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Abstract

We examine the merits of using a family of polynomials that are orthogonal with re-
spect to a non-classical weight function to discretize the speed variable in continuum
kinetic calculations. We consider a model one-dimensional partial differential equa-
tion describing energy diffusion in velocity space due to Fokker-Planck collisions. This
relatively simple case allows us to compare the results of the projected dynamics with
an expensive but highly accurate spectral transform approach. It also allows us to in-
tegrate in time exactly, and to focus entirely on the effectiveness of the discretization
of the speed variable. We show that for a fixed number of modes or grid points, the
non-classical polynomials can be many orders of magnitude more accurate than clas-
sical Hermite polynomials or finite-difference solvers for kinetic equations in plasma
physics. We provide a detailed analysis of the difference in behavior and accuracy
of the two families of polynomials. For the non-classical polynomials, if the initial
condition is not smooth at the origin when interpreted as a three-dimensional radial
function, the exact solution leaves the polynomial subspace for a time, but returns
(up to roundoff accuracy) to the same point evolved to by the projected dynamics
in that time. By contrast, using classical polynomials, the exact solution differs sig-
nificantly from the projected dynamics solution when it returns to the subspace. We
also explore the connection between eigenfunctions of the projected evolution oper-
ator and (non-normalizable) eigenfunctions of the full evolution operator, as well as
the effect of truncating the computational domain.

Keywords: Orthogonal polynomials, continuum kinetic calculations, Fokker-Plank
collisions, Sturm-Liouville theory, continuous spectrum

1. Introduction

First-principles based descriptions of transport processes in plasmas require the
solution of high-dimensional kinetic equations for the phase-space distribution func-
tion [1, 2]. Often, diffusion in velocity-space plays an important physical role, as
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discussed in [3, 4], and references therein. For example, in kinetic turbulence, there
is a cascade of energy in velocity-space in addition to real space, so velocity diffusion
cuts off the cascade at small velocity scales. In this sense, velocity diffusion plays a
role similar to that of viscosity in conventional hydrodynamic fluid turbulence. Just as
viscosity is important in hydrodynamic turbulence no matter how large the Reynolds
number, velocity diffusion is important in kinetic turbulence no matter how small the
collisionality. Velocity diffusion is essential to dissipate injected energy and thereby
permit a statistically steady state.

Solving these kinetic equations numerically is computationally intensive [5, 6], so
an important aspect of the theoretical effort is to find new optimized discretization
schemes. While high order accurate discretization schemes for the spatial variables
have been succesfully used for many years, finding an ideal discretization method
remains particularly challenging for the discretization of velocity space in situations
involving Fokker-Planck collisions [7]. Since the Fokker-Planck collision operator
has terms involving first and second order derivatives with respect to the velocity
variables, the discretization method must allow accurate differentiation. The scheme
must also allow accurate integration since physical quantities such as the number
density, the mean fluid velocity and the pressure depend on velocity moments of the
distribution function.

Recently, promising new approaches based on spectral and pseudo-spectral repre-
sentations have been investigated [8, 9]. It was shown in [8] that a Hermite represen-
tation for the parallel velocity has advantages over the more common finite difference
schemes used in numerical simulations. In [9], different representations for the speed
coordinate are explored. It is found that because the variable has values in [0,∞)
instead of the entire real axis, a little-known family of polynomials (see [10, 11, 12]
and references therein) gives much better performance than finite difference schemes
and schemes based on classical orthogonal polynomials. High accuracy is obtained on
very coarse grids for both differentiation and integration of Maxwellian-like functions,
which are the functions of interest in many applications of plasma physics [9].

The purpose of this paper is to explore the suitability of the non-classical poly-
nomials for initial-value calculations of turbulent plasma transport in the presence of
collisions [4, 13]. To do so, we consider a model one-dimensional problem describing
energy diffusion due to Fokker-Planck collisions [14]:

∂U

∂t
=

1

x2

∂

∂x

[
Ψ(x)x2e−x

2 ∂

∂x

(
ex

2

U
)]

, (x > 0, t > 0), (1.1)

where

Ψ(x) =
1

2x3

[
erf(x)− 2√

π
xe−x

2

]
, erf(x) =

2√
π

∫ x

0

e−s
2

ds. (1.2)
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Here, Ψ differs from the usual Chandrasekhar function by an additional factor of
1/x. Our choice to focus on this particular model problem is motivated by the follow-
ing characteristic features. First, the right-hand side of (1.1) corresponds exactly to
the speed variable part of the energy diffusion piece in the linearized Landau-Fokker-
Planck operator for same-species collisions [4, 13]. Since many state-of-the-art plasma
turbulence codes (e.g. [5, 6]) use variants of the linearized Landau-Fokker-Planck op-
erator to describe collisions, the results presented here are directly relevant to the
computational effort to simulate transport processes in plasmas. Second, the rela-
tive simplicity of (1.1) makes it possible to represent the solution semi-analytically
using a spectral transform method [14], which we can then use to study the proper-
ties and accuracy of various discretization schemes. Third, (1.1) has several physi-
cally satisfying properties. Any well-behaved initial distribution function relaxes to
a Maxwellian distribution function U ∝ e−x

2
as t → ∞ (the “H-theorem”). Also,

for all t, ∂/∂t
(∫

Ux2dx
)

= 0, i.e. the number of particles is conserved. The best
time-dependent numerical schemes are designed to satisfy these basic properties ex-
actly [13].

While we consider a single velocity dimension in (1.1), any accurate numerical
scheme for this equation is immediately applicable to simulations with more velocity
dimensions and more complete collision operators, such as the operator in [4] or the
linearized Fokker-Planck operator, for the following reasons. For either of these col-
lision operators in spherical velocity coordinates, the only term involving any ∂/∂x
derivatives of the distribution function is the right-hand side of (1.1). For exam-
ple, in the pitch-angle diffusion term, the speed x appears only as a parameter, not
as a derivative. Thus, (1.1) captures nearly all the complexity associated with the
x coordinate in higher-dimensional kinetic problems with linearized collisions, and
the issue of how best to discretize the speed coordinate is quite independent of how
the other velocity coordinates are discretized. As an example of how different dis-
cretizations may be applied to the different velocity coordinates, one may refer to
the time-independent problems considered in [9], in which 2D velocity space is dis-
cretized using a pseudospectral x discretization related to the approach considered
here, combined with a Legendre modal discretization in pitch angle. In a similar
manner, time-dependent problems in a 2D velocity space could be solved by com-
bining the x discretization we consider here with a Legendre modal discretization in
pitch angle (or some other pitch angle discretization.) The third velocity coordinate,
gyro-angle, is often averaged out of kinetic equations in plasma physics due to rapid
particle gyration in a magnetic field, but this coordinate too could be included using
a tensor product approach if desired.

In this article, we compute high-accuracy solutions using a true (Galerkin) spectral
method to represent the projected dynamics of (1.1). We discretize velocity space
only, integrating the resulting ordinary differential equations exactly in time. In
future work, we plan to adapt the methods developed here to implement exponential

3



time differencing schemes [15] and implicit-explicit Runge-Kutta methods [16] for
the time-evolution of the coupled problem. However, for the model problem (1.1),
any timestepping scheme will decouple into independent eigenmodes that behave as
predicted by standard linear stability theory; thus, spatial discretization is our focus
here.

In a separate paper [17], pseudo-spectral methods will be developed that preserve
the self-adjoint structure of the discrete evolution operator, mimicking the Galerkin
operator as closely as possible. Performance on coarse grids, which is of great prac-
tical importance in high-dimensional plasma turbulence codes, will be addressed in
detail there, along with comparisons with other methods. In the present article, we
also look at performance on coarse grids and comparisons with existing discretiza-
tion schemes (Section 4.4), but the main emphasis of the paper is on questions of
convergence, discrete approximation of the continuous spectrum, and the effect of
domain truncation. Except in Section 4.4, we perform calculations in quadruple-
precision arithmetic to better illustrate the connection between the discrete mode
amplitudes in the eigenbasis of the projected evolution operator and the continuous
spectral transform of the solution [14], to demonstrate that the mode amplitudes in
the orthogonal polynomial basis continue to decay exponentially to arbitrarily small
scales, and to more closely monitor the effect of domain truncation. The results of
Figures 2–4 and 10–12 below are similar in double-precision, with relative errors only
a few times larger than machine precision, which is 2−52 in double precision versus
2−106 in the calculations shown in the figures.

