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Abstract

In this work we combine the framework of the Reduced Basis method (RB) with the
framework of the Localized Orthogonal Decomposition (LOD) in order to solve parametrized
elliptic multiscale problems. The idea of the LOD is to split a high dimensional Finite El-
ement space into a low dimensional space with comparably good approximation properties
and a remainder space with negligible information. The low dimensional space is spanned
by locally supported basis functions associated with the node of a coarse mesh obtained
by solving decoupled local problems. However, for parameter dependent multiscale prob-
lems, the local basis has to be computed repeatedly for each choice of the parameter. To
overcome this issue, we propose an RB approach to compute in an “offline” stage LOD
for suitable representative parameters. The online solution of the multiscale problems can
then be obtained in a coarse space (thanks to the LOD decomposition) and for an arbitrary
value of the parameters (thanks to a suitable “interpolation” of the selected RB). The on-
line RB-LOD has a basis with local support and leads to sparse systems. Applications of
the strategy to both linear and nonlinear problems are given.

Keywords finite element, reduced basis, parameter dependent PDE, numerical homogeniza-
tion, multiscale method

AMS subject classifications 65N30, 65M60, 74Q05, 74Q15

1 Introduction

In this paper, we consider parametrized linear elliptic multiscale problems, i.e. we are inter-
ested in finding the parameter-dependent solution uε(· ; ·) of an equation

−∇ · (aε(x;µ)∇uε(x;µ)) = f(x;µ) in Ω,

uε(x;µ) = 0 on ∂Ω. (1)

Here, µ = (µ1, . . . , µP ) denotes a parameter vector. It is an element of a multidimensional
parameter set D ⊂ RP , where P ∈ N. The parameter-dependent coefficient matrix aε(x;µ)
is assumed to be a multiscale coefficient. It exhibits a continuum of different scales, where
the finest scale is very small compared to the size of computational domain Ω. In particular

1ANMC, Section de Mathématiques, École polytechnique fédérale de Lausanne, 1015 Lausanne, Switzerland,
Assyr.Abdulle@epfl.ch

2Institut für Numerische und Angewandte Mathematik, Westfälische Wilhelms-Universität Münster, Einste-
instr. 62, D-48149 Münster, Germany, Patrick.Henning@wwu.de

1

ar
X

iv
:1

41
0.

32
53

v3
  [

m
at

h.
N

A
] 

 1
2 

M
ay

 2
01

5



2

aε(x;µ) shows very fast variations that need to be resolved with an extremely fine computa-
tional grid. The order of the fines scale in our problem is characterized by the abstract quantity
0 < ε � 1. However, we do not need to assign a specific value to ε. Due to the requirement
that all scales of aε(·;µ) need to be resolved with a computational grid, the problem cannot
be tackled by standard methods (such as classical finite element methods) since the compu-
tational complexity would become prohibitively large. Hence we are interested in finding a
way to decrease the computational complexity and to distribute the load on several CPUs by
introducing fully decoupled local subproblems. Furthermore, we want to avoid recomputing
local subproblems for every new parameter µ. We are thus looking for (a small number of)
representative parameters for which accurate local problems and bases are computed and that
allow for fast computations for every new parameter µ.

Parameter-dependent multiscale problems can for instance arise in applications from ma-
terial sciences, geophysics or hydrology. More specific examples are the prediction of global
strain or elasticity properties of fiber reinforced composite materials, where the parameters
can describe different constellations for the microscopic fibers that are embedded in the main
material (e.g. their form or density). Another example is the flow in porous media where dif-
ferent permeability configurations can be parametrized. For such cases the coefficient aε(·;µ)
and the source term f(·;µ) can both depend on a large number of parameters µ. It is there-
fore of strong interest to construct methods that combine the features of a multiscale method
(to treat the rapid variations in the coefficients) with a reduced basis approach (to treat the
dependency on a large set of parameters).

There are numerous different methods that are designed to treat the classical (parameter-
free) multiscale problems (cf. [1, 2, 9, 8, 14, 18, 24, 22, 23, 32, 35, 34, 33, 41, 40, 46, 47] and the
references therein). In this paper we focus on the localized orthogonal decomposition (LOD)
introduced in [41]. To handle parameter dependency in an efficient way we will build on the
reduced basis (RB) approach (cf. [25, 39, 48, 49, 50, 53]). The reduced basis method is a
model order reduction technique that we describe at the end of this section when we describe
the idea of the reduced basis localized orthogonal decomposition approach (RB-LOD).

Despite the large number of results on multiscale methods and reduced basis approaches
there are only few works which combine both features. In the context of periodic homoge-
nization this was first studied by Boyaval [12, 13] and extended for more general numerical
homogenization problems in [3, 4, 5, 6], where the reduced basis finite element heterogeneous
multiscale method (RB-FE-HMM) has been introduced. The RB-FE-HMM was originally de-
signed to reduce the computational complexity of the classical Heterogenous Multiscale Method
[18] by interpreting the location of a cell problem as a parameter (which is equivalent to the
dependency on the coarse variable). With that strategy, precomputed solutions from other
cell problems can be used to construct reduced basis solution spaces for new cell problems.
This method also generalizes to additional parameter dependencies such as in (1). A similar
approach which also fits into the HMM framework was presented in [44], where the focus is on
optimization problems that are constrained by a parameterized multiscale problem. A com-
bination of the RB framework with the multiscale finite element method (MsFEM, see [33])
was proposed by Nguyen in [43], model reduction techniques for the MsFEM have also been
developed in [19]. Finally, we mention the approach of the localized reduced basis multiscale
method (LRBMS) proposed in [38, 7] and further developed in [45, 37]. The main idea of the
method is to localize global solutions (that were determined for a set of parameters) to the
elements of a coarse grid. The localization can be simply obtained by truncation and hence the
localized solutions can be used as basis functions in a global discontinuous Galerkin approach.

The Reduced Basis framework can be combined with most of the multiscale methods men-
tioned in the introduction. In this paper we chose the LOD because it has some attractive
features compared to other approaches that also aim to solve multiscale problems without
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scale separation. For instance, even though an RB Multiscale Finite Element Method (RB-
MsFEM, cf. [43]) is computationally less expensive, it suffers from the the constrained that
it requires strong structural assumptions on aε(·,µ) (such as local periodicity). Efficient and
reliable methods that do not suffer from such a constrained are for instance the approaches
proposed by Owhadi and Zhang [46] or Babuska and Lipton [9]. The approach by Owhadi
and Zhang exploits a so called transfer property (comparable to a harmonic coordinate trans-
formation) and requires to solve local problems in patches of sizes of order

√
H| log(H)| to

guarantee an optimal linear convergence rate in H for the H1-error. Compared to that, the
LOD only requires patches with a diameter of order H| log(H)|. The method of Babuska
and Lipton [9] has a different structure and even smaller patches can be picked. Here op-
timal local approximation spaces are constructed. However, this local construction requires
to incorporate the source term f(·,µ) by solving additional local problems of the structure
−∇ · (aε(·,µ)∇vε(·,µ)) = f(·,µ). In order to account for this in the RB-framework, an affine
decomposition of f(·,µ) is required. Furthermore, the costs for the offline phase are increased.
Compared to that, the LOD-approach involves local spaces that are independent of f , without
suffering from a reduction of the convergence rates.

In this paper we introduce the reduced basis local orthogonal decomposition (RB-LOD).
We briefly summarize the main ideas. Consider a coarse triangulation TH and a corresponding
set of coarse nodes NH . For any fixed (i.e. parameter independent) coefficient aε the LOD
is designed to construct a set of (locally supported) multiscale basis functions ΦMS

z (each of
them associated with a single coarse node z ∈ NH) so that the discrete space that is spanned
by these basis functions yields the classical convergence rates in H. The functions ΦMS

z are
obtained from the solution of a local finite element problem (in a local space that resolves
the microstructure). The coarse triangulation TH does not need to resolve the microstructure
and can hence be low dimensional. However if the coefficient aε(·;µ) is parameter-dependent
then ΦMS

z (µ) is parameter-dependent as well and needs to be recomputed again for any new
parameter. To overcome this drawback we apply the reduced basis method together with a
Greedy search algorithm to identify a set of parameters for which we compute ΦMS

z . These
solutions can be used to construct affine (reduced basis) spaces V RB

z , for each node z ∈ NH .
The computation of the spaces V RB

z takes place in an offline phase (i.e. it is a preprocessing
step). The functions in V RB

z are only locally supported in a small patch around the node z.
Once constructed, these reduced basis (multiscale) spaces can then be used in an online phase
to obtain a solution of the problem for any new parameter in a coarse reduced RB-LOD
space. The strategy proposed here allows to construct a localized reduced basis, since different
parameter sets can be used locally. Furthermore, we do not need to assume that there exists
an affine decomposition for f(·;µ).

We now introduce the assumptions that we use throughout the paper. The physical domain
Ω ⊂ Rd, for d = 1, 2, 3 will be assumed to be a bounded Lipschitz domain with a piecewise
polygonal boundary.

In order to guarantee well-posedness of the problem we assume the following.

(A1) for every parameter µ ∈ D we have f(· ;µ) ∈ L2(Ω); furthermore we assume that there
exists C ∈ R such that ‖f‖L2(Ω,L∞(D)) ≤ C;

(A2) the matrix-valued parameter-dependent functions aε(· ;µ) ∈ [L∞(Ω)]d×dsym have uniform
spectral bounds, i.e. there exist real numbers 0 < α ≤ β such that for all µ ∈ D and
almost every x ∈ Ω

∀ξ ∈ Rd : α|ξ|2 ≤ aε(x;µ)ξ · ξ ≤ β|ξ|2.

To make sure that the reduced-basis method can be efficiently implemented, we require another
assumption.
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(A3) The parameter set D is compact in RP . Furthermore, there exists a finite index set Q ⊂
N, measurable parameter-independent functions aεq ∈ L∞(Ω) (for q ∈ Q) and measurable
functions Θq : D → R (for q ∈ Q) such that aε(x;µ) has the affine representation

aε(x;µ) =
∑
q∈Q

Θq(µ)aεq(x).

We notice that if (A3) does not hold, reduced-basis techniques can still be used by relying on
the so-called empirical interpolation method that allows to approximate a tensor aε(x;µ) by
a decomposition similar to (A3) (cf. [10]). Such techniques could also be used in the present
paper but as this is not the main focus of the paper we rather assume the decomposition (A3)
to be already at hand.

