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FINITE VOLUME APPROACH FOR THE INSTATIONARY COSSERAT ROD

MODEL DESCRIBING THE SPINNING OF VISCOUS JETS

WALTER ARNE, NICOLE MARHEINEKE, ANDREAS MEISTER, AND RAIMUND WEGENER

Abstract. The spinning of slender viscous jets can be described asymptotically by one-dimen-
sional models that consist of systems of partial and ordinary differential equations. Whereas the
well-established string models possess only solutions for certain choices of parameters and set-
ups, the more sophisticated rod model that can be considered as ǫ-regularized string is generally
applicable. But containing the slenderness ratio ǫ explicitely in the equations complicates the
numerical treatment. In this paper we present the first instationary simulations of a rod in a
rotational spinning process for arbitrary parameter ranges with free and fixed jet end, for which
the hitherto investigations longed. So we close an existing gap in literature. The numerics is
based on a finite volume approach with mixed central, up- and down-winded differences, the time
integration is performed by stiff accurate Radau methods.

Keywords. Rotational spinning process, viscous fiber, special Cosserat theory, partial differen-
tial algebraic equations, quaternions, finite volume scheme

1. Introduction

The understanding of jet spinning is of interest in many industrial applications, including for
example drawing, tapering and spinning of glass and polymer fibers [32, 23, 16] and pellet manu-
facturing [11, 31]. Considering the spinning of highly viscous fluids, the unrestricted motion of an
instationary jet’s center-line is an important feature, as experiments show (see ”break-up mode 4”
by Wong et al. [39]). In the context of slender-body theory there exist two classes of one-dimensional
models for the numerical simulation of such a jet, string and rod models, [1, 8, 15, 40]. The string
models are asymptotic systems of leading order that result from the three-dimensional free bound-
ary value problems of Newtonian fluid flows in a strict systematic derivation using expansions in the
slenderness ratio ǫ (ǫ ≪ 1). They consist of balance laws for mass and linear momentum. The more
sophisticated rod models also possess an angular momentum balance. The rod models follow from
the cross-sectional averaging of the underlying three-dimensional balance equations, assuming that
the displacement field in each cross-section can be expressed in terms of a finite number of vector-
and tensor-valued quantities. The constitutive elements of a (special) Cosserat rod are a curve
and a director triad specifying the position (center-line) and the orientation of the cross-sections,
respectively. The one-dimensional material and geometrical laws that are needed to close the model
are heuristically motivated. The Cosserat rod model is no asymptotic system of leading order but
contains the slenderness ratio ǫ explicitely in the angular momentum balance. As the rod reduces
to a string as ǫ → 0, the Cosserat rod can be considered as ǫ-regularized string. This regularization
allows the rod to overcome limitations that the strings have in their applicability, in particular
when dealing with time-dependencies. In this paper we present the first instationary simulations of
a Cosserat rod in a rotational spinning process for arbitrary parameter ranges with free and fixed
jet end, where the string models failed so far.
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A string model for the jet dynamics was recently deduced in a rigorous slender-body asymptotics
from the three-dimensional free boundary value problem given by the incompressible Navier-Stokes
equations, [27]. Accounting for inner viscous transport, surface tension and placing no restrictions
on either the motion or the shape of the jet’s center-line, it generalizes the previously developed
string models for straight [10, 13, 14] and curved [12, 30, 38] center-lines (for a detailed survey
of literature see [27]). The numerical results investigating the effects of viscosity, surface tension,
inertia and gravity on the jet behavior coincide well with the experiments of [39]. However, the
applicability of the string model turned out to be restricted to certain parameter ranges. Neglecting
surface tension and gravity, already for jets in a stationary, rotational two-dimensional scenario no
”physically relevant” solutions exist for ReRb2 < 1 with Reynolds number Re−1 ≪ 1 and Rossby
number Rb ≪ 1 according to [17, 2]. The numerical evidence of this inviscid bound was specified

analytically in [5]; it is ReRb2 = 3/(2mini |λi|3) ≈ 1.4 with λi root of the Airy Prime function. The
restricted applicability / validity results from a non-removable singularity in the model equations due
to an inconsistency entering with the asymptotically deduced boundary conditions that prescribe
the jet tangent at the spinning nozzle. This limitation can be overcome by a modification of the
closure conditions; the boundary condition is omitted in favor of an interface condition that avoids
the occurrence of the singularity and ensures the regularity of the string quantities. This change
implies a different string model describing an other jet regime. For gravitational spinning Hlod et al.
[21, 22] distinguish between three compatible disjoint jet regimes, i.e. inertial, viscous-inertial and
viscous regimes, that they successfully investigated using the string equations with appropriately
chosen closure conditions. The classification of the regimes is transferable to rotational spinning,
[5]. But, here the regimes do not cover the whole parameter range. Already for the stationary,
rotational two-dimensional scenario an existence gap of the string solutions is observed for Re ≪ 1,
Rb ≪ 1, [5]. It is handed over to the instationary simulations that break down for viscous fiber
jets under very high rotations as they occur in industrial production processes of glass wool [27].
When surface tension, aerodynamic forces and temperature-dependent viscosity are included, the
question of existence and solvability becomes much more difficult or even impossible to answer. In
non-stationary spinning processes the jet behavior and regime might also change over time. To
handle this difficulty Hlod [20] investigated a numerical (ad hoc) switching of the closure conditions
in the simulations. The heuristic approach is motivated by the embedding of the instationary string
equations into the hyperbolic theory of characteristics under certain assumptions. However, the
studies remain dissatisfactorily in view of real applications.

