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Abstract

This paper presents a computationally fast algorithm for estimating, both,

the system and observation noise covariances of nonlinear dynamics, that

can be used in an ensemble Kalman filtering framework. The new method

is a modification of Belanger’s recursive method, to avoid an expensive com-

putational cost in inverting error covariance matrices of product of innova-

tion processes of different lags when the number of observations becomes

large. When we use only product of innovation processes up to one-lag, the

computational cost is indeed comparable to a recently proposed method by

Berry-Sauer’s. However, our method is more flexible since it allows for using

information from product of innovation processes of more than one-lag.

Extensive numerical comparisons between the proposed method and both

the original Belanger’s and Berry-Sauer’s schemes are shown in various ex-
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amples, ranging from low-dimensional linear and nonlinear systems of SDE’s

and 40-dimensional stochastically forced Lorenz-96 model. Our numerical

results suggest that the proposed scheme is as accurate as the original Be-

langer’s scheme on low-dimensional problems and has a wider range of more

accurate estimates compared to Berry-Sauer’s method on L-96 example.

Keywords: ensemble Kalman filter, adaptive covariance estimation, QR

estimation method

1. Introduction

Ensemble Kalman filters (EnKF) are ubiquitous in data assimilation of

high-dimensional nonlinear problems [1, 2], particularly, it has received se-

rious attentions in weather forecasting application [3]. While this practical

method has been successful in applications, the accuracy of the resulting

estimates is mostly determined by the prescription of both the system and

observation error covariance statistics in the absence of model error. In fact,

obtaining accurate covariance statistical estimates is still a challenging prob-

lem. Recent study [4] suggested that one should be cautious in interpret-

ing the covariance estimates from approximate filtering methods, including

EnKF.

Many numerical methods have been proposed to improve the filter co-

variance estimates. For example, a naive strategy is to directly inflate the

covariance statistics with an empirically chosen inflation factor [5, 6, 7], while

a second class of strategy is to use the current observations to adaptively in-

flate/tune the covariance statistics [8, 9, 10, 11, 12, 13, 14, 15]. The central

contribution of this paper is on a new adaptive covariance estimation method
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that can be used with EnKF. In particular, the new method is motivated by

two recently developed EnKF-based covariance estimation methods [14, 15]

that generalized, respectively, two competing methods that were introduced

in early 70’s for covariance estimation of stationary [8, 9] and time-varying

linear problems [10]. All of these methods share a fundamental similarity,

that is, they use the information from lag correlation of innovation processes

(or prior forecast errors in the observation space) to approximate Q and R.

While Berry-Sauer’s estimation method [14] is computationally fast, their

method used only product of innovation processes up to one-lag, L = 1, which

by design, restricts its applicability especially when observations are sparse.

Furthermore, the accuracy of the resulting estimates can be sensitive to the

choice of a nuisance parameter, as we will show later. On the other hand, the

covariance estimation method of [15], which is essentially Belanger’s method

implemented with EnKF [10], allows for using product of innovation pro-

cesses of more than one-lag, L > 1, and produces estimates that converge

faster. However, this method is computationally expensive when the number

of observations, m, become large because it involves inversion of m2 × m2

matrix for L + 1 times in each time step. This computational cost can be

reduced from O((Npm
6 + N2

pm
2 + N3

p )L) to O((Npm
3 + N2

pm
2 + N3

p )L) by

observing a special tensor structure of the covariance matrix, where Np is

the number of parameters for Q and R [11]. However, this reduced compu-

tational cost may still be unaffordable when the number of observations is

large. In this paper, we present a new estimation method with computa-

tional cost O(m2N2
p (L+ 1)), that is faster than the Belanger’s scheme when

Np � m, and more robust than Berry-Sauer’s scheme [14] when observations
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are sparse, and produces accurate estimates. We will provide the computa-

tional costs when these methods are used in tandem with ETKF ([2] version).

We will refer to this new method as the modified Belanger’s method since it

is motivated by the original Belanger’s formulation. We shall see that some

aspect of the proposed method is also motivated by Berry-Sauer’s scheme.

The remainder of this paper is organized as follows: In Section 2, we will

discuss the key idea behind the scheme and point out the similarities and

differences between the proposed method with the existing schemes. This

discussion is supported by two Appendices: Appendix A describes the de-

tailed derivation and Appendix B provides pseudo-codes for an easy access

to implementation. In particular, we will implement this scheme with ETKF

that was used in [15], which was formulated by [2]. In Section 3 we show nu-

merical results, comparing the proposed method with the original Belanger’s

scheme implemented via ETKF [15] and Berry-Sauer’s scheme [14, 10] on

various test models ranging from low-dimensional linear, low-dimensional

nonlinear, and moderately higher-dimensional nonlinear stochastic filtering

problems. We also include an experiment with LETKF [2] to demonstrate

the potential for high-dimensional applications. We close the paper with a

short summary and discussion in section 4.

2. Methodology

In this section, we present the mathematical formulation of a new method

for estimating noise covariance matrices. Since the new method is motivated

by earlier methods [10, 14, 16], we provide a short review of these existing

methods and point out the similarities and differences. To simplify the pre-
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sentation in this section, we assume that the observations are taken at every

integration time step. We also provide the formulation for general case in

which the observations are taken at every N ≥ 1 integration time steps in

Appendix A and the pseudo-algorithms in Appendix B.

2.1. Mathematical Formulation

We consider the following discrete-time linear filtering problem:

xj = Fj−1xj−1 + Γwj−1, (1)

yoj = Hjxj + ξj, (2)

where xj ∈ Rn denotes the hidden state variable at time tj. In (1), we

assume that the dynamical model is driven by `−dimensional independent

identically distributed (i.i.d.) Gaussian noises wj−1 with known Γ ∈ Rn×` and

an unknown time-independent system error covariance matrix, Q ∈ Rq×q.

The observations yoj ∈ Rm in (2) are corrupted by m−dimensional Gaussian

i.i.d noises, ξj, with an unknown time-independent observation error covari-

ance matrix, R ∈ Rm×m. Throughout this paper, we assume that Fj, Hj are

linear operators independent of the system and observation noises. Our goal

is to estimate the hidden state variable xj and the noise covariance matrices,

Q and R, given only noisy observations, yoj .

If the noise covariances Q and R are known, an unbiased optimal es-

timation (in the sense of minimum variance) for state xj can be obtained

by Kalman filter formula [17]. In particular, the Kalman filter formula re-

cursively updates the prior mean and covariance estimates, xfj and Bf
j , re-

spectively, of a conditional distribution p(xj|yoi , i ≤ j − 1), to the posterior

mean and covariance estimates, xaj and Ba
j of a new conditional distribution
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p(xj|yoi , i ≤ j), incorporating the observation yoj at time tj (see Appendix A

for the detailed of the Kalman filter formula, cf. (28)).

Following the formulation in [10], we will use the innovation process,

which is defined as the error of the prior mean estimates in the observation

subspace,

vj := yoj −Hjx
f
j = Hj∆x

f
j + ξj, (3)

to estimate Q and R. In particular, Belanger’s formulation relies on the

description of prior forecast error with the following recursive equation [10],

∆xfj := xj − xfj =

j−1∏
i=0

Ui∆xf0 − G
ξ
(j) + Fw(j), (4)

where the explicit definition of the terms Uj, Gξ(j), and Fw(j), are presented in

appendix A (cf. (33), (35), (36)). We remark that Gξ(j) and Fw(j) are linear

combinations of, respectively, ξ and w of previous time steps with coefficients

involving Fj−i, Hj−i and the Kalman gain matrix Kj−i. Hence the coefficients

of ξ in Gξ(j) and w in Fw(j) are independent of the realization of ξ and w as long

as the choice of Kalman gain matrix Kj−i at each time step is independent

of ξ and w. However, this requirement can not be satisfied in any adaptive

filter method which estimates Q and R sequentially since this estimation

depends on the realization of ξ and w. In this situation, Gξ(j) and Fw(j) are

no longer linear functions of ξ and w. But they still can be viewed as linear

combinations of ξ and w whose coefficients also involve ξ and w.