While errors introduced by physical approximations in a model are typically large
compared to the level of accuracy we consider here, it is important when assessing
the validity of the model to be confident that the results of a numerical simulation
accurately represent the equations one has discretized. An additional motivation
for high accuracy is that small numerical errors can impede computation of damped
eigenmodes, which are sometimes important for physical understanding [18]. In appli-
cations with more dimensions, such as gyrokinetic simulations [5, 6], lower resolution
would be sufficient for routine simulations. Typically tens of modes or fewer are used
in the x coordinate, each with tens of degrees of freedom in the pitch-angle coordinate
of velocity space, and double-precision arithmetic is sufficient.

We observe a remarkable feature of the non-classical polynomials of [9, 10]: for
certain initial conditions, the exact solution (computed using an expensive spectral
transform approach) leaves the subspace but returns arbitrarily closely (i.e. without
losing spectral accuracy) to the solution of the projected dynamics. The situation is
different for classical Hermite polynomials. While the exact solution still arrives in
the subspace with spectral accuracy after some time, the projected dynamics evolves
to a different location in this time, with an error that decays only algebraically as a
function of the dimension of the subspace.

The structure of the article is as follows. In Sections 2 and 3, we review the con-

4



struction of orthogonal polynomials and present our general method for computing
solutions of (1.1) by projecting the PDE onto finite dimensional subspaces. Section 4
forms the core of the paper. In §4.1, we solve Equation (1.1) for two different initial
conditions, U(x, 0) = xe−x

2
and U(x, 0) = x2e−x

2
. In both cases we find that the

non-standard polynomials are effective at representing the solution, and that they
are much more accurate than classical polynomials defined by orthogonality condi-
tions on the interval (−∞,∞). The improved behavior is explained by comparing
the mode amplitudes in the eigenbasis of the projected evolution operator to the
spectral transform of the solution, computed as described in [14]. This transform
method is used in §4.2-§4.4 as an independent means of validating the accuracy of
the Galerkin approach. In §4.3, we compare the discrete eigenfunctions of the pro-
jected operator with the non-normalizable eigenfunctions of the PDE to see in what
sense the continuous spectrum is being approximated by a discrete one. In §4.4 we
study the performance of the new family polynomials for the low grid resolutions
commonly used in five-dimensional kinetic simulations of magnetized plasmas, and
compare their accuracy to that of classical Hermite polynomials and the finite dif-
ference scheme used by popular gyrokinetic solvers [29, 32]. We then investigate the
benefits and drawbacks of truncating the domain [0,∞) to a finite interval in §5. We
summarize our results and discuss future work in §6.

2. Orthogonal Polynomials

We consider two classes of orthogonal polynomials on the positive half-line. The
first, discussed by Shizgal [10] and recently applied in the context of plasma physics
simulations by Landreman and Ernst [9], are orthogonal with respect to the weight
function

ρ(x) = xνe−x
2

, (x > 0). (2.3)

We find in Appendix A that ν = 2 is the best choice overall in floating point arith-
metic, although part of the calculation is more accurately performed with ν = 0.
Roundoff error aside, ν = 2 is also most natural since the projected dynamics in-
volves an implicit change of basis to this case. Indeed, as explained in Section 3, ρ(x)
then agrees with the weight function of the Sturm-Liouville problem associated with
the evolution operator on the right-hand side of (1.1). Thus, except in Appendix A,
computations will be performed using the ν = 2 polynomials. For the remainder of
the paper, this class of polynomials will be referred to as “full polynomials.”

The second class of polynomials we consider are orthogonal with respect to

ρ(x) = xνe−x
2

, (x ∈ R) (2.4)

over the whole line. However, the odd polynomials will then be discarded and the even
ones restricted to R+, giving a different basis for L2(R+; ρ dx). This basis remains
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complete since any function on the half-line can be extended to the whole line by
even reflection, which leads to an expansion in even polynomials only. With ν = 0
we obtain the even Hermite polynomials (scaled to be monic), whereas with ν = 2
we obtain the odd Hermite polynomials divided by 22j+1x:

pj(x) =

{
H2j(x)/22j, ν = 0
H2j+1(x)/(22j+1x), ν = 2

}
, j = 0, 1, 2, . . . (2.5)

In either case, the same n-dimensional subspace and projected dynamics will result
when the polynomials are truncated to degree 2(n−1), although floating-point issues
make the ν = 2 family more desirable to work with. For the remainder of the article,
polynomials in this second class will be referred to as “even polynomials” or “classical
polynomials.” We note that it is preferable to discard the odd polynomials rather
than the even ones since the exact solution u(x, t) = U(x, t)ex

2
satisfies ∂u/∂x = 0

at x = 0 for t > 0 rather than u(x, t) = 0; this follows from the representation (4.37)
below and the results of [14] on the behavior of bounded solutions of Lu = λu near
x = 0, where L is defined in (3.12) below. One or the other must be discarded as the
odd polynomials are not orthogonal to the even ones on the half-line.

Monic orthogonal polynomials with respect to an arbitrary weight function ρ(x)
may be constructed via the Stieltjes procedure [19, 20]. A number of technical chal-
lenges arise, partly due to the rapid decay of ρ(x) = xνe−x

2
, which leads to overflow

and underflow problems in floating point arithmetic, and partly due to poor condi-
tioning of the recurrence

pj+1(x) = (x− aj)pj(x)− bjpj−1(x) (2.6)

for small values of x, which amplifies roundoff errors. We overcome overflow and
underflow issues by carrying an extra integer to extend the exponent range of float-
ing point numbers in the polynomial evaluation subroutine (see [17]), and avoid ill-
conditioning in the recurrence (2.6) by representing the polynomials in product form

pj(x) =

j∏
k=1

(x− x(j)
k ). (2.7)

The roots x
(j)
k of pj(x) are the eigenvalues of the symmetric tridiagonal Jacobi matrix

Aj with entries

(Aj)ii = ai−1, (1 ≤ i ≤ j), (Aj)i,i+1 = (Aj)i+1,i =
√
bi, (1 ≤ i < j).

The coefficients aj and bj as well as the squared norms cj = ‖pj‖2 are computed via

p0 = 1, c0 = 〈p0, p0〉, a0 = 〈xp0, p0〉/c0

6
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Figure 1: Re-scaled basis functions ϕ̃j(x) in (2.10) with j = 50 and weight function ρ(x) = x2e−x
2

.
The main difference between the full and even polynomials is that the nodes cluster more tightly
at x = 0 in the former case, which causes the oscillations in ϕ̃j(x) to be less uniform. This occurs
because x = 0 is a true endpoint of the weight function in the full case and is merely a symmetry
axis in the even case. Note that ϕ̃j(x) is odd in the even case due to the factor of x in ρ(x)1/2.

and the following recursion for j = 1, . . . , n:

pj(x) = (x− aj−1)pj−1(x)− bj−1pj−2(x),
cj = 〈pj, pj〉,
aj = 〈xpj, pj〉/cj,

bj =
cj
cj−1

, (2.8)

where b0p−1(x) is taken to be zero when j = 1. In the floating point (as opposed to
symbolic) algorithm, the formula for pj(x) is replaced by (2.7), and the inner products

〈f, g〉 =
∫∞

0
f(x)g(x)ρ(x) dx are computed using composite Gaussian quadrature on

subintervals [x
(j)
k , x

(j)
k+1] with endpoints taken to be the zeros of pj(x) together with

x
(j)
0 = 0 and several additional points x

(j)
j+1, . . . , x

(j)
j+r chosen to integrate the tails

of the integrands accurately. See [17] for further details about this approach, and
[19, 20] for additional perspective.

In what follows, it is useful to define

ϕj(x) = c
−1/2
j pj(x), (2.9)

which are (non-monic) polynomials of unit length in L2(R+; ρ dx), and

ϕ̃j(x) := ρ(x)1/2c
−1/2
j pj(x), (2.10)

which are unit vectors in L2(R+; dx) that oscillate with a fairly uniform amplitude

between 0 and x
(j)
j and then decay rapidly to zero, as illustrated in Figure 1. To avoid

excessive notation, we use the same symbols aj, bj, cj, pj(x), ϕj(x) and ϕ̃j(x) in the
full and even cases, with the recurrence relation (2.6) replaced, in the even case, by
(4.33) below.
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3. Projected Dynamics

The first step to solving the PDE (1.1) is to transform it to a self-adjoint system.
This is done by defining

u(x, t) = U(x, t)ex
2

, (3.11)

which satisfies

ut = −Lu, Lu = −(Ψwu′)′

w
, w(x) = x2e−x

2

, (3.12)

where ut := ∂u/∂t and u′ := ∂u/∂x. Note that if u and v are bounded, C2 functions
on (0,∞), we have

〈Lu, v〉 = 〈u, Lv〉, 〈u, v〉 =

∫ ∞
0

u(x)v(x)w(x) dx. (3.13)

Thus, L is symmetric and densely defined on the Hilbert space

H = L2(R+;w dx) =
{
u :

∫ ∞
0

|u(x)|2w(x) dx <∞
}
. (3.14)

Physically, the kth moment of the distribution function U may be computed as the
H-inner product of u with xk, or the L2-inner product of xe−x

2/2u with xe−x
2/2xk:∫ ∞

0

x2U(x, t)xk dx = 〈u, xk〉 =

∫ ∞
0

(
xe−x

2/2u(x, t)
)(
xe−x

2/2xk
)
dx. (3.15)

It is shown in [14] that L is a singular Sturm-Liouville operator [21, 22, 23] on (0,∞) of
limit circle type at x = 0 and limit point type at x =∞. The limit circle case requires
a boundary condition, but it suffices to require that solutions (of Lu = λu) remain
bounded at x = 0. The point spectrum of L consists of λ = 0 with eigenfunction u ≡
1, and the continuous spectrum is (0,∞). A spectral transform algorithm is developed
in [14] that diagonalizes the evolution operator and expresses the solution as a discrete
and continuous superposition of normalizable and non-normalizable eigenfunctions of
L. We will use this computationally expensive method to assess the accuracy of the
projected dynamics below.