The viscous Cosserat rod theory raises hope to open the parameter ranges of practical interest
and time-dependencies to simulation and optimization. For the coiling of a viscous jet falling
onto a rigid substrate Ribe [33, 34] proposed a rod model with dynamic center-line that allows
for stretching, bending and twisting and that is clearly superior to the strings in the application
of a fluid-mechanical ”sewing machine”, see stationary simulations in [36, 9] and stability analysis
in [35, 28]. Based on these studies and embedded in the special Cosserat theory, we developed
a modified incompressible rod model for spinning [2] that reduces asymptotically to the string
equations of [27] for a vanishing slenderness parameter ǫ. It not only covers the string models,
but also overcomes all thitherto restrictions. In case of stationarity the rod solutions exist for all
parameter ranges and spinning scenarios without any exceptions, and the existing string solutions
belonging to the different jet regimes (different closure conditions) are their asymptotic limits as ǫ →
0, see convergence results in [5]. Corresponding stationary rod simulations have been successfully
applied in the study and design of glass wool production processes, [4, 26]. The instationary
rod is described by a system of partial and ordinary differential equations that becomes stiff for
small ǫ and hence requires a careful numerical treatment. Apart from this structure a further
numerical challenge lies in the accurate realization of the angular momentum effects which involves
the conservation of the orthonormal director triad that is attached to the jet‘s center-line and
characterizes the orientation of the cross-sections over time. Posing, in favor of a material law for
the inner forces, a modified Kirchhoff constraint τ = ed3 that relates the jet tangent τ and the
director d3 via the elongation e, the vector-valued angular velocity can be expressed in terms of the
tangent and the scalar-valued spin (tangential angular speed). So the angular momentum balance
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becomes scalar-valued and the temporal evolution of the triad redundant, as the other components
can be computed a posteriori. Motivated from the numerics of elastic Kirchhoff beams Audoly et
al. [6] just recently developed a discrete geometric Lagrangian approach and performed instationary
simulations for a jet lay-down (see also [7]). Thereby, they studied the effect of inertia in the angular
momentum balance. Its neglect simplifies the numerics due to a change of the equations’ structure.
The numerical handling of a free jet end was addressed as open question and topic of future research.

In this paper, we propose a finite volume approach with mixed central, up- and down-winded
differences for the instationary viscous rod with free and fixed end in Lagrangian and Eulerian
parameterization, respectively. The time integration is performed by stiff accurate Radau methods
taking into account the differential-algebraic character of the system. The rotational tensor asso-
ciated to the orthonormal director triad is realized using unit quaternions. The approach enables
the simulation of two-dimensional and three-dimensional rotational spinning for arbitrary (unre-
stricted) parameter ranges for which the hitherto investigations longed and failed. We deal with
inflow-outflow set-ups with fixed domain and inflow set-ups with time-dependent enlarging domain
and discuss the results in comparison to stationary rod [2, 5] and instationary string simulations
[27, 29, 30], respectively. So this paper closes a gap in existing literature.

The paper is structured as follows. After a short survey of the special Cosserat theory for
viscous jets in Section 2, we formulate the instationary rod model in Lagrangian and Eulerian
parameterizations. For the resulting initial-boundary value problems we develop a finite volume
approach with Radau time integration in Section 3. In Section 4 we perform numerical simulations
for the two practically relevant spinning set-ups of enlarging and fixed flow domains and investigate
the instationary effects. By allowing for the study of all parameter ranges, the rod model shows
its large potential in view of simulating and optimizing non-stationary three-dimensional rotational
spinning processes in industrial applications in future.

2. Special Cosserat theory for viscous jets

A jet is a slender long body. Because of its geometry with slenderness ratio ǫ (ǫ ≪ 1), its
dynamics might be reduced to a one-dimensional description by averaging the underlying balance
laws over its cross-sections. The procedure is based on the assumption that the displacement field
in each cross-section can be expressed in terms of a finite number of vector- and tensor-valued
quantities. The special Cosserat rod theory consists hereby of only two constitutive elements, a
curve specifying the position and an orthonormal director triad characterizing the orientation of
the cross-sections, for details see [1]. It represents a general framework that might be applicable
to all materials and set-ups. The core of the description are physically reasonable one-dimensional
geometrical and material laws. In this work we use the incompressible viscous rod model derived
in [2], whose asymptotic limit as ǫ → 0 are the string equations of [27, 30]. Since the model equa-
tions can be formulated in various ways depending on the choice of parameterization/coordinates
(Lagrangian or Eulerian), basis (invariant, director or outer basis), reference system (fixed or rota-
tional), set-up (time-dependent or -independent flow domain, acting forces, 2d or 3d), dimensions
(with dimensions or dimensionless) and so on, we start our introduction with the general invariant
description of the rod in a Lagrangian parameterization from which all other re-formulations can be
straightforward computed. In addition, we explicitly state the model formulations that are relevant
in the considered spinning application and that form the basis for the development of our numerical
approach, i.e. inflow set-up with enlarging domain (free jet end) in Lagrangian parameterization
as well as inflow-outflow set-up with fixed domain in Eulerian parameterization. This choice of
parameterization yields initial-boundary value problems on given computational domains in both
cases, which facilitates the numerical treatment.

2.1. General invariant formulation of instationary viscous Cosserat rod model. A special
Cosserat rod in the three-dimensional Euclidean space E

3 is defined by a curve r : Q → E
3 and an

orthonormal director triad {d1,d2,d3} : Q → E
3 with Q = {(σ, t) ∈ R

2 |σ ∈ [σa(t), σb(t)], t ≥ 0},
where σ addresses a material cross-section (material point) of the rod. The domain of the material
parameter is chosen to be time-dependent to allow for inflow/outflow boundaries and free end in
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the Lagrangian description. Considering the dynamics of an incompressible isothermal viscous
inertial jet with circular cross-sections and constant mass density, the rod model consists of four
kinematic and two dynamic equations that are equipped with specific geometrical assumptions
(shape-preserving incompressibility) and material laws. Its invariant formulation reads [2]

∂tr = v (2.1)

∂tdk = ω × dk

∂tτ = ∂σv

∂tκ = ∂σω + ω × κ

̺A◦∂tv = ∂σn+ k

̺∂t

(

J◦ ·
ω

e

)

= ∂σm+ τ × n+ l

with

J◦ = I◦(d1 ⊗ d1 + d2 ⊗ d2 + 2d3 ⊗ d3), I◦ =
A2

◦

4π

n · d3 = 3µA◦

∂σv

e2
· d3, m = 3µI◦

(

d1 ⊗ d1 + d2 ⊗ d2 +
2

3
d3 ⊗ d3

)

