
A split control variate scheme for PIC simulations with collisions

Eric Sonnendrücker1,3, Abigail Wacher1, Roman Hatzky1, and Ralf Kleiber2

1Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany
2Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany

3Mathematics Center, TU Munich, Boltzmannstr. 3, 85747 Garching, Germany

February 26, 2015

Abstract

When the distribution function of plasma particles stays close to some analytically known
function, statistical noise inherent to Monte Carlo simulations can be greatly reduced by intro-
ducing this function as a control variate in the computation of the velocity moments. Such a
method, even though it can be naturally applied to nonlinear simulations, has originally emerged
from linearised simulations and is usually called the δf particle-in-cell (PIC) method. In the
past, the method has been extended to also handle collisions. This resulted in a two weight
scheme which is known to produce a pronounced weight growth problem which rapidly makes
it inefficient as a control variate method for variance reduction. In this work we analyse the
weight growth problem within a simple example, which allows us to overcome its pathological
behaviour. We also introduce a new split algorithm based on switching the control variate for
PIC simulations with collisions. A key element of our algorithm is a new weight smoothing op-
erator which enables us to obtain a significant noise reduction both in the presence of collisions
and in the deep nonlinear phase of PIC simulations.

Keywords: Vlasov-Poisson system; Fokker-Planck; Collisions; Particle In Cell; PIC; Monte
Carlo; Control Variate.

1 Introduction

The Particle In Cell (PIC) method is a well established method for the numerical simulation of
collisional or collisionless kinetic plasmas [4]. Its main drawback compared to grid based methods
is its numerical noise that is slowly decreasing (as 1/

√
N) with the number of particles. In some

situations, like in gyrokinetic simulations of magnetic fusion plasmas, using a standard PIC method
requires either a huge number of particles or generates noise levels above the signal level. This
could be remedied by the so-called δf approach [10] which allows to decrease the noise by orders
of magnitude by simulating with particles only the deviation from equilibrium. This method
involving linearisation in its early stages can be made completely nonlinear. Aydemir [3] pointed
out that this method could be interpreted as a control variate method classically used in Monte
Carlo simulations. This method has been proven to be very efficient and useful for collisionless
gyrokinetic simulations. However, it has been very difficult to efficiently handle collisions with this
method. The two weight scheme introduced in [5] has been prone to an artificial weight growth [8]
that is problematic for long time simulations as it can increase the variance and thus also the noise

1



drastically. Even though the coarse graining method [7] allows to alleviate the problem it is still
not completely satisfying.

In this paper we motivate a new method for PIC simulations with collisions using a control
variate approach. One of its features is the idea of switching the control variate between the
advection and the collision step, which has been first introduced by Vernay et al. [15, 16]. We
proceed by analysing the error introduced by the two weight δf particle in cell method for solving
the collisional Vlasov equation, and observe that the pathological weight growth can be eliminated
by using a well suited control variate during the collision step, an equilibrium function of the
collision operator, which can be usually computed in practice. This brings us to the formulation
of our algorithm based on a splitting between the advection step and the collision step, using at
every collision step the actual equilibrium of the collision operator as a control variate. Any other
function (close enough) can be used as a control variate during the advection phase, the algorithm
then involving a switching of control variates between the advection and collision steps. In practice
this method only involves the evolution of one weight with no time integration during the collision
step. This completely suppresses the weight growth during the collision step, however a slight
weight growth is still observed due to the advective and rescaling stages.

Moreover, the collision step should not only be free of weight growth but also smooth the
weights so that the collisions actually bring back the distribution to equilibrium and thus diminish
the weights at that step. This could be realised by a kernel density estimate which is akin to coarse
graining. Instead, we propose a simpler procedure which is grid less and only involves pairs of close
particles, thus making it completely local, which is a big asset for large parallel computations. We
call this: neighbour smoothing procedure. We will show that adding this step to our algorithm
allows to have an appropriate relaxation of the distribution function towards the equilibrium with
a corresponding reduction of the variance of the weights and results in better statistics.

The article is organised as follows. First we introduce an abstract model for a collisional phase
space transport. In our examples it will represent the Vlasov-Fokker-Planck equation, but it could
also be the gyrokinetic equations with collisions. This model is split into two parts, the first one
defining an advection along some characteristics and the second a collision operator that admits a
known steady state. Then both parts are considered individually, the collision operator being cast
into the framework of stochastic differential equations (SDE). A split algorithm for the solution
of the initial problem is then introduced. After that, a new neighbour smoothing procedure is
introduced to be used in addition with the previous algorithm to ensure a pointwise convergence of
the distribution function to the equilibrium distribution in the case of strong collisions. A section
is then devoted to the analysis of the weight growth problem that plagues standard collisional two
weights PIC simulations. And finally we validate the new methods introduced in the paper on
relevant test cases.

2 An abstract collisional Vlasov equation

Denoting by z = (x, v) the phase space variables we consider a collisional Vlasov equation with a
known source term of the form

∂f

∂t
+ A · ∇f = −∇ · (ACf) +

1

2
ν2∆vf + S̃(f). (1)

where ∇ := (∂x, ∂v) acts on the phase space and the diffusion operator ∆v acts in velocity space
only. S̃(f) is a general source term. This abstract model contains the Vlasov-Fokker-Planck model
as well as the gyrokinetic equations with a linear collision operator.

2



The linearity of the collision operator assumed for simplicity in this work is not required for
our algorithm. It would also be possible to use the nonlinear Landau collision operator expressed
with Rosenbluth potentials.

In our particle in cell scheme we are going to treat independently the advection and collision
term using a time splitting technique, the advection part being

∂f

∂t
+ A · ∇f = S̃(f), (2)

and the collision part
∂f

∂t
+∇ · (ACf)− 1

2
ν2∆vf = 0. (3)

This splitting is somewhat arbitrary since for a given equation we have some freedom in what to
put into A and what into AC. However a strong requirement for our method to work is that the
collision part Eq. (3) admits an analytically known non trivial steady-state, which is typically a
local Maxwellian.

3 The δf method in the pure advection case

The standard variance reduction technique used in the PIC method, is the so-called δf method,
where a control variate associated with a known equilibrium distribution close to the computed
distribution is used [8].