In this work, we approximate solutions of the PDE (3.12) by projecting onto finite
dimensional subspaces of orthogonal polynomials. However, it is useful to derive the
discrete evolution equations without assuming that the basis functions are polynomi-
als (or even orthogonal). Let ϕ0, . . . , ϕn−1 ∈ H be linearly independent and consider
the subspace V = span0≤j<n ϕj. Define Φ : Cn → V ⊂ H and its adjoint Φ∗ : H → Cn

by

(Φ~α)(x) =
n−1∑
j=0

αjϕj(x), (Φ∗u)i = 〈u, ϕi〉. (3.16)
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Let P = Φ(Φ∗Φ)−1Φ∗ be the orthogonal projection from H onto V . The projected
dynamics of (3.12) onto V is given by

∂tup = −PLup, (3.17)

where up remains in V for all time. In weak form, we have

〈∂tup, v〉 = −〈Lup, v〉, (v ∈ V). (3.18)

Writing up(x, t) =
∑n−1

j=0 αj(t)ϕj(x), we find that

M~αt = −K~α, (3.19)

where

Mij = 〈ϕj, ϕi〉, Kij = 〈Lϕj, ϕi〉 =

∫ ∞
0

Ψ(x)ϕ′j(x)ϕ′i(x)w(x) dx (3.20)

are the mass and stiffness matrices associated with the basis functions ϕj, respectively.
The finite-dimensional system of ODEs (3.19)–(3.20) can be solved by a wide

variety of time-advance methods. We solve them exactly here in order to focus on the
effectiveness of the x-discretization, without further complications arising from the
discretization of time. Due to the linear self-adjoint structure of the equations, any
other scheme will evolve the eigenmodes independently, in accordance with standard
linear stability theory. Its behavior can therefore be predicted by replacing e−λt in the
spectral plots below by R(−hλ)n, where R(z) is the stability function of the scheme
[24], h is the timestep, and n is the number of steps.

Since the ϕj are linearly independent, M is positive definite and has both a
Cholesky factorization and a square root. K does as well since it is positive defi-
nite on

{ϕ0}⊥ = {u ∈ H :

∫ ∞
0

u(x)w(x) dx = 0}, (3.21)

where we assume ϕ0(x) = const. The Cholesky approach is more convenient for our
purposes, so let us write

M = RT
1R1, K = RT

2R2, R := R2R
−1
1 = USV T , (3.22)

where the Rj are upper-triangular and RT
j is the transpose of Rj (or the Hermitian

transpose if the basis functions are complex-valued). Assuming ϕ0 is constant, which
is convenient in practice, the first row and column of K are zero. The singular value
decomposition R = USV T solves the eigenvalue problem for M−1K:

(M−1K)(R−1
1 V ) = (R−1

1 V )S2, e−M
−1Kt = (R−1

1 V )e−S
2t(V TR1). (3.23)

9



The solution of (3.17) is then

up(x, t) = Φ(x)~α(t), ~α(t) = e−M
−1Kt~α(0), (3.24)

where Φ(x) = (ϕ0(x), . . . , ϕn−1(x)) is treated as a row vector. Since PLΦ = ΦM−1K,
the eigenfunctions of PL are the columns of Φ(x)R−1

1 V , which are orthonormal in H.
We note that since the constant function ϕ0 is in the basis set, Pϕ0 = ϕ0 and

∂

∂t

∫ ∞
0

x2Up(x, t) dx = ∂t〈up, 1〉 = −〈PLup, 1〉 = −〈up, LP1〉 = 0,

i.e. mass is conserved exactly by the projected dynamics. The same is true when the
domain is truncated in §5 since we impose Neumann boundary conditions at the right
endpoint. The constant function remains an eigenfunction of L in that case.

In floating point arithmetic, computing the SVD of R is more accurate than form-
ing K and computing its eigenvalues since we avoid squaring the condition number.
R1 and R2 can be obtained directly (without forming M and K) as follows. First,
we choose a quadrature scheme xk, µk such that the matrix entries Mij, Kij in (3.20)
are accurately approximated by

Mij =
N∑
k=1

ϕj(xk)ϕi(xk)w(xk)µk, Kij =
N∑
k=1

Ψ(xk)ϕ
′
j(xk)ϕ

′
i(xk)w(xk)µk. (3.25)

We choose the xk and µk corresponding to the composite quadrature rule used to
compute 〈pj, pj〉 and 〈xpj, pj〉 in (2.8) with j = n; see [17] for further details. Note
that (3.25) may be written

M = ET
1 E1, K = ET

2 E2,
E1,kj =

√
w(xk)µk ϕj(xk),

E2,kj =
√

Ψ(xk)w(xk)µk ϕ
′
j(xk).

(3.26)

R1 and R2 are then obtained by QR-factorization: E1 = Q1R1, E2 = Q2R2. Since
the zeroth column of E2 is zero, we actually perform the QR factorization of columns
1 through n− 1 to obtain R̃2 in (3.27) below.

To reduce roundoff errors in the numerically computed singular values of R, we
compute its pseudo-inverse before computing its SVD. In more detail, note that since
ϕ0 = const,

R = R2R
−1
1 =

(
0 0

0 R̃2

)(
∗ ∗
0 R̃−1

1

)
=

(
0 0

0 R̃2R̃
−1
1

)
= USV T , (3.27)

where R̃j is obtained from Rj be deleting the zeroth row and column. It follows that

pinv(R) =

(
0 0

0 R̃1R̃
−1
2

)
= V pinv(S)UT . (3.28)

10



It is well-known [25, 26, 27] that error bounds on the numerically-computed SVD of
an n × n matrix A are of the form Cn2ε‖A‖, where C is a constant (independent
of A and n); ε is machine precision; and ‖ · ‖ is either the 2-norm or the Frobenius
norm, depending on whether Givens rotations or Householder reflections are used in
the bidiagonal reduction process. Thus, we expect that computing V and S via (3.28)
will give better results than via (3.27) if ‖pinv(R)‖ � ‖R‖. We will see in Appendix
A that this is the case when ϕ0, . . . , ϕn−1 are orthogonal polynomials with respect to
the weight w(x).

We also note that since R̃1 and R̃2 are upper-triangular, applying R̃−1
2 to R̃1 from

the right causes information to propagate from left to right along the rows of R̃1. More
precisely, the first j columns of R̃1R̃

−1
2 do not depend on columns k > j of R̃1 or R̃2.

Thus, numerical error in high-index basis functions does not corrupt more accurately
computed low-index basis functions in the initial phase of computing pinv(R) before
performing the SVD. Sources of numerical error that tend to be larger for high-index
basis functions include the process of constructing the orthogonal polynomials ϕj(x),
the evaluation of derivatives in the corresponding columns of E2, and quadrature
error in the formulas Mij = ET

1,:iE1,:j and Kij = ET
2,:iE2,:j, where e.g. E1,:j denotes the

jth column of E1.

4. Numerical Results

We now study the accuracy of approximating solutions of ut = −Lu by their
projected dynamics. To illustrate typical behavior, we study two initial conditions
u(x, 0) = fj(x), namely

Example 1: f1(x) = x, Example 2: f2(x) = x2. (4.29)

Note that Lf1 has a singularity at the origin, so ut(x, 0) blows up as x → 0 in that
case. For this reason, Example 2 is easier and presented first below. We did not switch
the labels since it is easier to remember that Example k corresponds to f(x) = xk.

