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Abstract

An entropy-bounded Discontinuous Galerkin (EBDG) scheme is proposed in which the solution is regular-

ized by constraining the entropy. The resulting scheme is able to stabilize the solution in the vicinity of

discontinuities and retains the optimal accuracy for smooth solutions. The properties of the limiting op-

erator according to the entropy-minimum principle are proofed analytically, and an optimal CFL-criterion

is derived. We provide a rigorous description for locally imposing entropy constraints to capture multiple

discontinuities. Significant advantages of the EBDG-scheme are the general applicability to arbitrary high-

order elements and its simple implementation for two- and three-dimensional configurations. Numerical

tests confirm the properties of the scheme, and particular focus is attributed to the robustness in treating

discontinuities on arbitrary meshes.
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1. Introduction

The stabilization of solutions near flow-field discontinuities remains an open problem to the discontinuous

Galerkin (DG) community. Considerable progress has been made on the development of limiters for two-

dimensional quadrilateral and triangular elements. These limiters can be categorized into three classes.

Methods that limit the solution using information about the slope along certain spatial directions [1, 2] fall

in the first class. The second class of limiters extends this idea by limiting based on the moments of the

solution [3, 4], and schemes in which the DG-solution is projected onto a WENO [5, 6, 7] or Hermit WENO

(HWENO) [8] representation fall in the last category. Although these limiters show promising results for

canonical test cases on regular elements and structured mesh partitions, the following two issues related to

practical applications have not been clearly answered:

• How can discontinuous solutions be regularized on multi-dimensional curved high-order elements?

• How can non-physical solutions that are triggered by strong discontinuities and geometric singularities

be avoided?

The present work attempts to simultaneously address both of these questions.
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Recently, positivity-preserving DG-schemes have been developed for the treatment of flow-field discon-

tinuities, and relevant contributions are by Zhang and Shu [9, 10, 11]. The positivity preserving method

provides a robust framework with provable L1-stability, preventing the appearance of negative pressure and

density. Resulting algorithmic modifications are minimal, and these schemes have been used in simulations

of detonation systems with complex reaction chemistry [12, 13].

Motivated by these attractive properties, the present work aims at developing an algorithm that avoids

non-physical solutions on arbitrary elements and multi-dimensional spatial representations. The resulting

scheme that will be developed in this work has the following properties: First, by invoking the entropy

principle, solutions are constrained by a local entropy bound. Second, a general implementation on arbitrary

elements is proposed without restriction to a specific quadrature rule. Third, the entropy constraint is

imposed on the solutions through few algebraic operations, thereby avoiding the computationally expensive

inversion of a nonlinear system. Fourth, a method for the evaluation of an optimal CFL-criterion is derived,

which is applicable to general polynomial orders and arbitrary element types.

The remainder of this paper has the following structure. The governing equations and the discretization

are summarized in the next two sections. The entropy-bounded DG (EBDG) formulation is presented in

Sec. 4, and the derivation of the CFL-constraint and the limiting operator are presented. This analysis

is performed by considering a one-dimensional setting, and the generalization to multi-dimensional and

arbitrary elements is presented in Sec. 5. Section 6 is concerned with the evaluation of the entropy-bounded

DG-scheme, and a detailed description of the algorithmic implementation is given in Sec. 7. The EBDG-

method is demonstrated by considering several test cases, and the accuracy and stability are examined in

Sec. 8. The paper finishes with conclusions.

2. Governing equations

We consider a system of conservation equations,

∂U

∂t
+∇ · F = 0 in Ω , (1)

where the solution variable U : R × RNd → RNv and the flux term F : RNv → RNv×Nd . Here, Nd denotes

the spatial dimension and Nv is the dimension of the solution vector. For the Euler equations, U and F take

the form:

U(x, t) = (ρ, ρu, ρe)T , (2a)

F(U) = (ρu, ρu⊗ u+ pI, u(ρe+ p))
T
, (2b)

where t is the time, x ∈ RNd is the spatial coordinate vector, ρ is the density, u ∈ RNd is the velocity vector,

e is the specific total energy, and p is the pressure. Equation (1) is closed with the ideal gas law:

p = (γ − 1)

(
ρe− ρ|u|2

2

)
, (3)
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in which γ is the ratio of specific heats, which, for the present work, is set to a constant value of γ = 1.4.

Here and in the following, we use | · | to represent the Euclidean norm. With this, we define the local

maximum characteristic speed as,

ν = |u|+ c with c =

√
γp

ρ
, (4)

where c is the speed of sound.