Remark 1.1 (Limitations of the method). Assumption (A3) gives an insight in the limitations
of the RB-LOD that we propose in this paper. If the coefficient aε(x;µ) is not smooth with
respect to the parameter µ, an application of an empirical interpolation transformation might
not be possible or at least results in a large number of terms in the affine representation
aε(x;µ) =

∑
q∈QΘq(µ)aεq(x). However, if Q is large, the RB-LOD approach might not pay

off, since the offline stage gets computationally expensive and requires to store a lot of pre-
computed data functions. In particular, the computation of local Riesz representatives (as
required by the method, see Step 3 below) becomes very costly. Hence, aε should smoothly
depend on µ so that Q remains small. Similarly, geometry related parameter-dependencies of
aε(x;µ) are typically difficult to handle, since they also result in a large number of terms in
the affine representation.

On the other hand, if aε(x;µ) models a stochastic medium with a smooth dependency on
the stochastic variable, the Karhunen-Loève expansion exhibits an exponential convergence
concerning truncation in the number of terms (cf. [54]). Consequently, small values of Q can
be expected in this case. Other stochastic applications are elliptic partial differential equations
with small uncertainties (cf. [26]). Here, the affine representation of aε(x;µ) is given as some
deterministic a0(x) plus a small (basically deterministic) perturbation.

Under assumptions (A1)-(A2), for any given parameter µ ∈ D there exists a unique weak
solution uε(· ;µ) ∈ H1

0 (Ω) of (1) with

(aε(· ;µ)∇uε(· ;µ),∇v)L2(Ω) = (f(· ;µ), v)L2(Ω) for all v ∈ H1
0 (Ω). (2)

For simplicity we use the notation

bε(v, w;µ) := (aε(· ;µ)∇v,∇w)L2(Ω) for v, w ∈ H1
0 (Ω) (3)

and, furthermore, for every subdomain ω ⊂ Ω we denote the local energy norm by

‖v‖µE(ω) := ‖aε(· ;µ)1/2∇v‖L2(ω) for v ∈ H1(ω).

The paper is organized as follows: In Section 2 we recall the definition and the main features
of the classical Localized Orthogonal Decomposition. In Section 3 we combine this approach
with the Reduced Basis method. In particular we present algorithms which give a step-by-step
procedure for how to implement the combined method. In Section 4 we state the results of two
numerical experiments. The first experiment involves a parametrized linear problem, whereas
the second experiment demonstrates the applicability of the method to nonlinear problems.
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2 Localized Orthogonal Decomposition

We start by introducing a general space discretization of the problem (1), that is based on the
framework of the Localized Orthogonal Decomposition (LOD, cf. [42, 41, 27, 31, 30, 29]).
Galerkin approximations in standard finite element spaces are known to suffer from pre-
asymptotic effects for multiscale problems. More precisely, if uH denotes the FEM Galerkin
approximation in a P1 FEM space VH , the optimal convergence order (under the assumption
of sufficient regularity) will be O(C(ε−1)H), where C(ε−1) depends on the speed of the oscil-
lations (comparable to the size of the derivative of aε - if it exists, e.g. C(ε−1) = O(ε−1) in
periodic homogenization). Hence, H must be smaller than C(ε−1) so that the method enters
the classical asymptotic regime of linear convergence in H. The idea of the LOD method is to
construct subspaces of H1

0 (Ω), in which we obtain convergence without pre-asymptotic effects,
i.e. the convergence rates do not depend on C(ε−1). Consequently, low dimensional subspaces
can be used to obtain highly accurate results. Below we describe the construction of the LOD
spaces that we denote by V MS

H,k.
To discretize the problem, we require two families of computational grids on Ω: a family

of fine meshes Th and a family of of coarse mesh TH . Both families are assumed to consist
of conforming and shape regular simplicial elements and we denote by H or h the maximum
diameter of an element of TH or Th, respectively. We furthermore assume that Th originates
from a regular mesh refinement of TH . The size of the macro mesh TH is not constrained by
the microstructure of the solution and linear convergence towards uε(·;µ) will be obtained
in the macro mesh size H. The mesh Th is assumed to be fine enough to resolve the rapid
variations of the coefficients aεq for q ∈ Q. For T = TH , Th and ω a subset of coarse or fine
elements we denote by P1(ω, T ) the space of continuous functions on ω that are linear in each
K ∈ T .

We then define VH := P1(Ω, TH)∩H1
0 (Ω) and the space Vh is defined accordingly. The set

of interior coarse nodes (interior Lagrange points) of TH will be denoted by NH . Furthermore,
we denote N := |NH | the number of nodes. For a given node z ∈ NH the corresponding coarse
nodal basis function is Φz ∈ VH (i.e. Φz(z) = 1 and Φz(y) = 0 for all y ∈ NH \ {z}). We set
ωz := supp(Φz) and by Nz we denote the number of coarse elements in ωz, i.e. Nz := |{K ∈
TH |K ⊂ ωz}|.

In the next step, we define a “remainder space” or “detailed space” Wh that contains
functions with a small L2-norm. To define this space we make use of the following Clément-
type quasi-interpolation operator IH that was introduced in [17]. We define

IH : H1
0 (Ω)→ VH , v 7→ IH(v) :=

∑
z∈NH

vzΦz with vz :=
(v,Φz)L2(Ω)

(1,Φz)L2(Ω)
(4)

and set Wh := {vh ∈ Vh| IH(vh) = 0}.

Remark 2.1. The operator IH is closely related to the L2-projection PL2 : Vh → VH . In
particular it holds

(IH |VH )−1 ◦ IH = PL2 .

For details, we refer to [20, Remark 3.8] (see also [42, 17, 41]).

As was shown in [41] the bε(·, ·;µ)-orthogonal complement of Wh in Vh has good H1-
approximation properties with respect to the exact solution uε(· ;µ). Practically, it is very
expensive to compute this orthogonal complement exactly, however it can be accurately ap-
proximated by the following cheap localization strategy based on an affine decomposition of
the bε(·, ·;µ)-orthogonal projection operator from Vh in Wh.
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(a) The patch U1(K) for a given K ∈ TH . (b) The patch U2(K) for a given K ∈ TH .

Figure 1: Illustration of the patches Uk(K) defined in (5). The dark gray part depicts the
coarse element K ∈ TH . The light and the dark gray part together depict the patch Uk(K).

Definition 2.2 (Localized orthogonal complement). Let us fix µ ∈ D. First, for k ∈ N and
K ∈ TH we define the patch Uk(K) iteratively by

U0(K) := K, and Uk(K) := ∪{T ∈ TH | T ∩ Uk−1(K) 6= ∅} k = 1, 2, . . . (5)

See Figure 1 for an illustration. Then, define the localized remainder space by

Wh(Uk(K)) := {wh ∈Wh|wh = 0 in Ω \ Uk(K)}. (6)

Consider a nodal basis function Φz. For k ∈ N>0, K ∈ TH with K ⊂ ωz, we define
QKh,k(Φz;µ) ∈Wh(Uk(K)) as the solution of∫

Uk(K)
aε(· ;µ)∇QKh,k(Φz;µ) · ∇wh = −

∫
K
aε(· ;µ)∇Φz · ∇wh for all wh ∈Wh(Uk(K)).

(7)

Then define Qh,k(· ;µ) : VH →Wh by

Qh,k(Φz;µ) :=
∑
K∈TH
K⊂ωz

QKh,k(Φz;µ). (8)

and set

V MS
H,k(µ) := span{Φz +Qh,k(Φz;µ)|z ∈ NH } (9)

to be the approximation of the bε(·, ·;µ)-orthogonal complement of Wh in Vh. Observe that
we get the exact orthogonal complement for the case that Uk(K) = Ω for all K ∈ TH .

Observe that problem (7) is a constrained problem since solution and test functions need
to be in the kernel of the interpolation operator IH . This is practically realized by introducing
a corresponding Lagrange multiplier and problem (7) becomes hence a saddle point problem
of the structure: find (~w, ~λ) ∈ RNh,Uk(K) × RNH,Uk(K) with

Sh~w + C>h
~λ = ~r

Ch~w = 0.
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Here, Nh,Uk(K) denotes the number of fine grid nodes in Uk(K) and NH,Uk(K) the number
of coarse grid nodes in Uk(K). The solution vector ~w is the coefficient vector that defines
QKh,k(Φz;µ) and ~λ is the corresponding Lagrange multipler for the constraint IH(QKh,k(Φz;µ)) =
0. The matrix Sh denotes the standard P1-FEM stiffness matrix associated with the left hand
side of (7), Ch is the localized algebraic version of IH and~r is the load vector associated with the
right hand side of (7). Since NH,Uk(K) is a small number, it is not necessary to solve the system
with an iterative solver. Instead it can be directly solved by computing the Schur complement
and inverting it. The costs for solving all local problems associated with a patch Uk(K) are
hence of order O(NH,U(K)Nh,U(K)) (provided that algebraic solvers with a linear complexity
are used). If TH and Th are quasi-uniform and if k ' | log(H)| (as suggested by Proposition
2.3 below) we have NH,U(K) ' | log(H)|d and Nh,U(K) ' (H| log(H)|/h)d. Hence, the total

cost for solving all local problems associated with a patch are of order (H| log(H)|2/h)d.
Also note that the assembly of V MS

H,k(µ) is parallelizable and cheap for small values of k ∈ N
(then Uk(K) is a small subdomain with a diameter of order H). In numerical experiments (cf.
[27, 31, 30, 28]) it was demonstrated that k = 1, 2, 3 is typically sufficient. The reason is the
exponential decay of QKh,k(vH ;µ) outside of K. A quantification of this statement is given in
Proposition 2.3 below.

In the following, we use the notation a . b, which stands for a ≤ Cb, where C is a constant
that does not depend on the parameter µ, k, the mesh sizes H and h or the rapid oscillations
in aε (i.e. ε).

The proof of the following proposition follows the line of [27].

Proposition 2.3. Assume that (A1)-(A2) hold and let V MS
H,k(µ) be given by (9). We consider

the following problem: find uMS(· ;µ) ∈ V MS
H,k(µ) such that

bε(uMS(· ;µ), v;µ) = (f(· ;µ), v)L2(Ω) for all v ∈ V MS
H,k(µ). (10)

Then, there exists a generic constant Cg (i.e. independent of H, h and ε, but possibly depending
on the contrast β/α) such that if k ≥ Cg| log(H)| it holds

‖uMS(· ;µ)− uh(· ;µ)‖H1(Ω) . H.