The cause of the singularity in Example 1 is that f(x) must be even in order to
represent a smooth, radially symmetric function in three-dimensional velocity space.
The reader may wonder about the physical relevance of such an initial condition.
Perhaps surprisingly, this case is indeed physically relevant and occurs in several
practical situations. For example, it occurs when one computes the resistivity of a
plasma (see Section 3 in reference [9]) by solving the time-dependent kinetic equation
for the distribution function until a steady-state is reached.

We write the solution (3.24) in the form

up(x, t) = Φ(x)~α(t), ~α(t) = V e−S
2tV T ~α, (4.30)

where ~α is short for ~α(0), V and S were defined in (3.22), and the matrix R1 does
not appear in the second expression because ν = 2. Note however that, as discussed
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in Appendix A, the accuracy is improved if Φ(x) is corrected for loss of orthogonality
by applying R−1

1 from the right, where R1 was defined in (3.22) and deviates from
the identity due to orthogonality drift in floating point arithmetic. In the numerical
results that follow, ϕk stands for the kth column of Φ(x)R−1

1 . See (A.1), (A.2), and
the last paragraph of Appendix A for further clarification of how (4.30) is computed.

The vector ~α can be computed analytically for the two examples in (4.29). In the
full (as opposed to even) case, we have

x = p1 + a0, x2 = p2 + (a0 + a1)p1 + (a2
0 + b1). (4.31)

Setting pj =
√
cjϕj and computing aj, bj, cj via (2.8) yields

x =

(
1

π1/4

)
ϕ0 +

(√
6π − 16

4π1/4

)
ϕ1,

x2 =

(
3

4
π1/4

)
ϕ0 +

(
π1/4

√
6π − 16

)
ϕ1 +

(
π1/4
√

9π − 28

2
√

6π − 16

)
ϕ2,

(4.32)

which give the coefficients f(x) =
∑
αkϕk.

In the even case, we note that hj(x) = Hj(x)2−j are monic orthogonal polynomials
with weight function e−x

2
on R and satisfy

h0(x) = 1, h1(x) = x, hj+1(x) = xhj(x)− j

2
hj−1(x).

The functions pj(x) = h2j+1(x)/x are then orthogonal with respect to w(x) = x2e−x
2

on the half-line and satisfy

p0(x) = 1, p1(x) = x2 − a0, pj+1(x) = (x2 − aj)pj(x)− bjpj−1(x), (4.33)

where aj =
(
2j + 3

2

)
and bj = j

(
j + 1

2

)
. It follows that cj = ‖pj‖2 is given by

cj =

∫ ∞
0

pj(x)2w(x) dx = c0

j∏
i=1

bi =

√
π(2j + 1)!

22j+2
.

From x =
∑

j〈x, pj〉c
−1/2
j ϕj and x2 =

(
a0
√
c0ϕ0 +

√
c1ϕ1

)
we obtain

x =
∞∑
j=0

(−1)j+1(2j − 3)!!

π1/4
√

(2j + 1)!
ϕj, x2 =

(
3

4
π1/4

)
ϕ0 +

(√
6π1/4

4

)
ϕ1. (4.34)

An intermediate step is to show that 〈x, pj〉 = −h2j(0)/(4j − 2). Note that (−3)!! =
−1 and (−1)!! = 1 in (4.34). For large j, Stirling’s approximation gives

(2j − 3)!!√
(2j + 1)!

≈ j−7/4

(64π)1/4

(
1 +

3

16j
+

105

512j2
+ · · ·

)
, (4.35)

so the coefficients αj decay slowly in the even case of Example 1.
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Figure 2: Evolution of mode amplitudes for Example 2 in the eigenbasis (A,B); the spectral
density representation (C); and the orthogonal polynomial basis (D,E). While both sets of orthogonal
polynomials are able to represent the solution of Example 2, the even polynomials require twice as
many basis functions to achieve the same level of accuracy. The sj = 0 mode is excluded in (A,B).

4.1. Evolution of mode amplitudes in the eigenbasis and polynomial basis

Since the columns of Φ(x)V form an orthonormal set of eigenfunctions for PL on
V , the components of the vector

e−S
2tV T ~α (4.36)

represent the mode amplitudes of up(x, t) in the eigenbasis while the components
of ~α(t) in (4.30) represent the mode amplitudes in the orthogonal polynomial basis.
Panels (A,B,D,E) of Figure 2 show the evolution of both sets of mode amplitudes
for Example 2 in the full and even cases. For comparison, we also plot the spectral
transform of the solution in (C), which was computed at 512 equally spaced points
between σ = −4 and σ = 8 using the algorithm described in [14]. Here σ = lnλ is the
spectral parameter used in [14] to represent the solution as a discrete and continuous
superposition of eigenfunctions. In more detail, the solution of the PDE in the infinite
dimensional space H may be written

u(x, t) =
4√
π
f̂(0) +

∫ ∞
−∞

v(x, σ)f̃(σ, t) dσ, (4.37)
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where v(x, σ) = u1(x, eσ)/Y (eσ), u1(x, λ) is a solution of Lu = λu with appropriate
boundary conditions at x = 0, Y (λ) is a scale factor defined in [14],

f̃(σ, t) = f̂(eσ)e−e
σt Y (eσ)ρ′(eσ)eσ, f̂(λ) =

∫ ∞
0

f(x)u1(x, λ)w(x) dx, (4.38)

and ρ′(λ) is the spectral density function associated with the singular Sturm-Liouville
problem [21, 28, 14]. In order to understand how the results in panels A and B are
related to those of panel C, consider the following. Writing Vj for the jth column of
V and S = diag(sj), the solution of the projected dynamics is given by

up(x, t) =
∑
j

vj(x)γj(t), vj(x) = Φ(x)Vj, γj = e−s
2
j tV T

j ~α. (4.39)

Comparing (4.37) and (4.39), we can interpret the projected dynamics solution as
having one component that represents (4/

√
π)f̂(0) and the others approximating the

integral
∫
v(x, σ)f̃(σ, t) dσ. Since the spacing of σj = ln(s2

j) is not uniform and the
functions vj(x) are not normalized in the same way as v(x, σj), the vertical scaling in
panels (A), (B) and (C) is not expected to be the same. Nevertheless, these graphs
are remarkably similar and give insight into how the projected dynamics mimic the
continuous dynamics.

Panels (D) and (E) of Figure 2 show the evolution of the coefficients αj(t) in the
orthogonal polynomial basis in the full and even cases. We added 10−40 to all the
coefficients to keep the t = 0 modes visible in the plot. In both cases, the number
of active modes grows from 3 or 2 at t = 0 to 400 or 800 at t ≈ 0.7, then decays
down to one mode (the steady state) as t → ∞. The curves are plotted in black
or orange depending on whether the number of active modes is growing or decaying
at that time. Panels (D) and (E) show that twice as many modes are necessary to
represent the solution using even polynomials instead of full polynomials. Panels (A)
and (B) show why this is the case: the full polynomials are more efficient at sampling
the interval −4 ≤ σ ≤ 8 of interest. Indeed, the eigenvalue distribution in panel (B)
is heavily skewed to over-sample the low end of this spectral window.

Figure 3 shows that for Example 1 the full polynomials are again able to mimic
the behavior of the continuous problem in the sense that the mode amplitudes in the
eigenfunction basis closely resemble the spectral transform of the initial condition.
Moreover, for t ≥ 10−4, the mode amplitudes in the orthogonal polynomial basis
decay exponentially to roundoff error using 1600 modes. By contrast, in the even
case, the mode amplitudes in the eigenfunction basis reach a plateau when σ decreases
below -3, and cease to resemble the spectral transform f̃(σ, 0). As a consequence, the
mode amplitudes in the orthogonal polynomial basis do not decay to roundoff error
accuracy until t reaches 0.01 or so, and even then the mode amplitudes αj(t) become
large again for large j. Thus, the even polynomials are not able to represent the
solution of Example 1 effectively even for large values of t.
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Figure 3: Evolution of mode amplitudes for Example 1 in the eigenbasis (A,B); the spectral density
representation (C); and the orthogonal polynomial basis (D,E). Large errors in the mode amplitudes

for small values of sj in panel (B) are not damped out quickly by e−s
2
j t, and therefore persist for

large times in panel (E). In panel (D), the mode amplitudes |αj(t)| decrease until t = 0.05 or so,
then enter a brief growth period until t = 0.7, then decay again toward steady-state.