Because of the presence of discontinuities in the solution of Eq. (1), we seek a weak solution that satisfies

physical principles. This is the so-called entropy solution. By introducing U as a convex function of U with

U : RNv → R, Lax [14] showed that the entropy solution of Eq. (1) satisfies the following inequality:

∂U
∂t

+∇ · F ≤ 0 , (5)

where F : RNv → RNd is the corresponding flux of U . The consistency condition between Eqs. (1) and (5)

requires [14]: (
∂U
∂U

)T
∂F

∂U
=
∂F
∂U

. (6)

The weak solution of Eq. (1) that satisfies this additional condition for the pair (U ,F) is called an entropy

solution. With this definition, Eq. (5) is commonly called entropy inequality or entropy condition, and U is

called the entropy variable. A familiar example for gas-dynamic applications is to relate U to the physical

entropy s with:

s = ln(p)− γ ln(ρ) + s0 , (7)

where s0 is the reference entropy. The corresponding definition of the entropy variable and its flux in the

context of the Euler system is [15]:

(U ,F) = (−ρs,−ρsu) . (8)

Note that Eq. (7) directly provides a constraint on the positivity of pressure p and density ρ.

3. Discontinuous Galerkin discretization

We consider the problem to be posed on the domain Ω with boundary ∂Ω. A mesh partition is defined

as Ω = ∪Ne
e=1Ωe, where Ωe corresponds to a discrete element of this partition. The edge of element Ωe is

defined as ∂Ωe. In order to distinguish different sides of the edge, the superscripts “+” and “−” are used

to denote the interior and exterior, respectively. We define a global space of test functions as

V = ⊕Ne
e=1Ve , Ve = span{ϕn(Ωe)}

Np

n=1 , (9)

where ϕn is the nth polynomial basis, andNp is the number of bases. On the space Ve we seek an approximate

solution to Eq. (1) of the form:

U ' U = ⊕Ne
e=1Ue , Ue ∈ Ve , (10)
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where the solution vector Ue on each individual element takes the general form

Ue(x, t) =

Np∑
m=1

Ũe,m(t)ϕm(x) , (11)

and the unknown vector of basic coefficients Ũe,m ∈ RNv×Np is obtained from the discretized weak solution

of Eq. (1):

dŨe,m
dt

∫
Ωe

ϕnϕmdΩ−
∫

Ωe

∇ϕn · F (Ue)dΩ +

∫
∂Ωe

ϕ+
n F̂ (U+

e , U
−
e , n̂)dΓ = 0 , (12)

∀ϕn with n = 1, . . . , Np. The numerical Riemann flux F̂ is evaluated based on the states at both sides of the

interface ∂Ωe and the outward-pointing normal vector n̂. It is of interest to note that for the particular case

of Np = 1 and ϕ1 = 1, the weak form reduces to the classical first-order finite-volume (FV) discretization. It

can also be seen that the DG-scheme does not rely on a specific type of basis functions. Since the following

derivation is based on this mathematical property, we introduce the following lemma.

Lemma 1 A polynomial P ,

P (x) =

Np∑
m=1

P̃mϕm(x) for x ∈ Ωe , (13)

with a set of polynomial bases {ϕm(x),m = 1, . . . , Np}, can be exactly interpolated by a Lagrangian polyno-

mial of Np points {yn ∈ Ωe, n = 1, . . . , Np} under the condition that
[
ϕm(yn)

]
is non-singular:

P (x) =

Np∑
n=1

P (yn)φn(x) for x ∈ Ωe . (14)

Proof: By equating Eqs. (13) and (14), and comparing terms, it follows that

ϕm(x) =

Np∑
n=1

ϕm(yn)φn(x) or [ϕm(x)] = [ϕm(yn)] [φn(x)] , (15)

where we use [·] to denote a tensor or a vector. Since [ϕm(yn)] is non-singular, Eq. (15) can be inverted:

[φn(x)] = [ϕm(yn)]−1 [ϕm(x)] .

Remark 1 The significance of this lemma is that it provides a description to convert any basis set to

a Lagrangian basis set with Np interpolation points, as long as they are located at general positions. To

facilitate the following derivation, we choose the points yn with n = 1, . . . , Np from the Nq quadrature

points[16]. According to the accuracy requirement of the quadrature scheme for Eq. (12), Nq ≥ Np is alway

true.
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4. Entropy principle and entropy-bounded discontinuous Galerkin method

In this section, we review the entropy principle by considering a three-point FV-setting. Then, we will

explore how to extend this principle to a DG-scheme, which leads to the concept of entropy boundedness.