Let us introduce an arbitrary function f0(t, z) that is analytically known. Then define, by
explicit computation

S0 = −∂f
0

∂t
−A[f ] · ∇f0. (4)

We explicitly highlight a possible dependency of A on f through e.g. an electric field. Then,
defining δf = f − f0, we get from Eq. (2)

∂δf

∂t
+ A[f ] · ∇δf = S̃ + S0 =: S. (5)

This is an advection equation with source term that can be solved numerically using a weighted
particle method. The weights will evolve in time due to the source term. In this context, in order
to get more flexibility in the initial phase-space positions of the particles zk(0), instead of drawing
them according to the distribution function of the plasma particles f as is usually done in PIC
methods, we draw them according to an arbitrary probability density g with support larger than
the support of f . The phase space positions drawn according to the chosen probability density g,
will be called markers. These will be evolved in time following the characteristics of the advection
equation, which are the trajectories of the actual plasma particles. A particle approximation of the
distribution function can be expressed with these markers as

fN (t, z) =

N∑
k=1

ckδ(z− zk). (6)

The weights ck do not evolve in time as f and g are conserved along the same characteristics, and
they are determined at the initial time by the initial marker positions z0

k = zk(0): ck = f0(z0
k)/g0(z0

k)
with the definition f0(z0

k) = f(0, z0
k) and g0(z0

k) = g(0, z0
k).

3



An additional particle approximation of δf can be expressed by using the same markers dis-
tributed according to g

δfN (t, z) =

N∑
k=1

γk(t)δ(z− zk), (7)

with the initial values of the markers given by

γ0
k =

δf(0, z0
k)

g0(z0
k)

=
f(0, z0

k)− f0(0, z0
k)

g0(z0
k)

. (8)

Then δfN is a solution of Eq. (5) provided

dzk
dt

= A[f ](t, zk(t)),
dγk
dt

=
S(t, zk(t))

g(t, zk(t))
. (9)

The evolution of the phase space positions of the markers zk can be computed as in a standard
PIC method. In addition, the evolution of the weights need to be computed by numerically solving
the equation for γk. If no linearisation is performed this method is equivalent to a standard full-f
PIC method and yields a nonlinear approximation of the full distribution function f by adding f0

to the computed δfN .
It has been noted by Aydemir [3] and Allfrey and Hatzky [2] that because d

dt(
f(t,zk(t)
g(t,zk(t) ) = 0 along

the characteristics in the absence of source terms (i.e. S̃ = 0), the solution of the weight equation
can be computed explicitly once the phase space trajectories are known. Indeed integrating the
previous relation between t = 0 and tn and writing f(t, zk) = δf(t, zk) + f0(t, zk), we get

δf(tn, z
n
k)

g(tn, znk)
=
δf(0, z0

k)

g0(z0
k)

+
f0(0, z0

k)

g0(z0
k)
−
f0(tn, z

n
k)

g(tn, znk)
. (10)

Then using that g is conserved along the marker trajectories, we get g(tn, z
n
k) = g0(z0

k), which is
explicitly known and it follows

γnk =
f(0, z0

k)− f0(tn, z
n
k)

g0(z0
k)

= ck −
f0(tn, z

n
k)

g0(z0
k)

. (11)

This gives an explicit solution for the weight equation. The methods based on this are generally
called direct δf methods in the literature. In cases where f is not conserved along the characteristics
because of the presence of a source term S̃ or when Eq. (5) is linearised, the weights need to be
integrated numerically using a standard ODE solver.

In our case the advection scheme is only one of the split steps, the other being a collision step in
which there are no characteristics for tracing back the value of g. Hence we can no more trace back
g to the initial value along the characteristics. However for one marker in the advection part we
still have that g(tn+1, z

n+1
k ) = g(tn, z

n
k). We can use this to find an expression of γn+1

k as a function
of γnk . This is easily obtained by deriving the equivalent of Eq. (10) by integration between tn and
tn+1 instead of 0 and tn from which it follows that

γn+1
k = ck − (ck − γnk )

f0(tn+1, z
n+1
k )

f0(tn, znk)
. (12)

4



4 Stochastic differential equation associated to a Fokker-Planck
equation

The particle method introduced in the previous section, can be extended to include the collision
term by replacing the characteristic equations by a stochastic differential equation (see e.g. [8]).

Let f be a function depending on time and on a d-dimensional phase space variable z solution
of the Fokker-Planck equation

∂f

∂t
+∇ · (ACf)− 1

2
ν2∆vf = 0, (13)

with an initial condition f(0, z) = f0(z). In order to be able to interpret f as a probability density,
we shall assume that it is normalised such that

∫
f0(z) dz = 1. Because the equation is conservative,

this property is then true for f(t, ·) at any time. Here AC denotes a vector with d components and
ν is a constant diffusion coefficient. More complex diffusion tensors could be handled also in the
same framework, but we shall stick with constant diffusion for simplicity.

The Itô stochastic differential equations (SDE), see for example [13] for an introduction, provide
a framework where the solution of a SDE can be used like characteristics to define the solution of
Eq. (13). The SDE associated to Eq. (13) in the Itô formalism reads

dZ = AC(t,Z) dt+ ν dWv, (14)

Z(s) = z. (15)

Here s is an arbitrary initial time and Wv is a d/2-dimensional Wiener process in velocity as usual
in the theory of SDEs. In accordance with our physical problem, we consider only diffusion in
velocity space.

The Itô formula provides an equivalent to the total derivative in the classical case. This reads
in our case

df(t,Z(t)) =

(
∂f

∂t
+ AC · ∇f +

1

2
ν2∆vf

)
(t,Z(t)) dt+ ν∇f(t,Z(t)) · dWv. (16)

However, because this involves random variables and a Wiener process, it cannot be used to travel
at wish forward or backward in time like characteristics. Taking the expectation, enables to get
rid of the Wiener process due to one of its properties, then we get the conservation of expectation
along the path of a stochastic differential equation, which enables us to link the SDE and a partial
differential equation. However, the PDEs involved are different in the forward, initial value problem,
and backward, terminal value problem. One is the adjoint of the other. We are interested in the
initial value problem, for which the Fokker-Planck equation, also know as Kolmogorov forward
equation in the stochastic literature, associated to SDE Eqs. (14)–(15) is the PDE Eq. (13) we are
interested in. In other words, the probability density evolved by markers satisfying Eqs. (14)–(15)
is the solution of Eq. (13). This gives us the framework needed for defining a particle method to
find an approximate solution of Eq. (13).

5 The stochastic Particle In Cell (PIC) method

In order to make clear that random variables which are functions are different mathematical objects
than standard variables, in the following random variables will be denoted by capital letters and
standard variables with small letters (e.g. Γ, γ), as is standard in the mathematical literature.

5



A particle method, as introduced in Section 3, using an approximation of a function as a sum of
Dirac masses can also be expressed with the tools of probability theory. It consists in approximating
the initial distribution function of particles, which is normalised such that it defines a probability
density, by a large number of realisations of the random variable Z(0) drawn with the initial phase
space density. Then, as the density is conserved along the characteristics the evolution in time of
the phase space density is sampled by the random variable Z(t), where Z(t) is a solution of the
deterministic equation of characteristics with initial conditions Z(0). The physical quantities of
interest at any time can be defined as expectations of functions of Z(t). For any function ψ defined
on the phase space Rd, by the law of large numbers an approximation of the expectations is given
by the average of the samples:

E(ψ(Z(t)) ≈ 1

N

N∑
k=1

ψ(zk(t)), (17)

where zk(0), k = 1, . . . , N are N realisations of the initial random variable Z(0) of density f0. Then
zk(t), k = 1, . . . , N the solutions of the characteristic equations with initial conditions zk(0), are
realisations of Z(t) of density f(t, z).