Taking the expectation of the product of (3) at different lags with respect
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to realizations of ξ and w, we have:

E[vjv
>
j−l] = HjE[∆xfj (∆x

f
j−l)

>]H>j−l +HjE[∆xfj ξ
>
j−l]

= Hj

{
E[Gξ(j)(G

ξ
(j−l))

>]− E[Gξ(j)(F
w
(j−l))

>]

−E[Fw(j)(G
ξ
(j−l))

>] + E[Fw(j)(Fw(j−l))>]
}
H>j−l

−HjE[Gξ(j)ξ
>
j−l] +HjE[Fw(j)ξ>j ] + remainder terms, (5)

where all the terms that contain
∏j−1

i=0 Ui are absorbed in the remainder

terms. When the filter is uniformly asymptotically stable, these remainder

terms decay to zero at an exponential rate [10, 16]. If the Kalman gain

matrices Kj−i are computed independently of ξ and w, the cross terms in

(5) can be eliminated and the right hand side of (5) is a linear function of Q

and R. Let’s parameterize Q and R with NQ and NR parameters using some

prescribed basis Qs and Rs, respectively, such that:

Q =

NQ∑
s=1

αsQs, R =

NR∑
s=1

βsRs.

Then, we can approximate (5) as follows,

E[vjv
>
j−l] ≈

NQ∑
s=1

αsH(Q)
j,l,s +

NR∑
s=1

βsH(R)
j,l,s, (6)

where the explicit definition of H(Q)
j,l,s and H(R)

j,l,s are provided in Appendix A

(cf. (43), (44)) and the approximation here is due to neglecting the remainder

terms in (5).

In general situation when the Kalman gain matrix depends on the realiza-

tion of ξ and w, the approximation in (6) is more than just due to neglecting

the remainder terms. This is because the cross terms in (5) are not zero
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and the right hand terms in (5) are no longer linear functions about Q and

R. Now, let Ej,l be defined as the error of the approximation in (6). Taking

average of these errors over time,

1

J − L

J∑
j=L+1

Ej,l :=
1

J − L

J∑
j=L+1

(
E[vjv

>
j−l]− (

NQ∑
s=1

αsH(Q)
j,l,s +

NR∑
s=1

βsH(R)
j,l,s)

)
=

1

J − L

J∑
j=L+1

vjv
>
j−l −

1

J − L

J∑
j=L+1

δj,l

− 1

J − L

J∑
j=L+1

(

NQ∑
s=1

αsH(Q)
j,l,s +

NR∑
s=1

βsH(R)
j,l,s) (7)

where δj,l := vjv
>
j−l − E[vjv

>
j−l]. Suppose that the estimates for Qj and Rj

that are used to update the Kalman gain Kj equilibrate to some constant

values. Then vj is a stationary, Gaussian process with an exponential decay-

ing correlation function ‖E(viv
>
j )‖max = O(exp(−α|i− j|)), where the order

of magnitude is with respect to |i− j|. Then, it is not difficult to show that,

E
[
(

1

J − L

J∑
j=L+1

δj,l)(
1

J − L

J∑
i=L+1

δi,l)
>
]

= O
( 1

J − L

)
.

Secondly, the terms Ej,l are automatically eliminated when the Kalman gain

matrices are updated with constant Qj and Rj. Hence it is reasonable to

believe that the variance and bias of 1
J−L

J∑
j=L+1

Ej,l are small when Qj and Rj

vary slowly as functions of time, resulting to the following approximation,

1

J − L

J∑
j=L+1

vjv
>
j−l ≈

1

J − L

J∑
j=L+1

(

NQ∑
s=1

αsH(Q)
j,l,s +

NR∑
s=1

βsH(R)
j,l,s). (8)

2.1.1. Modified Belanger’s Method

Based on this observation, we propose the following method to estimate

αs and βs:
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• At the time point tJ , solve (8) for αJ := (α1,J , . . . , αNQ,J) and βJ :=

(β1,J , . . . , βNR,J) using a least square method,

min
αJ ,βJ

L∑
l=0

∥∥∥ J∑
j=L+1

vjv
>
j−l −

{ NQ∑
s=1

αs,J(
J∑

j=L+1

H(Q)
j,l,s) +

NR∑
s=1

βs,J(
J∑

j=L+1

H(R)
j,l,s)

}∥∥∥ (9)

where the new subscript J denotes the time tJ and the norm is Frobe-

nius norm.

• Relax the estimates of α and β back to the estimates of the previous

time step by the following running average:

αJ = αJ−1 +
1

τ
(αJ − αJ−1), (10)

βJ = βJ−1 +
1

τ
(βJ − βJ−1), (11)

where τ ≥ 1 is a nuisance parameter that will be empirically chosen.

We provide pseudo-algorithm 1 to guide the detail implementation of this

method in Appendix B.

The idea of the first step of this method is to match the observed data

vjv
>
j−l with the estimation of its statistical mean in a least square manner

since we have no access to E[vjv
>
j−l]. A closely related method has been

proposed by [16]. Specifically, their method can be thought of as the station-

ary version of this method. They assume stationarity of vjv
>
j−l and use the

ergodicity property to approximate E[vjv
>
j−l] ≈ 1

J−L

J∑
j=L+1

vjv
>
j−l in (6), and

solve a different least square function,

min
αJ ,βJ

L∑
l=0

∥∥∥ 1

J − L

J∑
j=L+1

vjv
>
j−l −

NQ∑
s=1

αs,JH(Q)
l,s −

NR∑
s=1

βs,JH(R)
l,s

∥∥∥, (12)
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where the norm is also taken to be the Frobenius norm. An important differ-

ence between this method and the modified Belanger’s method in (9) is that

the operators H(Q),H(R) in (12) are time independent and estimated sepa-

rately assuming that the underlying processes are stationary [16]. However

for any time-varying system their method is not applicable since we can’t

determine H(Q) and H(R). From this point of view, the modified Belanger’s

method is advantageous since it handles non-stationary cases by design.

The relaxation step (or the running average (10) and (11)), which was

proposed in [14] for different reason, is included in this method to reduce

the dependence of the Kalman gain matrices on ξ and w which subsequently

reduce bias terms that can possibly occur when Ej,l and δj,l are large in

(7). From the practical point of view, this relaxation step also increases the

stability (or reduce the covariance) of the estimate.

2.1.2. The original Belanger’s Method

The original Belanger’s approach [10] mitigates the non-stationarity with

a secondary Kalman filter, treating eqn (6) as an observation operator for

Q and R. In particular, he assumes that the error in the approximation

in (6) is white and normally distributed with mean zero and covariance

Wj,l ∈ Rm2×m2
, obtained through a Gaussian approximation. Subsequently,

a secondary Kalman filter is employed to solve the following optimization

problem,

min
αJ ,βJ

Q(αJ , βJ) +

J,L∑
j=L+1,l=0

∥∥∥vec(vjv
>
j−l −

NQ∑
s=1

αs,JH(Q)
j,l,s −

NR∑
s=1

βs,JH(R)
j,l,s)

∥∥∥2

W−1
j,l

,(13)

where function Q is any arbitrarily chosen positive definite quadratic function

about αJ = (α1,J , ..., αNQ,J) and βJ = (β1,J , ..., βNR,J) and the operator vec
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denotes the vectorization of a matrix. Hence Belanger’s method requires the

inversion of Wj,l.

As mentioned in the introduction, this step of matrix inversion can be

computed in O((Npm
3 +N2

pm
2 +N3

p )L) operations, realizing a special struc-

ture in W [11], where we define Np = NQ + NR as the total number of

parameters. On the other hand, the cost of minimizing (9) in the modi-

fied Belanger’s method requires only O(N2
pm

2(L + 1)). In the context of

ETKF, both the modified and original Belanger’s methods construct ma-

trices (such as H(Q) and H(R)) to be used in the secondary filter and the

computational costs are O(nmNeNp(L + 1)). Assuming that the observa-

tion error covariance R is diagonal, the cost of the primary filter (ETKF)

is O(mN2
e + N3

e + nN2
e ) which is small compared to the total cost of the

secondary filters; O((nmNeNp +Npm
3 +N2

pm
2 +N3

p )L) for the original Be-

langer’s method andO((nmNeNp+N
2
pm

2)(L+1)) for the modified Belanger’s

method. Setting the number of parameters to be less than the observations,

Np � m, then the second term O(Npm
3L) dominates the computational

cost of the original Belanger’s scheme if m2 � nNe. On the other hand,

the second term in the computational estimate for the modified Belanger’s

scheme, O(N2
pm

2L), is always less than the first term, O(nmNeNpL) when-

ever Npm� nNe.