In order to enable the implementation of this concept, two important ingredients will be discussed, namely

a time-step constraint and a limiting operator. After conducting numerical analyses by considering a one-

dimensional configuration, we will extend the entropy boundedness to multi-dimensional and arbitrary

element types. The dimensional generality, geometric adaptability and simple implementation are major

advantages of the resulting entropy-bounded DG-method.

4.1. Preliminaries and related work

To illustrate the entropy principle, we consider a local Lax-Friedrichs flux, which can be written as:

F̂ (UL, UR, n̂) =
1

2
(F (UL) + F (UR)) · n̂− 1

2
λ(UR − UL) , (16)

and

λ ≥ max
k∈{L,R}

ν(Uk)

is the dissipation coefficient. Note that this flux function satisfies consistency: F̂ (U,U, n̂) = F (U) · n̂,

conservation: F̂ (UL, UR, n̂) = −F̂ (UR, UL,−n̂), and Lipschitz-continuity. In the following, we consider the

simplest case of DGP0 scheme, with Np = 1, in a one-dimensional setting. This formulation is consistent

with the classical three-point FV-discretization. For x ∈ Ωe = [x
e−1/2

, x
e+1/2

], the discretized solution to

Eq. (1) can be written as:

Ũe(t+ ∆t) = Ũe −
∆t

h

(
F̂ (Ũe, Ũe−1,−1) + F̂ (Ũe, Ũe+1, 1)

)
,

where Ũe is the basis coefficient, which is identical to the piecewise constant approximation to the exact

solution in Ωe. In the following, we introduce Ũ∆t
e to denote the solution vector Ũe(t + ∆t), and use the

superscript ∆t to denote a temporally updated quantity at t+∆t. With the numerical flux given in Eq. (16),

this discretization preserves the positivity of pressure and density under the CFL-condition [9, 17]:

∆tλ

h
≤ 1

2
. (17)

In addition, it was discussed in [17] that Eq. (17) satisfies the discrete minimum entropy principle proposed

by Tadmor [15],

s(Ũ∆t
e ) ≥ s0

e(t) = min
j∈{e−1,e,e+1}

s(Ũj). (18)
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To show this property, we can rewrite Eq. (17) and split Ũe(t + ∆t) into two parts. For x ∈ Ωe, this is

written as

Ũe(t+ ∆t) =
1

2

(
Ũ∆t
e,p1 + Ũ∆t

e,p2

)
, (19a)

Ũ∆t
e,p1 = Ũe −

∆t

h

(
F (Ũe+1)− λ

e+1/2
Ũe+1 − F (Ũe) + λ

e+1/2
Ũe

)
, (19b)

Ũ∆t
e,p2 = Ũe +

∆t

h

(
F (Ũe−1) + λ

e−1/2
Ũe−1 − F (Ũe)− λe−1/2

Ũe

)
, (19c)

where Ũ∆t
e,p1 and Ũ∆t

e,p2 can be viewed as the P0-approximations to the solutions of the hyperbolic systems

(under the CFL constraint of Eq. (17))

∂U

∂t
+
(
F′(U)− λ

e+1/2
I
) ∂U
∂x

= 0 , (20a)

∂U

∂t
+
(
F′(U) + λ

e−1/2
I
) ∂U
∂x

= 0 , (20b)

with the exact (Godunov) flux. If we denote the exact solutions to Eq. (20a) and (20b) as Up1(x, t + ∆t)

and Up2(x, t+∆t), respectively, then their P0-approximations in Ωe yield Ũ∆t
e,p1 = 1

h

∫ xe+1/2

xe−1/2
Up1(x, t+∆t)dx

and Ũ∆t
e,p2 = 1

h

∫ xe+1/2

xe−1/2
Up2(x, t + ∆t)dx. Both equation systems are obtained by imposing a constant shift

on the characteristic speeds without modifying the characteristic variables. With these modifications, all

characteristics in Eq. (20a) are right-running while those in Eq. (20b) are left-running. The corresponding

entropy inequalities take the form

∂U
∂t

+
∂

∂x

(
F − λ

e+1/2
U
)
≤ 0 , (21a)

∂U
∂t

+
∂

∂x

(
F + λ

e−1/2
U
)
≤ 0 . (21b)

Without loss of generality, we now consider Eq. (21a) and integrate over [t, t + ∆t] × [xe−1/2, xe+1/2],

resulting in the following expression:

xe+1/2∫
xe−1/2

U
(
Up1(x, t+ ∆t)

)
dx−

xe+1/2∫
xe−1/2

U(Ũe)dx+

t+∆t∫
t

(
F(U(x

e+1/2
, t))− λ

e+1/2
U(U(x

e+1/2
, t))
)
dt

−
t+∆t∫
t

(
F(U(x

e−1/2
, t))− λ

e−1/2
U(U(x

e−1/2
, t))
)
dt ≤ 0 .