Here, the fine scale reference uh(· ;µ) ∈ Vh is defined as the solution of

bε(uh(· ;µ), vh;µ) = (f(· ;µ), vh)L2(Ω) for all v ∈ Vh. (11)

In numerical experiments it can be observed that Cg can be typically replaced by 1 to find a
suitable value for k (cf. [27]).

Proposition 2.3 states that the LOD approach preserves the linear order of convergence
(for the H1-error) of the classical Finite Element Method without pre-asymptotic effects, even
in case of rough coefficients aε.

3 Reduced Basis Decomposition

Assume that the multiscale space V MS
H,k(µ) shall be assembled for an arbitrary µ from a large set

of relevant parameters Ξtrain ⊂ D. Depending on the size of Ξtrain this can be prohibitively ex-
pensive. We therefore ask the question: is it possible to only select a small subset ΞRB ⊂ Ξtrain,
assemble V MS

H,k(µ) only for µ ∈ ΞRB and then reuse (or combine) these results to quickly/cheaply
find an approximation of V MS

H,k(µnew) for any new µnew ∈ Ξtrain \ ΞRB.
This can be achieved by making use of the framework of the Reduced Basis (RB) method.

In the following, we will elaborate the approach in detail. The goal is to construct (affine)
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local Reduced Basis spaces WRB
z for each coarse node z ∈ NH and, given a µ̄ ∈ Ξtrain, to select

one element from each of these local spaces to span a global multiscale RB space V RB
H,k(µ̄).

Any of the following steps is either categorized as offline or online. By offline step we mean,
that the step should be considered as an “one time preprocessing step”. It is significantly
more expensive than an online step but need to be computed only once. This step provides
a selection of representative parameters and corresponding LOD that can be used for a new
parameter in the “online step”. Every step that takes place after the preprocessing is finished,
is what we call an online step. Online steps are quick and efficient. They can be performed a
lot of times for a lot of different parameters without involving a considerable computational
complexity.

3.1 Initialization

To describe the RB-LOD procedure, we start with Step 1, where we make an initial selection
for the training set Ξtrain ⊂ D.

Step 1 (Offline - Choice of a training set).

In the first step, we randomly choose a finite subset Ξtrain of the parameter set D. We assume
that the so called training set Ξtrain ⊂ D is sufficiently large so that the method is stable.
Practically, Ξtrain can be for instance determined with the Monte-Carlo method.

Now that the training set is determined, the main computation involves to find (possibly
small) parameter subsets ΞRB

z (for each coarse node z ∈ NH , this parameter set might change)
for which the localized orthogonal decomposition is performed according to Definition 2.2. We
start with a random initial parameter choice µ1 as described in Step 2. Recall that Φz ∈ VH
denotes the coarse nodal basis function belonging to the node z ∈ NH .

Step 2 (Offline - Initialization with starting parameter).

Pick randomly µ1 ∈ Ξtrain. Set ΞRB
z := {µ1} for all z ∈ NH .

Algorithm: initialize( ΞRB
z )

In parallel foreach K ∈ TH do

foreach z ∈ NH with z ∈ K do
compute QKh,k(Φz;µ1) ∈Wh(Uk(K)) via (7).

Set WRB
K,z := span{QKh,k(Φz;µ1)} (local RB space).

end

end

After Step 2, we constructed a first (trivial) global RB multiscale space V RB
H,k(µ), where

V RB
H,k(µ) := span{ΦMS

z (µ1)| z ∈ NH} with ΦMS
z (µ1) := Φz +

∑
K∈TH
K⊂ωz

QKh,k(Φz;µ1).
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Note that V RB
H,k(µ) as above is just a preliminary space that can be used for any parameter µ,

but typically without good approximation properties. Similarily, the spacesWRB
K,z (for z ∈ NH

and K ∈ TH and K ⊂ ωz) are the preliminary (1-dimensional) local Reduced Basis spaces.
In the next step, we want to update the RB sample sets ΞRB

z and consequently the local RB
spaces WRB

K,z. By “update” we mean that we want to add suitable elements µz,2 from the
training set Ξtrain to the local RB parameter sets ΞRB

z . This can be achieved using a Greedy
search algorithm based on a posteriori error estimation. A general result is given in the next
paragraph.

3.2 Local a posteriori error estimator

Let a parameter µ ∈ Ξtrain be fixed and let us also fix the coarse node z ∈ NH . The solution
space Wh(Uk(K)) is given according to (6). By WRB

K,z = span{QKh,k(Φz;µ1), . . . , QKh,k(Φz;µJ)}
we denote an arbitrary reduced basis subspace of Wh(Uk(K)). An orthonormal basis of
WRB
K,z shall be denoted by {ξK1 , . . . , ξKJ } (hence WRB

K,z = span{ξK1 , . . . , ξKJ }). Such an or-
thonormalization is required to avoid ill-conditioned stiffness matrices and hence numeri-
cal instabilities when solving a local reduced problem in WRB

K,z. Given the original basis

{QKh,k(Φz;µ1), . . . , QKh,k(Φz;µJ)}, an orthonormal basis {ξK1 , . . . , ξKJ } can be obtained by a
Gram-Schmidt process.

Now, we consider two multiscale scale basis functions associated with the node z ∈ NH ,
namely ΦMS

z (µ) := Φz+Qh,k(Φz;µ), where Qh,k(Φz;µ) is computed with the strategy proposed
in Definition 2.2 and

ΦMS,RB
z (µ) = Φz +QRB

h,k(Φz;µ), where QRB
h,k(Φz;µ) :=

∑
K∈TH
K⊂ωz

QK,RB

h,k (Φz;µ)

and QK,RB

h,k (Φz;µ) ∈ WRB
K,z is the solution of the following problem:∫

Uk(K)
aε(· ;µ)∇QK,RB

h,k (Φz;µ) · ∇w = −
∫
K
aε(· ;µ)∇Φz · ∇w for all w ∈ WRB

K,z.

We want to state an error estimator for the error between the “optimal” basis function ΦMS
z (µ)

and its RB approximation ΦMS,RB
z (µ). This can be obtained straightforwardly by using the

the Riesz representative rKz (µ) ∈Wh(Uk(K)) that is given as the solution of

(∇rKz (µ),∇wh)L2(Uk(K)) =

∫
Uk(K)

aε(· ;µ)∇QK,RB

h,k (Φz;µ) · ∇wh +

∫
K
aε(· ;µ)∇Φz · ∇wh

for all in wh ∈Wh(Uk(K)). Hence, it fulfills

(∇rKz (µ),∇(QK,RB

h,k (Φz;µ)−QKh,k(Φz;µ)))
1/2
L2(Uk(K))

= ‖QKh,k(Φz;µ)−QK,RB

h,k (Φz;µ)‖µE(Uk(K)).

We next define

ωkz := ∪{Uk(K)|K ∈ TH , K ⊂ ωz}, (12)
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and observe that

‖ΦMS
z (µ)− ΦMS,RB

z (µ)‖µE(ωkz )
=

∫
ωkz

∣∣∣∣∣∣∣∣
∑
K∈TH
K⊂ωz

aε(·,µ)1/2∇(QKh,k(Φz;µ)−QK,RB

h,k (Φz;µ))

∣∣∣∣∣∣∣∣
2

1/2

≤
√
Cz
∑
K∈TH
K⊂ωz

‖QKh,k(Φz;µ)−QK,RB

h,k (Φz;µ)‖µE(Uk(K))

≤
√
Cz
α

∑
K∈TH
K⊂ωz

‖∇rKz (µ)‖L2(Uk(K)), (13)

where Cz is a constant that only depends on the number of elements in ωkz . It remains to
discuss an efficient computation of the Riesz representative rKz (µ) ∈ Wh(Uk(K)), where we
exploit the affine representation of aε(· ;µ) (see also [48, Section 4.4]). Recall aε(x;µ) =∑

q∈QΘq(µ)aεq(x). The idea is to compute a set of “Riesz representatives basis” that can be
reused for later computations.

Let QK,RB

h,k (Φz;µ) =
∑J

j=1 cj(µ)ξKj , where {ξK1 , . . . , ξKJ } is the orthonormal basis of WRB
K,z

that we introduced at the beginning of this subsection. First, we compute the representatives
lKq,z ∈Wh(Uk(K)) (for q ∈ Q) by

(∇lKq,z,∇wh)L2(Uk(K)) =

∫
K
aεq∇Φz · ∇wh for all wh ∈Wh(Uk(K))

and the representatives hKq,j,z ∈Wh(Uk(K)) (for q ∈ Q and 1 ≤ j ≤ J) by

(∇hKq,j,z,∇wh)L2(Uk(K)) =

∫
Uk(K)

aεq∇ξKj · ∇wh for all wh ∈Wh(Uk(K)).

The functions lKq,z and hKq,j,z are hence independent of the parameter µ. Consequently, the

parameter-dependent Riesz representative rKz (µ) can be expressed as

rKz (µ) =
∑
q∈Q

Θq(µ)

lKq,z +
J∑
j=1

cj(µ)hKq,j,z

 .

Observe that, if lKq,z and hKq,j,z are precomputed, the residual rKz (µ) can be directly evaluated
by using the formula, without solving an additional system of equations. The precomputation
happens purely in the offline phase and is hence very cheap in the online phase.

Notation 3.1. From now on, we slightly abuse the notation and denote by {QKh,k(Φz;µ1), . . . ,

QKh,k(Φz;µJ)} an orthonormal basis of WRB
K,z. We make use of this simplification to avoid an

additional notation in the subsequent sections. Since an orthonormal basis can be always
straightforwardly obtained from {QKh,k(Φz;µ1), . . . , QKh,k(Φz;µJ)} (even with a canonic num-
bering) we can make use of this double notation without loss of generality.

According to the previous discussion, the next step in the approach should be to com-
pute the parameter-independent representatives lKq,z and the representative hKq,1,z for the initial
parameter µ1 that we selected in Step 2. Hence, we make the following step.
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Step 3 (Offline - Compute initial Riesz representatives).

Algorithm: initialRieszRepresentatives( {WRB
K,z| z ∈ NH ; K ∈ TH , K ⊂ ωz} )

foreach q ∈ Q do
In parallel foreach z ∈ NH do

foreach K ∈ TH with K ⊂ ωz do
Compute lKq,z ∈Wh(Uk(K)) by

(∇lKq,z,∇wh)L2(Uk(K)) =

∫
K
aεq∇Φz · ∇wh ∀wh ∈Wh(Uk(K)).

and hKq,1,z ∈Wh(Uk(K)) by

(∇hKq,1,z,∇wh)L2(Uk(K)) =

∫
Uk(K)

aεq∇QKh,k(Φz;µ1) · ∇wh ∀wh ∈Wh(Uk(K)).

end

end

end

Based on precomputed representatives lKq,z and hKq,j,z, we now introduce a corresponding
local error indicator 4z,µ according to the findings from Section 3.2.