Therefore, to achieve the most efficient computational cost with the mod-

ified Belanger’s method, one should parameterize Q and R with a total num-

ber of parameters Np = NQ + NR that is less than the total number of

observations, m, and choose an ensemble size, Ne, appropriately to satisfy

Npm� nNe.
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2.1.3. Berry-Sauer’s Method

Finally, we will compare our method to a computationally faster, related,

method that was recently proposed by [14]. This method is a variant of

Mehra’s method [8] for non-stationary (nonlinear) processes. In particular,

their method is based on a formulation of the expectation of the product of

innovations, E[vjv
>
j−l], that does not use the recursive identity in (4); resulting

to a much simpler set of equations for zero-lag and one-lag products,

E[vjv
>
j ] = HjB

f
jH
>
j +R, (14)

E[vj+1v
>
j ] +Hj+1FjKjE[vjv

>
j ] = Hj+1Fj(Fj−1B

a
j−1F

>
j−1 + ΓQΓ>)H>j ,

where Bf
j := E[(xj − xfj )(xj − x

f
j )
>] and Ba

j := E[(xj − xaj )(xj − xaj )>]. The

goal is to obtain Q and R, which are statistics of stationary processes w and

ξ, respectively, from eqns (14) that involve statistics of non-stationary pro-

cesses, namely, Bf
j , B

a
j , Kj. Furthermore, we have no access to the statistical

quantities E[vjv
>
j ] and E[vj+1v

>
j ].

Their method consists of two steps: First, they estimate R and Q sepa-

rately by solving,

R = vjv
>
j −HjB̃

f
jH
>
j , (15)

and,

min
αj

∥∥∥vj+1v
>
j +Hj+1FjKjvjv

>
j −

NQ∑
s=1

Hj+1Fj(Fj−1B̃
a
j−1F

>
j−1 + αs,jΓQsΓ

>)H>j

∥∥∥,(16)

where they use parameterization Q =

NQ∑
s=1

αs,jQs with the Frobernius norm

in the cost function above, and define αj := (α1,j, . . . , αNQ,j). Additionally,
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they use the covariance estimates from the Kalman filter formula as an ap-

proximation to the theoretical covariance estimates, B̃f
j ≈ Bf

j and B̃a
j ≈ Ba

j .

The second step in their method is to apply the moving average for the es-

timates of R and Q as in (10) to reduce the sensitivity (or variance) of the

sequential estimates in (15) and (16) which depend on realization of noises

w and ξ through vjv
>
j and vj+1v

>
j . In some sense, this method is analo-

gous to the original Belanger’s method except that it uses moving average

as the secondary filter rather than Kalman filter. This cheaper secondary

filter is also adopted in the modified Belanger’s scheme, replacing the expen-

sive secondary Kalman filter. Thus, the computational cost of the modified

Belanger’s scheme is comparable to that of Berry-Sauer’s method when the

innovation lag, L = 1.

While this method is computationally the cheapest one relative to the

other methods discussed in this paper, it is not clear that the approximations

in (15) and (16) would induce bias in a long run. On the other hand, it

is clear that bias indeed exists at any specific time point when the filter

covariance estimates, B̃f
j ≈ Bf

j and B̃a
j ≈ Ba

j , are sub-optimal since the

endogenous variables in (15) and (16) depend on these covariances. On

the other hand, the endogenous variables of both the modified and original

Belanger’s methods in (9) and (13), respectively, involve only vj+lv
>
j . We will

numerically show in Section 3 that this method is more sensitive to the choice

of the nuisance parameter τ in the relaxation step compared to the proposed

modified Belanger’s method and it requires large enough τ to reduce the

variance of the error of the estimates which subsequently slows down the

convergence of the estimates. One practical limitation of this method is
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that it only uses information up to one-lag of innovation statistics which

restricts its application when observations are sparse, as we will demonstrate

in Section 3 below.

2.2. Covariance estimation with ensemble Kalman filters

The formulation of the covariance estimation method described in the

previous section depends on knowing the linear operators Fj and Hj. For

nonlinear problems, however, we typically know the nonlinear forward oper-

ator fj and observational operator hj instead of the linear operators. Here

we will approximate the corresponding linear operators with an ensemble of

solutions as in [14, 15] which is natural in the ensemble Kalman filtering

setting.

More specifically, let {Xa,i
j }

Ne
i=1 be an ensemble of the posterior estimates

of xj and Xdf,i
j+1 = fj(X

a,i
j ) be the i−ensemble member of deterministic fore-

casts from initial condition Xa,i
j . Let Ua

j and Udf
j+1 be matrices whose ith

columns are the ensemble perturbations of Xa,i
j and Xdf,i

j+1 from their ensemble

mean, respectively, then the linear forward operator Fj can be approximated

by

Fj ≈ Udf
j (Ua

j )†. (17)

where † denotes the matrix pseudo-inverse.

Similarly, let the prior ensemble be defined as {Xf,i
j }

Ne
i=1 of the stochastic

system (these ensemble are Gaussian random samples with mean xfj and

covariance P f
j , cf. (19)). Also, let Y f,i

j = hj(X
f,i
j ) be the ith ensemble member

that is (nonlinearly) projected to the observational space. Define U f
j and V f

j

as matrices whose ith columns consist of the ensemble perturbation of Xf,i
j
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and Y f,i
j from its ensemble mean, respectively. Then the linear observation

operator can be approximated by:

Hj ≈ V f
j (U f

j )†. (18)

Therefore, we can directly apply the new covariance estimation method dis-

cussed in Section 2.1.1 to update Q and R after each ensemble Kalman filter

analysis step that updates the estimates of the state variables, xj.

A second adjustment for using EnKF is in the generation of a new en-

semble forecast that accounts for the stochastic terms once Q is updated. In

particular, since

P f
j+1 =

1

Ne − 1
Udf
j+1(Udf

j+1)> + ΓQΓ>, (19)

where Q is obtained from the covariance estimation method, then we need

to construct matrix U f
j+1 such that P f

j+1 = (Ne − 1)−1U f
j+1(U f

j+1)>. In the

numerical experiments below, we use the method proposed in [15] which de-

fines each column of U f
j+1 as an n−dimensional normally distributed random

vector with mean zero and covariance P f
j+1. In Algorithm 2 in the Appendix

B, we will show the details of these adjustments for an implementation with

Ensemble Transform Kalman Filter [18, 2].

For the implementation with LETKF in Section 3.4, we approximate Fj

locally and we incorporate ΓQΓ> globally in the primary filter, even if the

estimates of Q are obtained independently from the local secondary filter.

In our implementation, we define the global estimate of Q to be the spatial

average of local estimates of Q and we construct the global U f
j+1 by adding

Gaussian random noises with mean zero and covariance ΓQΓ> to each column

of the global prior ensemble perturbation, Udf
j+1. Also, in each local primary
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filter analysis (LETKF) we use the global estimate of R (restricted to each

local region), which we define as the spatial average of the local estimates of

R that are obtained by independent local secondary filter.

3. Numerical Simulations

In this section, we will numerically compare the three methods discussed

above, in particular, the proposed modified Belanger’s scheme, the original

Belanger’s scheme, and Berry-Sauer’s scheme on three simple models: 1) a

two-dimensional linear model, 2) a low-dimensional nonlinear triad model,

and 3) a stochastically forced 40-dimensional Lorenz-96 model. Finally, we

will also compare results with LETKF, applying it to the Lorenz-96 model.

3.1. A linear example

In this section, we consider a two-dimensional linear filtering problem in

(1) and (2) with parameters as in [10, 8],

Fj =

0.75 −1.74

0.09 0.91

 ,Γ =

 1 0.4

0.1 1

 , Q = I2, R = 0.5Im.

In the simulations below, we will consider full and sparse observations. Full

observations correspond to Hj = I2 and a 2 × 2 diagonal R = 0.5I2. On

the other hand, sparse observations correspond to Hj = [1, 0] and a scalar

R = 0.5. SinceQ andR are both diagonal matrices we naturally parameterize

them by their diagonal components,

Q =

NQ∑
s=1

αsQs, R =

NR∑
s=1

βsRs, (20)
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where in the case of full observations, NQ = NR = 2 and Qs = Rs ∈ R2×2

are matrices with one on the sth diagonal component and zero everywhere

else. In the case of sparse observations Rs = 1 but Qs remains the same. In

the numerical simulations below, we will show results for 10000 and 50000

assimilation cycles for the cases of full and sparse observation, respectively.

In Figure 1 (left panel) we show the mean relative root-mean-square error

of the estimates of diagonal components of Q and R as functions of time,

from Berry-Sauer’s method, the original Belanger’s method, and the modified

Belanger’s method, respectively. The mean relative root-mean-square error

is defined by

MRrmse(t) =
1

n+m
(
n∑
s=1

|Q̃s,s,t −Qs,s|
Qs,s

+
m∑
s=1

|R̃s,s,t −Rs,s|
Rs,s

) (21)

, where Q̃s,s,t are R̃s,s,t are the sth diagonal element of the estimates of Q

and R at time t, respectively. In the estimation with Berry-Sauer’s method,

we use τ = 2000 so that the variation of the estimation is small enough and

we can see the estimates converge around the true value. On the other hand,

we use τ = 1000 in the estimation with the modified Belanger’s method. For

comparison purpose, we also use L = 1 for both the original and modified

Belanger’s method. Notice that while all three methods work reasonably well

qualitatively, the errors of the modified and the original Belanger’s methods

are on the same order and smaller than that of the Berry-Sauer’s method.