(22)

Recognizing that all characteristics are right-running, the temporal integral can be evaluated exact since

U(x
e−1/2

, t) = Ũe and U(x
e+1/2

, t) = Ũe+1 under the condition of Eq. (17). Then by utilizing the convexity

of U with respect to U, the following estimate is obtained:

U(Ũ∆t
e,p1) = U

(
1

h

∫ xe+1/2

xe−1/2

Up1(x, t+ ∆t)dx

)
≤ 1

h

∫ xe+1/2

xe−1/2

U(Up1(x, t+ ∆t))dx

≤ U(Ũe) +
∆t

h

(
F(Ũe)− λe+1/2

U(Ũe)
)
− ∆t

h

(
F(Ũe+1)− λ

e+1/2
U(Ũe+1)

)
.
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With the definition of (U ,F), given in Eq. (8), it follows

s(Ũ∆t
e,p1) ≥ ρe

ρ∆t
e,p1

[
1− ∆t

h

(
λ

e+1/2
− ue

)]
s(Ũe) +

ρe+1

ρ∆t
e,p1

∆t

h

(
λ

e+1/2
− ue+1

)
s(Ũe+1) . (23)

The constraint (17) ensures that the coefficients in front of s(Ũe) and s(Ũe+1) are positive and sum to unity

according to Eq. (19b). From these arguments directly follows:

s(Ũ∆t
e,p1) ≥ min{s(Ũe), s(Ũe+1)} , (24)

and

s(Ũ∆t
e,p2) ≥ min{s(Ũe−1), s(Ũe)} . (25)

Combining these two relations with the quasi-concavity of the entropy s (Lemma 2.1 of [11]), the discrete

minimum entropy principle of Eq. (18) is obtained.

The result above is obtained for a one-dimensional setting. However, in the following we derive a

rotational version of this entropy principle for multi-dimensional cases by following the idea of [17]. By

considering an arbitrary face with a normal n̂, we can define a tangential vector t̂. By projecting the

velocity in Cartesian coordinates onto this local coordinate (n̂, t̂) with the following mapping,

u → (un, ut)
T ,

with

un = u · n̂, ut = u · t̂ ,

with which, the conservative variables and flux terms can be written as follows

U = (ρ, ρun, ρut, ρen, ρet)
T , (26a)

F = (ρun, ρu
2
n + p, ρutun, un(ρen + p), ρunet)

T , (26b)

and

en =
p

ρ(γ − 1)
+

1

2
u2
n, et =

1

2
u2
t .

For this augmented system, it can be seen that the variations of density, pressure and entropy are all governed

by a 1D reduced system that is parallel to n̂:

U = (ρ, ρun, ρen)T , (27a)

F = (ρun, ρu
2
n + p, un(ρen + p))T , (27b)

and its discretized version is identical to Eq. (17). Thus, the solution preserves the positivity of density and

pressure and satisfies the entropy principle under the CFL-constraint, Eq. (17), with λ ≥ max
j∈{e−1,e,e+1}

ν(Uj).

We now conclude the above analysis with the following lemma as a critical element for the subsequent

derivation.
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Lemma 2 For a three-point system defined on RNd , the solution along an arbitrary direction n̂,

Ũ∆t
e = Ũe +

∆t

h

(
F̂ (Ũe, Ũe−1,−n̂) + F̂ (Ũe, Ũe+1, n̂)

)
, (28)

with the flux function F̂ specified in Eq. (16), preserves the positivity of density and pressure, and satisfies

the entropy principle:

s(Ũ∆t
e ) ≥ min

j∈{e−1,e,e+1}
s(Ũj) , (29)

under the CFL condition:

∆tλ

h
≤ 1

2
, λ ≥ max

j∈{e−1,e,e+1}
ν(Ũj),

This three-point system is consistent with that used by Zhang and Shu [9, 11]. The difference is that we

introduce a local entropy bound s0
e at time t instead of a global entropy bound that is derived from the

initial conditions min
x∈Ω

s(x, 0). Although a local Lax-Friedrichs flux was used for illustrative purposes, other

Riemann solvers that preserve positivity and entropy stability are equally suitable, for example, the Roe-type

solver with entropy fix [18], the kinetic-type solver [19] and the exact Godunov solver.