The error of this approximation, in a probabilistic sense, is given by the central limit theorem
and depends on the variance of the random variables. This error is known as numerical noise.
Knowing this, in order to reduce the error for a given number of particles, the strategy which is
classical in Monte Carlo approximation is to reduce the variance. Many ways of doing that like
importance sampling, control variates, antithetic variates and others are known from statistics.

As the stochastic differential equations provide a replacement for the characteristics for advection-
diffusion equations, the PIC method can be applied in the same way in this context.

We now need to extend the weighted PIC method, necessary to define the δf method as a tool
to reduce noise in a PIC method, to the stochastic setting. We therefore need a new definition of
the weights as a new random variable, denoted by Γ, which will enable us to express any probability
density with respect to the marker distribution in the phase space extended by a new variable γ.
In the δf PIC context this has been done in [6, 5, 8].

More concretely, consider that we want to solve Eq. (13) with a weighted PIC method. Then we
need to define the SDE for which Eq. (13) is the Fokker-Planck equation. These are Eqs. (14)–(15).
But now in order to get more flexibility in the initial phase-space positions of the particles Z(0), we
draw them according to the probability density ḡ0 on the extended phase space (z, γ) ∈ Rd×[0,+∞)
that we are free to fix instead of f0. The idea is related to the technique of importance sampling,
see e.g. [11]. To connect ḡ0 with f0 we require that∫ +∞

0
γḡ0(z, γ) dγ = f0(z). (18)

Then we can compute the expectations with respect to f0 that we need as expectations with respect
to ḡ0 using

Ef0(ψ(Z)) =

∫
ψ(z)f0(z) dz =

∫ ∫ +∞

0
γψ(z)ḡ0(z, γ) dγ dz = Eḡ0(Γψ(Z)). (19)

Note that an approximation of Eḡ0(Γψ(Z)) by a finite number of samples yields the natural form
of a weighted PIC method:

Eḡ0(Γψ(Z)) ≈ 1

N

N∑
k=1

γkψ(zk). (20)

6



In this framework the factor 1/N is taken out of the weights compared to the definition of fN in
Section 3. In order to define a weighted PIC method, knowing f0 we then need a procedure to define
the initial extended marker distribution ḡ0 such that Eq. (18) is satisfied. A natural way to do this
is to pick arbitrarily the phase space marker distribution g0(z) =

∫ +∞
0 ḡ0(z, γ) dγ. It could follow

a uniform distribution for example, or any other distribution that makes sense for the problem at
hand. Then the classical weighted PIC method is obtained by taking ḡ0(z, γ) = δ(γ − γ(z))g0(z).
Plugging this expression into Eq. (18) we get∫ +∞

0
γḡ0(z, γ) dγ = γ(z)g0(z) = f0(z). (21)

Thus, it follows that the condition Eq. (18) is satisfied provided γ(z) = f0(z)/g0(z). This is the
classical expression for importance sampling.

Finally, in order to initialise our weighted PIC method, we draw the initial particle phase space
positions zk(0) according to the phase space marker density g0. Then the weights are defined by
γ0
k = f0(zk(0))/g0(zk(0)).

Now if we are not merely interested in a weighted PIC method, but in a control variate PIC
method, we need to describe two distribution functions, the one of the actual particles f and also
the control variate f0 with the same marker distribution. This will eventually yield the weights for
δf as the difference between the weights for f and for f0. Hence we consider a marker distribution
ḡ(z, γ, γ2) which depends on two weights, γ for representing f and γ2 for f0. As f and f0 are
probability densities as well as ḡ, they are positive, and so also the weights γ and γ2. On the other
hand γ1 = γ − γ2 does represent δf which is not a probability density and can take positive and
negative values.

To determine the time evolution of the weights, we define the stochastic processes Γ(t) and
Γ2(t) such that Z(t), along with Γ(t) and Γ2(t) can be used to approximate expectations relative
to f(t) and f0(t) respectively. Therefore, we introduce the following extended phase-space marker
equation

∂ḡ

∂t
+∇z · (ACḡ)− 1

2
ν2∆v ḡ +

∂

∂γ
(λḡ) +

∂

∂γ2
(λ2ḡ) = 0, (22)

where λ and λ2 are functions of γ, γ2 and z that need to be defined. The SDE for which Eq. (22)
is the Fokker-Planck equation reads

dZ(t) = AC dt+ ν dWv(t), dΓ = λ dt dΓ2 = λ2 dt. (23)

This is the SDE associated to our initial equation supplemented with a SDE (which is in reality an
ODE depending on random variables) for the weights.

In order to be able to compute, for all positive times t, expectations with respect to f(t, z) and
f0(t, z) using expectations with respect to ḡ(t, z, γ, γ2), we need as for Eq. (18) that∫ +∞

0

∫ +∞

0
γḡ(t, z, γ, γ2) dγ dγ2 = f(t, z),

∫ +∞

0

∫ +∞

0
γ2ḡ(t, z, γ, γ2) dγ dγ2 = f0(t, z). (24)

These conditions determine λ and λ2. Indeed, multiplying Eq. (22) by γ and integrating with
respect to γ and γ2, we get, using Eq. (24)

∂f

∂t
+∇z · (ACf)− 1

2
ν2∆vf −

∫ +∞

0

∫ +∞

0
λḡ dγ dγ2 = 0. (25)

7



Comparing this equation with Eq. (13) satisfied by f , we get that λ = 0, which means that the
weights do not change in time in this case. This is the same as in the deterministic case for the
pure advection equation. These constants weights, corresponding to the ck in the pure advection
case are then given at any time by

Γ(t) = Γ(0) =
f0(Z(0))

g0(Z(0))
. (26)

In the same way, multiplying Eq. (22) by γ2, integrating with respect to the two weights and
assuming ḡ vanishes for γ2 = 0 and infinity, we get∫ +∞

0

∫ +∞

0
λ2ḡ dγ dγ2 =

∂f0

∂t
+∇z · (ACf

0)− 1

2
ν2∆vf

0 =: S. (27)

Taking λ2(t, γ, γ2, z) = γ2S(t, z)/f0(t, z) solves this equation using the second equality of (24).
Moreover, the weight Γ1 for δf can be defined as Γ1 = Γ−Γ2, and as Γ is constant in time, we get
the evolution equations for the weights, which complement the equations of motion of the particles:

dΓ1(t) = −Γ2(t)
S(t,Z(t))

f0(t,Z(t))
dt, dΓ2(t) = Γ2(t)

S(t,Z(t))

f0(t,Z(t))
dt. (28)

These general equations are the same as the two weight scheme described in [5, 8].
They are complemented with the initial conditions

Γ1(0) =
f0(Z(0))− f0(Z(0))

g0(Z(0))
, Γ2(0) =

f0(Z(0))

g0(Z(0))
. (29)

The particle equations of motion Eqs. (14)–(15) along with these SDEs defining the weights
can be integrated numerically using a standard SDE solver, like the Euler-Maruyama method, or
a higher order stochastic Runge-Kutta method [9].