4.2. Validation of accuracy

Of course, it is not guaranteed that the full polynomials yield the correct answer for
t ≥ 10−4 just because the mode amplitudes decay fast enough to reach roundoff error
at that point. The true solution might leave the subspace V = spanϕk initially and
come back to a different point in the subspace than the projected dynamics predicts.
This was the motivation for developing the spectral transform approach in [14], where
we know the analytic form of the solution and can use it as an independent check of
the correctness of the projected dynamics. In Figure 4, we plot the solution, scaled by
e−x

2/2, for Examples 1 and 2 at several times, together with the difference between the
solution of the projected dynamics and the one obtained using the spectral transform
approach, both scaled by e−x

2/2. We considered other scalings, namely e−x
2

(since
U = ue−x

2
) and also xe−x

2/2; the scaling e−x
2/2 is the one for which the plots are the

most readable. We added (10−32−2x) to the error plots to avoid evaluating log10(0)
when the two methods agree to all 32 digits.

At t = 0, both methods represent the solution with high relative accuracy for
Example 2, but only the full polynomials are able to do this for Example 1. This is
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Figure 4: Evolution and error of projected dynamics in spaces of full and even orthogonal poly-
nomials. The spectral transform approach of [14] was used for the “exact” solution. (B,C,E) both
methods reach roundoff error in quadruple-precision. (F) the projected dynamics with even orthog-
onal polynomials does not perform well with 5000 modes until the solution approaches steady-state.

because the only errors at t = 0 in panels (B,C,E) of Figure 4 are roundoff errors in
the 2–3 nonzero coefficients in (4.32) and (4.34), while in panel (F) the series in (4.34)
has been truncated at 5000 terms, leading to much larger errors at t = 0. In panels
(B) and (E), which correspond to Example 2, the two approaches agree to more than
28 digits of accuracy for all positive times, though twice as many modes are needed
to achieve this accuracy with even polynomials. However, the errors are now absolute
errors rather than relative errors. This loss of relative accuracy is expected as the
spectral density approach leads to oscillatory integrals involving a large amount of
cancellation to evaluate u(x, t)e−x

2/2 for t > 0 and x ≥ 6. Similarly, the orthogonal
polynomial approach yields a superposition

∑
j αj(t)ϕj(x)e−x

2/2 that involves a large

amount of cancellation of digits for t > 0 and x ≥ 6. For example, ϕj(x)e−x
2/2

remains O(1) well past x = 30 when j = 425 while |u(x, t)e−x
2/2| is less than 10−30

when x = 12 and t ≥ 0. For very large t, both methods regain high relative accuracy
since the oscillatory part of the calculation becomes negligible compared to the steady-
state zeroth mode. Panel (C) confirms that the full polynomials yield small (absolute)
errors in Example 1 for t ≥ 10−4 even though the true solution leaves the subspace
V for 0 < t < 10−4 (due to slower decay of mode amplitudes |αj(t)| in Figure 3 than
those shown for t = 10−4). Panel (F) of Figure 4 shows that this is not true for even
polynomials.
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Figure 5: Full orthogonal polynomials ϕj(x) (orange) grow much faster with j at x = 0 than even
orthogonal polynomials (black). In panel (C), the factor of (−1)j is included to account for the fact

that ϕj(0) alternates in sign. The function (−1)jϕj(x)e−x
2/2 increases monotonically in j when

x = 0 is held fixed, but becomes oscillatory in j for any other fixed value of x.

There are two issues in play causing the even polynomials to be less accurate. It
takes longer (by a factor of 66) for the exact solution (computed using the spectral
transform method) to reach the subspace — we have checked that the distance from
the exact solution to the 5000-mode even polynomial subspace does not drop below
10−30 until t = 0.0066 — and when it arrives, the projected dynamics solution has
evolved to a different location in the subspace, with an error of 1.302 × 10−8 in the
H-norm at t = 0.0066 with 5000 modes. For comparison, the H-norm of the exact
solution at this time is 0.66354.

In Figure 4(B,C), the errors in the full polynomial case are much larger near
x = 0 than elsewhere. This is not a cause for concern since physical quantities, such
as the moments of the distribution function in (3.15), carry an additional factor of
x2 in the integrand, which suppresses these errors. Nevertheless, it is instructive to
identify their source. These errors occur because the coefficients αj in Figures 2(D)
and 3(D) carry roundoff errors that are amplified by the large values of the basis
functions ϕj(x) near x = 0 for large j. As shown in Figure 5, ϕj(0) is already close
to 1000 in the full case when j = 50, and grows to 2.8 × 105 at j = 1600. For other
values of x, (−1)jϕj(x)e−x

2/2 is oscillatory in j, with higher frequency and smaller
amplitude oscillations for larger x. Thus, these functions are only large near x = 0.
This growth in the basis functions near x = 0 occurs because the weight function
w(x) = x2e−x

2
approaches 0 as x → 0+. Indeed, we saw in Figure 1 that when j

is large, xϕj(x)e−x
2/2 oscillates with a fairly uniform amplitude over a large distance

before eventually decaying to zero as x→∞. In the even case, xϕj(x)e−x
2/2 resembles

a sine function near x = 0; hence, ϕj(x)e−x
2/2 resembles a sinc function. However,

in the full case, the zeros of ϕj(x) are more tightly clustered near x = 0 since it is a
true endpoint rather than a symmetry axis. The higher oscillation rate near x = 0
causes the peaks of xϕj(x)e−x

2/2 to be amplified more when divided by x to obtain
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ϕj(x)e−x
2/2, since x is smaller at the peaks. Thus, ϕj(0) grows more rapidly with j

in the full case than in the even case.

4.3. Eigenfunctions

Next we consider the connection between eigenfunctions of the projected operator
PL and solutions of Lu = λu, which are not normalizable but serve as basis functions
to represent the solution of ut = −Lu in a continuous superposition via the spectral
transform (4.37) and (4.39). Since the exact solution has this form, one might expect
that the accuracy of a discrete approximation of the continuous spectrum would be
limited by the degree to which these eigenfunctions can be approximated. We find
below that this is not the case: the eigenfunctions need only agree to 2–3 digits for
the time dependent solutions constructed from them to agree to 30 digits.

Figure 6 shows the solution u of Lu = λu with u(0) = 1 and λ = 1, as well as the
eigenfunction up of PL with eigenvalue closest to 1 for two choices of n = dimV . One
boundary condition on u is sufficient at x = 0 since the other linearly independent
solution blows up there. The orange curves show the envelope of the solution of
Lu = λu, which we define as the prefactor A0p(x) in the asymptotic formula

u(x)e−x
2/2 = A0p(x) cos[q(x) + θ0] +O(x−15/4). (4.40)

In [14], the authors show that

p(x) = x−1/4
[
1 + 1

8xλ
+ 5

128x2λ2
+ 15

1024x3λ3

]
, (4.41)

q(x) =
√

2λx5
[

2
5
− 1

6xλ
− 1

16x2λ2
+ 1

64x3λ3
+ 5

3072x4λ4
+ 7−1152λ4

20480x5λ5

]
. (4.42)

The parameters A0 = 0.443935 and θ0 = −1.615039 were obtained by fitting the
numerical solution of Lu = λu, u(0) = 1, λ = 1 to the form (4.40) for large x. Note
that the amplitude of u(x) decays slowly while the frequency grows rapidly since
p(x) ∼ x−1/4 and q(x) ∼ x5/2.

The blue markers in Figure 6(B,C) show the extrema of the (highly oscillatory)
residual

r(x) = [up(x)− u(x)]e−x
2/2.

We re-scaled the eigenfunction up by hand to minimize the amplitude of the oscil-
lations in r(x). Due to the logarithmic scale of the plot, it is important to use the
same λ for u and up when computing r, but setting λ = 1 is sufficient for plotting
the envelope. For n = 425 (panel B of the figure), there is an interval 0.125 ≤ x ≤ 6
where up agrees with u to 2–3 digits of accuracy. For x > 6, r(x) grows in amplitude
since there are not enough orthogonal polynomial basis functions for up(x) to match
the accelerating frequency of oscillation in u(x). As a result, the blue markers move
outward and begin to oscillate about the envelope curve as u and up pass in and
out of phase with each other. At this point, the projected eigenfunction up drops in
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amplitude by a few orders of magnitude and enters a plateau phase where it no longer
reaches the envelope curve but still remains significant in size. Beyond x = 35, the
eigenfunction finally decays rapidly to zero. The results for n = 1600 (panel C) are
similar, but |r(x)| < 10−2 over a larger window 0.025 < x < 12.7 and is generally
3–10 times smaller than in the n = 425 case. The plateau region also grows from
10 < x < 35 when n = 425 to 16 < x < 66 when n = 1600.

