmos and B. Shizgal. Pseudospectral method of solution of the fitzhugh–

nagumo equation. Mathematics and Computers in Simulation, 79(7):2258–2278,

2009.

[30] D. W. Peaceman and H. H. Rachford, Jr. The numerical solution of parabolic and

elliptic differential equations. Journal of the Society for Industrial and Applied

Mathematics, 3(1):28–41, 1955.

[31] J. Schnakenberg. Simple chemical reaction systems with limit cycle behaviour.

Journal of theoretical biology, 81(3):389–400, 1979.

[32] G. Strang. On the construction and comparison of difference schemes. SIAM

Journal on Numerical Analysis, 5(3):506–517, 1968.

[33] G. Strang. Approximating semigroups and the consistency of difference schemes.

Proceedings of the American Mathematical Society, 20(1):1–7, 1969.

[34] M. Thalhammer. High-order exponential operator splitting methods for time-

dependent schrödinger equations. SIAM Journal on Numerical Analysis,

46(4):2022–2038, 2008.

33

	1 Introduction
	2 Operator splitting schemes for ODEs
	2.1 Review of ARK methods
	2.2 Lie-Trotter splitting
	2.3 Strang splitting
	2.4 ADI splitting

	3 Formulation of IDC-OS schemes
	4 Analysis of IDC-OS methods
	4.1 Splitting error: exact solutions to sub-problems
	4.2 Local truncation error: discrete solutions to sub-problems
	4.3 Stability

	5 Application of IDC-OS schemes to parabolic PDEs
	6 Numerical examples
	7 Conclusion