As we will see in the sequel, within our splitting procedure, a much better procedure is to always
use as f0 for the collisional part an equilibrium feq of Eq. (3) since then S = 0 as can be seen from
its definition in Eq. (27) and Γ1,Γ2 are constant and consequently the weight growth problem is
absent. This also has the advantage of avoiding a numerical integration of the weight equations
as was already noticed by Vernay [15, 16]. As he also noticed, a simple rescaling procedure still
allows to use an arbitrary control variate for the advection step. As we will observe later, this only
involves a moderate weight growth which saturates and does not lead to infinitely large weights
like the previous method with an integration of the weight equation.

6 The split algorithm for coupled advection and collisions

As we have seen in the previous sections, in the pure advection case the evolution of the weights can
be computed analytically for all choices of control variates. On the other hand, in the collisional
case, the weights remain constant when an equilibrium of the collision operator is used as a control
variate. In order to couple these we shall define a split algorithm treating the two parts separately.
Then if the control variates are switched between the advection and the collision step and also
when the local Maxwellian is an equilibrium of the collision operator and changes from one time
step to the next, a scaling phase will be necessary before the collision step. The correct weighting
of the marker density in order to simulate a given distribution is given by Eq. (18). So if we want

8



to switch the representation of the weights from a function f1 to another function f2, we simply
need to use

f2(z) =

∫ +∞

0
γ
f2(z)

f1(z)
ḡ(z, γ) dγ, as f1(z) =

∫ +∞

0
γḡ(z, γ) dγ, (30)

so that the weights associated to f2 are obtained from the weights associated to f1 by a multipli-
cation by f2(zk)/f

1(zk).
We can now express our algorithm. We will consider here only the direct δf method assuming

the source term S̃ = 0. When this is not the case, the direct integration of the weight equation in
the advection part just needs to be replaced by a numerical integration. Our algorithm then reads
as follows:

1. Initialisation:

• Pick any appropriate control variate f0 for the advection step.

• Load initial markers z0
k in phase space according to distribution g0(z).

• Define

c∗k =
f0(z0

k)

g0(z0
k)
, γ∗2,k =

f0(z0
k)

g0(z0
k)
. (31)

• Rescale c∗k and γ∗2,k so that their sum is exactly one. This will enable exact particle
number conservation, if the rescaling is performed at each time step (see Eq. (39))
before the weights are needed in an assignment procedure.

ck = c∗k/
N∑
l=1

c∗l γ0
2,k = γ∗2,k/

N∑
l=1

γ∗2,l, γ0
1,k = ck − γ0

2,k. (32)

2. Time iteration from tn to tn+1. Given znk , γn1,k,

• Advection step:

– Advance markers numerically solving the characteristics Eq. (9)

dzk
dt

= A[f ](t, zk(t)) (33)

using any numerical solver on a step ∆t to get z∗k. We use a fourth order Runge-
Kutta method.

– Advance weights using Eq. (12)

γ∗1,k = ck − (ck − γn1,k)
f0(tn+1, z

∗
k)

f0(tn, znk)
. (34)

• Collision step:

– Compute parameters needed to define the equilibrium distribution feq(t, z) of the
collision operator. These would be mean velocity u(x) and temperature T (x) if it is
a local Maxwellian. Rescale control variate weights in order to use the equilibrium
of the collision operator as a control variate.

γ∗∗2,k = γ∗2,k
feq(z∗k)

f0(z∗k)
. (35)

9



– Advance velocities by solving the Stochastic Differential Equation associated to
the collision operator (14)–(15). In the case when this SDE defines the Ornstein-
Uhlenbeck process

dV = −µ(V − u) dt+D dW, (36)

where D and µ are related to the temperature T of its equilibrium distribution
by T =

√
D2/(2µ), we use the known transition probability of the Ornstein-

Uhlenbeck process, i.e. v∗∗k is drawn randomly from the normal distribution (Gaus-
sian) N (m,σ2) with

m = u+ (v∗k − u)e−2µ∆t, σ2 = T (1− e−2µ∆t). (37)

In the general case we would solve the SDE numerically using the Euler-Maruyama
or a higher-order numerical method for SDEs.

– Positions (xk) and weights (γ1,k) are not modified during this step.

– Rescale control variate weights γ2 to the initial control variate:

γ∗∗∗2,k = γ∗∗2,k
f0(z∗∗k )

feq(z∗∗k )
. (38)

• Rescale the γ2 weights so that their sum is exactly one and compute γ1 accordingly:

γn+1
2,k = γ∗∗∗2,k /

N∑
l=1

γ∗∗∗2,l , γn+1
1,k = ck − γn+1

2,k . (39)

Note that the weight rescaling step in Eq. (39) is essential. It is generally considered a better
estimator in the context of importance sampling even though the rescaling introduces a small bias.
For Particle-In-Cell algorithm this step makes the method conservative. It is essential to avoid e.g.
the development of a spurious electric field when the split algorithm is applied to Eq. (50).

The idea to switch control variates between advection and collision steps and to use the local
Maxwellian during the collision step to avoid a numerical weight integration was first introduced
to our knowledge by Vernay [15, 16].

7 Weight smoothing

Especially during the collision step, particles with different weights are mixed in neighbouring re-
gions of phase space. Due to this the statistics are not as good as they would be with smoothly
varying weights. This explains in particular why the L2 error for Ornstein-Uhlenbeck (see Fig-
ure 1) does not decrease as the distribution function gets closer to the control variate which is
the equilibrium distribution. In order to keep smoothly varying weights after a stochastic collision
step each individual marker needs to get information from close-by weights. This can be done by
resampling the different probability densities from time to time, which is usually done in statistics
via a so-called kernel density estimate, directly computing the approximate probability density at
the particle positions, which can be fairly expensive. Another, generally cheaper option is to sam-
ple the probability densities on a fixed grid and then interpolate at the particle positions. Such a
procedure was introduced as a coarse graining technique by Brunner, Valeo and Krommes [5] and
by Chen and Parker [7]. This procedure can be very inaccurate if the grid is too fine and so the
local statistics not good enough, and very diffusive if the grid is too coarse. Moreover, it introduces

10



a bias linked to the choice of the grid. To alleviate this Chen and Parker proposed a blending
procedure, including only a fraction of this coarse grained value in the weight update.