In fact, the results are qualitatively similar when the number of lags are

increased (results are not shown).

Now we check the sensitivity of both Berry-Sauer’s method and the mod-

ified Belanger’s method to the choice of the nuisance parameter, τ . In the
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Figure 1: (Linear 2D model with full observation). Left: the mean rela-

tive root-mean-square error (MRrmse) of the estimates from Berry-Sauer’s

method (B-S) with τ = 2000, Belanger’s method with L = 1, and modified

Belanger’s method with L = 1, τ = 1000. Right: Variance of estimates for

different τ : Variance of estimates of modified Belanger’s method (MBL) with

lags L = 1, 2 compared to the variance of estimates of Berry-Sauer’s method

over the last 5000 time steps.
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right panel of Figure 1, we show the variances of the estimates of Q and R

(based on averaging over the last 5000 time step estimates) as functions of

τ . From this numerical test, it is clear that the modified Belanger’s method

is not only more robust to the choice of τ , it also produces estimates with

smaller variances, either using innovations up to lag L = 1 or L = 2.

Figure 2 shows the comparison results of the original Belanger’s method

and the modified Belanger’s method in the context of partial observations.

Here, we show results with L = 4 for both methods and τ = 1000 for

modified Belanger’s method. Note that the results for both methods are

comparable in this experiment. In this case, Berry-Sauer’s estimation method

does not work (results are not shown) since the regression problem in (16)

is under determined. Furthermore, this regression problem can become ill-

posed for some choice of Γ; e.g., when Γ = I, the regression coefficient

for α2 in (16), that is, Hj+1FjΓQ2Γ>H>j is zero and therefore the second

diagonal component of Q is unobservable. Indeed, we tested both Belanger’s

scheme with various lags and found that the estimates are only accurate

for L > 1. Figure 3 shows the root-mean-square error (RMSE) and the

mean of maximum absolute bias (MMAB) of these two versions of Belanger’s

method. More precisely, we perform 200 independent simulations, each of

these assimilates 50,000 steps. These two measuring skills are computed by

averaging over these 200 simulations, accounting estimates from the last 5000
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steps of 50,000 assimilation steps:

RMSE =

√√√√ 1

200

200∑
i=1

1

5000

50000∑
k=45001

‖Qk −Q‖2 + ‖Rk −R‖2

MMAB =
1

200

200∑
i=1

max
{
|( 1

5000

50000∑
k=45001

Qk)−Q|, |(
1

5000

50000∑
k=45001

Rk)−R|
}
,

where the maximum is over the entries of these matrices. Notice that the

estimates of both methods are accurate according to these measures and the

modified Belanger’s scheme produces slightly more improved estimates as L

increases.
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Figure 2: (Linear 2D model with partial observation): The mean relative

root-mean-square error of the estimates from Belanger’s method with L = 4

and modified Belanger’s method with L = 4, τ = 1000.
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Figure 3: (Linear 2D model with partial observation): Modified Belanger’s

method (MBL) with τ = 1000 and the original Belanger’s method (BL) under

linear 2D model with partial observations. Root-mean-square error (left) and

mean of maximum absolute bias (right) of QR estimates as functions of L.

3.2. A low-dimensional nonlinear example

In this section, we consider filtering problem of a low-dimensional system

of SDE’s,

dx

dt
= Mx+B(x, x)−Dx+ ΓẆt, (22)

where x = (u, v1, v2)>, B(x, x) = (0, auv2,−auv1)>, D = diag(0, d1, d2),

M =


0 ω 0

−2ω 0 −θ

0 θ 0

, Γ =


0 0

σ1 0

0 σ2

 and Wt is the Wiener process with

E(WtW
>
t ) = Qt where Q = I2. The system in (22), which was called the

zeroth level memory model in [15], was derived to model the interaction of

a zonal jet u with topographic waves, vj. In particular, the terms Mx and

B(x, x) in (22) are special solutions of the topographic stress model on a two-

dimensional periodic domain, truncated up to a total horizontal wavenumber-
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one [19, 20], while the linear damping and noises, −Dx + ΓẆt, terms are

added to represent the interactions with the unresolved higher-order Rossby

modes. The triad model in (22) has some interesting properties, namely, it

is geometrically ergodic provided that d1, d2 > 0, the system has a Gaussian

invariant measure, and the systems equilibrium statistics are equivalent to

those when ω is replaced by −ω (see [15] for details).

In the numerical tests below we set a = 1, ω = 3
4
, θ = 1, d1 = d2 = σ2

1 =

σ2
2 = 1

2
as in [15]. We choose integration time step and observation time step

to be δt = ∆t = 0.1. An explicit Euler’s scheme is implemented to integrate

(22). Here, we implement the parameter estimation method with ETKF (see

Algorithm 2 for details) with an ensemble of size Ne = 16. In the context

of full observations, Hj = I3 is the identity matrix, and R = 0.257I3∆t

is a diagonal matrix (the observation noise amplitude roughly corresponds

to 10% of the variance of u). On the other hand, in the context of partial

observations Hj = (1, 0, 0) and R = 0.257∆t is a scalar. Since Q and R are

diagonal in both situations, we naturally parameterize them by their diagonal

components, exactly as in (20).

In Figure 4 (left panel), we compare the performance in the context of

full observations. Notice that the relative errors of all three methods are

comparable. For this experiment, we set τ = 100 for the modified Belanger’s

method and τ = 1000 for Berry-Sauer’s method so the estimates have small

variances. For a fair comparison, we also set L = 1 for both the original and

modified Belanger’s methods. While the relative errors in both versions of

Belanger’s methods decay faster than that of Berry-Sauer’s method, notice

that the relative error of the original Belanger’s method decays faster than
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Figure 4: Left: (triad model with full observation) the mean relative root-

mean-square error of the estimates from Berry-Sauer’s method with τ =

1000, Belanger’s method with L = 1, and Modified Belanger’s method with

L = 1, τ = 100. Right: (triad model with partial observations) the mean

relative root-mean-square error of estimates from Belanger’s method with

L = 8 and Modified Belanger’s method with L = 8, τ = 1000.

that of the modified Belanger’s method. We speculate that this is because the

cost function in (13) is defined with a more appropriate norm, as mentioned

in Section 2.1.2.

In the context of partial observations, only the first component of the

state variables is observed. Again we can not solve Berry-Sauer’s least square

problem in (16) since it is underdetermined. The right panel of Figure 4 shows

the estimates from the two versions of Belanger’s method with lag L = 8 and

τ = 1000. Notice that the relative errors of both methods decay slower when

only partial observations are available.
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3.3. A stochastically forced 40-dimensional Lorenz-96 example

In this section, we compare the proposed modified Belanger’s method

only to Berry-Sauer’s method on a relatively higher-dimensional problems,

the 40-dimensional Lorenz-96 model [21], which has been routinely used to

validate data assimilation schemes. We ignore showing numerical results with

the original Belanger’s method since the computational cost significantly in-

creases as the number of observations, m, becomes large. In our experiment,

we follow [14], forcing the Lorenz-96 model [21] with Gaussian white noises.

In particular, the system of the stochastically forced Lorenz-96 model is given

by:

dxi
dt

= −xi−2xi−1 + xi−1xi+1 − xi + F + ΓiẆt, (23)

where Γi denotes the ith row of the matrix Γ, which we will set as an identity

matrix in our numerical experiments below, and the Wiener process Wt has

covariance E(WtW
>
t ) = Q̂t. We use the standard setting for this model with

F = 8 and integration step size, δt = 0.05. The deterministic part of (23)

is integrated with a fourth-order Runge-Kutta method while the stochastic

part is integrated with the standard Euler’s scheme. In our numerical ex-

periments, we consider sparse, 20 equally spaced, observations of the state

variables for every N integration time steps, i.e. ∆t = Nδt. We generate

the true covariance matrix Q̂ randomly in the way that the eigenvalue of Q̂

distribute uniformly between 0.1 and 1. The observation error covariance

R is generated in the same way, but multiplied by a scalar so that we can

control the ratio of the error covariances, tr(R)/tr(Q), where Q = Q̂δt is

what we will estimate. In particular, when tr(Q) = tr(R) the magnitude of
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R is about 0.025 which is about of the same magnitude as that used in [22].