The growth in r(x) as x→ 0+ in Figure 6(B,C) is due to a Gibbs phenomenon in
the eigenfunctions of PL. This is shown in more detail in Figure 7(A), which plots
the eigenfunction with eigenvalue closest to 1 for n = 425 (blue), n = 1600 (black),
and n = 5000 (orange), along with the solution u of Lu = λu, λ = 1 (red). We used a
linear scale on the y-axis to better illustrate the magnitude of the overshoot. We also
plotted the results parametrically versus x1/4 to better distinguish the oscillations
from the y-axis and from each other. As n increases, the overshoot becomes taller,
narrower, and more oscillatory.

In Figure 7(B), we plot the coefficients when these eigenfunctions are expanded in
the orthogonal polynomial basis. This plot illustrates that all of the eigenfunctions up
of PL are poorly resolved in the sense that the expansion coefficients do not decay to
zero once n is large enough. The one exception is the λ = 0 eigenfunction, u(x) ≡ 1,
which is normalizable and agrees with p0(x). For the others, as n increases, the
higher-frequency polynomials make it possible for up to match the oscillations in u
over a greater distance. Thus, as discussed above, the window over which r(x) is
small grows from 0.125 < x < 6 when n = 425, to 0.025 < x < 12.7 when n = 1600,
to 0.0067 < x < 21 when n = 5000 (not shown in Figure 6). The plateau region
also grows with n. This is a consequence of all the polynomial basis functions being
present in up. Indeed, the effective support of up (where |up(x)e−x

2/2| > 10−30, say)
is roughly the same as that of the highest frequency orthogonal polynomial present,
which grows with n. By contrast, we will see below that on a truncated domain, the
eigenfunctions of PL converge to those of L, and are independent of n once n increases
beyond the point where the coefficients αj have converged to zero. It is remarkable
that on the infinite domain, in spite of the Gibbs overshoot and rather poor agreement
between eigenfunctions of PL and solutions of Lu = λu, the numerical solution of
the projected dynamics agrees to 30 digits of accuracy to the numerically computed
spectral transform solution, which is built from solutions of Lu = λu.

4.4. Accuracy at low resolution

Numerical simulations of high dimensional kinetic equations are often so compu-
tationally intensive that only a low number of modes or grid points can be retained to
discretize the speed variable. For example, in the five-dimensional gyrokinetic simula-
tions of plasma turbulence in magnetic confinement devices, the number of grid points
for the speed variable is typically 8-24 [31]. If the non-classical polynomials studied
in this article are to replace existing discretization schemes for kinetic simulations, it
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is important to consider their performance at low resolution. In Figures 8 and 9, we
compare the error at low resolution for three different discretization schemes. The
first two are the full and even polynomials considered throughout the article. The
third is that of the popular gyrokinetic codes GS2 and AstroGK [29, 32], in which
the grid consists of n − m Gauss-Legendre points on the interval [0, 2.5], together
with m Gauss-Laguerre points on [2.5,∞), where m = 1 for n ≤ 12 and m = 2 oth-
erwise [31]. In more detail, the Gauss-Laguerre points x̃j ∈ [0,∞) are transformed
to [2.5,∞) via xj = (6.25 + x̃2

j)
1/2, and the weights are scaled by wj = w̃j/(2xj), so

that
∫∞

2.5
p(x2)xe−x

2
dx =

∑m
j=1 p(x

2
j)xje

−x2jwj whenever p(x̃) is a polynomial of degree
less than 2m. We actually used m = bn/3c since the errors were smaller. In GS2
and AstroGK, the Gauss-Legendre and Gauss-Laguerre points are used for accurate
numerical integration [31], but derivatives with respect to the speed variable, such
as the ones appearing on the right-hand side of (1.1), are computed with a 3-point
finite-difference stencil.

Figure 8 gives the norm of the error in the Hilbert space H as a function of
time, and Figure 9 gives the error in the computed value of S(t) = −

∫∞
0
U2x2ex

2
dx

as a function of time. S(t) is an entropy-like function in the sense that it satisfies
dS/dt ≥ 0, which can be viewed as a “second principle of thermodynamics.” This
can be easily seen by multiplying (1.1) by x2ex

2
U and integrating from x = 0 to

x = ∞. The initial conditions in Figures 8 and 9 are those of the more challenging
Example 1, and the error is measured by comparing the solutions obtained with the
three different discretization schemes with the solution obtained from the spectral
transform approach. These figures show that for small grid sizes, the full polynomials
are several orders of magnitude more accurate than the even polynomials for small
times, and become comparable at larger times. For larger grid sizes (n ≥ 32), the full
polynomials remain more efficient than even polynomials for all time, as seen in the
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Figure 9: Evolution of the error in the entropy-like scalar function S(t) = −
∫∞
0
U2x2ex

2

as a
function of time for the discretization schemes of Figure 8. As before, n is the number of modes
or grid points used to solve (1.1), the initial conditions correspond to Example 1, and the spectral
transform approach of [14] was used for the “exact” solution.

third panel of Figures 8 and 9, and also in Figures 2 and 3. We can also see that at
a fixed grid size, the full polynomials lead to more accurate solutions than the GS2
scheme for all times, often by several orders of magnitude.

For the time evolution of the present paper, we evolve to any time t by diag-
onalizing the discrete differential operators. This leads to almost no difference in
the running times of GS2 and the orthogonal polynomial approach. For example, to
compute the solution at all 90 values of t in Figures 8 and 9, the running time (in
milliseconds) of the computational phases of our two codes was

A (n = 8) B (n = 8) A (n = 16) B (n = 16) A (n = 32) B (n = 32)
GS2 4.64 0.076 4.30 0.121 4.59 0.233
OP 3.10 0.075 2.96 0.122 3.14 0.198

The columns labeled A correspond either to balancing the tridiagonal matrix and
computing its eigenvalues and eigenvectors (GS2 approach) or computing the SVD
of R in (3.27), which is precomputed and read from a file (orthogonal polynomial
approach). The same file works for any n (up to the one used to generate the file)
since the R matrices are nested. The columns labeled B correspond to evolving the
solution from t = 0 to the times shown in the figures by computing V e−ΛtV Tu0, where
V is the eigenvector matrix. For these small values of n, the running times depend
more on the BLAS implementation than the number of flops involved, and the first
phase (column A) is actually faster when n = 16 than n = 8 in both approaches. We
used the Intel Math Kernel library in a C++ framework for both codes.

One advantage of the GS2 scheme is that the discretized differential operator L on
the right-hand side of (3.12) is tridiagonal. Thus, if the timestepping scheme of the
high-dimensional problem involves solving one-dimensional subproblems (e.g. through
operator splitting), the computational cost of applying L or inverting I + hL will be
lower for GS2 than for either set of orthogonal polynomials. Thus, one could po-
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tentially use a larger n in GS2 for the same computational cost as the orthogonal
polynomial approach. However, increasing n also increases the required storage space
and communication costs, which may be more limiting resources than the CPU cy-
cles available to solve the local one-dimensional subproblems. Nevertheless, sparse
discretizations are clearly desirable. We are developing a banded version of the or-
thogonal polynomial approach in a pseudo-spectral framework that is more accurate
than GS2 while retaining much of the sparsity advantage over the dense Galerkin
approach presented here [17].

5. Truncation of the Domain

There are three benefits to truncating the domain to a finite interval. First, the
method is easier to implement as the integration domain in the inner products is fixed.
We continue to use a composite Gaussian quadrature rule using the zeros of pn(x) as
the endpoints of the integration sub-intervals. However, it is no longer necessary to
deal with the last sub-interval as a special case since it no longer extends to infinity.
Second, the coefficients cj = 〈pj, pj〉 and bj = cj/cj−1 grow less rapidly on a truncated
domain. For example, numerical experiments suggest that for large k

half-line truncated to 0 < x < 15

even bk = k
(
k + 1

2

)
bk = 14.0625 +O(1/k2)

full bk = 1
6
(k + 1) + 17

72
(k + 1)−1 +O(1/k3) bk = 14.0625 +O(1/k2)

.

Since ‖pj‖2 = cj = c0

∏j
k=1 bj, we see that the monic polynomial norms grow super-

exponentially on the half-line and exponentially on the truncated domain. If n is not
too large (say n < 400), this alleviates the need to use special floating point numbers
to guard against overflow and underflow. For larger n, there is little advantage in this
respect. Third, orthogonal polynomials on the truncated domain are more efficient
at representing functions supported near the origin since their zeros remain confined
to the truncated interval, and therefore can resolve more features of the solution with
fewer basis functions. On the other hand, an obvious drawback of truncating the
domain is that the solution and its gradient must remain essentially zero at the right
endpoint to remain a good approximation of the solution on the half-line.