Definition 3.2. For z ∈ NH and K ∈ TH with K ⊂ ωz, let WRB
K,z be a corresponding local

Reduced Basis space with basis {QKh,k(Φz;µz,j)| 1 ≤ j ≤ J}. For a given element w(µ) ∈ WRB
K,z

that is represented by

w(µ) =

J∑
j=1

cj(µ)QKh,k(Φz;µz,j),

we define the corresponding residual error indicator 4z,µ by

4z,µ :=

√
Cz
α

∑
K∈TH
K⊂ωz

‖∇rKz (µ)‖L2(Uk(K)), where rKz (µ) =
∑
q∈Q

Θq(µ)

lKq,z +

J∑
j=1

cj(µ)hKq,j,z

 .

The explicit computation of lKq,z and hKq,j,z is described in Step 4. From equation (13)
together with an easy computation using Assumption (A2) we have the following upper and
lower bounds for the residual error indicator that are crucial to show an apriori estimate for
the Greedy algorithm

‖∇ΦMS
z (µ)−∇ΦMS,RB

z (µ)‖L2(ωkz ) ≤ 4z,µ ≤
√
Cz
β

α
‖∇ΦMS

z (µ)−∇ΦMS,RB
z (µ)‖L2(ωkz ). (14)
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3.3 Greedy search algorithm

The next step describes a classical Greedy search procedure formulated for our setting. The
idea is to start from a given parameter set ΞRB

z and a corresponding local RB space WRB
K,z.

Then we solve the local problem in the RB space for every parameter in Ξtrain\ΞRB
z and use the

error estimator 4z,µ to find out for which of these parameters we make the biggest error. This
parameter is relevant and should be hence added to ΞRB

z . The corresponding exact solution of
the local problem (i.e the solution in Wh(Uk(K))) is consequently added to WRB

K,z. We hence
need to solve three different types of problems in Step 4 below. The first type involves the
local RB spaces WRB

K,z (for given node z ∈ NH and element K ∈ TH with K ⊂ ωz). Here, we

solve for the analog of problem (7) in WRB
K,z, i.e. we compute QK,RB

h,k (Φz;µ) ∈ WRB
K,z with∫

Uk(K)
aε(· ;µ)∇QK,RB

h,k (Φz;µ) · ∇w = −
∫
K
aε(· ;µ)∇Φz · ∇w (15)

for all w ∈ WRB
K,z. Second, we need to solve for the contributions hKq,j,z of the Riesz represen-

tatives, i.e. for q ∈ Q, z ∈ NH , K ∈ TH and a given parameter µz,j , find hKq,j,z ∈ Wh(Uk(K))
with

(∇hKq,j,z,∇wh)L2(Uk(K)) =

∫
Uk(K)

aεq∇QKh,k(Φz;µz,j) · ∇wh. (16)

for all wh ∈Wh(Uk(K)). The third type of problems involves the standard local problems (7),
which need to be solved for new parameters that are added to the parameter set.

Remark 3.3. Step 4 below involves to solve problems in the local RB spaces WRB
K,z. This

requires the assembly of corresponding dense stiffness matrices with entries∫
Uk(K)

aε(· ;µ)∇ξz(µj) · ∇ξz(µi),

where ξz(µi) = QKh,k(Φz;µi) with µi ∈ ΞRB
z denote the elements of an orthonormal basis of

WRB
K,z. Here we can use the affine representation of aε to make this procedure more efficient.

After each step of the iterative procedure to update WRB
K,z (i.e. the step J 7→ J + 1), we just

have to assemble and store the new entries∫
Uk(K)

aεq∇ξz(µJ+1) · ∇ξz(µi) for 1 ≤ i ≤ J and q ∈ Q.

Like that, the required system matrices (for the problems in WRB
K,z) are straightforwardly (and

cheaply) obtained by summation over q.

An analysis of the Greedy procedure is presented in [16]. Rates can be measured by
the Kolmogorov n-width that describes how good a subset F of a Hilbert space X can be
approximated by an n-dimensional subspace Yn. In our case we have

Wz := {Qh,k(Φz;µ)|µ ∈ Ξtrain}

and the corresponding Kolmogorov n-width in Wh(ωkz ) is defined by

dn(Wz,Wh(ωkz )) := inf{ sup
w∈Fz

inf
v∈Yz,n

‖v − w‖H1(ωkz )| Yz,n is n-dim subspace of Wh(ωkz )}.

If we define a space Wn
z as the span of the elements obtained by the Greedy procedure i.e.

Wn
z := span{Qh,k(Φz;µz,1), . . . , Qh,k(Φz;µz,n)};
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then following [16] it holds

sup
ψ∈Wz

inf
w∈Wn

z

‖∇ψ −∇w‖L2(ωkz ) ≤ Cn+1
α,β,Cz

(n+ 1) dn(Wz,Wh(ωkz )).

Precisely using (14) (following the lines of the proof in [16]) one obtains

Cn+1
α,β,Cz

=

(
1 +

√
Cz
β

α

√
β

α

)n+1

. (17)

Thus we see from (17) that that the error inherited from the Kolmogorov n-width can be
polluted by a factor of order Cn+1

α,β,Cz
(n+1). However, it is not possible to give a general answer

about the size of dn(Fz,Wh(ωkz )) itself. For smooth dependencies of aε on the parameter
µ, typically exponential convergence rates can be numerically observed, leading also to an
exponential convergence of the error. The usually justified assumption can be hence stated as
follows: there exists some γz > 0 and a source-term depending constant C(Φz) > 0 such that

dn(Fz,Wh(ωkz )) . C(Φz)e
−γzn.

Note that we can bound C(Φz) . ‖∇Φz‖L2(ωz) because ‖∇Qh,k(Φz;µz,j)‖L2(ωkz ) . ‖∇Φz‖L2(ωz)

for all parameters µz,j . Combining these results, we can apply [16, Theorem 3.1 and Corollary
4.1] to state the following proposition.

Proposition 3.4. Let z ∈ NH and Wz := {Qh,k(Φz;µ)|µ ∈ Ξtrain}. The J-dimensional local
RB space obtained with the Greedy strategy is denoted by WRB

z := span{Qh,k(Φz;µz,j)| 1 ≤ j ≤
J}. If the Kolmogorov n-width of Fz in Wh(ωkz ) satisfies

dJ(Fz,Wh(ωkz )) . ‖∇Φz‖L2(ωz)e
−γzJ

with γz > log(1 +
√
Cz

β
α

√
β
α), then there exists ζz > 0 such that for all µ ∈ Ξtrain it holds

inf
w∈WRB

z

‖∇Qh,k(Φz;µ)−∇w‖L2(ωkz ) . ‖∇Φz‖L2(ωz)e
−ζzJ . (18)

Remark 3.5 (Proper Orthogonal Decomposition (POD)). As an alternative to the above
described Greedy procedure, it is also possible to use the Proper Orthogonal Decomposition,
also known as Karhunen-Loève decomposition, to identify suitable parameter sets ΞRB

z . The
POD (cf. [36, 51, 55]) is based on the following question: given a space V , what is the optimal
subspace of dimension n ∈ N so that the error of an orthogonal projection onto this space is
minimized? Practically, this leads to a number of eigenvalue problems that need to be solved.
The eigenvectors to the n first eigenvalues span the desired subspace. An application of this
strategy to the Multiscale Finite Element Method (MsFEM) can be found in [43].

Observe that thanks to the exponential convergence of the Kolmogorov n-width (for smooth
dependencies of aε on µ), the dimensionality of the parameter set D is typically not a big
problem. Due to the exponential convergence, the RB-parameter sets ΞRB

z can be expected to
remain small. Hence, solving a local problem for an arbitrary parameter in the training set
(that is not in ΞRB

z ) only involves solving a problem of very small dimension. These costs are
negligible as long as the training set Ξtrain is of moderate size.
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Step 4 (Offline - Greedy search).

Set µz,1 := µ1 for all z ∈ NH .

Recall WRB
K,z = span{QKh,k(Φz;µz,1)} for all z ∈ NH and all K ∈ TH with K ⊂ ωz.

Algorithm: greedyLoop( {ΞRB
z | z ∈ NH}, TOL )

In parallel foreach z ∈ NH do
while max

µ∈Ξtrain
4z,µ > TOL do

Set J := |ΞRB
z |.

foreach K ∈ TH with K ⊂ ωz do
foreach µ ∈ Ξtrain \ ΞRB

z do

compute QK,RB

h,k (Φz;µ) ∈ WRB
K,z via (15).

end

end
foreach µ ∈ Ξtrain \ ΞRB

z do
Compute 4z,µ via Definition 3.2.

end
Set µz,J+1 = argmax

µ∈Ξtrain\ΞRB
z

4z,µ and set ΞRB
z := ΞRB

z ∪ {µz,J+1}.

Update Riesz representatives.
foreach K ∈ TH with K ⊂ ωz do

Compute QKh,k(Φz;µz,J+1) ∈Wh(Uk(K)) via (7).

Set WRB
K,z :=WRB

K,z ⊕ span{QKh,k(Φz;µz,J+1)}.
For all q ∈ Q, compute hKq,J+1,z ∈Wh(Uk(K)) via (16).

end
Set WRB

z := span{Qh,k(Φz;µ)|µ ∈ ΞRB
z }, where

Qh,k(Φz;µ) :=
∑
K∈TH
K⊂ωz

QKh,k(Φz;µ).

end

end

Remark 3.6. One might pose the question, if the the local parameter sets ΞRB
z can be chosen

identically for each of the coarse nodes z ∈ NH . This is possible, but typically not efficient
for the online phase. Since aε(x;µ) has a possibly heterogenous dependency on x, a certain
parameter might be crucial in an environment of a certain coarse note, but might trigger no
changes in the environment of another coarse node. Hence, using a shared parameter set for all
nodes, will probably lead to local RB-spaces that are larger than necessary and hence increases
the computational complexity.