We propose here another procedure, which is grid less and more probabilistic in nature. More-
over, it has the advantage of not needing to compute the numerical probability densities, which
is error prone in regions where the particle statistics are not very good and more expensive. The
principle consists in randomly pairing particles and replacing the two corresponding weights by an
average, weighted by a function of the distance in phase space of the two particles. Of course, the
way of computing the distance and the weight has an influence on the diffusiveness of the method.
Moreover, a purely random pairing of the particles would be very inefficient as most of them would
not interact because they are too far a part. For this reason we use a procedure for pairing only
particles which are close enough. This is done as follows.

First we consider only particles that are in the same cell in configuration space, then if the
velocity space is 1D we sort the particles according to their velocity and each particle is paired with
its neighbour in velocity space. Then for two particles labeled by k1 and k2 that have been paired,
the weights are smoothed according to the following formula

γnew
k1 = (1− e−

(vk1
−vk2 )2

2hv )γold
k1 + e−

(vk1
−vk2 )2

2hv

γold
k1

+ γold
k2

2
(40)

γnew
k2 = (1− e−

(vk1
−vk2 )2

2hv )γold
k2 + e−

(vk1
−vk2 )2

2hv

γold
k1

+ γold
k2

2
(41)

where hv is a factor determining how fast the influence of particles should decrease with respect to
their distance.

We call this procedure neighbour smoothing. In practice it is not essential to get the exact
nearest neighbour. An approximate statistically unbiased nearest neighbour is good enough. In
particular if the markers in one physical cell are distributed over several processors each having an
equivalent particle distribution we use the local nearest neighbour on the processor. This makes
the procedure computationally local and quite efficient especially for parallel programming.

If the velocity space has two dimensions, instead of sorting the particles according to their
velocity, which is no longer possible, we group the particles within each cell in configuration space
by a quad tree procedure in velocity space. This works by first setting a maximum number of
particles per quad tree box. We took ten in our simulations. Then we subdivide recursively the
two dimensional computational box in four sub-boxes until the number of particles in each box is
less than the set maximum number. We then apply the above neighbour smoothing procedure to
the pairs of consecutive particles in each box. The same idea could be applied using octrees in a
three-dimensional velocity space.

By picking different pairs in each quad tree box, this procedure can be applied several times at
each time step or what we did in our simulations only at some given interval of time steps. This
needs to be tuned depending on the smoothing that is needed making sure not to make the method
too diffusive.

Remark 1. In our 1D simulations, we also tried out the quad tree smoothing by pairing the particles
corresponding to their phase space position, but this yields very comparable results to the velocity
smoothing procedure only. Therefore, we discarded it as it is more expensive, especially in higher
dimensions. This can be easily understood because the particles move around in the cells in physical
space due to the advection step and are thus paired with different particles at each step, which
automatically implies a smoothing in configuration space also.

11



Remark 2. We designed the smoothing procedure as a complement to the stochastic diffusion
operator for the weighted PIC method, which has the effect of randomly mixing particle velocities.
This destroys the smooth variation of the weights according to their phase-space position. Our
smoothing operator has the effect of restoring this smooth variation as we will see in the numerical
results.

Note that the smooth variation of the weights can also be destroyed by non linear effects, like
phase mixing. In such cases our smoothing procedure can also be very helpful for non collisional
simulations.

Remark 3. Disregarding the influence of the distance, i.e. setting hv = +∞ the smoothing formula
is obtained by minimising (γnew

k1
)2 + (γnew

k2
)2 under the constraint that γnew

k1
+γnew

k2
= γold

k1
+γold

k2
. By

taking three close particles we could also perform the minimisation under the additional constraint
that the total momentum of the three particles is conserved, and by taking four particules we could
also add the constraint of kinetic energy conservation. However, as the Lenard-Berstein collision
operator we are considering in this paper is neither momentum nor kinetic energy conserving, we
did not implement this.

8 The weight growth problem

As discussed by Kleiber et al. in [8], even in the simplest case of a 1D linear Fokker-Planck equation
in velocity space the variance of the weights grows severely in time for the classical two weight
scheme, i.e. using Eq. (28) with a general control variate f0 that is not an equilibrium of the
collision operator, with integration of a weight equation.

This translates in a larger error in the approximation of the distribution function, to the point
that after some time the error of the δf method becomes way larger than the error of the standard
full-f PIC method (see Figure 1). The solution introduced in [8] was to use an adaptive control
variate method that falls back to the standard PIC method when the weight distribution is such
that the numerical control variate becomes too decorrelated.

L
e

rr
o

r
2

t

�f, f = f
0

0

�f, f switch
0

�f, f = f
0

eq

full f

L
e

rr
o

r
2

t

�f, f = f
0

0

�f, f switch
0

�f, f = f
0

eq

full f

Figure 1: L2 error on the distribution function for the standard PIC method (red curve), the δf
method with f0 as a control variate (blue curve), the δf method with feq as a control variate (green
curve), and the δf method with rescaling (cyan curve). Shown are runs up to time 200 on the left
and a zoom up to time 5 on the right.

12



There is a weight growth inherent to the fact that two probability densities, here f and f0

are transported with the same markers. This is a classical problem in large deviation methods in
statistics, see [14] for example, or also [1] in the context of the Boltzmann equation. This becomes
pathological for collisions with the classical two weight scheme.

The problem is removed when using the equilibrium function of the collision operator as a
control variate for the collision step and using our simple rescaling procedure when another control
variate is more efficient. For the simple Ornstein-Uhlenbeck process, the effectiveness of this idea
on the evolution of the error is illustrated in Figure 1, where we see that the error is constant in
time when f0 = feq, which is defined below.

To further investigate the pathological behaviour of the two weight scheme we can analytically
compute the expected value E(log Γ2(t)) in the case of the Ornstein-Uhlenbeck process for which
we know analytically the evolution of the probability density, we assume f = g in our computations
even though they could also be performed in a more general setting.

We consider the following Ornstein-Uhlenbeck process

dV (t) = −µV dt+D dW (t), (42)

the evolution of its density is governed by the 1D Fokker-Planck equation

∂f

∂t
− µ∂(vf)

∂v
− 1

2
D2∂

2f

∂v2
= 0. (43)

Denoting by K(t) = D2

2µ (1− e−2µt), an analytical solution is

f(t, v) =
1√

2π(K(t) + σ2e−2µt)
e
− v2

2(K(t)+σ2e−2µt) , (44)

which for t→ +∞ gives the stationary solution

feq =

√
µ

πD2
e−

µv2

D2 . (45)

In this case the evolution of Γ2 is governed by

dΓ2

dt
= −Γ2

f0

[
µ
∂(vf0)

∂v
+

1

2
D2∂

2f0

∂v2

]
v=V

. (46)

Taking f0 = 1√
2πσ

e−
v2

2σ2 this becomes

d

dt
log Γ2(t, V ) = G(V ) =

(
µ− D2

2σ2

)(
V 2

σ2
− 1

)
(47)

so that
d

dt
E(log Γ2(t)) = E(G(V )) =

∫ ∞
−∞

G(v)f(t, v) dv. (48)

After some straightforward computations, assuming that f0 = f0 so that the initial weights are
one, which implies E(log Γ2(0)) = 0, we obtain a closed formula for the expected value of Γ2:

E
(

log Γ2(t)

)
= − 1

2µ2

(
µ− D2

2σ2

)2

(exp(−2µt) + 2µt− 1). (49)

13



We can see from this formula that

lim
t→∞

E(log Γ2(t)) = −∞.