For this nonlinear example, we will apply the modified Belanger’s scheme

with the ETKF algorithm (2) with an ensemble of size Ne = 50 and a total

number of 50000 assimilation steps. We parameterize Q and R as in (20),

dividing matrices the matrix Q into 4× 4 blocks:

Q =


B1,1 B1,2 ... B1,10

B2,1 B2,2 ... B2,10

...

B10,1 B10,2 ... B10,10

 , and let Qs =



0 ... ... ... ... 0
...

0 ... ... Bsi,sj ... 0
...

0 ... Bsj ,si ... 0 0
...

0 ... ... ... ... 0


,

where si and sj are proper subindexes corresponding to s. Hence there are

NQ = 55 parameters for Q. On the other hand, we do not parameterize R,

resulting to NR = 210 parameters for R by symmetry. When we estimate αs

and βs, τ = 10000 is used for Berry-Sauer’s method and τ = 1000 and L = 1

or L = 3 are used for the modified Belanger’s method.

Figure 5 shows that reasonably accurate estimates of the first two com-

ponents x1 (one of the observed components) and x2 (one of the unobserved

components) of the state variable can be obtained by ensemble transform

Kalman filter incorporated with modified Belanger’s method with N = 1,

L = 3, and tr(R)/tr(Q) = 1. We also include the RMSE of the analysis

state.

Next, we will discuss the filter performance for different observation step

size, N , and covariance ratio, tr(R)/tr(Q). Figures 6-8 show the distribution
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of relative errors in Q and R based on estimates from the two methods with

different L (for modified Belanger’s method only), respectively. Specifically,

the relative error is defined by the average over the last 25000 time steps of

the following error in percentage:

error in percentage =
‖estimates− truth‖

‖truth‖
× 100, (24)

where the “estimates” and “truth” refer to the estimation of Q (or R, respec-

tively) at a specific time step and the true Q (or R, respectively) matrix and

‖ ·‖ is the Frobenius norm. Figure 6 shows the relative errors from the modi-

fied Belanger’s method with L = 1. We notice that the estimations of Q and

R have different sensitive regions. More generally, for fixed observation time

step ∆t = Nδt, the estimation of Q is less accurate when the magnitude of

R is larger, and vice versa. This result can be understood as follows. Recall

that the observational matrices H(Q) (or H(R)) in (6) (or cf. (43), (44)) for

the parameter space are linear functions of the basis of Q (or R). Since we

parameterize Q (or R) block-wise by the true value of the sub-blocks of Q (or

R), larger magnitude of Q (or R) causesH(Q) (orH(R)) to have larger entries.

Since we solve equation (9) directly by a least-square method, we naturally

expect more accurate estimates for the parameters with larger coefficients.

We should note that it is possible to use a more appropriate matrix norm

in (9) that is similar to the one proposed in the original Belanger’s method,

so that we can avoid the estimation of Q and R to have different precision

when their magnitudes are significantly different. However this may also raise

the computational cost to the same order of that of the original Belanger’s

method, which is what we are trying to avoid. According to the analysis

above, it is reasonable to deduce that good estimates of Q can be achieved
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by the modified Belanger’s method when the magnitude of R is small relative

to Q, and vice versa.

On the other hand, we also found that the estimates of the diagonal ele-

ments of Q and R are more accurate in most scenarios. We should note that

we have also tested on much larger observation noise error with diagonal com-

ponent 1 and our method still converges (results are not reported). In fact,

this method can be applied to much broader choices of N and tr(R)/tr(Q)

if the true Q and R are diagonal, which motivates one to find better choices

of Qs and Rs to reduce the sensitivity of the estimates when Q and R have

different magnitudes. Furthermore, better choices of Qs and Rs can reduce

the number of unknown parameters, αs, βs, which is particularly important

for large dimensional problems. In our numerical experiments, none of the

methods can work when the number of parameters are larger than the num-

ber of product of innovation processes that are being used for the covariance

estimation.

In Figure 7, we show the corresponding relative errors of Berry-Sauer’s

method. We see that the estimation of Q and R by the method of Berry-

Sauer’s is less stable when tr(R)/tr(Q) is small. However the estimation of Q

of their method is more accurate when tr(R)/tr(Q) is large. Notice also that

the resulting estimates of Q and R do not have the opposite sensitivity when

the ratio of tr(R)/tr(Q) are different than 1 as encountered in the modified

Belanger’s scheme. We suspect that this may be because they estimate R in

(15) and Q in (16) separately.

Figure 8 shows the relative errors of the modified Belanger’s method

with larger lags, L = 3. We see that in many cases the errors indeed can be
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reduced by incorporating more lagged information. For example, the relative

errors of the estimates of R can be reduced from 74.49% to 32.10% when L is

increased from 1 to 3, for N = 5 and tr(R)/tr(Q) = 1. However, we should

also mention that increasing lags do not seem to improve the estimates in

some regimes with large N (e.g., N = 6 and tr(R)/tr(Q) = 0.2).

In Figure 9 we show the plot of the root-mean-square errors of Q and R

as functions of L, for the regime N = 5 and tr(R)/tr(Q) = 1, a case for which

the method of Berry-Sauer’s does not work well as can be seen in Figure 7.

Again, we find that the error of estimates can be reduced by increasing L.

But the improvement is small starting from L = 3. We suspect that this is

because the entries, that corresponds to lags greater than or equal to 3, in

the coefficient matrix H(Q) and H(R) are small, as we numerically verified.

Hence adding more lags beyond L = 3 does not increase too much solvability

of equation (9).
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Figure 6: Modified Belanger’s method with L = 1, τ = 1000 and Lorenz-

96 model: the average of the root-mean-square error (in percentage) of the

estimates of Q (left) and R (right) over the last 25000 time steps.
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Figure 7: Berry-Sauer’s method with τ = 10000 and Lorenz-96 model: the

average of the root-mean-square error (in percentage) of the estimates of Q

(left) and R (right) over the last 25000 time steps.
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Figure 8: Modified Belanger’s method with L = 3, τ = 1000 and Lorenz-

96 model: the average of the root-mean-square error (in percentage) of the

estimates of Q and R over the last 25000 time steps.
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3.4. Applications on L-96 model using LETKF

In this section we show the numerical results of incorporating the modified

Belanger’s method in the local ensemble transform Kalman filter (LETKF)

([23, 2]). A brief description of how to apply the modified Belanger’s method

in the context of LETKF was described in Section 2.2. For comparison

purpose, we also show results of implementing the original Belanger’s method

with LETKF in a similar way. Here we do not show the results with Berry-

Sauer’s method since they already did it in their paper [14]. We should also

note that the incorporation of these methods on other types of localization

schemes ([24, 25, 26, 27, 28, 29], etc.) can be nontrivial and beyond the scope

of this paper.
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In this example, we assume the true model is the original deterministic

L96 model in (23) without stochastic noise, Γi = 0. Our goal is to test

the potential of the proposed method as an adaptive additive covariance

inflation method to mitigate errors due to localization and small ensemble

size in addition to estimating R on-the-fly. In particular, one can think of

the additive inflation Q as the covariance of a Wiener noise stochastic forcing

in the forecast model:

dxi
dt

= −xi−2xi−1 + xi−1xi+1 − xi + F + Ẇt,

where we parameterize:

Cov(Wt+∆t|Wt) =: Q =



q1 q2 0 . . . 0 q2

q2 q1 q2 . . . 0 0
...

. . . . . . . . .
...

...

0 0 0 . . . q1 q2

q2 0 0 . . . q2 q1


. (25)

In this experiment we assume that observations are taken at every site for

every ∆t = 0.05, with observational error R = I. To estimate R, we pa-

rameterize R = rI, such that the truth is r = 1. In total, we have three

parameters for Q and R; {q1, q2, r}. In the following numerical experiments,

we set the LETKF with localization radius of 5, i.e., there are 11 sites in

each local region. We run the test for 2000 time steps for two ensemble sizes

Ne: larger than the local state space with Ne = 20 and smaller than the local

state space with Ne = 6.

The temporal mean RMSE of analysis (MRMSE) and the final estimates

of the parameters for Q and R from both the original Belanger’s method
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MRMSE q1 q2 r

BL 0.28 0.01 0.01 1.01

MBL 0.23 0.01 0.01 1.01

MRMSE q1 q2 r

BL 0.77 0.51 0.04 0.9

MBL 0.81 0.71 -0.06 0.59

Table 1: Covariance estimates with LETKF with ensemble sizes Ne = 20

(left) and Ne = 6 (right).