· ∂σω
e3

, τ = ed3

and appropriate initial and boundary conditions. Note that system (2.1) includes ∂σr = τ and
∂σdk = κ×dk. The derivatives of the curve r with respect to time and material parameter are the
velocity v and the tangent field τ . Due to the orthonormality of the directors {d1,d2,d3}, their
derivatives imply the existence of the angular velocity ω and the generalized curvature κ. Assuming
sufficient regularity, v, τ as well as ω,κ are related according to the stated compatibility conditions
(third and fourth equations in (2.1)). The dynamic equations are the balance equations for linear
and angular momentum with external loads k, l (body force and body couple line density) coming
from the considered application. In case of temperature dependencies a corresponding balance can
be added straightforward, cf. [4]. The curve r is here chosen as the mass-associated center-line. The
line density ̺A◦ with constant mass density ̺ as well as the polar moment of inertia I◦ refer to the
referential circular cross-sectional area A◦ and are hence time-independent. The incompressibility
leads to a shrinking of the cross-sections when stretching the body. During the deformation their
shapes are assumed to be retained. This is incorporated in the geometrical model for the angular
momentum being linear in ω with dilatation measure e > 0. In consequence the actual cross-
sectional area and moment of inertia are given by A = A◦/e and I = I◦/e

2. The reference area A◦

could be replaced by A in (2.1), which requires the adding of the evolution equation ∂t(eA) = 0.
The algebraic relation τ = ed3 that determines the tangent via e represents a modified Kirchhoff
constraint allowing for extensibility. By its introduction, the normal contact force components
n ·d1, n ·d2 become Lagrangian multipliers (variables of the system). The tangential contact force
n · d3 and the contact couple m are specified by linear material laws in the spatial derivatives of
the linear and angular velocities (strain rates) with dynamic jet viscosity µ, [33, 34]. Note that for
the discussion and a better understanding of the geometrical assumptions and material laws, it is
most convenient to formulate the rod model (2.1) in the director basis {d1,d2,d3} as we will do
later on. Summing up, the variables of the rod model (2.1) are r, {d1,d2,d3}, e, κ, v, ω, n · d1

and n · d2.

Remark 1 (Impact of modified Kirchhoff constraint). The applied Kirchhoff constraint τ = ed3

poses a geometric relation between curve and director triad in favor of a material law for the force
components n · d1, n · d2. It allows the reduction of the unknown vector-valued angular velocity ω

to the scalar spin W = ω · d3, i.e.

ω =
τ

e
× ∂t

(

τ

e

)

+W
τ

e
.

A respective reformulation of (2.1) involves a scalar-valued angular momentum balance and re-
nounces the evaluation of the director triad, but it changes the clear system structure towards mixed
derivatives. For this centerline-spin representation Audoly et al. [6] proposed a discrete geometric
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Lagrangian method (that is inspired by [24] for the analogous centerline-angle representation of an
elastic Kirchhoff beam), handling the derivatives algorithmically. Thereby, they neglected the influ-
ence of inertia in the angular momentum balance, cf. Remark 2. We stand for system (2.1), since
its composition of partial and ordinary differential equations is well suited for (standard) finite vol-
ume schemes and stiff accurate Runge-Kutta methods whose convergence results and performance
are well-known, see Section 3.

Remark 2 (Model simplifications). In case of negligible inertia ̺∂t(J◦ · ω/e) = 0 and no outer
couple l = 0 in the angular momentum balance, the viscous rod system (2.1) with modified Kirchhoff
constraint reduces to

∂tr = v

∂tτ = ∂σv

̺A◦∂tv = ∂σn+ k

∂σW =
e3

2µI◦
M − 1

e2
∂σv · (τ × ∂στ )

∂σM =
3µI◦
e5

(

W

e2
‖τ × ∂στ‖2 − ∂σ

(∂σv)
⊥

e
· (τ × ∂στ )

)

,

treating the scalar tangential angular speed / spin W (cf. Remark 1) and tangential contact couple
component M as variables. The respective contact force n becomes with its tangential component
N = 3µA◦∂σv · τ/e3

n =
N

e
τ − 1

e
∂σ

(

3µI◦
e3

(

∂σ
(∂σv)

⊥

e
+

1

e3
((∂σv)

⊥ · ∂στ )τ − W

e2
τ × ∂στ

))

+
M

e3
τ × ∂στ − 3µI◦

e6

(

(∂σ
(∂σv)

⊥

e
· ∂στ )τ +

1

e3
((∂σv)

⊥ · ∂στ )(τ · ∂στ )τ
)

e = ‖τ‖.
Here, z⊥ = z− (z · τ )τ/‖τ‖2 for any arbitrary vector z ∈ E

3.
The string system that is the asymptotic slenderness limit of the rod [5] has the form

∂tr = v

∂tτ = ∂σv

̺A◦∂tv = ∂σ

(

N

‖τ‖τ
)

+ k .

with N given as above.

System (2.1) is written in a Lagrangian setting. Thereby, the material parameterization might be
determined up to orientation and a constant by using an arc-length parameterized reference confi-
guration. Alternatively, any other time-dependent parameterization can be used for the formulation
of the model, defined via an orientated bijective mapping

S(·, t) : [σa(t), σb(t)] → [S(σa(t), t), S(σb(t), t)] = [sa(t), sb(t)], σ 7→ S(σ, t).

Assuming sufficient regularity, a scalar convective velocity u and a spatial Jacobian j belong to S:

∂tS(σ, t) = u(S(σ, t), t), ∂σS(σ, t) = j(σ, t) > 0, with ∂su(S(σ, t), t) =
∂tj

j
(σ, t).

The re-parameterization of all fields carries convective terms with speed u into (2.1). Choosing u = 0
implies the material description. Instead of imposing u explicitly, also a constraint can be prescribed
such that u becomes the associated Lagrangian multiplier and hence an additional unknown of the
system. The mostly used constraint is the arc-length parameterization of the jet curve for all times,
yielding an Eulerian setting. Here, e = j coincide due to the Kirchhoff constraint. Moreover,
∂tS(σ, t) = u(S(σ, t), t) prescribes the rate of change of the arc-length S(σ, t) to the material point
σ; e is a measure for the strain and ∂su(S(σ, t), t) = (∂te/e)(σ, t) the corresponding relative strain
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Figure 2.1. Left: Rotational fiber spinning process, photo by industrial partner.
Right: Sketch of 3d set-up and its 2d simplification under the neglect of gravity.

rate. The Eulerian (spatial) description is certainly the most intuitive one for flow problems and
allows for the transition to stationary considerations.