However, the situation can be different if aε(x;µ) yields some structural assumptions in
the x-dependency (such as quasi-periodicity or ergodicity). In this case we might exploit these
features to assemble only one (shared) RB parameter set, based on representative computa-
tions in only one (or few) of the patches. Furthermore, in such a setting it might be even
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possible to map the local solutions in one patch to the solutions in another patch by a simple
transformation (without recomputing it). This can indeed lead to an enormous reduction of
the computational complexity.

3.4 Precomputation of local stiffness matrix and load vector entries

Recall Notation 3.1. After Step 4 the local RB spaces WRB
z are assembled for every coarse

node z ∈ NH . In the online phase, for a given parameter µ ∈ D, local problems are solved in
WRB
z . To make this computation efficient in the online phase, it is necessary to pre-assemble

the values of the corresponding stiffness matrix and the associated right hand sides. Again,
we can use the affine representation of aε. The procedure is summarized in Step 5.

Step 5 (Offline - Preassembly of local stiffness matrix and load vector entries).

We assemble the matrices Dz,q ∈ RJz×Jz , where Jz = |ΞRB
z |.

We assemble the load vectors F z,q ∈ RJz , where Jz = |ΞRB
z |.

Algorithm: precomputationLocalSystemMatrices( {WRB
z | z ∈ NH} )

In parallel foreach z ∈ NH do
for q ∈ Q do

for j = 1, . . . , |ΞRB
z | do

Assemble F z,qj :=
∫

Ω a
ε
q∇Φz · ∇Qh,k(Φz;µz,j).

for i = j, . . . , |ΞRB
z | do

Assemble Dz,q
ji = Dz,q

ij :=
∫

Ω a
ε
q∇Qh,k(Φz;µz,j) · ∇Qh,k(Φz;µz,i).

end

end

end

end

Assume that we want to solve a problem in the space WRB
z , which is of the structure:

find vRB ∈WRB
z : bε(vRB, w;µ) = −bε(Φz, w;µ) ∀w ∈WRB

z ,

for some coarse nodal basis function Φz. Then, Step 5 allows to write down the corresponding
stiffness matrix Sz(µ) by pure summation: Sz(µ) =

∑
q∈QΘq(µ)Dz,q. No quadrature rule is

required anymore. The assembly of Sz(µ) is thus fast in the online phase. The same holds for
the load vector. Since the dimension of WRB

z is typically small, the inversion of Sz(µ) is cheap
e.g., LU type decomposition can often be used.

3.5 Precomputation of global stiffness matrix entries

In the previous two steps, we computed the local Reduced Basis spaces WRB
z for z ∈ NH and

basically pre-assembled the corresponding stiffness matrices and load vectors. In the online
phase, for a given parameter µ ∈ D, we want to construct

V RB
H,k(µ) = span{ΦRB

z (µ) z ∈ NH}.
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where the RB multiscale basis function is given by the following problem: find ΦRB
z (µ) ∈

Φz +WRB
z such that

bε(ΦRB
z (µ), w;µ) = 0 ∀w ∈WRB

z . (19)

Various terms of the entries of the stiffness matrix bε(ΦRB
zm(µ),ΦRB

zn (µ),µ), for 1 ≤ n,m ≤ N,
can be pre-computed in the offline stage as explained below. In this section, we hence discuss
the pre-computation of certain terms that are required in the online phase. We again recall
Notation 3.1.

For this purpose let ΦRB
zm(µ) be given by

ΦRB
zm(µ) = Φz +

∑
µz,j∈ΞRB

z

cz(µ)Qh,k(Φz;µz,j).

With this, we can write the entries of the system matrix by

bε(ΦRB
zm(µ),ΦRB

zn (µ),µ) =
∑
q∈Q

Θq(µ)

∫
Ω
aεq∇Φzm · ∇Φzn

+
∑
q∈Q

∑
µzm,j∈ΞRB

zm

Θq(µ)czm,j(µ)

∫
Ω
aεq∇Qh,k(Φzm ;µzm,j) · ∇Φzn (20)

+
∑
q∈Q

∑
µzn,i∈ΞRB

zn

Θq(µ)czn,i(µ)

∫
Ω
aεq∇Φzm · ∇Qh,k(Φzn ;µzn,i)

+
∑
q∈Q

∑
µzm,j∈ΞRB

zm

∑
µzn,i∈ΞRB

zn

Θq(µ)czm,j(µ)czn,i(µ)

∫
Ω
aεq∇Qh,k(Φzm ;µzm,j) · ∇Qh,k(Φzn ;µzn,i).

Hence, independent of µ ∈ D, we can precompute

Sqnm = Sqmn :=

∫
Ω
aεq∇Φzm · ∇Φzn ;

M q
nm(i, j) = M q

mn(j, i) :=

∫
Ω
aεq∇Qh,k(Φzm ;µzm,j) · ∇Qh,k(Φzn ;µzn,i) (21)

and Rqnm(j) :=

∫
Ω
aεq∇Qh,k(Φzm ;µzm,j) · ∇Φzn

for 1 ≤ n,m ≤ N and for 1 ≤ i ≤ |ΞRB
zn | and 1 ≤ j ≤ |ΞRB

zm |. Once these entries are precomputed,
the global stiffness matrix entry bε(ΦRB,MS

zm (µ),ΦRB,MS
zn (µ),µ) can be again obtained via a simple

summation. Note that we did not assume an affine representation of the source f(· ;µ). Hence,
we can typically not precomput it. However, this is no problem since the the reduced basis
multiscale basis functions ΦRB

z (µ) are only locally supported. Hence, the usage of a quadrature
rule for assembling the load vector of the global problem is not very costly and can be performed
on-the-fly in the online phase. Furthermore, if an affine representation of f(· ;µ) is available,
it can be exploited and the entries of the load vector can be precomputed in the same way as
for the stiffness matrix.

Using equations (20) and (21) it is straightforwardly possible to compute the global stiffness
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matrix by simple summation. We have

bε(ΦRB
zm(µ),ΦRB

zn (µ),µ) (22)

=
∑
q∈Q

Θq(µ)

Sqnm +
∑

µzm,j∈ΞRB
zm

czm,j(µ)Rqnm(j) +
∑

µzn,i∈ΞRB
zn

czn,i(µ)Rqmn(i)

+
∑

µzm,j∈ΞRB
zm

∑
µzn,i∈ΞRB

zn

czm,j(µ)czn,i(µ)M q
nm(i, j)

 .

3.6 The online phase

Let µ ∈ D be arbitrary given parameter for which we want to obtain a multiscale approxi-
mation of the original problem (2). This can be achieved in an efficient way using the pre-
assembled quantities from Step 1-5 and equation (21) (i.e. the localized RB spaces WRB

z and
the corresponding pre-computed system matrix and load vector entries).

Local problems. We recall that we have to compute the basis functions ΦRB
z (µ) ∈ Φz+WRB

z

for z = 1, . . . , N solutions of problem (19). This can be done with low costs using the results
from equation (20) and (21). Recall (for z ∈ NH and q ∈ Q) the precomputed matrices
Dz,q and load vectors F z,q (see Step 5). We define Dz(µ) :=

∑
q∈QΘq(µ)Dz,q and F z(µ) :=∑

q∈QΘq(µ)F z,q. With that, solving for the solution ΦRB,MS
z (µ) of (19) is equivalent to solving

for qz(µ) ∈ RJz with

Dz(µ)qz(µ) = F z(µ) and defining ΦRB
z (µ) := Φz +

Jz∑
j=1

(qz(µ))j Qh,k(Φz;µz,j). (23)

The matrix Dz(µ) is low dimensional and cheap to invert. No saddle point solver is required.
The accuracy of ΦRB

z (µ) can be checked using the error estimator4z,µ defined in Definition 3.2.

Global problem. Once the RB basis functions ΦRB
z (µ) are computed we can define

V RB
H,k(µ) := span{ΦRB

z (µ)| z ∈ NH} (24)

and solve for uRB
H (· ;µ) ∈ V RB

H,k(µ) with

bε(uRB
H (· ;µ), v;µ) = (f(· ;µ), v)L2(Ω) ∀v ∈ V RB

H,k(µ). (25)

The solving can be done in an efficient way using the precomputed terms from (21). We define
the entries of the global stiffness matrix S(µ) ∈ RN×N by

S(µ)nm := bε(ΦRB
zm(µ),ΦRB

zn (µ),µ), exploiting formula (22). (26)

The entries of the global load vector F (µ) ∈ RN is given by

F (µ)n :=
(
f(· ;µ),ΦRB

zn (µ)
)
L2(Ω)

. (27)

With that we solve for uRB ∈ RN

S(µ)uRB = F (µ) (28)

and can set uRB
H (· ;µ) :=

∑N
n=1 u

RB
n ΦRB

zn (µ).
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Remark 3.7. Even though the method is specifically designed to solve parameter-dependent
multiscale problems, it can be also used to solve nonlinear and time-dependent multiscale
problems. An example of how the method can be used to treat a nonlinear equation is presented
in Section 4.2. The treatment of time-dependent problems is similar. After introducing a
suitable time discretization (e.g. by an implicit Euler scheme), the problem that needs to be
solved in every time step is typically a standard elliptic problem. If we now interpret the time-
dependency as an additional parameter, we obtain a parametrized elliptic multiscale problem
for each time step. Hence, a time-dependent (and possibly additionally parameter dependent)
equation can be seen as a large set of parametrized stationary problems. The application of
the RB-LOD is obvious and each of the time steps becomes cheap.

Step 6 (Online phase).

Compute a RB multiscale approximation for a given (online) parameter µ ∈ D.

Algorithm: getMultiscaleApproximation( {WRB
z | z ∈ NH} )

In parallel foreach z ∈ NH do
Compute ΦRB

z (µ) ∈ Φz +WRB
z with

bε(ΦRB
z (µ), w;µ) = 0 ∀w ∈WRB

z

using the precomputed formulation (23).
end
Set V RB

H,k(µ) := span{ΦRB
z (µ)| z ∈ NH}.

Solve for the final RB multiscale approximation uRB
H (· ;µ) ∈ V RB

H,k(µ) with

bε(uRB
H (· ;µ), v;µ) = (f(· ;µ), v)L2(Ω) ∀v ∈ V RB

H,k(µ).

using the formulas (26)-(28).

3.7 A priori error analysis

The convergence analysis for a multiscale reduced basis method usually combines an existing
a priori error analysis for the parameter independent multiscale approximation with error
estimates for the Greedy procedure such as stated in Proposition 3.4 (see [3, 5, 6]). The
following result guarantees convergence of the method, independent of the variations in the
coefficient aε.