4.2. Entropy-bounded DG-scheme

To robustly capture shocks while retaining the high-order benefit of the DG-scheme, sub-cell shock

resolution is required [20]. We now extend the discussion by considering a high-order DG-solution with

sub-cell representation. In each DG-cell, the whole solution is approximated by a function space. However,

there is no guarantee that the high-order (Np > 1) solution obeys the physical entropy principle. This is

the reason that DG suffers from numerical instability in the vicinity of discontinuities. To suppress these

instabilities, one approach is to consider imposing constraints based on the behavior of the entropy solution.

The positivity-preserving DG-method [9, 10] is a successful example for this approach. Based on the entropy

principle, Eq. (18), Zhang and Shu [11] extended their implementation to an entropy-based constraint. Here,

we propose a general framework that is based on the entropy principle, and major differences and advantages

have been highlighted in Sec. 1.

We define the constraint for the high-order DG-scheme as follows:

∀x ∈ Ωe, s(U∆t
e (x)) ≥ min{s(U(y))| y ∈ Ωe ∪ ∂Ω−e } ≡ s0

e(t) . (30)

In this equation, the right-hand-side sets an entropy bound for an element-local solution in Ωe; with this, we

refer to a DG-solution as entropy-bounded if it satisfies this principle. s0
e(t) is a local estimate for the true

entropy minimum in Ωe, |s0
e(t)−min

x∈Ωe

s (U(x)) | ∼ O(hk), where k is the local order of accuracy. Besides that,

s0
e(t) is bounded if the entropy is bounded at the domain boundaries, s0

e(t) ≥ min
x∈Ω

s(U(x, t = 0)) = s0, where

s0 is the minimum entropy at the initial condition. By imposing this constraint, we expect that the sub-cell
9
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Figure 1: (Color online) Schematic of entropy-bounding of the EBDG scheme.

DG-solution is regularized, avoiding the appearance of non-physical solutions. This idea is illustrated in Fig.

1. At time level t, s0
e(t) is calculated and used to set a reference bound for the solution at the next step,

U∆t
e . If U∆t

e yields entropy undershoot with respect to s0
e(t), it will be modified to satisfy the constraint

of Eq. (30). In order to implement this regularization for a high-order DG scheme, the following aspects

require addressing:

i To impose Eq. (30) on the DG-solution, we introduce a limiting operator L. The regularized solution,

denoted by LU∆t
e , requires that s(LU∆t

e (x)) ≥ s0
e(t) ∀x ∈ Ωe. In the following, we relax this condition,

and impose Eq. (30) only on the set of quadrature points, D, that are involved in solving the weak

form in Eq. (12).

ii Guaranteeing that the constraint (30) is always imposed requires the existence of the operator L. A

sufficient condition for this is that the element-averaged solution is entropy-bounded, s(U
∆t

e ) ≥ s0
e(t).

Enforcing this condition relies on the selection of a proper CFL-condition, and this analysis will be

developed in Sec. 4.3 for a one-dimensional system. Subsequently, this analysis is then extended in

Sec. 5.2 to general multi-dimensional elements.

iii Algorithmic details on the implementation of the operator L constraining the element-local DG-

solution are discussed in Sec. 4.4.

iv The evaluation of the lower bound s0
e(t) that is necessary to constrain the entropy solution is given in

Sec. 6.

4.3. CFL-constraint for one-dimensional entropy-bounded DG

The objective now is to extend the analysis for DGP0 to a DG-scheme with high-order polynomial repre-

sentations. Consider a one-dimensional domain in which the element Ωe is centered at xe, and a quadrature
10



rule with weights wq and
∑Nq

q=1 wq = 1. These quadrature weights are evaluated at the quadrature points

xq ∈ [xe+1/2, xe−1/2]. The discretized cell-averaged solution Ue is defined as:

Ue =
1

h

∫
Ωe

Uedx, (31)

(for the P0-case discussed above, Ue = Ũe), which can be further expanded by a quadrature rule with

sufficient accuracy:

Ue =

Nq∑
q=1

wqUe(xq) ,

=

Nq∑
q=1

(
wq − θlφq(xe−1/2)− θrφq(xe+1/2)