2.2. Rotational spinning process – two relevant set-ups. In rotational spinning processes [26],
viscous liquid jets leave small spinning nozzles located on the curved face of a circular cylindrical
drum rotating about its symmetry axis, cf. Fig. 2.1. At the nozzle, the velocity, cross-sectional area,
direction and curvature of a jet are prescribed. Starting from an initial length of zero, the extruded
liquid jet grows and moves due to viscous friction, surface tension and gravity. Also aerodynamic
forces might act, see e.g. [4]. In this paper we aim at a numerical treatment of the non-stationarity.
For simplicity we neglect surface tension, aerodynamic forces and temperature dependencies and
restrict to external loads rising from gravity, i.e. in the Lagrangian setting k = ̺A◦geg and l = 0

with gravitational acceleration g and direction eg, ‖eg‖ = 1. However, note that once the numerical
concept is established, the other effects can be easily added as it is already done in the stationary
considerations of industrial spinning processes in [26, 4]. In the following we focus on the numerical
simulation of two set-ups that are important for the understanding and study of the industrial
application:

Set-up A: inflow with enlarging domain (free jet end)
Set-up B: inflow-outflow with time-independent (fixed) domain

For the inflow set-up we choose a Lagrangian (material) description, whereas the inflow-outflow set-
up is formulated in an Eulerian (spatial) setting. Certainly, every set-up could also be formulated
in the other parameterization, but this yields free boundary value problems. Our choice instead im-
plies initial-boundary value problems on given computational domains, which makes the numerical
treatment undeniably easier.

To describe the spinning process of interest (Fig. 2.1), we follow [2] and use the reference frame
that rotates with the drum. Let Ω = ΩeΩ with eΩ = −eg be the angular frequency of the rotating
device, then we introduce the rotating outer basis {a1(t), a2(t), a3(t)} satisfying ∂tai = Ω × ai,
i = 1, 2, 3. This makes the position of the nozzle and the direction of the inflow time-independent,
but introduces fictitious rotational body forces and couples in the dynamic equations due to inertia.
We deal with Ω-adapted velocity and angular speed, i.e. vΩ = v− (Ω× r) and ωΩ = ω −Ω. Note
that we skip the subscript Ω in the following to facilitate the readability. Moreover, we state the
model equations in the director basis {d1,d2,d3} for reasons of the material laws and geometrical
assumptions, see Notation 3. The rod model for rotational spinning has eight physical parameters:
jet density ̺, viscosity µ, length L, diameter D and velocity U at the nozzle as well as drum
radius R, rotational frequency Ω and gravitational acceleration g. These induce five characteristic
dimensionless numbers: Reynolds number Re = ̺UR/µ as ratio between inertia and viscosity,
Rossby number Rb = U/(ΩR) as ratio between inertia and rotation, Froude number Fr = U/

√
gR

as ratio between inertia and gravity as well as l = L/R and ǫ = D/R as length ratios between jet
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length, nozzle diameter respectively and drum radius. For the subsequent numerical investigations,
we make the Lagrangian system dimensionless by scaling the quantities with the following reference
values:

σ0 = r0 = R, v0 = U, t0 = v0/r0, κ0 = 1/r0, ω0 = r0/v0 A0 = πD2/4, k0 = ̺A0v
2
0/r0

n0 = µA0v0/r0 = π̺v20r
2
0ǫ

2/(4Re), m0 = µA2
0v0/(πr

2
0) = π̺v20r

3
0ǫ

4/(16Re).

In the Eulerian setting we use alternatively s0 = r0, and consistently u0 = v0 for the intrinsic
velocity.

Notation 3. To an arbitrary vector field z =
∑3

i=1 z̆iai =
∑3

i=1 zidi ∈ E
3 we indicate the co-

ordinate tuples for the rotating outer basis by z̆ = (z̆1, z̆2, z̆3) ∈ R
3 and for the director basis by

z = (z1, z2, z3) ∈ R
3. The director basis can be transformed into the rotating outer basis by the

tensor-valued rotation R, i.e. R = ai ⊗ di = Rijai ⊗ aj ∈ E
3 ⊗ E

3 with associated orthogonal
matrix R = (Rij) = (di · aj) ∈ SO(3). For the coordinate tuples, z = R · z̆ holds. The cross-product

a× A ∈ R
3×3 between a vector a ∈ R

3 and a matrix A ∈ R
3×3 is defined by (a× A) · z = a× (A · z)

for all z ∈ R
3. Moreover, we abbreviate Pk = diag(1, 1, k), k ∈ R and ei ∈ R

3, i = 1, 2, 3 for the
canonical basis tuples.

Set-up A: inflow in Lagrangian parameterization. Let QT = {(σ, t) ∈ R
2 |σ ∈ (−ℓ(t), 0), ℓ(t) =

t, t ∈ (0, T ]} be the flow domain enlarging over time where Q0 = ∅ holds initially for t = 0. The
rod model for the inflow set-up (i.e. inflow at the nozzle σ = −ℓ(t) and (stress-)free jet end σ = 0)
reads

R · ∂t r̆ = v (2.2)

∂tR = −ω × R

∂tee3 = ∂σv + κ× v + ee3 × ω

∂tκ = ∂σω + κ× ω

∂tv =
1

Re
(∂σn+ κ× n) + v × ω +

1

Fr2
R · eg + kΩ

P2 · ∂t
ω

e
=

4

Re
(∂σm+ κ×m) +

16

ǫ2Re
ee3 × n+ lΩ

with Coriolis and centrifugal forces as well as corresponding couples due to the rotating reference
frame

kΩ = − 2

Rb
R · eΩ × v − 1

Rb2
R · (eΩ × (eΩ × r̆))

lΩ = P2 ·
1

e

(

ω +
1

Rb
R · eΩ

)

×
(

ω +
1

Rb
R · eΩ

)

+ P2 ·
[(

ω

e
× 1

Rb
R · eΩ

)

+
1

Rb

∂te

e2
R · eΩ

]

and material laws

n3 = 3
1

e2
(∂σv3 + κ1v2 − κ2v1), m =

3

4

1

e3
P2/3 · (∂σω + κ× ω) .