This is an analytic way to express the weight spreading which is typically observed in numerical
simulations of the two weight δf PIC method for collisions. We have analytically both E(Γ2(t)) = 1
for all times and E(log Γ2(t))→ −∞. In practice this means that the time evolution will create an
decreasing number of increasingly large Γ2 weights and the others will tend to zero.

If the control variate f0 is taken to be an equilibrium solution of the collision operator, then
the right hand side of the SDE determining Γ2 vanishes and consequently Γ2 is constant in time.
In this case, as f0 is a steady state solution of the original equation, the three distributions g, f
and f0 are transported with the same stochastic differential equation and no extended phase space
is necessary, Γ2 being determined at the initial time, like Γ, the weight for f .

In order to illustrate this weight growth issue, we solved numerically the Fokker-Planck equation
with the initial condition as the centered standard normal distribution with variance one, i.e.
f0(v) = 1/

√
2πe−v

2/2. We took D = 2, µ = 1.5, so that feq has variance D2/(2µ) = 4/3. Like
in the analytical calculation, as a control variate we took f0 = f0 the initial condition, as is often
done in δf PIC codes. The markers are initialised with the initial distribution, i.e. g(t = 0) = f0,
so that the marker distribution is equal to the particle distribution in a standard PIC code. The
Ornstein-Uhlenbeck process was solved using the known analytical transition probability to update
the velocity vnk at time tn to vn+1

k at time tn+1 and then the weights were updated using a left
rectangle rule on Eq. (47), so that γn+1

2,k = γn2,k exp(G(vnk )∆t). A more accurate quadrature rule
has no influence on the qualitative behaviour of the weights we want to investigate here.

The long time evolution of the sample estimation 1
N

∑N
k=0 γ2,k(t) of E(Γ2(t)) is displayed in

Figure 2, where we see, that it saturates at zero after a long time even though theoretically it
should always be one. This can be explained by the fact that the probability of having a non zero
weight tends to zero with time, and in a finite sample there will quickly be too few markers with
non zero weight left in order to give a good approximation of the expected value. We do not display
E(log Γ2(t)) which is very close to the theoretical value given in Eq. (49) and decreases linearly
in time to −∞. This translates into the long term evolution of the L2 error on f represented in
Figure 1, with a saturation after some time. Note that this corresponds to an analytical integration
of the stochastic process. A numerical integration with an Euler-Maruyama scheme yields an even
larger error that converges towards this value for small enough time steps. On the other hand, we
also see in Figure 2 that computing the evolution of the weights for an arbitrary control variate using
a rescaling between the control variate and the equilibrium function gives the correct behaviour
even for long times with the sample expectation always staying close to one.

The evolution of the weights is displayed in Figure 3. In the top row, corresponding to the
classical two weight scheme, we observe that some weights corresponding to small velocities grow
exponentially, which leads to the fast increase of the error that we observed in Figure 1. That is, if
µ−D2/(2σ2) 6= 0 (which corresponds to the case when f0 is not equal to the stationary solution),
the method will result in weight spreading with error growth as a result. On the other hand, we
see in the bottom row of Figure 3 that the weights stay bounded with the rescaling procedure.

When the full distribution function solution of the Vlasov-Fokker-Planck equation stays close
enough to the equilibrium of the collision operator which is the local Maxwellian, this should be used
as a control variate, in order to remove the intrinsic weight growth associated with distributions
not evolved with the same transition probability. Else, when some other function, typically the
initial condition is closer to the exact value of the solution, the rescaling method can be used to
avoid the generation of very large weights.

14



t

N
2
,k

�
�

1

Figure 2: Evolution of sample expected value of Γ2 in time. With f0 as control variate with the
two weight scheme (green curve) and with rescaling (red curve).

9 Numerical validation

9.1 The 1D linear Fokker-Planck equation

In the following we again use the same model as in the previous section i.e. the Ornstein-Unhlenbeck
process (42) associated to the Fokker-Planck equation (43) with the same initial condition as in
Section 8. We also take D = 2. The only difference is that here µ = 1 is used, so that the
initial distribution is further away from the equilibrium distribution which has now the variance
D2/(2µ) = 2 which makes the problem harder for the control variate scheme.

The marker distribution is taken equal to the particle distribution, i.e. g is initialised with
g = f0. The time step is ∆t = 0.1. N = 1000 markers are used in the simulation. In order not to
be dependent on different samplings, we start all the comparison runs with the same seed of the
random generator, so that the runs are exactly reproducible with the same parameters.

We first check that the neighbour smoothing has the desirable property of bringing the distri-
bution function as close as desired to the equilibrium, i.e. that the Γ1 weights converge to zero.
Note that this smoothing procedure conserves exactly the mean, which will get closer to zero when
increasing the number of particles but will not be exactly zero. So if we want the Γ1 weights to
converge to zero we need to make sure that the mean is zero, which is done in our algorithm at
each time step by the projection given by Eq. (39). In Figure 4 we represent the evolution of the
L2 error for different smoothing frequencies. With no smoothing the error stays approximately
constant and with increased smoothing frequency it decreases going to zero when the equilibrium
is reached as expected.

In order to understand the effects of the smoothing procedure on the weights, we display the
weights for each marker velocity in Figure 5, with and without smoothing. Without smoothing

15



v

�
1

weights f = f
0

0

v

�
1

weights f = f
0

0

v

�
1

weights f = f
0

0

v

�
1
,k

v

�
1
,k

v

�
1
,k

Figure 3: Position of γ1 weights with respect to velocity after 10 (left), 20 (middle) and 50 (right)
time steps with f0 as control variate with the two weight scheme (top) and rescaling (bottom).

the weights stay constant and are just moved around in velocity space with their markers. This
allows to converge statistically towards the correct equilibrium, but the noise stays important even
when the equilibrium is reached. On the other hand, when smoothing is turned on (at each time
step here), the variance of the weights decreases and we see in Figure 6 that the distribution of the
weights stays close to the δf(v)/g(v) curve, which is obtained using a kernel density estimate for
both distributions. This is not the case without smoothing.