Theorem 3.8. Assume (A1)-(A3), let µ ∈ Ξtrain and let the assumptions of Proposition 3.4
be fulfilled. Furthermore we assume that there exists J ∈ N such that J . dimWRB

z . J for
all nodes z ∈ NH . By uh(· ;µ) ∈ Vh we denote the reference solution, i.e. the solution of (11),
and by uRB

H (· ;µ) ∈ V RB
H,k(µ) the RB-LOD approximation obtained in Step 6. If k ≥ Cg| log(H)|

as in Proposition 2.3 then it holds

‖uRB
H (· ;µ)− uh(· ;µ)‖H1(Ω) . H +H−1e−Jζkd/2,

where we define 0 < ζ := minz∈NH ζz with ζz being the constant from Proposition 3.4. Obvi-
ously, if J ≥ 2ζ−1| log(H)| we preserve the linear convergence rate in H.
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Proof. Consider the classical LOD basis function ΦMS
z (µ) := Φz+Qh,k(Φz;µ) and its RB-LOD

version ΦRB
z (µ) ∈ Φz+WRB

z as in Step 6. We define λRB
z (µ) := ΦRB

z (µ)−Φz ∈WRB
z and obtain

with (18)

‖ΦMS
z (µ)− ΦRB

z (µ)‖H1(ωkz ) = ‖Qh,k(Φz;µ)− λRB
z (µ)‖H1(ωkz ) . ‖∇Φz‖L2(ωz)e

−ζzJ . (29)

Writing the classical LOD solution uMS(· ;µ) ∈ V MS
H,k(µ) (see problem (10)) as

uMS(· ;µ) =
∑
z∈NH

uMS
z (µ)ΦMS

z (µ),

and recalling that WRB
z is a subspace of the kernel of the L2-projection PL2 (cf. Remark 2.1)

we have

‖
∑
z∈NH

uMS
z (µ)Φz(µ)‖L2(Ω) = ‖

∑
z∈NH

uMS
z (µ)PL2(ΦMS

z (µ))‖L2(Ω)

= ‖PL2(uMS(· ;µ))‖L2(Ω) . ‖∇uMS(· ;µ)‖L2(Ω), (30)

where in the last step we used the L2-stability of PL2 and the Poincaré-Friedrichs inequality.
With that we obtain

inf
z∈V RB

H,k(µ)
‖uMS(· ;µ)− z‖2H1(Ω) ≤ ‖

∑
z∈NH

uMS
z (µ) (ΦMS

z (µ)− ΦRB
z (µ)) ‖2H1(Ω)

.
∑
z∈NH

kd|uMS
z (µ)|2‖∇ (ΦMS

z (µ)− ΦRB
z (µ)) ‖2L2(Ω)

(29)

. e−2ζJkd
∑
z∈NH

|uMS
z (µ)|2‖∇Φz‖2L2(ωz)

. e−2ζJH−2kd
∑
z∈NH

|uMS
z (µ)|2‖Φz‖2L2(ωz)

(30)

. e−2ζJH−2kd‖∇uMS(· ;µ)‖2L2(Ω)

. e−2ζJH−2kd‖f(·,µ)‖2L2(Ω),

where ‖f(·,µ)‖L2(Ω) is uniformly bounded by (A2). In total, using Galerkin orthogonality and
Proposition 2.3 with k ≥ Cg| log(H)|, we obtain

‖uRB
H (· ;µ)− uh(· ;µ)‖H1(Ω) . inf

z∈V RB
H,k(µ)

‖z − uh(· ;µ)‖H1(Ω)

. inf
z∈V RB

H,k(µ)
‖z − uMS(· ;µ)‖H1(Ω) + ‖uMS(· ;µ)− uh(· ;µ)‖H1(Ω)

. e−ζJH−1kd/2 +H.

Remark 3.9 (General boundary conditions). We note that the LOD (and consequently also
the RB-LOD) can be generalized to any type of mixed Dirichlet and Neumann boundary
conditions for problem (1). If the boundary condition is basically described by a “coarse”
function, the adaption of the method is straightforward, i.e. all local problems are still solved
in the same way as before and the boundary condition is only incorporated in the weak
formulation of the final global problem. In particular, we still solve in the same multiscale
space V RB

H,k(µ) that was obtained for the case of a homogenous Dirichlet boundary condition.
If the boundary condition is oscillatory and complicated, additional boundary correctors need
to be introduced to preserve the old convergence rates in H. For further details we refer to
[27] where an LOD for general boundary value problems is analyzed.
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Remark 3.10 (Complexity). Let us assume that TH and Th are quasi-uniform so that the
number of coarse nodes is of order O(H−d) and the number of fine nodes of order O(h−d). In
this case and for a fixed parameter µ, the cost for solving all local problems (7) associated
with a patch Uk(K) with K ∈ TH and k ' | log(H)| are O((H| log(H)|2/h)d) (as already
discussed before). The cost for solving all local problems are consequently O((| log(H)|2/h)d).
The global system matrix (constructed from the LOD basis functions) has O(kdH−d) non-zero
entries. This is still sparse, with entries that decay away from the diagonal. Consequently,
suitable solvers can increase the computational complexity for solving the arising system to
an almost linear complexity O((1/H)d), which is negligible compared to the cost for solving
the local problems. Hence, the computational complexity for applying the original LOD once
for one single parameter are of order O((H| log(H)|2/h)d).

The RB-LOD applied to a parametrized problem increases these cost by a factor that
depends on the Greedy procedure. However, this only effects the offline stage. In the online
phase, we have to solve O((1/H)d) local problems, each of them having the dimension of order
O(J), where J denotes the dimension of the local RB-space (and where the basis of the local
space is orthonormal). Hence, the cost for solving all local problems in the online phase are
O(J(1/H)d). For the same reasons as for the standard LOD, the global problem can be solved
with a complexity which is close to O((1/H)d). In summary, once the offline computations
are finished, the RB-LOD has a complexity of O(J(1/H)d) to solve the global parametrized
problem, whereas the standard LOD has a complexity of O((| log(H)|2/h)d) for the same task.

4 Numerical experiments

In this section we present two numerical experiments. In the first numerical experiment, we
consider a parameterized linear elliptic problem as given by (1) and demonstrate the applica-
bility of RB-LOD. In the second numerical experiment we show how the method can be used
to solve nonlinear elliptic problems such as the stationary Richards equation.

As a measure for the error we will consider the relative error norms ‖ · ‖relL2(Ω), respectively

‖ · ‖relH1(Ω), we denote, i.e. the absolute errors divided by the associated norm of the fine scale
reference solution.

For the computation times stated in Table 4 and 8, we use the following notation.

• toff, local(K): For a fixed coarse element K ∈ TH , toff, local(K) denotes the time for solving
all local problems (in the offline phase) that are associated with this element. Note that
each coarse element contains 3 coarse nodes and for each coarse node the problem needs
to be solved in average for 2− 16 parameters (depending on the model problem and the
location) before the error falls below the tolerance. The time also contains the time for
solving for the local Riesz representatives (which are required for the error estimation)
and it contains the time for assembling the required system matrices and right hand
sides. Note that a further parallelization is possible here.

• toff, local
average : The average time of toff, local(K) over all K ∈ TH .

• ton, local
average : The average time for solving one local problem in the online phase. Note, in

the online phase we only need to solve one problem for each coarse node.

• ton, global
average : The average time for solving the global problem (in the case of model problem

1) or the average time for solving the global problem for one iteration step (in the case
of model problem 2).
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4.1 Model Problem 1

In this section we consider the following parametrized model problem: find uε(x;µ) ∈ H1
0 (Ω)

such that

−∇ · (aε(x;µ)∇uε(x;µ)) = 1 in Ω,

with

aε(x;µ) :=
4∑
q=1

Θq(µ)aεq(x),

where

Θ1(µ) := 2 + sin(4µ), Θ2(µ) := 2 + µ2 − cos(
√
|µ|),

Θ3(µ) := 2 + cos(
√
|µ|) and Θ4(µ) := 1 +

√
|µ|+ (1/10)|µ|3/2.

and aεq functions given by aε1, aε2, aε3 and aε4. For a given ε = 0.1 we define

aε1(x1, x2) :=

(
5π−2 (4 + 2 cos(2πx1/ε))

−1 0
0 (4π)−1 (5 + 2.5 cos(2πx1/ε))

)
,

aε2(x1, x2) :=
(
10 + 9 sin(2π

√
2x1/ε) sin(4.5πx2

2/ε)
)(1/100 0

0 1/100

)
,

aε3(x) := ((3/25) + (1/20)gε(x))

(
1 0
0 1

)
,

where

gε(x1, x2) := sin
(
bx1 + x2c+ bx1

ε
c+ bx2

ε
c
)

+ cos
(
bx2 − x1c+ bx1

ε
c+ bx2

ε
c
)
,

and we define the last coefficient by

aε4(x) := (h ◦ cε)(x) with h(t) :=


t4 for 1

2 < t < 1

t
3
2 for 1 < t < 3

2

t else

and

cε(x1, x2) := 1 +
1

10

4∑
j=0

j∑
i=0

(
2

j + 1
cos
(⌊
ix2 − x1

1+i

⌋
+
⌊
ix1
ε

⌋
+
⌊
x2
ε

⌋))
.

We set D := [0, 5] and a training set consisting of 100 randomly distributed parameters.
The online parameter is chosen to be µ = 2.012.

In all the computations the fine grid Th is the uniformly refined grid with mesh size h = 2−7

which resolves the microstructure. We also fixed the relative RB tolerance for the offline Greedy
search (i.e. Step 4) with the value TOL= 0.1. This value is small enough so that we recover
the classical convergence rates for the RB-LOD solution (for the selected online parameter
and in the sense of Proposition 2.3) and smaller values do not change the final errors. The
RB-LOD approximation is denoted by uRB

H and the reference solution obtained with a standard
finite element method on the fine grid Th is denoted by uh. The results are depicted in Table
1 and 2. More precisely, in the online phase we observe a linear convergence (with respect to
the coarse mesh size H) for the H1-error and a quadratic order convergence for the L2-error.
We also observe a linear order convergence of the coarse part of the RB-LOD approximation
denoted by ucH and given by the L2-projection of the RB-LOD approximation into the coarse
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space, i.e. ucH :=
∑

z∈NH α
RB
z Φz if uRB

H =
∑

z∈NH α
RB
z ΦRB

z . In some cases, e.g. if we are only

interested in an effective L2-approximation of the exact solution, it might be hence sufficient
to only store ucH instead of uRB

H (see also [20]).
The findings are emphasized by Figure 3, where the various approximations are depicted

for the case (H, k) = (2−3, 2). Despite the very coarse coarse grid, we still observe that the RB-
LOD approximation is hardly distinguishable from the FEM reference solution for h = 2−7.
Even the coarse part alone captures all relevant features.