)
Ue(xq) + θlUe(xe−1/2) + θrUe(xe+1/2) ,

=

Nq∑
q=1

θqUe(xq) + θlUe(xe−1/2) + θrUe(xe+1/2) ,

(32)

where the first line utilizes the exactness of the quadrature rule, the second line utilizes Lemma 1, and the

third line defines θq = wq − θlφq(xe−1/2)− θrφq(xe+1/2). Under the condition that θr,l > 0 and θq ≥ 0, the

last line of Eq. (32) is a convex combination. Since the quadrature weights wq are positive, the existence

of θr,l is guaranteed through the condition wq ≥ θlφq(xe−1/2) + θrφq(xe+1/2). If φq(xe±1/2) > 0, θr,l is

constrained as (0,minq wq/max{φq(xe±1/2)}]. If some of φq(xe±1/2) are negative, they are not essential in

setting the upper bound for θr,l.

Remark 2 In the following, θr,l will be related to a CFL-constraint. To obtain an optimal CFL-number,

the largest value of θr,l needs to be found. This can be formulated as a maximization problem subject to the

constraints, θr,l > 0 and θq ≥ 0.

For illustration, we fully discretize Eq. (12) using a forward Euler time integration scheme and insert the

results from Eq. (32). The element-averaged solution in Ωe is then updated as:

U
∆t

e = Ue −
∆t

h

(
F̂ (Ue(xe−1/2), Ue−1(xe−1/2),−1) + F̂ (Ue(xe+1/2), Ue+1(xe+1/2), 1)

)
,

=

Nq∑
q=1

θqUe(xq) +

θlUe(xe−1/2)− ∆t

h

(
F̂ (Ue(xe−1/2), Ue−1(xe−1/2),−1) + F̂ (Ue(xe−1/2), U∗e , 1)

)
+

θrUe(xe+1/2)− ∆t

h

(
F̂ (Ue(xe+1/2), U∗e ,−1) + F̂ (Ue(xe+1/2), Ue+1(xe+1/2), 1)

)
, (33)

where

U∗e =
1

2

(
Ue(xe−1/2) + Ue(xe+1/2)

)
− 1

2λ

(
F (Ue(xe+1/2))− F (Ue(xe−1/2))

)
(34)
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is introduced to simplify subsequent analyses. Note that U∗e ensures the validity of the second equality in

Eq. (33) with a λ that is defined in the following lemma. We can see that Eq. (33) contains two three-point

systems discussed in Sec. 4.1. To guarantee that U
∆t

e is entropy-bounded, it is necessary that these systems

conform to the entropy principle of Eq. (18). This leads to the following lemma.

Lemma 3 For a one-dimensional DG-system, the element-averaged solution satisfies the entropy principle

s(U
∆t

e ) ≥ s0
e(t) = min{s(U(y))| y ∈ Ωe ∪ ∂Ω−e } , (35)

under the CFL-constraint
∆tλ

h
≤ 1

2
min {θl, θr} , (36)

where λ is the maximum wave speed that is evaluated over the set of point-wise solutions

λ ≥ max
U

ν(U) with U ∈ {Ue−1(xe−1/2), Ue(xe±1/2), Ue+1(xe+1/2)} , (37)

given the conditions θr,l > 0 and θq ≥ 0.

Proof: First, we need to show that U∗e satisfies the discretized entropy principle of Eq. (18). This is indeed the

case since U∗e is essentially the left-hand-side of Eq. (19b) with time step taking ∆t = h/(2λ), corresponding

to the upper bound of the CFL-constraint. Since U∗e is an entropy solution, ν(U∗e ) is bounded by λ, which

makes the Lax-Friedrichs flux F̂ involving U∗e in Eq. (33) valid according to the definition in Eq. (16).