The material laws can be alternatively expressed in terms of the strain rates ∂te and ∂tκ, since
∂te = ∂σv3 + κ1v2 − κ2v1 and ∂tκ = ∂σω + κ × ω. In particular, they are linear in the strain
rates. However, to avoid mixed time-space derivatives when plugging the material laws into the
balance equations we use the stated spatial representation yielding second spatial derivatives in
the dynamic equations. A strict classification of the whole system (2.2) is not possible, but it has
a hyperbolic-parabolic character with ordinary differential equations for curve and rotation group
(director triad). The boundary conditions are

r̆(−ℓ(t), t) = e2, R(−ℓ(t), t) = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2

e(−ℓ(t), t) = 1, κ(−ℓ(t), t) = 0, v(−ℓ(t), t) = e3, ω(−ℓ(t), t) = 0

n(0, t) = 0, m(0, t) = 0.
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Set-up B: inflow-outflow in Eulerian parameterization. Let ST = {(s, t) ∈ R
2 | s ∈ (0, ℓ), t ∈

(0, T ], ℓ > 0 fixed} be the flow domain fixed over time. The rod model for the inflow-outflow
set-up (i.e. inflow at the nozzle s = 0 and outflow at a prescribed length s = ℓ) reads

R · ∂tr̆ = v − ue3 (2.3)

∂tR = −(ω − uκ)× R

∂s(ue3) = ∂sv + κ× v + e3 × ω

∂tκ+ ∂s(uκ) = ∂sω + κ× ω

∂tA+ ∂s(uA) = 0

∂t(Av) + ∂s(uAv) =
1

Re
(∂sn+ κ× n) +Av × ω +

1

Fr2
AR · eg + kΩ

P2 · (∂t(A2ω) + ∂s(uA
2ω)) =

4

Re
(∂sm+ κ×m) +

16

ǫ2Re
e3 × n+ lΩ

with

kΩ = − 2

Rb
R · eΩ ×Av − 1

Rb2AR · (eΩ × (eΩ × r̆))

lΩ = P2 · A2

(

ω +
1

Rb
R · eΩ

)

×
(

ω +
1

Rb
R · eΩ

)

+ P2 ·
[(

A2ω × 1

Rb
R · eΩ

)

+
1

Rb
A2∂suR · eΩ

]

and material laws

n3 = 3A∂su, m =
3

4
A2P2/3 · (∂sω + κ× ω)

The boundary conditions for t ∈ [0, T ] are

r̆(0, t) = e2, R(0, t) = e1 ⊗ e1 − e2 ⊗ e3 + e3 ⊗ e2

u(0, t) = 1, κ(0, t) = 0, v(0, t) = e3, ω(0, t) = 0, A(0, t) = 1

n(ℓ, t) = 0, m(ℓ, t) = 0.

Appropriate initial conditions are specified later on.

The computation of the stated model equations (2.2), (2.3) from the general invariant system
(2.1) is straightforward, but lengthy. For more details about the determination we refer to [2]. The
systems can be easily simplified to 2d. Note that the dimension plays no role for the development
of the numerical scheme but the reduction to 2d will be used for the simulation of a bench-mark
test scenario in Section 4 (cf. Fig. 2.1 and Eqs. (A.7), (A.8) for 2d rotational spinning under neglect
of gravity).

Remark 4 (Unit quaternions for rotations). The rotations R ∈ SO(3) can be parameterized, e.g.
in Euler angles or unit quaternions [25]. We use unit quaternions since this variant offers a very
elegant way of formulating and computing the evolution equation for R (second equation of (2.2) or
(2.3) respectively). Define

R(q) =





q21 − q22 − q23 + q20 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) −q21 + q22 − q23 + q20 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) −q21 − q22 + q23 + q20



 ,

with unit quaternions q = (q0, q1, q2, q3), ‖q‖ = 1, then ∂tR = −ω × R becomes ∂tq = A(ω) · q (or
respectively, ∂tR = −(ω − uκ)× R becomes ∂tq = A(ω − uκ) · q) with skew-symmetric matrix

A(z) =
1

2









0 z1 z2 z3
−z1 0 z3 −z2
−z2 −z3 0 z1
−z3 z2 −z1 0









.
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3. Numerical scheme

Finite volume schemes are well-established for the numerical solution of time-dependent partial
differential equations for various applications [37]. In the following we focus on the inflow problem in
the Lagrangian parameterization because of the tricky initialization and the handling of the length
change ℓ(t). The inflow-outflow problem in the Eulerian parameterization where the domain length
is fixed is comparatively much easier. A respective scheme can be established straightforward in an
accordant way (cf. [3] for the 2d scenario). To set up the numerical concept for our inflow problem
we rewrite (2.2) in a more convenient formulation, for this purpose we define 0k as the zero vector
in R

k. We introduce the vector of unknowns

φ = (n1, n2, e, r̆, q, κ, v, ̟) ∈ R
19

with ̟ = ω/e. To take account of the differential-algebraic structure of the underlying model, we
additionally consider the mapping

z(φ) = (02, e, r̆, q, κ, v, ̟) ∈ R
19

that consists of all variables possessing an evolution equation in (2.2). Finite volume schemes are
based on the integral form of the governing equations that are expressed in terms of flux functions
and source terms. Therefore, we summarize the constituents with respect to their physical meaning
and later used numerical approximation. The upper index u, d, c indicates the respective fluxes
considered for up-, down-winded and central differences:

fu(φ) =

(

v, 07, e̟, 02,
3

Re

1

e2
(κ1v2 − κ2v1),

3

Re

1

e2
P1/3 · (κ×̟)

)

fd(φ) =

(

013,
1

Re
n1,

1

Re
n2, 04

)

fc(φ, ∂σh(φ)) =

(

015,
3

Re

1

e2
∂σv3,

3

Re

1

e3
P1/3 · ∂σ (e̟)

)

and

p(φ, ∂σg(φ)) =

(

013,
3

Re

κ

e
× (0, 0, ∂σv3) ,

3

Re

1

e3
P1/2 ·

(

κ× (P2/3 · ∂σ (e̟))
)

)

.