(BL) and the modified Belanger’s method (MBL) are shown in Table 1. It

can be seen that the results from both methods are comparable. Compare

to the experiments with smaller ensemble size Ne = 6, the tests with larger

ensemble size Ne = 20 produce more accurate state estimates (with smaller

MRMSE) and also more accurate estimates of R. Here the estimates for Q

are small since the true model is deterministic and the ensemble size is large

enough to resolve every possible direction of local error.

In the case of Ne = 6, the filter is confronted with a huge sampling error

issue, because the ensemble size is much smaller than the dimension of the

state variable of each local region. From the numerical results we observe

that both methods effectively provide a multiplicative covariance inflation

by underestimating R and an additive covariance inflation with nontrivially

larger Q. While the MRMSE of the state variables are relatively comparable

and still less than the observation error, 1, the weights of these inflations from

the two methods are different; the original Belanger scheme provides less

overall inflations compared to the modified Belanger’s scheme. We suspect

that these differences are due to different norms and cost functions that are

minimized in the secondary filters.
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4. Summary

We presented a modified version of Belanger’s method to adaptively es-

timate the system noise covariance Q and observation noise covariance R,

which avoids expensive computational cost of the original Belanger’s scheme.

We embedded this method into the ensemble transform Kalman filter algo-

rithm as in [15] for filtering nonlinear problems. Similarities and differences

between the modified Belanger’s method and those in [10, 14, 16] are dis-

cussed. Computationally, the modified Belanger’s scheme applies a cheaper

secondary filter; it produces estimates of Q and R based on running averages

of linear regression solutions of a new cost function, replacing the secondary

recursive Kalman filtering. Although the running average step is similar to

the one proposed in [14]), our method is more flexible since its cost function

can include product of innovation processes of more than one-lag.

From our numerical results we conclude as follows: While the original

Belanger’s scheme produces accurate estimates with faster convergence rate,

it is computationally impractical for high-dimensional problems. On low-

dimensional problems, we demonstrate that the accuracy of the estimates

based on the proposed modified Belanger’s method may be competitive (or

even slightly better than) with those of the original Belanger’s method. On

the other hand, Berry-Sauer’s method produces the least accurate estimates

compared to the two methods even with full observations. For sparse ob-

servations, Berry-Sauer’s method sometimes does not work simply because

it only uses product of up to one-lag innovation processes. While both the

modified Belanger’s and Berry-Sauer’s schemes requires one to prescribe a

relaxation coefficient τ , we found that the modified Belanger’s scheme is
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not only more robust to variations of this nuisance parameter, but it also

produces estimates with smaller variability.

In our numerical test with the Lorenz-96 model we showed that the modi-

fied Belanger’s method has wider regimes of accurate estimation compared to

Berry-Sauer’s method. In particular, the modified Belanger’s method is more

accurate when observation noise amplitude is small relative to system noise

amplitude and when observation time step is not too large. Berry-Sauer’s

method, on the other hand, has smaller regimes of accurate estimation but

it is particularly very accurate when observations noise amplitude is large

relative to system noise amplitude. Finally, we also compared the modified

and original Belanger’s methods using the local filter with LETKF [2] and

tested the potential of using these estimation schemes as an adaptive co-

variance inflation method in addition to an algorithm for estimating R. We

found that their performances are comparable. Both methods significantly

reduce the errors even when we use small ensemble size smaller than the

dimension of the local state. This encouraging result shows the potential for

high-dimensional applications.

Persisting issues for practical implementation of both methods are ap-

propriate choices of Qs and Rs to reduce the numerical sensitivities and the

number of parameters to be estimate. We also numerically found that adding

more lags help improving the estimates of the new method in most regimes,

however, there seems to be a limit in the improvement of the accuracy of

the estimates beyond certain lags. A mathematically more careful analysis

to improve our understanding of the approximation property of the modified

Belanger’s method is challenging and we leave this out for future studies.
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Finally, we should mention that while the scheme was tested in the con-

text of no model error, it will be interesting to see how this scheme will

perform in the presence of model error. Obviously, when model error is pres-

ence, an additional difficulty is to remove biases (or mean model error) from

the estimates [30] and recent study suggested that accurate estimation can be

obtained when one simultaneously estimates both the mean and covariance

error statistics [31], assuming that one knows how to prescribe an appropri-

ate stochastic model as a model error estimator. We plan to test this method

to address this issue in our future study.
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Appendix A: Detailed formulation

In this appendix we review the mathematical formulation for the origi-

nal Belanger’s scheme. In particular, consider the following linear filtering

problem:

xj,k = Fj,k−1xj,k−1 + Γwj,k−1 (26)

yoj,1 = Hj,1xj,1 + ξj,1 (27)

where we use the same notations as in Section 2. The only difference is

that we use two indices j, k, to denote the time point tjN+k = (jN + k)δt for
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j ≥ 0 and 1 ≤ k ≤ N , indicating that observations are taken for every N ≥ 1

integration time steps. Our goal is to estimate the state variable xj,1, the

covariance Q of the system noise w and the covariance R of the observation

noise ξ, on the fly.

Since our goal is to compute the coefficient matrix in (6), which is a

reasonable approximation for (5) when the Kalman gain matrix K is inde-

pendent of the noises in the previous time steps, let us assume that this

condition holds throughout our derivation below. Recall that given observa-

tions yoj,1 and prior mean and covariance estimates, xfj,1 and Bf
j,1 of the state

variable xj,1 at time tjN+1, Kalman filter computes the posterior estimate

xaj,1 and the posterior covariance matrix Ba
j,1 of xj,1, the prior estimate xfj,k

and the prior covariance Bf
j,k of xj,k for 2 ≤ k ≤ N + 1 in the following way:

Kj,1 = Bf
j,1H

>
j,1(R̃ +Hj,1B

f
j,1H

>
j,1)−1

xaj,1 = xfj,1 +Kj,1(yoj,1 −Hj,1x
f
j,1)

Ba
j,1 = (I −Kj,1Hj,1)Bf

j,1

xfj,2 = Fj,1x
a
j,1

Bf
j,2 = Fj,1B

a
j,1F

>
j,1 + ΓQ̃Γ>

xfj,k+1 = Fj,kx
f
j,k for k = 2, ..., N

Bf
j,k+1 = Fj,kB

a
j,kF

>
j,k + ΓQ̃Γ> for k = 2, ..., N

(28)

where Q̃ and R̃ depends on our knowledge of the true system. If Q̃ and R̃

are different from the true value of Q and R the estimates of xj,k would be

suboptimal. Define the innovation sequence

vj,1 := yoj,1 −Hj,1x
f
j,1. (29)
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Based on equations (28), we have:

∆xfj,1 := xj,1 − xfj,1

= Fj−1,Nxj−1,N + Γwj−1,N − Fj−1,Nx
f
j−1,N

= Fj−1,NFj−1,N−1(xj−1,N−1 − xfj−1,N−1) + Γwj−1,N + Fj−1,NΓwj−1,N−1

= ...

= Fj,1
j−1,1(xj−1,1 − xaj−1,1)

+Fj,1
j,1Γwj−1,N + Fj,1

j−1,NΓwj−1,N−1 + ...+ Fj,1
j−1,2Γwj−1,1, (30)

where Fj1,k1
j2,k2

denotes the forward operator from time point tj1N+k1 to time

point tj2N+k2 :

Fj2,k2
j1,k1

=


I if j1N + k1 = j2N + k2,
j2N+k2∏
i=j1N+k1

Fij ,ik if j2N + k2 > j1N + k1.
(31)

where ij, ik are proper subindexes corresponding to time point ti. We can

now write (30) in a compact form,

∆xfj,1 = Uj−1∆xfj−1,1 − G
ξ
j−1 + Fwj−1, (32)

where
Uj−1 := Fj,1

j−1,1(I −Kj−1,1Hj−1,1)

Gξj−1 := Fj,1
j−1,1Kj−1,1ξj−1,1

Fwj−1 := Fj,1
j,1Γwj−1,N + Fj,1

j−1,NΓwj−1,N−1 + ...+ Fj,1
j−1,2Γwj−1,1

(33)

40



Let’s rewrite (32) in a recursive form,

∆xfj,1 = Uj−1Uj−2∆xfj−2,1 − (Gξj−1 + Uj−1Gξj−2) + (Fwj−1 + Uj−1Fwj−2)

= ...