Therefore, we have

s(U∗e ) ≥ min
{
s(Ue(xe−1/2)), s(Ue(xe+1/2))

}
,

Second, we reformulate Eq. (33) as

U
∆t

e =

Nq∑
q=1

θqUe(xq) + θlU
∆t

e,p1 + θrU
∆t

e,p2 , (38)

in which U
∆t

e,p1 and U
∆t

e,p2 are the two updated solutions of the three-point system. Their definitions are readily

obtained by comparing Eqs. (38) and (33). The given constraints, θr,l > 0 and θq ≥ 0, guarantee that the

form of the convex combination in Eq. (38) always holds. According to Lemma 2, it follows

s(U
∆t

e,p1) ≥ min
{
s(U∗e ), s(Ue(xe−1/2)), s(Ue−1(xe−1/2))

}
,

s(U
∆t

e,p2) ≥ min
{
s(U∗e ), s(Ue(xe+1/2)), s(Ue+1(xe+1/2))

}
,

under the given CFL-constraint, Eq. (36). Combining this with the quasi-concavity of entropy [11], it follows

s(U
∆t

e ) ≥ min
{
s(Ue(xq)), s(U

∆t

e,p1), s(U
∆t

e,p2)
}
,

≥ min{s(U(y))| y ∈ Ωe ∪ ∂Ω−e } .
12



Remark 3 Equation (36) ensures the positivity of p(U
∆t

e ) and ρ(U
∆t

e ).

In this context, we emphasize that the CFL-constraint (36) provides a description for the entropy bounded-

ness and does not conflict with the general CFL-constraint for linear stability, CFLL. To distinguish both

constraints, here we use CFLEB to denote the CFL-number for guaranteeing the entropy boundedness. In

general, the time step has to be selected to satisfy both criteria. Equation (36) shows that CFLEB depends

on the value min{θl, θr}, and a rigorous evaluation for this will be given below.

Although we considers the specific case of a forward Euler time discretization scheme, all the derivation

and conclusions are directly applicable to any explicit Runge-Kutta (RK) methods with positive coefficients,

since the RK-solution is a convex combination of solutions obtained from several forward Euler sub-steps.

In practice, RK-methods are preferred as DG time-integration schemes due to their compatible stability

properties [21].

4.4. Construction of a limiting operator L

Following Lemma 3, the entropy constraint is imposed on the set of quadrature points, x ∈ D ⊂ Ωe. For

the one-dimensional case, D is:

D = {xe±1/2, xq, q = 1, . . . , Nq (Nq ≥ Np)} . (39)

In the following, we are concerned with the construction of a limiting operator L, such that

∀x ∈ D, s(LU∆t
e (x)) ≥ s0

e(t) , (40)

Since the operator L is applied at the end of each sub-iteration, we will omit the superscript ∆t in the

subsequent analysis. According to the entropy definition (7), Eq. (40) can be written as:

p(LUe(x)) ≥ exp(s0
e)ρ

γ(LUe(x)) ∀x ∈ D . (41)

To define the operator L, we follow the work of Zhang and Shu [9, 11], and introduce a linear scaling:

LUe = Ue + ε(Ue − Ue) . (42)

The parameter ε is then determined by substituting Eq. (42) into Eq. (41) and by applying Jensen’s in-

equality:

p
(
(1− ε)Ue + εUe

)
≥ (1− ε)p(Ue) + εp(Ue) ,

≥ exp(s0
e)
[
(1− ε)ργ(Ue) + εργ(Ue)

]
, (43)

≥ exp(s0
e)ρ

γ
(
(1− ε)Ue + εUe

)
.

Solving for ε gives

ε =
τ

τ − [p(Ue)− exp(s0
e)ρ

γ(Ue)]
with τ = min

{
0, min

x∈D
{p(Ue(x))− exp(s0

e)ρ
γ(Ue(x))}

}
, (44)
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which is subject to the conditions

ρ(Ue) > 0 , p(Ue) > exp(s0
e)ρ

γ(Ue) . (45)

These conditions are automatically guaranteed through the CFLEB-constraint of Lemma 3. While the

positivity condition for pressure is embedded in Eq. (43), the positivity of density must be imposed for all

x ∈ D before L is applied, and the methodology for this is presented in [10].

Compared to the limiting operator, presented in [11], the herein proposed method is substantially sim-

plified. Specifically, the step for imposing the positivity of pressure is avoided; in addition, ε is obtained

from an algebraic relation, and does not require a computationally expensive Newton iteration. It is also

noted that the operator L contains the positivity-preserving limiter as a special case, which is obtained by

setting s0
e → −∞.

4.5. Numerical analysis of the limiting operator L

In this section, numerical properties of the limiting operator are examined.

Conservation. Integrating Eq. (42) over Ωe,∫
Ωe

LUedx = (1− ε)
∫

Ωe

Uedx+ εUe

∫
Ωi

dx =

∫
Ωe

Uedx ,

confirms that the limiting operator preserves the conservation properties of the solution vector.