9.2 The 1D Vlasov Fokker-Planck equation

We consider in this section the following Vlasov Fokker-Planck equation in a two-dimensional phase
space, periodic of period one in x

∂f

∂t
+ v

∂f

∂x
− E∂f

∂v
= ν

(
µ
∂(vf)

∂v
+
D2

2

∂2f

∂v2

)
, (50)

where the electric field derives from a potential E = −∂φ
∂x which is the solution of the Poisson

equation

−λ2∂
2φ

∂x2
= ρ = 1−

∫
f dv. (51)

The initial condition is of perturbed bump-on-tail type

f0(x, v) = (1 + ε cos(2πx))
1

1 + a

(
1√
2π
e−

v2

2 +
a√
2πσ

e−
(v−v0)

2

2σ2

)
, (52)

with ε = 10−3, a = 0.04, v0 = 4, σ = 0.5. The parameter λ in the Poisson equation is a
normalisation parameter related to the Debye length and is taken to be λ = 15. The time step is

16



L
e

rr
o

r
2

t

Figure 4: L2 error on the distribution function for neighbour smoothing with different smoothing
frequencies, freq stands for the number of time steps between two applications of the smoothing
mechanism.

taken as ∆t = 0.01. The number of cells in x is 32 and the total number of particles is 32 000, so
that there are around 1000 particles in each cell.

Without collisions, the fundamental mode is linearly unstable with a growth rate of 0.86377.

9.2.1 No collisions

We consider here the problem without collisions, that is ν = 0. Our problem is then the standard
bump-on-tail problem for the Vlasov equation and we can qualitatively compare our results with
[12]. As is standard for δf simulations without collisions we use here the initial condition f0 as a
control variate. No smoothing is performed.

We first check in the linear phase of the simulation that the growth rate on the left part of
Figure 7 corresponds to the analytical value. On the right part of Figure 7 we see that first the
weights grow according to the evolution of the distribution function and then oscillate around a
constant value with a light growth on a long time scale.

Then, in Figure 8 we monitor the long time evolution of the potential energy, the total energy
and the total momentum. The potential energy keeps oscillating after the initial phase at an almost
constant value, with some noise appearing at later times. The total energy and momentum are
conserved quantities of the Vlasov-Poisson equations. In our simulation they are conserved to
around 1% for the total energy and 0.4% for the total momentum.

9.2.2 Strong collisions

Here we take ν = 1, D =
√

2 and µ = 1 which corresponds to a centered equilibrium Maxwellian
of variance one of the collision operator. As the distribution function relaxes quickly towards the

17



v

�
1

Figure 5: Value of the weights with respect to the velocity with and without smoothing
.

equilibrium, we use feq of the Ornstein-Uhlenbeck process as a control variate without switching.
We compare the solution with smoothing at every time step and with no smoothing. In Figure 9

we observe that the amplitude of the Fourier modes oscillates around a constant value without
smoothing, whereas with smoothing they are strongly damped as is expected from a collision
operator. Note that in this case the bump-on-tail instability is suppressed because of the strong
collisions.

In Figure 10 we represent the weights γ1 of the particles with respect to the particle position
at time ten. We observe that the weights are randomly distributed all over phase space when
no smoothing is applied, whereas they are smoothly distributed when our smoothing procedure is
applied. This results in the evolution of the sum of the γ1 squared weights seen in Figure 11, which
shows a slow weight growth without the smoothing procedure and a damping of all the weights to
zero with the smoothing procedure, as is the correct behaviour with the collision operator.

In Figure 12 we verify that the kinetic energy is drawn to 0.5 which is half the value of the
variance of the equilibrium distribution and the total momentum approaches zero, which is the
mean of the equilibrium distribution.

9.2.3 Weak collisions

Here we take D =
√

2, µ = 1 and ν = 10−2 which also corresponds to a centered equilibrium
Maxwellian of variance one of the collision operator but with a collision frequency a hundred times
weaker than in the previous subsection. In this case it appears best to switch the control variate
between the initial condition for the advective part and the equilibrium function for the collisions
part. We have performed convergence tests here for the number of particles to highlight how the
weight smoothing technique can help reducing the number of needed particles in the simulation.

18



v

�
1

�f/g

weights

v

�
1

�f/g

weights

v

�
1

v

�
1

Figure 6: Value of γ1 weights with respect to velocity after 10 (left) and 20 (right) time steps. Top
row: using f0 = feq and smoothing (δf/g is also plotted). Bottom row: using f0 = feq but without
smoothing.

In Figure 13, we see that the instability can still be observed on the Fourier modes with a
slight damping of the fundamental mode in the linear phase and lower saturated amplitude in the
nonlinear phase. We also observe that the Fourier modes are better converged when smoothing
is used, problems being apparent without smoothing when too few particles are used. The same
conclusion holds for the potential energy displayed in Figure 14, where the qualitative behaviour is
identical for all particle numbers shown when smoothing is performed while there are problems for
low particle numbers without smoothing. Finally in Figure 15, we show the weight growth. Even
though there is no pathological weight growth in our method, the weights grow slightly in time
and this is essentially independent of the number of particles used. This problem is inherent to
the fact that two different distributions are evolved with the same markers. This weight growth is
suppressed with our weight smoothing procedure. After a small growth during the linear instability
phase due to the fact that the distribution function departs from the initial condition which is used
as a control variate, the weight growth stops when the distribution function reaches a dynamical
almost steady state and the weights will decrease when going slowly to the Maxwell equilibrium.
However, the amount of smoothing needs to be carefully tuned to avoid too much diffusion. This is
done by ensuring that the growth rate of the initial instability is reproduced. The more particles are
present in a simulation, the less smoothing is needed. We tune the amount of diffusion by changing
the frequency of application of the weight smoothing procedure. This explains, the different jitter
that is seen in Figure 15. The sum of the squared weights being decreased each time the smoothing

19



t

F
o
u
ri
e
r 

m
o
d
e
s
 o

f 
rh

o

t

�
�

1
,k2

Figure 7: Bump on tail problem with no collisions. Evolution of Fourier modes (left) and sum of
squared weights (right).

t

P
o
te

n
ti
a
l 
e
n
e
rg

y

t

T
o
ta

l 
e
n
e
rg

y

t

T
o
ta

l 
m

o
m

e
n
tu

m

Figure 8: Bump on tail problem with no collisions. Long time evolution of the potential energy
(left), the total energy (middle) and the total momentum (right).

procedure is applied. A smoother but costlier alternative would be to change the hv parameter in
Formulas (40)–(41).