Here, h(φ) = (015, v3, e̟) and g(φ) = (013, v3, v3, 0, e̟) hold. The remaining source terms are
collected in q(φ). Due to this dispartment, the system (2.2) becomes

∂tz(φ) = ∂σf
u(φ) + ∂σf

d(φ) + ∂σf
c(φ, ∂σh(φ)) + p(φ, ∂σg(φ)) + q(φ) (3.4)

where the closure relations are incorporated.
Concerning the space discretization we introduce a constant cell size △σ and define the number

N(t) of dynamic cells for the time-dependent jet length ℓ(t) by help of the floor function ⌊.⌋,

N(t) =

⌊

ℓ(t)

△σ

⌋

, σ(j+1)/2 = −
(

N(t)− j

2

)

△σ, j = 0, . . . , 2N(t),

where σi, i = 1, . . . , N(t) denote the cell centers, cf. Fig. 3.2. The cell edge σN+1/2 = σ = 0
represents the jet end, and [σ1/2, σ3/2] is the closest dynamic cell to the nozzle located at σ = −ℓ(t) =
−t. The jet growth is realized by adding new cells at the nozzle, hereby the dynamics of the physical
quantities is not considered till the cells have completely left the nozzle and become dynamic. Before
they are treated as static and initialized by the boundary condition at the nozzle. The number of
static cells depends on the ongoing length increase in the time interval under consideration [t, t+△t],
we use M(t) = N(t + △t) − N(t). The introduction of the static cells before/around the nozzle
allows the adequate initialization of a jet of length ℓ(t) < △σ and a stable numerical treatment of
the temporal evolution.

The idea is now to integrate (3.4) over the control volume / cell [σi−1/2, σi+1/2], i = 1, . . . , N(t)
and to set up a differential algebraic system (DAE) in time for the cell averages φi of the unknown
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PSfrag replacements

ℓ(t)

ℓ(t+△t)

σ1

σ1

σ2

σ2

σN

σN

N = N(t)

N = N(t+△t)σ0

initialization

nozzle jet end
σ1/2 σ3/2

σN+1/2 = 0

Figure 3.2. Spatial discretization of the growing jet with N(t) equally sized
dynamic cells (centers are marked by black squares). The cell edge σN+1/2 = σ = 0
represents the jet end; the complete cell [σ1/2, σ3/2] is the closest dynamic one to the
nozzle at σ = −ℓ(t). For the initialization static cells are introduced before/around
the nozzle (red circles), whose quantities are given by the nozzle conditions.

quantities

φi(t) :=
1

△σ

∫ σi+1/2

σi−1/2

φ(σ, t) dσ, i = 1, . . . , N(t).

The resulting DAE with zi(t) = z(φi(t)) has the form

d

dt
zi =

1

△σ
[(fui+1/2 − fui−1/2) + (fdi+1/2 − fdi−1/2) + (fci+1/2 − fci−1/2)]

+
1

△σ

∫ σi+1/2

σi−1/2

p(φ, ∂σg(φ)) dσ +
1

△σ

∫ σi+1/2

σi−1/2

q(φ) dσ. (3.5)

To express all constituents in terms of the time-dependent φi(t), we define numerical flux functions
Hu, Hd, Hc in an up-, down-winded and central manner according to the behavior of the physical
fluxes, i.e. we apply the upwind-strategy for the convective terms, the downwind-strategy for the
normal forces and the central approximation for the viscous parts,

fui+1/2 ≈ Hu(φi, φi+1) := fu(φi)

fdi+1/2 ≈ Hd(φi, φi+1) := fd(φi+1)

fci+1/2 ≈ Hc(φi, φi+1) := fc
(

φi + φi+1

2
,
h(φi+1)− h(φi)

△σ

)

,

i = 1, . . . , N(t)− 1. The integrals that contain the source terms are approximated by means of

1

△σ

∫ σi+1/2

σi−1/2

p(φ, ∂σg(φ)) dσ ≈ P (φi−1, φi) := p

(

φi,
g(φi)− g(φi−1)

△σ

)

, i = 2, . . . , N(t)

1

△σ

∫ σi+1/2

σi−1/2

q(φ) dσ ≈ q(φi), i = 1, . . . , N(t).

As for the boundaries at nozzle and stress-free jet end, the proposed discretizations make use of the
respective boundary conditions – collected in φnoz and φend – in a natural way. We use

fu1/2 ≈ fu(φnoz), fd1/2 ≈ fd(φ1), fc1/2 = fc
(

φnoz ,
h(φ1)− h(φnoz)

△σ

)

at nozzle

fuN+1/2 ≈ fu(φN ), fdN+1/2 ≈ fd(φend), fcN+1/2 = 0 at jet end
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In accordance we take
∫ σ3/2

σ1/2
p(φ, ∂σg(φ)) dσ/△σ ≈ P (φnoz, φ1) for the source term in the first control

volume. Inserting the numerical flux functions H = Hu +Hd +Hc and source term discretizations
into system (3.5), we finally obtain its semi-discrete analogon

d

dt
zi =

1

△σ
(H(φi, φi+1)−H(φi−1, φi)) + P (φi−1, φi) + q(φi). (3.6)

The system of DAEs (3.6) is of index 2 (according to the definition of [19]). For the time
integration stiff accurate implicit Runge-Kutta schemes, e.g. Radau IIa methods, are suitable, cf.
Remark 5. We employ a constant time step △t. The resulting nonlinear system of equations is
solved with a Newton method.

Remark 5 (Runge-Kutta methods for DAEs). Consider an autonomous differential-algebraic sys-
tem du/dt = f(u, v), 0 = g(u, v) with initial value (u, v)(t0) = (u0, v0). Let a time discretization
t0 < t1 < . . . < tM with step size △tn = tn+1 − tn be given. An appropriate implicit Runge-Kutta
scheme of level s (with coefficients A = (aij) ∈ R

s×s, b = (bi) ∈ R
s) has the form

un+1 = un +△tn

s
∑

j=1

bjf(kj , lj), vn+1 = vn + (l1 − vn| . . . |ls − vn)A
−Tb,

where the levels ki, li are the solutions of the nonlinear system

ki = un +△tn

n
∑

j=1

aijf(kj , lj), 0 = g(ki, li), i = 1, . . . , s.

A scheme is called stiff accurate if the coefficients satisfy bi = asi. Radau IIa methods possess this
property, for s = 1, 2 they are specified by the following Butcher arrays for the coefficients:

c A

bT

1 1
1

1/3 5/12 −1/12
1 3/4 1/4

3/4 1/4
.