The number of local RB-LOD basis functions (i.e. the dimension of the space WRB
z com-

puted in the offline Step 4) is between 4 and 16 depending on the node z. In average WRB
z

contains between 7 − 8 basis functions. Hence its dimension is very small. An example for
a particular node z ∈ NH is given in Table 3, where we also illustrate the decay of the RB
error. In the online phase (i.e. in Step 6) we use the spaces WRB

z to compute one online basis
function ΦRB

z (µ) for each coarse node z ∈ NH . The RB-LOD online basis function ΦRB
z (µ) is

a smoothed version of the classical coarse nodal basis function Φz. An example how it looks
like is given in Figure 3.

Finally, the computational costs are depicted in Table 4. As expected, the costs in the
online phase are extremely low. The offline costs that arise for a single coarse element K ∈ TH
(see first column of Table 4) might appear a bit high at first glance. However, recall that we
need to solve a lot of problems on each of the coarse elements. Since we have in average 8
relevant parameters for each coarse node, since K contains 3 coarse nodes and since we need
to solve the corrector problems and the problems for the Riesz representatives, we need to
solve approximately 3×8×2 = 48 local saddle point problems in each coarse element K. This
explains the high CPU times. However, we also note that these problems (associated with an
element K) can be further parallelized. Hence, if enough cores are available the costs can be
distributed and the CPU times for one element can be even decreased to a few seconds.

Table 1: Model Problem 1. For h = 2−7 we denote the full RB-LOD error by eRB
H := pRB

H − ph
and the coarse part of the RB-LOD error by ecH := uRB

H − uh. By k we denote the (fixed)
localization according to Definition 2.2. The table depicts errors for various combinations of
H and k.

H k ‖ecH‖relL2(Ω) ‖eRB
H ‖relL2(Ω) ‖eRB

H ‖relH1(Ω)

2−2 0 0.20386 0.20355 0.44348

2−2 1 0.11778 0.05939 0.23663

2−2 2 0.11331 0.04106 0.14681

2−2 3 0.11325 0.03373 0.12434

2−3 1 0.14199 0.14207 0.39250

2−3 2 0.02878 0.01076 0.09263

2−3 3 0.02862 0.00869 0.07865

2−4 1 0.49456 0.49483 0.69713

2−4 2 0.01137 0.00749 0.09558

2−4 3 0.00984 0.00663 0.07746

2−4 4 0.00976 0.00172 0.02834
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Table 2: Model Problem 1. As suggested by Proposition 2.3 we couple k and H by k = k(H) :=
b| log(H)| + 1c to recover the typical convergence rates. The full RB-LOD error is given by
eRB
H := pRB

H − ph and the coarse part by ecH := uRB
H −uh. For each of the errors ‖eH‖ below (for

H = 2−i), we define the average EOC by EOC:= 1
2

∑2
i=1 log2(‖e2−i‖/‖e2−(i+1)‖)/ log2(2).

H k(H) ‖ecH‖relL2(Ω) ‖eRB
H ‖relL2(Ω) ‖eRB

H ‖relH1(Ω)

2−2 2 0.11331 0.04106 0.14681

2−3 3 0.02862 0.00869 0.07865

2−4 4 0.00976 0.00172 0.02834

EOC 1.769 2.289 1.187

Table 3: Model Problem 1. Let Th denote the (uniformly refined) fine grid with h = 2−7.
The results in the table refer to a given coarse node z = (0.03125, 0.03125) ∈ NH . Using the
Greedy algorithm (i.e. Step 4) we identify the relevant parameters that are added to the local
parameter set ΞRB

z . In the first column we depict the added parameter and in the second column
the corresponding maximum estimated error. In our example, 4 parameters are added before
the maximum estimated error falls below the tolerance TOL= 0.1.

added parameter maximum estimated error

2.5 1.47381

5.0 0.60277

0.353535 0.10932

4.39394 < TOL

Figure 2: Model Problem 1. Left Picture: Standard finite element approximation on Th with
h = 2−7. Middle picture: RB-LOD approximation (for the online parameter µ = 2.012) on TH
with H = 2−3 and for (k, h) = (2, 2−7). Right picture: The coarse part of the aforementioned
RB-LOD approximation, i.e. its L2-Projection in VH .

4.2 Model Problem 2

In model problem 2 we consider the stationary Richards equation given in the stationary case
by

−∇ · (Kε(x)kr(x, s(x)))∇p(x)) = f(x) in Ω. (31)

The Richards equation has two unknowns, the pressure p and the saturation/water content
s. It describes the distribution of subsurface water and can be used for simulating flooding
events or to predict the effects of dams or modifications of river courses. The Richards equation
can be derived from the two-phase flow equations (with water as the first phase and air as
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Figure 3: Model Problem 1. Left Picture: Nodal basis function on the coarse grid TH with
H = 2−3. Right Picture: The corresponding (online) RB-LOD basis function (on TH with
H = 2−3) determined with the described RB-LOD method with localization parameter k = 2
and h = 2−7. The basis function was determined for the online parameter µ = 2.012.

Table 4: Model Problem 1. The table depicts various CPU times where we use the notation
introduced at the beginning of this section.

H k toff, local
average ton, local

average ton, global
average

2−2 2 343.17 [s] 0.15 [s] 0.003 [s]

2−3 2 119.29 [s] 0.132 [s] 0.003 [s]

2−4 2 38.30 [s] 0.136 [s] 0.004 [s]

the second) under the assumption that the pressure in the second phase is basically constant.
Here, Kε describes the absolute permeability, kr the (soil-type- and saturation-dependent)
relative permeability and f a given source or sink term. The saturation s takes values between
0 and 1, where 0 means that a region is completely dry and 1 means that the region is fully
occupied by water. To remove one of the unknowns from the equation, it is possible to find a
model that expresses the pressure p in terms of the saturation s. The most popular models are
according to Brooks and Corey [15], Van Genuchten [56] and Gardner [21]. In the following
example, we use the Brooks-Corey model which is given in the following way. Assume that the
domain Ω consists of a union of subdomains Ωq (for q ∈ Q), where each of the Ωq is occupied
by a different type of soil. Then (cf. see [11]) for x ∈ Ωq, we can approximate the saturation
by the (Brooks-Corey) pressure-saturation curve θq with θq(p(x)) = s(x) and that is given by

θq(p) :=

θ
(q)
m + (θ

(q)
M − θ

(q)
m )

(
p

p
(q)
b

)−λ(q)
for p ≤ p(q)

b ,

θ
(q)
M for p ≥ p(q)

b .

(32)

Here, θ
(q)
m , θ

(q)
M ∈ [0, 1], p

(q)
b < 0 and λ(q) > 0 are soil dependent parameters. The parameter

θ
(q)
m denotes the residual saturation, θ

(q)
M the maximal saturation, p

(q)
b the bubbling pressure

and λ(q) the pore size distribution factor. The total relative permeability kr(θ) is given by

kr(x, θ) :=
∑
q∈Q

χΩq(x)krq(θ),

where χΩq is the indicator function of Ωq and krq(θ) is given by

krq(θ) :=

(
θ − θ(q)

m

θ
(q)
M − θ

(q)
m

)3+ 2

λ(q)

, for θ ∈ [θ(q)
m , θ

(q)
M ]. (33)
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The (possibly rapidly varying) absolute permeability on Ωq is given by Kε
q . In total, we can

define Θq(p) := (krq ◦ θq)(p), aε(x,µ) :=
∑

q∈Q χΩq(x)Kε
q (x)Θq(µ) and search for p satisfying

−∇ · (aε(·, p)∇p) = f in Ω. (34)

Ω1
sandy
soil

Ω2
sand

Ω3
sandy
loam

Ω4
loamy
sand

Figure 4: Illustration of the overlapping decomposition of Ω into the subdomains Ω1, Ω2, Ω3

and Ω4.

Table 5: The table depicts soil parameters for different soil types. We let θ
(q)
m denote the

residual- and θ
(q)
M the maximal saturation, furthermore p

(q)
b denotes the bubbling pressure and

λ(q) the pore size distribution factor. The values are taken from [52].

q Soil type θ
(q)
m θ

(q)
M λ(q) p

(q)
b

1 sandy soil 0.21 0.95 1.0 -0.1 [m]

2 sand 0.0458 1.0 0.694 -0.0726 [m]

3 sandy loam 0.091 1.0 0.378 -0.147 [m]

4 loamy sand 0.08 1.0 0.553 -0.087 [m]

As a specific model problem realization, we consider the stationary Richards-equation
(34) with a homogeneous Dirichlet boundary condition and f ≡ 1 and set ε := 0.1. We let
Ω :=]− 1, 1[2 be union of the slightly overlapping subdomains Ω1, . . . ,Ω4 that are given by

Ω1 := [0, 1/2 + ε]× [0, 1/2 + ε], Ω2 := [1/2− ε, 1]× [0, 1/2 + ε],

Ω3 := [0, 1/2 + ε]× [1/2− ε, 1], Ω4 := [1/2− ε, 1]× [1/2− ε, 1].

The domain Ω1 is occupied by sandy soil, Ω2 by sand, Ω3 by sandy loam and Ω4 by loamy
sand (see Figure 4). For q = 1, . . . , 4, we pick Kε

q := aεq, where aεq is given as introduced at the
beginning of this section. The relative permeabilities krq(θ) and the water contents θq(p) are
given according to the equations (33) and (32, where the corresponding soil parameters are
stated in Table 5.

We aim to solve (34) with the RB-LOD. In the first step, we perform the offline prepro-
cessing as described in Sections 3.1 - 3.4 for aε(·, p) as above. We note that the solution itself
enters into the parameter set but fortunately only upper and lower bound are needed to set
a parameter range of possible pressure to proceed with the RB algorithm. The upper bound
for the compact parameter set D ⊂ R is naturally given by the maximum bubbling pressure
(i.e. -0.0726 in our example). Theoretically, there exists no lower bound since the pressure p
can fall to −∞, however practically we observe that θq(p) converges quickly (with order λ(q))

to θ
(q)
m (cf. [11]). Hence we can use a small negative integer for the lower bound in D. In

our numerical experiments we picked D := [−2,−0.0726] and a training set consisting of 100
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randomly distributed parameters in D. Larger sets (for D and the training set) are possible,
but not necessary in our example. The relative RB tolerance for the offline Greedy search (i.e.
Step 4) was set to TOL= 0.01 for our experiments. Depending on the location, the algorithm
identified between 2 and 10 relevant parameters for each coarse node z ∈ NH , before the
tolerance was reached.