10 Conclusion

We analysed the weight growth problem of the two weight scheme used in collisional δf PIC method
in the simple case of an Ornstein-Uhlenbeck process. We could prove that the expected value of
the log of the weights tends to minus infinity when time grows for the analytical solution of the
process. Because of this, the probability that a weight will be larger than any strictly positive
constant tends to zero. And as on the other hand the expected value stays constant at one, this
means that there will be a decreasing number of extremely large weights compensating all the others
that are close to zero. This completely destroys the statistics and makes the method inefficient
for large time simulations. In addition, our analysis showed that the weights keep constant, when
an equilibrium function of the collision operator is used as a control variate. This motivates the
use of the equilibrium as a control variate in the case of collisions. If some other control variate
is more efficient for the advection part, a simple rescaling procedure enables to switch between
the two control variates. Although this procedure removes the weight growth problem of the two

20



t

F
o
u
ri
e
r 

m
o
d
e
s
 o

f 
rh

o

t

F
o
u
ri
e
r 

m
o
d
e
s
 o

f 
rh

o

Figure 9: Strong collisions. Evolution of Fourier modes without smoothing (left) and with smooth-
ing (right).

weight scheme, it does not decrease the individual weights when the distribution function tends to
equilibrium albeit in each large enough bin their average goes to zero.

In order to get the weights to converge each to zero in this case, instead of only their average,
we introduced a neighbour smoothing procedure, enabling neighbouring markers to average their
weights. Thanks to this additional idea, each single weight indeed tends to zero due to the collision
operator, which is the desired behaviour. We verified the efficiency of our new algorithm in the 1D
velocity space first and then for a 1D Vlasov-Fokker-Planck problem. This new collision procedure
enables us now to heat or cool a plasma by choosing appropriate parameter values for the Ornstein-
Uhlenbeck process and also to use the local Maxwellian as an adaptive control variate in a collision
scheme that conserves mass, momentum and energy. Even though the smoothing operator has been
designed to be used with collisions it can also be used to smooth weights that have been mixed
over time due to nonlinear effects in collisionless simulations, with the effect of decreasing the noise
by reducing the variance.

First tests of the new scheme implemented by Alberto Bottino in the NEMORB gyrokinetic code
show very promising results, but this deserves an exhaustive evaluation which will be addressed in
a forthcoming paper.

Acknowledgements

The ONEDIM program was used as starting point for most of the simulations. We would like to
thank A. Könies as one of the developers for providing us access to the program. In addition, we
would like to thank A. Bottino for discussions and proof reading of the manuscript.

This work has been carried out within the framework of the EUROfusion Consortium and
has received funding from the European Unions Horizon 2020 research and innovation programme
under grant agreement number 633053. The views and opinions expressed herein do not necessarily
reflect those of the European Commission.

21



Particle positions at time 10.0

x

v

Particle positions at time 10.0

x

v

Figure 10: Strong collisions. Particle positions at time ten coloured by weight without smoothing
(left) and with smoothing (right).

t

�
�

1
,k2

t

�
�

1
,k2

Figure 11: Strong collisions. Evolution of weights without smoothing (left) and with smoothing
(right).

22



k
in

e
ti
c
 e

n
e

rg
y

t
to

ta
l 
m

o
m

e
n

tu
m

t

Figure 12: Strong collisions. Evolution of kinetic energy (left) and total momentum (right) with
smoothing.

0 5 10 15 20
t

12

11

10

9

8

7

6

5

4

3
First Fourier mode

32k
96k
160k

0 5 10 15 20
t

12

11

10

9

8

7

6

5

4

3
First Fourier mode

32k
96k
160k
320k
3200k

Figure 13: Weak collisions. Evolution of Fourier modes with smoothing (left) and without smooth-
ing (right).

23



0 5 10 15 20
t

0.000

0.001

0.002

0.003

0.004

0.005
potential energy

32k
96k
160k

0 5 10 15 20
t

0.000

0.001

0.002

0.003

0.004

0.005
potential energy

32k
96k
320k
3200k

Figure 14: Weak collisions. Evolution of potential energy with smoothing (left) and without
smoothing (right).

0 5 10 15 20
t

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
Sum squared weights

32k
64k
96k
160k

0 5 10 15 20
t

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Sum squared weights

32k
96k
160k
320k
3200k

Figure 15: Weak collisions. Evolution of squared weights with smoothing (left) and without smooth-
ing (right).

24



References

[1] Husain A. Al-Mohssen and Nicolas G. Hadjiconstantinou. Low-variance direct Monte Carlo
simulations using importance weights. ESAIM: Math. Model. Numer. Anal., 44:1069–1083,
2010.

[2] Simon J. Allfrey and Roman Hatzky. A revised δf algorithm for nonlinear PIC simulation.
Computer physics communications, 154(2):98–104, 2003.

[3] Ahmet Y. Aydemir. A unified monte carlo interpretation of particle simulations and applica-
tions to non-neutral plasmas. Physics of Plasmas, 1(4):822–831, 1994.

[4] Charles K. Birdsall and A. Bruce Langdon. Plasma physics via computer simulation. CRC
Press, 2004.

[5] Stephan Brunner, Ernest Valeo, and John A. Krommes. Collisional delta-f scheme with evolv-
ing background for transport time scale simulations. Physics of Plasmas, 6(12):4504, 1999.

[6] Y. Chen and R. B. White. Collisional δf method. Physics of Plasmas, 4:3591, 1997.

[7] Yang Chen and Scott E. Parker. Coarse-graining phase space in δf particle-in-cell simulations.
Physics of Plasmas, 14(8):082301, 2007.

[8] Ralf Kleiber, Roman Hatzky, Axel Könies, Karla Kauffmann, and Per Helander. An improved
control-variate scheme for particle-in-cell simulations with collisions. Comput. Phy. Comm.,
182:1005–1012, 2011.

[9] Peter E. Kloeden and Eckhard Platen. Numerical solution of stochastic differential equations,
volume 23. Springer, 1992.

[10] Mike Kotschenreuther. Numerical simulation. Bull. Am. Phys. Soc, 33:2107–2108, 1988.

[11] Jun S. Liu. Monte Carlo Strategies in Scientific Computing. Springer Series in Statistics.
Springer, 2002.

[12] Takashi Nakamura and Takashi Yabe. Cubic interpolated propagation scheme for solving the
hyper-dimensional Vlasov–Poisson equation in phase space. Computer Physics Communica-
tions, 120(2):122–154, 1999.

[13] Bernt Øksendal. Stochastic differential equations. Universitext. Springer Berlin, Heidelberg,
fifth edition, 2000.

[14] Gerardo Rubino, Bruno Tuffin, et al. Rare event simulation using Monte Carlo methods. Wiley
Online Library, 2009.

[15] T. Vernay, S. Brunner, L. Villard, B.F. McMillan, S. Jolliet, T.M. Tran, A. Bottino, and
J.P. Graves. Neoclassical equilibria as starting point for global gyrokinetic microturbulence
simulations. Physics of Plasmas, 17(12):122301, 2010.

[16] Thibaut Vernay. Collisions in global gyrokinetic simulations of tokamak plasmas using the
δf Particle-In-Cell approach: neoclassical physics and turbulent transport. PhD thesis, Ecole
Polytechnique Fédérale de Lausanne, 2012.

25