Note that ci =
∑

j aij as the Runge-Kutta scheme is invariant with respect to autonomization. The
Radau IIa method for s = 1 is well-known as implicit Euler method. For details on Runge-Kutta
methods for DAEs see e.g. [18].

The space discretization via the finite volume scheme is of first order convergence. We aim at
an appropriate, stiff accurate time discretization. In the context of differential-algebraic equations,
the order of convergence p depends on the index and the Runge-Kutta methods often tend to
loose an order for the variables associated to the algebraic equations. Considering a DAE with
index 2, the Radau IIa method with s = 2 has p = 3 for the differential variables and p = 2 for
the algebraic ones, whereas the implicit Euler method has p = 1 for both kind of variables, [18].
This theoretical result is confirmed by our numerical tests for the inflow-outflow problem in the
Eulerian parameterization on the time-independent space interval [0, ℓ] (using an fixed equidistant
spatial grid with △s = ℓ/N where nozzle and outflow are located at the cell edges s = s1/2 = 0
and s = sN+1/2 = ℓ, respectively), see Figure 3.3. For the inflow problem in the Lagrangian
parameterization, the jet length ℓ(t) and hence the space discretization is time-dependent. There
is no strict separation of space and time as in an usual semi-discretization. Therefore, it is not
surprising that the performance of the Radau IIa method with s = 2 differs to the theoretical result.
We observe a loss of convergence order due to the chosen discretization / initialization at the nozzle
boundary. In correspondence to the space discretization we obtain here first order convergence in
time for both Radau variants, Figure 3.4. Consequently, to obtain higher convergence for the inflow
problem the spatial scheme needs to be modified.

Remark 6 (Choice of temporal and spatial grid sizes). For the forthcoming numerical simulations
of the inflow-outflow problem in the Eulerian parameterization the choice of time step and spatial
grid size follows the CFL-condition with respect to the intrinsic velocity. In the inflow problem in the
Lagrangian parameterization △t and △σ do not need coercively to be coupled, but it turns out that
they have to be adapted in view of the parameters (Re,Rb,Fr) of the problem. Smaller parameters



12 WALTER ARNE, NICOLE MARHEINEKE, ANDREAS MEISTER, AND RAIMUND WEGENER

imply in general faster and larger changes in the jet dynamics which require a finer resolution.
Otherwise it might happen that the used Newton method does not converge.
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Figure 3.3. Convergence of Radau IIa methods for DAEs of semi-discretized
inflow-outflow problem in Eulerian parameterization – in consistence with theory.
Absolute L2(0, ℓ)-error for fixed end time T . Left: differential variables. Right:
algebraic variables (n). Bottom: The intrinsic velocity u that has a special role in
(2.3) on first glance behaves like all the other differential variables.
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4. Simulation results
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Figure 4.5. Temporal evolution of rod (three depicted times) in comparison to
steady result of [5] for inflow-outflow set-up in 2d. Top to bottom: r, α, κ, u. Jet
parameters are ℓ = 1, ǫ = 0.1, Re = 1. Left: Rb = 1 (string is applicable). Right :
Rb = 0.1 (string fails). Note that for u the scaling of the axes differs.
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In this section we demonstrate the applicability of the rod model for simulating spinning pro-
cesses and investigate the relevance of the instationary effects. For this purpose we present numerical
results for two-dimensional and three-dimensional rotational spinning. The two-dimensional rota-
tional spinning under the neglect of gravity can be considered as a bench-mark test scenario that
has been often used in literature – e.g. for the study of strings in [38, 17, 29, 30, 20] and of station-
ary rods in [2, 5]. In this scenario (Fr → ∞) the rotation matrix R can be parameterized in terms
of a single angle α ∈ [−π/2, 0], see Fig. 2.1. Moreover, the number of variables reduce while the
initial-boundary value problems keep their characteristic structure. The respective model equations
for the Set-ups A and B in 2d are stated for completeness in the Appendix, Eqs. (A.7) and (A.8).

We start with the study of the longtime behavior of the instationary rods in comparison to the
known stationary results of [2, 5]. Therefore, we consider Set-up B, inflow-outflow with fixed domain
in Eulerian parameterization in 2d. The length ratios are exemplary chosen as ℓ = 1 and ǫ = 0.1.
For the instationary rod we use the straight jet as initialization at t = 0. The temporal evolution
of the rod quantities are illustrated by help of three depicted time points in Fig. 4.5 showing two
different sets of parameters. We clearly observe the convergence of the instationary solutions to
the stationary ones as time increases, t → ∞. The case Re = 1 = Rb (Fig. 4.5, left) lies in the
parameter regime where also the string model is applicable. As ǫ → 0 the rod solution coincides
with the string solution in consistency to the theoretical results (rod-to-string-convergence proof
in [5]). The other case Re = 1, Rb = 0.1 represents a jet of same viscosity, but exposed to faster
rotations. In this regime the strings fail. Figure 4.5 shows here instationary jet simulations which
can be similarly performed for the general three-dimensional inflow-outflow set-up with Fr < ∞.

Time-dependencies play a crucial role for highly viscous jets. Considering the spinning of highly
viscous jets (Set-up A, inflow with free jet end) the instationary jet center-line is an important
feature as experiments [39] and corresponding instationary string simulations [11, 27, 30] show.
Figure 4.6 illustrates the well-known effect for the rod model. Whereas for inviscid flows (large Re)
the jet grows along a trajectory that coincides with the stationary jet curve computed for a certain
length (according to Set-up B), the center-line for a viscous flow (small and moderate Re) is clearly
dynamic. However, for long-time it approaches to the stationary jet behavior near the nozzle. So,
the stationary simulations of the inflow-outflow set-up turn out to be very suitable for studying the
jet’s properties close to the spinning nozzle. This hypothesis was already used for the design of
production processes of technical textiles in [3], and it is now confirmed for all parameter regimes.