After assembling the local RB-LOD basis function sets and the corresponding entries for
the local system matrix and the source term (i.e. the steps described in Section 3.4), we can
perform the global online computation that we describe in the following. In order to solve the
Richards equation we apply the Newton method. Recall that N denotes the dimension of the
coarse space VH (and hence it is also the dimension of the RB space V RB

H,k). Let the initial

value p0 =
(
p1
0, . . . ,p

N
0

)
∈ RN be given, where each entry pz

0 is associated with a coarse node
z ∈ NH (z denoting the index of z). The first online RB space V RB

H,k(p0) is assembled by using

µ0(z) = pz
0 as the online parameter in Step 6 (i.e. the online parameter is not globally fixed,

but varies for each coarse node).
Assuming that the solution pn ∈ RN of the n’th Newton step is computed, we assemble

the corresponding global RB space V RB
H,k(pn) again according to Step 6 (where pz

n is the online
parameter for node z), i.e. V RB

H,k(pn) := span{ΦRB
z (pz

n)| z ∈ NH}. With that, we define

p
RB,(n)
H :=

∑
z∈NH

pz
n ΦRB

z (pz
n) ∈ V RB

H,k(pn) (35)

as the current LOD approximation. To update p
RB,(n)
H we perform the classical Newton step:

find δ
RB,(n+1)
H =

∑
z∈NH δp,nΦRB

z (pz
n) ∈ V RB

H,k(pn) such that∫
Ω
Aε(·, pRB,(n)

H )∇δRB,(n+1)
H · ∇v +

∫
Ω

(
D2A

ε(·, pRB,(n)
H )∇pRB,(n)

H · ∇v
)
δ
RB,(n+1)
H

=

∫
Ω
fv −

∫
Ω
Aε(·, pRB,(n)

H )∇pRB,(n)
H · ∇v for all v ∈ V RB

H,k(pn) (36)

where D2A
ε(·, pRB,(n)

H ) = ∂/∂pAε(·, pRB,(n)
H ). Solving the corresponding linear system gives

δp,n ∈ RN and one can update the solution coefficient vector by

pn+1 := pn + δp,n. (37)

The Newton algorithm stops, when the norm δp,n falls below a given tolerance. The only
problem with this approach is that it requires quadrature costs in each iteration step in order
to assemble the system matrix. It is not directly possible to precompute certain entries in an
offline phase. However, it is possible to introduce an additional simplification. We make the
following consideration.

Remark 4.1 (Numerical quadrature for Aε(·, pRB,(n)
H ) and D2A

ε(·, pRB,(n)
H )). We wish to sim-

plify equation (36) by approximating it with a numerical quadrature rule, since the entries of
the global system matrix cannot be pre-computed at the moment. First, recall the definition

of p
RB,(n)
H stated in equation (35). Since Φz − ΦRB

z (pz
n) ∈ Wh we have PL2(ΦRB

z (pz
n)) = Φz for

all time steps n and independent of pz
n. Recalling Remark 2.1, we conclude that

p
c,(n)
H := PL2(p

RB,(n)
H ) =

∑
z∈NH

pz
n Φz ∈ VH

and hence
‖pc,(n)
H − pRB,(n)

H ‖L2(Ω) . H‖pRB,(n)
H ‖H1(Ω),
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where ‖pRB,(n)
H ‖H1(Ω) can typically be further bounded by data functions. Therefore we expect

to make an O(H)-error when replacing p
RB,(n)
H by p

c,(n)
H in the left hand side of equation (36),

i.e.∫
Ω
Aε(·, pRB,(n)

H )∇δRB,(n+1)
H · ∇v +

∫
Ω

(
D2A

ε(·, pRB,(n)
H )∇pRB,(n)

H · ∇v
)
δ
RB,(n+1)
H

≈
∫

Ω
Aε(·, pc,(n)

H )∇δRB,(n+1)
H · ∇v︸ ︷︷ ︸

=:I

+

∫
Ω

(
D2A

ε(·, pc,(n)
H )∇pRB,(n)

H · ∇v
)
δ
RB,(n+1)
H︸ ︷︷ ︸

=:II

+O(H).

Note that we are not allowed to replace ∇pRB,(n)
H by ∇pc,(n)

H . To illustrate the simplification
that this substitution yields, we consider the first term I (the second term can be treated in
a similar way). For v = ΦRB

y (µ(y)n, ·), where y ∈ NH by using the affine decomposition of Aε

we see that∫
Ω
Aε(x, p

c,(n)
H (x))∇δRB,(n+1)

H (x) · ∇ΦRB
y (py

n, x) dx

=

4∑
q=1

∑
z∈NH

δp,n

∫
Ω
aεq(x)Θq(p

c,(n)
H (x))∇ΦRB

z (pz
n, x) · ∇ΦRB

y (py
n, x) dx

≈
4∑
q=1

∑
z∈NH

δp,nΘq(p
z
n)

∫
Ω
aεq(x)∇ΦRB

z (pz
n, x) · ∇ΦRB

y (py
n, x) dx+O(H| log(H)|).

In the last step we used that the integrals are only integrals over supp(ΦRB
z ), which has diam-

eter that scales like H| log(H)|. Hence, replacing Θq(p
c,(n)
H (x)) by Θq(p

c,(n)
H (z)) = Θq(p

z
n) is

expected to only lead to an O(H| log(H)|)-error. With these quadrature-like modifications, we
can precompute an approximation of term I similarly as described in (20)-(21). For the term
II we can proceed the same way. In total, we can derive an approximative formulation for
the left hand side in equation (36) which allows for a precomputation of global system matrix
entries. For the sake of a higher accuracy, we leave the right hand side of (36) unaltered. This
is unproblematic, since the local quadrature costs are cheaper and only scale linearly with the
number of coarse nodes.

The subsequent results are obtained for the case without a numerical quadrature in the sense
of Remark 4.1. The method that we used is directly based on the non-modified equations (35)-
(37). However, we note that we implemented both versions of the method and the obtained
results were basically the same up to small relative errors of order 10−4 or less. The relative
tolerance for the Newton algorithm to abort was set to 10−5 (which is sufficiently small to
not influence the order of accuracy of the method). For large enough iteration steps n (so

that the Newton algorithm aborts) we denote pRB
H := p

RB,(n)
H and pcH := p

c,(n)
H . The reference

solution (i.e. the solution in the full fine scale finite element space Vh) is denoted by ph. The
corresponding errors are depicted in Table 6. We see that the RB strategy still preserves the
behavior of the classical method. We get a fast decay in terms of the localization parameter k
and if we couple H and k according to Proposition 2.3 we also recover the classical convergence
rates (see Table 7).

Table 8 shows that the main computational costs for solving the local problems takes place
in the offline phase. Once the the local problems are solved, the computation of the RB-LOD
basis functions in the online phase (for a given iteration step or a new source term) is very
fast. The time for computing an online RB-LOD basis function for a given coarse node is of
order 0.03 seconds and hence very small. The term ton, local

average in Table 8 denotes the time that is
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Table 6: Model Problem 2. For h = 2−6, we denote the full RB-LOD error by eRB
H := pRB

H − ph
and the coarse part of the RB-LOD error by ecH := pcH − ph. By k we denote the (fixed)
localization according to Definition 2.2. The table depicts errors for various combinations of
H and k.

H k ‖ecH‖relL2(Ω) ‖eRB
H ‖relL2(Ω) ‖eRB

H ‖relH1(Ω)

2−2 0 0.2523 0.2518 0.4888

2−2 1 0.1177 0.0604 0.2167

2−2 2 0.1164 0.0654 0.2112

2−2 3 0.1163 0.0596 0.1977

2−3 1 0.2958 0.2945 0.4592

2−3 2 0.0497 0.0204 0.1193

2−3 3 0.0494 0.0147 0.0872

2−4 1 0.5212 0.5212 0.6106

2−4 2 0.0327 0.0253 0.1325

2−4 3 0.0222 0.0047 0.0513

2−4 4 0.0220 0.0032 0.0363

Table 7: Model Problem 2. According to the classical result stated in Proposition 2.3 we
couple k and H by k = k(H) := b| log(H)| + 0.5c to recover the typical convergence rates.
The full RB-LOD error is given by eRB

H := pRB
H − ph and the coarse part by ecH := pcH − ph.

For each of the errors ‖eH‖ below (for H = 2−i), we define the average EOC by EOC:=
1
2

∑2
i=1 log2(‖e2−i‖/‖e2−(i+1)‖)/ log2(2).

H k(H) ‖ecH‖relL2(Ω) ‖eRB
H ‖relL2(Ω) ‖eRB

H ‖relH1(Ω)

2−2 1 0.1177 0.0604 0.2167

2−3 2 0.0497 0.0204 0.1193

2−4 3 0.0222 0.0047 0.0513

EOC 1.203 1.842 1.039

Table 8: Model Problem 2. The table depicts various CPU times.

H k toff, local
average ton, local

average ton, global
average

2−2 2 78.15 [s] 0.036 [s] 0.003 [s]

2−3 2 19.12 [s] 0.039 [s] 0.003 [s]

2−4 2 4.71 [s] 0.022 [s] 0.004 [s]

required for solving one local problem in the online phase where the average is taken over all
nodes and all iteration steps. The offline time is much higher (depending on the resolution of
the coarse mesh) but can be further parallelized depending on the number of available CPUs.
The more CPUs that we can use for distributing the computations, the cheaper the method.

Conclusion. In this work we proposed a new method for tackling parametrized and nonlinear
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multiscale problems in an efficient way. We combined the LOD method with a model reduction
strategy to construct localized reduced basis functions. After an offline preprocessing step,
these locally supported basis functions can be computed with very low computational costs
for any new parameter. The space that is spanned by the functions is low dimensional and
yields high approximation properties. The applicability of the RB-LOD was demonstrated in
numerical experiments for linear and nonlinear problems.
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[40] A. Målqvist. Multiscale methods for elliptic problems. Multiscale Model. Simul.,
9(3):1064–1086, 2011.
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