In Figure 10, we illustrate these issues in the context of Examples 1 and 2, where
u(x, 0) = xk, k = 1 or k = 2. Panel A compares the 175th normalized basis func-
tion, defined in (2.10), on the half-line and truncated domain. Both functions have
175 zeros, but they are more spread out in the half-line case. Panel B repeats the
calculation of Figure 4, showing the difference between the solution obtained from
the projected dynamics (this time on a truncated domain) to the spectral transform
solution (plotted in Figure 4(A,D)). The errors are essentially the same as for the
half-line (ranging from 10−26 near x = 0 to 10−29 for larger x), but only 1200 modes
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Figure 10: Plots showing the use of orthogonal polynomials on a truncated domain to solve
Examples 1 and 2. The error in (B) is nearly identical to the half-line case of Figure 4(C), but only
required 1200 (instead of 1600) modes. In (C), the modes decay faster on the truncated domain
because the oscillations in the basis functions are more localized near the origin, as shown in (A).

were needed to reach roundoff accuracy instead of 1600. As before, with this choice of
n, the projected dynamics solution for Example 1 is correct at t = 0 and for t > 10−4,
but not at intermediate times 0 < t < 10−4. Similar results, valid for t ≥ 0, were
obtained for Example 2. Panel C shows the mode amplitudes |αj(t)| at t = 10−4 in
Example 1 and t = 0.7 for Example 2. Fewer modes are needed on the truncated
domain since the zeros remain confined to 0 < x < 15 in that case.

Next we look for an initial condition that is initially confined to 0 < x < 15 but
spreads out past the right endpoint. We tried a number of formulas and settled on a
two-hump initial distribution of the form

u(x, 0) =

{[
5
2

(
x

3.25

)30
+ 155

64

(
x

8.25

)200
]

exp
(
− 15

15−x

)
, 0 < x < 15,

0, otherwise.
(5.43)

The results are shown in Figure 11. Panels A and B show the solution at the times
t = 0, 0.05, 0.7, 6, 45, 190, 500, 1000, 2000, computed on the half-line, on a linear and
log scale, respectively. Up until t = 6, the solution remains confined to 0 < x < 15.
But then from 6 < t < 1000, the solution is not negligible (in quadruple-precision)
at the right endpoint. Panel C shows the difference between the truncated domain
solution and the half-line solution. As expected, they agree to roundoff error for
0 < t < 6, but then begin to differ near the right end of the domain due to an
incorrect assumption that ux = 0 at x = 15 in the truncated domain calculation.
Once t > 1000, the solution has decayed to the steady-state Maxwellian distribution,
and the two methods agree again. Panel D shows that many fewer modes were needed
to resolve the initial condition on the truncated domain than on the half-line. This is
because the nodes cluster at x = 0 and x = 15 for the truncated domain calculation,
but only at x = 0 for the half-line calculation, and this initial condition varies rapidly
near x = 15 due to the factor of exp[15/(15 − x)] in (5.43). Even in this example,
where the initial distribution u(x, t)e−x

2/2 has a peak of order 1 near x = 12.75, the
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Figure 11: Evolution of two-hump initial condition that is initially contained in 0 < x < 15 but
eventually spreads out past the right endpoint. In panel (C), uTD(x, t) was computed on a truncated
domain while u(x, t) was computed on the half-line. The modes decay faster in (D) for the truncated
domain due to clustering of the zeros of pn(x) near x = 15.

error in truncating the domain to 0 < x < 15 was never larger than 10−10. Thus, we
expect that in practice it is safe to truncate the domain as long as the initial condition
and any sources are fully supported inside the truncated region.

As a final remark, we note that the eigenfunctions of PL converge to eigenfunctions
of L when the domain is truncated, unlike the half-line case. This is illustrated in
Figure 12. Panels A and D show the eigenmode amplitudes for Examples 1 and 2
on a half-line and truncated domain. The main difference is that on a truncated
domain, further mesh refinement will not increase the density of eigenvalues of PL at
the left end of the spectrum since these are converged eigenvalues of the continuous
problem. By contrast, on the half-line, the eigenvalues of PL become more densely
spaced as the mesh is refined to better approximate the continuous spectrum of L. In
Figure 10, we saw that 1200 modes was sufficient to resolve the solution in Example
1 and 350 modes was sufficient for Example 2. In panels (B) and (E) here, we plot
the eigenfunction up of PL with eigenvalue λ closest to 1, re-scaled to agree as closely
as possible with u, the solution of Lu = λu with the same λ and satisfying u(0) = 1.
Note that 1200 modes yields perfect agreement between u and up (to 26 digits) while
350 modes yields large discrepancies: a Gibbs overshoot occurs near x = 0, and a beat
pattern appears for large x where the two functions fall out of phase. The minimum
amplitude of oscillation of up−u in panel E is roughly 10−3 when 0.8 < x < 1.5, which
is 23 orders of magnitude larger than in panel B. Panels C and F show why this occurs:
the solution u of Lu = λu with λ ≈ 1 requires about 500 orthogonal polynomial basis
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Figure 12: Comparison of mode amplitudes on a half-line and truncated domain (A,D) and plots
of resolved (B) and unresolved (E) eigenfunctions of PL and L on 0 < x < 15. As before, Vj is the
jth column of the matrix V in the singular value decomposition R = USV T , and ΦVj is the jth
eigenfunction of PL, where Φ = (ϕ0, . . . , ϕn−1) are the orthogonal polynomials.

functions to be represented on 0 < x < 15. When 1200 basis functions are used, the
modes decay rapidly between k = 400 and k = 500 and the remaining modes are zero
up to roundoff error. When 350 modes are used, as in Example 2, the eigenfunction
of PL does not agree closely with that of L due to lack of resolution. However, just
as in the half-line case, where none of the eigenfunctions of PL agree closely with
solutions of Lu = λu, the projected dynamics is accurate to roundoff error in both
examples — it is not necessary to resolve all the active eigenfunctions to accurately
represent the solution of the PDE on a truncated domain either.

6. Conclusion

Shizgal [10] showed that a new class of non-classical polynomials could be used
very effectively for numerical quadratures of the collision operator in kinetic simula-
tions. More recently, Landreman and Ernst [9] showed that the same polynomials
could also be much more accurate than other schemes for the discretization of the
speed variable in steady-state kinetic calculations involving the collision operator. In
this article, we have demonstrated that the new polynomials are also useful for time-
dependent problems by examining the one-dimensional relaxation of a distribution
function to a Maxwell-Boltzmann distribution via energy diffusion. We found that
the new polynomials are effective at representing the solution of the partial differ-
ential equation for a wide class of initial conditions, and can be more accurate than
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generalized Hermite (“even”) polynomials by many orders of magnitude for the same
computational work. This was seen e.g. in Fig. 2(D,E), where 350 modes are sufficient
to reach errors of 10−30 with the new polynomials and 10−20 for the even polynomials,
and Fig. 4(C,F), where 1600 modes with the new polynomials are 1020 times more
accurate than 5000 classical modes.

Given the Sturm-Liouville structure that we associated with the problem, the
polynomials defined with integration weight ρ(x) = x2e−x

2
are the most natural to

use, and the most accurate for most parts of the computations. As discussed in
Appendix A, the polynomials defined with integration weight ρ(x) = e−x

2
(on the

half-line), chosen for most computations in [9], also give satisfying results.
It is often the case, given the size of the numerical simulations, that one can only

afford very coarse grids for a given variable. Our analysis at low resolution, in Figures
8 and 9, shows that the full polynomials are more accurate than even polynomials
as well as the discretization scheme used in popular plasma kinetic codes, often by
several orders of magnitude. These results, together with exact mass conservation at
all times suggests that the new polynomials could be an attractive alternative to the
finite difference schemes currently in use in state-of-the-art plasma microturbulence
codes [5, 6]. However, for the new polynomials to make a truly compelling case, at
least two questions must be answered. First, the stiffness matrix K is dense, whereas
finite difference matrices are sparse. Does the fact that the polynomials yield accurate
results on very coarse grids compensate this disadvantage? Are there formulations
based on these polynomials that can avoid operations on dense matrices? Curiously,
when ν = 0, we find that M is pentadiagonal and the entries Kij decay exponentially
as |i − j| increases, but this still leads to a much wider band of nonzero entries
centered about the diagonal than in a finite-difference approach. Second, what is
the best way to incorporate these polynomials in time-dependent simulations with
more complete collision operators? Exponential time-differencing schemes [15] and
implicit-explicit Runge-Kutta methods [16] appear promising, but this is the subject
of ongoing research, with results to be reported at a later date.
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Appendix A. Effect of the choice of ν in floating-point arithmetic

In exact arithmetic, the projected dynamics onto V = span{ϕ0, . . . , ϕn−1} is iden-
tical for any choice of ν in (2.3) since the subspace V consists of polynomials of degree
less than or equal to n, regardless of the weight function. However, changing ν can
have a large effect in the presence of roundoff error. To understand this, first observe
that using a monomial basis for V (instead of orthogonal polynomials) would lead
to numerical difficulties as the basis functions become nearly linearly dependent in
H = L2(R+;w dx). Using orthogonal polynomials with weight exponent ν 6= 2 has
the potential to cause similar difficulties.