We come now to the results for the jet spinning (Set-up A) with arbitrarily chosen parameters
and free end, whose efficient numerical handling is of main importance and interest for industrial
applications in future. Figure 4.7 presents a growing jet in 2d for two different sets of parameters.
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Figure 4.6. Time-dependencies of center-line for viscous jet spinning up to length
ℓ (Set-up A) in comparison to stationary result computed with same fixed length ℓ
in Set-up B. Jet parameters in 2d are ǫ = 0.1, Rb = 1. Left: Re = 100 (jet growing
along stationary curve). Right: Re = 1 (dynamic curve approaching stationary
behavior at nozzle for t large).
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Figure 4.7. Growing jet with free end (Set-up A in 2d), ǫ = 0.1. Left: Re = 1,
Rb = 4 (classical string regime, cf. string results [29]). Right: Re = Rb = 0.1.
Note that depicted time points are chosen with respect to the dynamics.

The case Re = 1, Rb = 4 (Fig. 4.7, left) has been already tackled by Panda [29] using the string
model. We use here the same depicted time points for the rod with ǫ = 0.1, the results are in
very good agreement as ǫ → 0. The other case Re = 0.1 = Rb (Fig. 4.7, right) lies outside of
the applicability regime of the strings. So far, no respective simulations did exist. As expected
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Figure 4.8. Growing jet with free end, Set-up A in 3d with 2d projections of
top view (bottom), ǫ = 0.1. Left: Re = 1, Rb = 2, Fr = 2 (classical string regime,
cf. string results [30]). Right: Re = Rb = Fr = 0.1. Note that depicted time points
are chosen with respect to the dynamics.
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the instationary Cosserat rod model opens the full parameter range to the simulation. This also
holds true for the three-dimensional rotational spinning including gravity. Figure 4.8 shows the jet
dynamics with respect to two arbitrary parameter tuples: one is chosen in the (classical) string
regime, the other one outside of it. The parameter tuple associated to the string regime is taken
from [30], the results of rod and string model agree as in 2d. The string model in general fails
when facing high forces exposed to (highly) viscous jets (small Re, Rb, Fr). The large deformations
imply boundary layers which cause singularities in the solution and a break-down of theory (model)
and numerics. The rod model overcomes this limitation since it is an ǫ-regularization of the string.
This fact is strict in theory for ǫ 6= 0 and holds numerically as long as ǫ is evidently larger than
zero (machine precision). As for the performance of the simulations, we already mentioned in
Remark 6 that the applied discretization (△t, △σ) depends crucially on the considered problem
parameters. Smaller parameters imply faster, larger changes in the dynamics and higher elongation
e which require a finer resolution. Theoretically, all parameter settings could be computed by help
of our proposed scheme, but the simulations are practically restricted to problems with moderate
elongation e ≤ 50 due to the drastically increasing computational effort. This is no drawback for
many spinning processes. But for example in industrial processes (like melt-blown) that are driven
by turbulent air flows much higher elongations are observed.

5. Conclusion

The simulation of viscous jet spinning requires the efficient numerical handling of a slender en-
larging flow domain with free end that is (highly) dynamic due to acting forces. We have proposed
a finite volume approach with Radau time integration for the viscous Cosserat rod model consisting
of a system of partial and ordinary differential equations that becomes stiff for small slenderness
ratio ǫ. The Cosserat rod is an ǫ-regularization of the well-established asymptotic string models
whose applicability are restricted to certain parameter settings. We have demonstrated the rod’s
superiority and large potential in view of industrial applications by performing instationary simu-
lations of rotational spinning under gravity for arbitrary parameter ranges, for which the hitherto
investigations in literature longed and failed. The work has also addressed the open question of a
free end.

The established numerical scheme allows the easy incorporation of further practically relevant
effects, like temperature dependencies and aerodynamic forces. This will be proceeded in future.
The time and space discretizations depend on the considered problem parameters: small parameters
cause fast, large deformations and high elongation which require a fine resolution. Due to the
drastically increasing computational effort the use of our scheme is practically limited to problems
with moderate elongations, so far. In view of turbulence-driven processes that yield very high
elongations we intend to get rid of this bottle-neck by investigating appropriate refinement strategies.

Appendix

For completeness we state here the model simplifications of (2.2) and (2.3) for the two-dimensional
rotational spinning scenario where gravity is neglected (Fr → ∞), cf. Fig. 2.1. The rotation is
parameterized in terms of a single angle α ∈ [−π/2, 0]. Moreover, we set v = (v2, v3), v

⊥ = (−v3, v2),
ω = ω1, and all other quantities analogously. With Ω = Ω1 and rotation matrix

R(α) =

(

sinα − cosα
cosα sinα

)

we obtain after renumbering, i.e. (z2, z3) becomes (z1, z2) for all z, the following two-dimensional
systems.
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Set-up A in 2d: inflow in Lagrangian parameterization, cf. (2.2).

R(α) · ∂t r̆ = v (A.7)

∂tα = ω

∂t(ee2) = ∂σv+ κv⊥ + ωee1

∂tκ = ∂σω

∂tv =
1

Re
(∂σn+ κn⊥)− ωv⊥ − 2

Rb
v⊥ +

1

Rb2
R(α) · r̆

∂t
ω

e
=

4

Re
∂σm− 16

ǫ2Re
n1 +

1

Rb

∂te

e2

with

n2 = 3
1

e2
(∂σv2 + κv1), m =

3

4

∂σω

e3
.

Set-up B in 2d: inflow-outflow in Eulerian parameterization, cf. (2.3).

R(α) · ∂tr̆ = v − ue2 (A.8)

∂tα = ω − uκ

∂s(ue2) = ∂sv + κv⊥ + ωe1

∂tκ+ ∂s(uκ) = ∂sω

∂tA+ ∂s(uA) = 0

∂t(Av) + ∂s(uAv) =
1

Re
(∂sn+ κn⊥)−Aωv⊥ − 2

Rb
Av⊥ +

1

Rb2
AR(α) · r̆

∂t(A
2ω) + ∂s(uA

2ω) =
4

Re
∂sm− 16

ǫ2Re
n1 +

1

Rb
A2∂su

with

n2 = 3A∂su, m =
3

4
A2∂sω.

For the simulations in Section 4, the system (A.8) is initialized with the straight jet that leaves the
nozzle perpendicularly,

r1(s, 0) = s+ 1 r2(s, 0) = 0 α(s, 0) = 0

κ(s, 0) = 0 u(s, 0) = 1 n1(s, 0) = 0

A(s, 0) = 1 Av(s, 0) = (0, 1) A2ω(s, 0) = 0 .
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