= (

j∏
i=1

Uj−i)∆xf0,1 − G
ξ
(j) + Fw(j), (34)

where

Gξ(j) = Gξj−1 + Uj−1Gξj−2 + ...+ Uj−1...U1Gξ0 , (35)

Fw(j) = Fwj−1 + Uj−1Fwj−2 + ...+ Uj−1...U1Fw0 . (36)

Since ξj,k and wj,k are i.i.d. standard normal variables and they are also

independent of ∆xf0,1, and since we assume, in this appendix, that Kalman

gain matrices Kj,k are independent to these noises, ξj,k and wj,k at time less

than tjN+1, we would have:

E
[
∆xfj,1(∆xfj−l,1)>

]
= (

j∏
i=1

Uj−i)E
[
∆xf0,1(∆xf0,1)>

]
(

j−l∏
i=1

Uj−l−i)>

+E
[
Fw(j)(Fw(j−l))>

]
+ E

[
Gξ(j)(G

ξ
(j−l))

>] (37)

where the expectation is taken with respect to each realization of w and ξ.

Given that the system is asymptotically stable,

j−l∏
i=1

Uj−i decays exponentially

fast [10]. Hence the first term in (37) is small when j − l is large enough.

Further it is not hard to see that the last two terms in (37) are linear functions

of Q or R respectively, meaning that if we linearly parameterize Q =

NQ∑
s=1

αsQs

and R =

NR∑
s=1

βsRs using some prescribed basis Qs, Rs, we can write the last
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two terms of (37) as a linear function of αs and βs:

E
[
Fw(j)(Fw(j−l))>

]
=

NQ∑
s=1

αsΦ
(Q)
j,l,s (38)

E
[
Gξ(j)(G

ξ
(j−l))

>] =

NR∑
s=1

βsΦ
(R)
j,l,s. (39)

Belanger pointed out that the matrix Φ
(Q)
j,l,s and Φ

(R)
j,l,s can be computed recur-

sively [10]:

Φ
(Q)
j,l,s =



Uj−1Φ
(Q)
j−1,l−1,s if l > 0

Uj−1Φ
(Q)
j−1,0,sU>j−1 + ΓQsΓ

> if l = 0, N = 1

Uj−1Φ
(Q)
j−1,0,sU>j−1 + ΓQsΓ

>

+
N−1∑
i=1

Fj,1
j−1,i+1ΓQsΓ

>(Fj,1
j−1,i+1)>

if l = 0, N > 1

(40)

Φ
(R)
j,l,s =

Uj−1Φ
(R)
j−1,l−1,s if l > 0

Uj−1Φ
(R)
j−1,0,sU>j−1 + Sj−1RsS>j−1 if l = 0,

(41)

where we define Sj−1 := Fj,1
j−1,1Kj−1,1. Based on equations (29), (37)-(41),
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we have

E(vj,1v
>
j−l,1) = Hj,1E

[
∆xfj,1(∆xfj−l,1)>

]
H>j−l,1 +Hj,1E

[
∆xfj,1ξ

>
j−l,1

]
=

NQ∑
s=1

αsHj,1Φ
(Q)
j,l,sH

>
j−l,1 +

NR∑
s=1

βsHj,1Φ
(R)
j,l,sH

>
j−l,1

+



∑NR

s=1 βsRs if l = 0

−
∑NR

s=1 βsHj,1Sj−1Rs if l = 1

−
∑NR

s=1 βsHj,1Uj−1...Uj−l+1Sj−lRs if l > 1.

(42)

and we can define a linear observation operator for Q and R with coefficients:

H(Q)
j,l,s := Hj,1Φ

(Q)
j,l,sH

>
j−l,1 (43)

H(R)
j,l,s := Hj,1Φ

(R)
j,l,sH

>
j−l,1 +


Rs if l = 0

−Hj,1Sj−1Rs if l = 1

−Hj,1Uj−1...Uj−l+1Sj−lRs if l > 1,

(44)

so that (42) can be conveniently written as

E(vj,1v
>
j−l,1) =

NQ∑
s=1

αsH(Q)
j,l,s +

NR∑
s=1

βsH(R)
j,l,s, (45)

which is exactly (6) in the case when observations are taken every integration

time step (N = 1).

Appendix B. Pseudo-code

In this appendix, we present a complete pseudo-code of the modified
Belanger’s method. To make this paper self-contained we also present the
ETKF algorithm that we used for filtering stochastic nonlinear systems. This
version of ETKF is similar to the one used by [15] and it is a variant of the
one formulated earlier by [2]. We should also mention that this pseudo-code
is not optimal so one may need to optimize it carefully for high-dimensional
problems. The following notations are needed:
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• n ∈ N: the dimension of state variable;

• m ∈ N: the dimension of observation;

• N ∈ N: number of time steps per observation;

• Ne ∈ N: the ensemble size;

• ns ∈ N: the dimension of system noise wk;

• xj,k ∈ Rn×1: the true state variable at the

jN + k-th time step;

• Xf,i
j,k ∈ Rn×1: the i-th ensemble member of

prior estimate of state variable at the jN + k-

th time step, for i = 1, ..., Ne;

• Xdf,i
j,k ∈ Rn×1: the i-th ensemble member of

deterministic forecast of state variable at the

jN + k-th time step, for i = 1, ..., Ne;

• X̄f
j,k ∈ Rn×1: ensemble mean of prior estimate

of state variable at the jN + k-th time step;

• Xa,i
j,k ∈ Rn×1: the i-th ensemble member

of posterior estimate of state variable at the

jN + k-th time step, for i = 1, ..., Ne;

• X̄a
j,k ∈ Rn×1: ensemble mean of posterior es-

timate of state variable at the jN + k-th time

step;

• vj,1 ∈ Rm×1: the innovation at the jN + 1′st

time step;

• Bf
j,k ∈ Rn×n: prior covariance of state vari-

able at the jN + k-th time step;

• Ba
j,1 ∈ Rn×n: posterior covariance of the state

variable at the jN + 1′st time step;

• Kj,k ∈ Rn×m: the Kalman gain at the jN+k-

th time step;

• hj,1: observational operator at the jN + 1′st

time step;

• Hj,1 ∈ Rm×n: the linear version of hj,1;

• fj,k: the nonlinear deterministic model op-

erator that transmits state variable from the

jN + k-th time step to the jN + k+ 1′st time

step;

• Fj,k ∈ Rn×n: the linear version of fj,k;

• Q ∈ Rns×ns : the covariance of system noise

wk;

• Γ ∈ Rn×ns : the coefficient of system noise;

• R ∈ Rm×m: the covariance of observation

noise ξk.

• Φ
(Q)
j,l,s and Φ

(R)
j,l,s : the matrices defined by (38)

and (39) for l = 0, ..., L;

• H(Q)
j,l,s andH(R)

j,l,s : the matrices defined by (45)

for l = 0, ..., L;

• H(Q)sum
J,l,s and H(R)sum

J,l,s : the sum of H(Q)
j,l,s and

H(R)
j,l,s, respectively, from time t(L+1)N+1 to

tJN+1

• Y(QR)sum
J,l : the sum of vj,1v

>
j−l,1 from

t(L+1)N+1 up to time tJN+1;

• NQ : number of parameters for Q;

• NR : number of parameters for R;

• Qs : the basis of parameterization of Q, for

s = 1, ..., NQ;

• Rs : the basis of parameterization of R, for

s = 1, ..., NR;

• Qj : the estimation of Q that is used in the

primary filter at the jN + 1′st time step;

• Rj : the estimation of R that is used in the

primary filter at the jN + 1′st time step;

• τ : the relaxation coefficient in (10) and (11).
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Algorithm 1 Covariance Estimation at the jN + 1’s Time Step

Input: vj−l,1, B
f
j−l,1, Kj−l,1, Fj−l−1,k, Hj−l,1,Qs,Rs,Γ, αs,j−1, Qj−1, Rj−1, βs,j−1,

Uj−l−1,Sj−l−1,Φ
(Q)
j−1,l,s,Φ

(R)
j−1,l,s,H

(Q)sum
j−1,l,s ,H

(R)sum
j−1,l,s ,Y

(QR)sum
j−1,l , τ , for 1 ≤ s ≤

NQ or NR, 0 ≤ l ≤ L

Output: αs,j, βs,j, Qj, Rj,Φ
(Q)
j,l,s,Φ

(R)
j,l,s,Y

(QR)sum
j,l ,H(Q)sum

j,l,s ,H(R)sum
j,l,s , for 0 ≤ l ≤

L

1: if j < L+ 1 then % do not do anything for the first L time steps

2: αs,j ← αs,j−1 for s = 1, ..., NQ

3: βs,j ← βs,j−1 for s = 1, ..., NR

4: Qj ← Qj−1

5: Rj ← Rj−1

6: Φ
(Q)
j,l,s ← Φ

(Q)
j−1,l,s for l = 0, ..., L and s = 1, ..., NQ

7: Φ
(R)
j,l,s ← Φ

(R)
j−1,l,s for l = 0, ..., L and s = 1, ..., NR

8: Y(QR)sum
j,l ← Y(QR)sum

j−1,l for l = 0, ..., L

9: H(Q)sum
j,l,s ← H(Q)sum

j−1,l,s for l = 0, ..., L and s = 1, ..., NQ

10: H(R)sum
j,l,s ← H(R)sum

j−1,l,s for l = 0, ..., L and s = 1, ..., NR

11: else

12: for l = 0 to L do

13: Y(QR)sum
j,l ← Y(QR)sum

j−1,l + vj,1v
>
j−l,1 % Compute

J∑
j=L+1

vjv
>
j−l in (9)