In exact arithmetic, the mass matrix M = RT
1R1 in (3.20) is the identity when

ν = 2 since the ϕj in (2.9) are orthonormal in H. For any other choice of ν, the
Cholesky factor R1 gives the change of basis to the ν = 2 case:

Φ(ν) =
(
ϕ

(ν)
0 , . . . , ϕ

(ν)
n−1

)
= Φ(2)R

(ν)
1 , M (ν) =

∫
Φ(ν)TΦ(ν)w dx = R

(ν)T
1 R

(ν)
1 .

Similarly, K(ν) = R
(ν)T
1 K(2)R

(ν)
1 so that R = R

(ν)
2 (R

(ν)
1 )−1 = R

(2)
2 in (3.22) is indepen-

dent of ν (up to roundoff errors), and is largely unaffected by orthogonality drift when

ν = 2 as long as R
(ν)
1 is actually computed rather than assumed to be the identity

matrix. From (3.23), the solution of the projected dynamics is

up(x, t) =
[

Φ(ν)(x)(R
(ν)
1 )−1︸ ︷︷ ︸

A

][
V e−S

2tV T
][
R

(ν)
1 ~α(ν)︸ ︷︷ ︸
B

]
(A.1)

where A = Φ(2)(x), B = ~α(2) = (R
(ν)
1 )−T ~β(ν), ~β(ν) = M (ν)~α(ν), and

α
(ν)
i =

∫
up(x, 0)ϕ

(ν)
i (x)xνe−x

2

dx, β
(ν)
i =

∫
up(x, 0)ϕ

(ν)
i (x)x2e−x

2

dx. (A.2)

Thus, if ν 6= 2, the numerical algorithm performs a change of basis to the ν = 2 case
as an intermediate step.

Figure A.13 shows the sources and effect of roundoff error in evaluating the solution
up(x, t) via (A.1). Panels (A) and (B) show the normalized basis functions ϕ̃

(2)
500(x)

and ϕ̃
(2e)
500 (x) in (2.10) and the error in computing them in double-precision with ν = 0

or ν = 0e, where “e” stands for even:

err
(ν)
k (x) = colk

[
Φ̃(ν)(x)

(
R

(ν)
1

)−1]− ϕ̃(2 or 2e)
k (x). (A.3)

Here colkX is the kth column of X. The second term on the right is the “exact”
solution, which was computed with ν = 2 in quadruple-precision. The relative error
for k = 500 is about 60 times smaller in the even case (B) than the full case (A).
This is because the orthogonal polynomials are more oscillatory near x = 0 in the full
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Figure A.13: Comparison of roundoff errors for ν = 0, 0e, 2, 2∗, 2e, 2e∗, 4, 4e. Here e stands for
“even,” ∗ stands for “assuming R1 = I,” and errors are measured against the ν = 2 or ν = 2e

quadruple-precision results. (A) and (B) show the error in using Φ̃(ν)(x)(R
(ν)
1 )−1 with ν = 0 to

compute ϕ̃
(2)
500(x). (D) gives the sup-norm of the error in computing ϕ̃

(2)
k (x) in this way. (E) shows

the error in the kth column of pinv(R), as defined in (A.5). (C) and (F) give the largest and smallest
singular values of R1 and R̃2, which help explain the results in (A), (B), (D), (E).

case, where x = 0 is a true integration boundary. A similar thing occurs in Chebyshev
and Legendre polynomials, which are more oscillatory near x = ±1 than x = 0. We
plotted ϕ̃

(2)
500(x2) in (A) to obtain more uniform oscillations for visualization.

In both (A) and (B), we note that the error has more structure than might be

expected from roundoff errors alone. This is because (R
(ν)
1 )−1 is present in (A.3),

which amplifies errors along singular vectors corresponding to the smallest singular
values more than in other directions. (C) shows the largest and smallest singular

values of R
(ν)
1 as a function of n = dimV . Since the matrices R

(ν)
1 are nested as n

increases, σmax is an increasing function of n while σmin is decreasing. The condition
number of R

(ν)
1 is the ratio σmax/σmin. It is 1 for ν = 2, grows slowly for ν = 0e

and ν = 4e, and grows faster for ν = 0 and ν = 4. The condition number of M
is the square of the condition number of R1. Thus, roundoff errors are reduced by
computing R1 directly rather than from M .

Panel (D) shows the max-norm of err
(ν)
k (x) as a function of k for ν = 0, 2, 4 in

the even and full cases. For example, the amplitudes of the largest peaks in the error
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curves in (A) and (B) are plotted at k = 500 in (D) on the double-precision curves
labeled 0 and 0e, respectively. For small values of k, all the values of ν that we tested
yield reasonably accurate results. However, as k increases, the growth in the condition
number of R

(ν)
1 in (C) leads to significant loss of accuracy in ϕ̃

(2)
k when computed via

Φ̃(ν)(R
(ν)
1 )−1 for ν 6= 2. In particular, roundoff error is amplified by more than 5 orders

of magnitude with ν = 4 and k = 2000. The ν = 2 curves (full and even) are missing
from the quadruple-precision results as they are treated as “exact” solutions in (A.3).
Note that even for ν = 2 we compute R1 and apply its inverse to Φ(2) to correct for
the slight loss of orthogonality that occurs when computing the basis functions by
the three-term recurrence (2.6) or (4.33). In other words, the second term in (A.3) is
computed as

ϕ̃
(2 or 2e)
k (x) := colk

[
Φ̃(2 or 2e)(x)

(
R

(2 or 2e)
1

)−1]
. (A.4)

The curves labeled 2∗ and 2e∗ give uncorrected results in which R1 is assumed equal
to the identity and dropped from the first term in (A.3). These errors are comparable
to using ν = 0 or ν = 4, where R1 is required.

Panel (E) shows the error in computing pinv(R) in (3.28). More precisely, we plot

E
(ν)
k = colk

[
R̃

(ν)
1 (R̃

(ν)
2 )−1 − R̃(2 or 2e)

1 (R̃
(2 or 2e)
2 )−1

]
, (A.5)

where R̃j is obtained from Rj by deleting the zeroth row and column. The second
term on the right is computed in quadruple precision, and treated as “exact.” Since
R1 and R2 are upper-triangular, the kth column of E(ν) is independent of n = dimV
for n > k. Note that the double-precision curves labeled ν = 0 and ν = 0e are
more accurate than the ν = 2 and ν = 2e curves, respectively. This is because we
compute the SVD of pinv(R), which involves R−1

2 rather than R−1
1 , and R

(0)
2 is better

conditioned than R
(2)
2 , as shown in panel (F). The reason is that the orthogonal

polynomials for ν = 0 are less oscillatory near x = 0 than for ν = 2 (since ρ(x)
vanishes at x = 0 in the latter case), and R2 involves derivatives of these orthogonal
polynomials. Thus, a better “exact” solution would be ν = 0 instead of ν = 2 in
(A.5). When this is done, the only visible effect on the plot in panel (E) is that the
two most accurate quadruple-precision curves should be re-labeled (0 to 2, 0e to 2e)
to better account for the primary source of error in (A.5).

As mentioned previously, we compute the SVD of pinv(R) rather than of R be-

cause ‖R‖ > ‖ pinv(R)‖. This may be seen in panel (F), where σmax(R̃
(2)
2 ) grows

faster than σmin(R̃
(2)
2 ) decays. (Recall that R = R

(2)
2 since R

(2)
1 = I.) Also, the

largest singular values of a matrix are computed with the most relative accuracy, and
the largest singular values of pinv(R) are the ones that matter most in accurately
representing solutions of the PDE (3.12).

In summary, the most accurate computation of up(x, t) in (A.1) in floating point

arithmetic would involve computing A = Φ(ν)(x)(R
(ν)
1 )−1 with ν = 2 (without assum-

ing R
(2)
1 = I), and computing V and S from R̃

(ν)
1 (R̃

(ν)
2 )−1 with ν = 0. In practice we
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set ν = 2 when computing V and S as well since the improvement in switching to
ν = 0 is small. The last term in (A.1), B = ~α(2), can often be computed analytically.

If not, then it is most accurately computed as B = (R
(ν)
1 )−T ~β(ν) with ν = 2, including

R1 as before to account for the slight loss of orthogonality in the basis functions.
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