14: if l = 0 then

15: for s = 1 to NQ do

16: Φ
(Q)
j,l,s ← Uj−1Φ

(Q)
j−1,0,sU>j−1 +Qs

17: Fj,1j,1 ← I
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18: for k = N to 2 do

19: Fj,1
j−1,k ← Fj,1

j−1,k+1Fj−1,k

20: Φ
(Q)
j,1,s ← Φ

(Q)
j−1,1,s + Fj,1

j−1,kΓQsΓ>(Fj,1
j−1,k)

>

21: end for

22: H(Q)
temp,s ← Hj,1Φ

(Q)
j,1,sH

>
j,1 % Compute H(Q)

j,l,s in (9)

23: end for

24: for s = 1 to NR do

25: Φ
(R)
j,1,s ← Uj−1Φ

(R)
j,1,sU>j−1 + Sj−1RsS>j−1

26: H(R)
temp,s ← Hj,1Φ

(R)
j,1,sH

>
j,1,s +Rs

27: end for

28: else

29: for s = 1 to NQ do

30: Φ
(Q)
j,l,s ← Uj−1Φ

(Q)
j−1,l−1,s

31: H(Q)
temp,s ← Hj,1Φ

(Q)
j,l,sH

>
j,1

32: end for

33: for s = 1 to NR do

34: Φ
(R)
j,1,s ← Uj−1Φ

(R)
j−1,l−1,s

35: if l = 1 then % Compute H(R)
j,l,s in (9)

36: H(R)
temp,s ← Hj,1Φ

(R)
j,l,sH

>
j−l,1 −Hj,1Sj−1Rs

37: else

38: H(R)
temp,s ← Hj,1Φ

(R)
j,l,sH

>
j−l,s −Hj,1Uj−1...Uj−l+1Sj−1Rs

39: end if

40: end for

41: end if

42: end for
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43: % Compute
J∑

j=L+1

H(Q)
j,l,s and

J∑
j=L+1

H(R)
j,l,s in (9)

44: H(Q)sum
j,l,s ← H(Q)sum

j−1,l,s +H(Q)
temp,s , for l = 0, 1, ..., L and s = 1, ..., NQ

45: H(R)sum
j,l,s ← H(R)sum

j−1,l,s +H(R)
temp,s , for l = 0, 1, ..., L and s = 1, ..., NR

46: reshape H(Q)sum
j,l,s to get h

(q)
l,s ∈ Rm2×1 for 1 ≤ s ≤ NQ and 0 ≤ l ≤ L

47: reshape H(R)sum
j,l,s to get h

(r)
l,s ∈ Rm2×1 for 1 ≤ s ≤ NR and 0 ≤ l ≤ L

48: H
(q)
l ← [h

(q)
l,1 , h

(q)
l,2 , ..., h

(q)
l,NQ

] for l = 0, 1, ..., L

49: H
(r)
l ← [h

(r)
l,1 , h

(r)
l,2 , ..., h

(r)
l,NR

] for l = 0, 1, ..., L

50: H(q) ←


h

(q)
0

h
(q)
1

...

h
(q)
L

, Hr ←


h

(r)
0

h
(r)
1

...

h
(r)
L

 , Y(qr) ←


Y(QR)sum
j,0

Y(QR)sum
j,1

...

Y(QR)sum
j,L


51: H(qr) ← [H(q),H(r)]

52: Λ(qr) ← ((H(qr))>H(qr))†(H(qr))>Y(qr), where † denotes the matrix pseudo-

inverse. % Solve (9) for the covariance parameters using least square

method

53: % Temporal smoothing of covariance parameters. Refer to (10) and (11)

54: αs,j ← αs,j−1 + 1/τ(Λ
(qr)
s − αs,j−1) for s = 1, ..., NQ

55: βs,j ← βs,j−1 + 1/τ(Λ
(qr)
s+NQ

− βs,j−1) for s = 1, ..., NR

56: Qj ←
NQ∑
s=1

αs,jQs , Rj ←
NR∑
s=1

βs,jRs % Construct Q and R from the

newly estimated parameters

57: end if
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Algorithm 2 Ensemble Transform Kalman Filter (for stochastic nonlinear

systems) from the (jN + 1)′st Time Step to (j + 1)N + 1′st Time Step

Input: yoj,1, X
f,i
j,1 , B

f
j,1, fj,k, hj,1, Q,R,Γ

Output: Xf,i
j+1,1, B

f
j+1,1, Fj,k, Hj,1, Kj,1, B

a
j,1 for 1 ≤ k ≤ N

1: % ETKF is widely known and has many different versions. For a detailed

description of this version please refer to [2, 32]

2: X̄f
j,1 ←

1
Ne

Ne∑
i=1

Xf,i
j,1

3: U
(i)
j,1 ← Xf,i

j,1 − X̄
f
j,1, for i = 1, 2, ..., Ne.

4: Y f,i
j,1 ← hj,1(Xf,i

j,1), for i = 1, 2, ..., Ne.

5: U ← [Uf,1j,1 , ..., U
f,Ne

j,Ne
]

6: Ȳ f
j,1 ←

1
Ne

Ne∑
i=1

Y f,i
j,1

7: V f,i
j,1 ← Y f,i

j,1 − Ȳ
f
j,1, for i = 1, 2, ..., Ne

8: V ← [V f,1
j,1 , ..., V

f,Ne

j,1 ]

9: Hj,1 ← V U † where † refers to the matrix pseudo-inverse.

10: J ← (Ne − 1)I + V >R−1V

11: x← J−1V >R−1vj,1

12: X̄a
j,1 ← X̄f

j,1 + Ux

13: Compute the singular value decomposition (SVD) of J = E1D1E
>
1

14: D2 ← (Ne − 1)D−1
1

15: T ← E1

√
D2E

>
1

16: Py ← 1
Ne−1V V

> +R

17: Pxy ← 1
Ne−1UV

>

18: Kj,1 ← PxyP
−1
y

19: Ua ← UT , denote the i-th column of Ua by Ua,i;

20: Ba
j,1 ← Ua(Ua)>/(En− 1)

21: Xa,i
j,1 ← X̄a

j,1 + Ua,i, for i = 1, 2, ..., Ne.

48



22: Xtemp ← Xa
j,1, denote the i-th column by Xtemp,i

23: for k = 1 to N do

24: X̄temp ← 1
Ne

Ne∑
i=1

Xtemp,i

25: U f,i ← Xtemp,i − X̄temp for i = 1, 2, ..., Ne.

26: U f ← [U f,1, ..., U f,Ne ]

27: Btemp ← 1
Ne−1

U f (U f )>

28: Xtemp,i ← fj,k(X
temp,i)

29: X̄temp ← 1
Ne

Ne∑
i=1

Xtemp,i

30: Udf,i ← Xtemp,i − X̄temp for i = 1, 2, ..., Ne

31: Udf ← [Udf,1, ..., Udf,Ne ]

32: Fj,k ← Udf (U f )†

33: Btemp ← 1
Ne−1

U f (U f )> + ΓQΓ>

34: Independently generate Ne standard normal random vectors δi ∈ Rn×1,

for 1 ≤ i ≤ Ne

35: δ̄ ← 1
Ne

Ne∑
i=1

δi

36: δi ← δi − δ̄ for i = 1, 2, ..., Ne.

37: δ ← [δ1, ..., δNe ]

38: Compute the singular value decomposition of 1
Ne−1

δδ> = E3D3E
>
3

39: U temp ←
√
BtempE3(D3)−1E>3 δ, denote the i-th column by U temp,i

40: Xtemp,i ← X̄temp + U temp,i for i = 1, 2, ..., Ne

41: end for

42: Xf,i
j+1,1 ← Xtemp,i for i = 1, ..., Ne

43: Bf
j+1,1 ← Btemp
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