Stability. Since the positivity of density and pressure is preserved at the quadrature points, L is L1-stable,

which was shown in [9, 11]. Here, we extend this stability analysis and evaluate the L2-stability. By

considering a periodic domain and taking the L2-norm of Eq. (42) we obtain:

||LUe||2 =

∫
Ωe

[Ue + ε(Ue − Ue)]2dx , (46a)

= (1− ε)2

∫
Ωe

U2
e dx− ε(ε− 2)

∫
Ωe

U
2

edx , (46b)

≤ (1− ε)2

∫
Ωe

U2
e dx− ε(ε− 2)

∫
Ωe

U2
e dx , (46c)

≤ ||Ue||2 . (46d)

After integrating over the entire domain, we obtain

||LU ||2Ω ≤ ||U ||2Ω ,

which shows that L does not affect the stability of the DG-discretization. Further, since L constrains pressure

and density, λ in Eq. (36) provides a robust CFL-criterion, without the need for arbitrarily reducing ∆t to

increase the stability region.

14



Accuracy. In regions where the solution is smooth, we assume that the weak solution before limiting has

optimal accuracy:

||U − U||Ω ≤ C1h
p+1 ,

and that undershoots in entropy remain small, so that ε ∼ O(hp). Thus, the error is estimated as follows:

||LU − U||2Ω =
∑
e

||LUe − Ue||2 , (47a)

=
∑
e

||ε(Ue − Ue) + (1− ε)(Ue − Ue)||2 , (47b)

≤
∑
e

(
2ε2||(Ue − Ue)||2 + 2(1− ε)2||Ue − Ue||2

)
, (47c)

≤ C2h
2p+2 , (47d)

where for simplicity, we introduce Ue to denote the element-wise representations to U. Here we use the fact

that Ue is locally a first-order approximation to Ue, Ue = Ue + Ce3O(h).

In the vicinity of a discontinuity, the DG-solution looses its regularity so that the convergence rate

reduces to first-order: ||U − U||Ω ≤ C4h.

Triggered by spurious sub-cell solutions, the entropy undershoot can be very large, so that ε ∼ O(1). By

repeating the above argument, we obtain an estimate for the accuracy of the discontinuous solution:

||LU − U||Ω ≤ C5h.

The accuracy arguments given here are substantiated through numerical tests in Sec. 8.

5. Generalization to multi-dimension and arbitrary elements

The entropy-bounded DG scheme that was presented for one-dimensional systems in the previous section

can be generalized to arbitrary elements in multi-dimensions. This extension is the subject of the following

analysis.

Since EBDG does not rely on a specific quadrature rule, any quadrature method can be used as long

as it accurately integrates the problem and ensures the positivity of the quadrature weights. The limiting

procedure requires the definition of a new set of quadrature points D for the general multi-dimensional

setting. The selection of these points is given in the next section. The extension to arbitrary elements

requires special consideration of the CFLEB number.

5.1. Generalization to multi-dimension and arbitrary elements

To present a general formulation for multi-dimensional configurations, we first introduce necessary no-

tations to describe general elements with curvatures. For this, we define a geometric mapping function
15



Φ : RNd → RNd on a reference element Ωr
e, such that x = Φ(r) maps any point r ∈ Ωr

e onto x ∈ Ωe, and

J = [∂x/∂r] is the geometric Jacobian. With these specifications, we can write the discretized state vector

as:

Ue(x, t) =

Np∑
m=1

Ũe,m(t)ϕm(r) , x = x(r) ∈ Ωe , ∀r ∈ Ωr
e (48)

The mapping function is commonly parameterized by a polynomial function x(r) =
∑Ng

m=1 x̃mϕ
g
m(r), where

ϕgm(r) is a Lagrangian interpolation and Ng is the number of geometric bases used to represent Ωe. Since

the reference element is regular, we can use a subspace of r to parameterize the element edges. Therefore,

to parameterize the kth edge of Ωe we define gk = Pk(r) ∈ RNd−1 such that ∀r ∈ ∂Ωr
e,k, r = P−1

k (gk), in

which P−1
k is the pseudo-inverse of Pk. For the physical element, the edge can be represented as:

∂Ωe,k =
{
x ∈ Ωe | x = Φ(r), r = P−1

k (gk) ∈ ∂Ωr
e,k

}
. (49)

The integral in Eq. (12) is evaluated using multi-dimensional quadrature rules. Considering the com-

plexity of the dimensionality, here we follow the quadrature convention that is
∑Nq

v=1 wv = V r
e (the volume

of Ωr
e) and

∑Nk
q

q=1 wk,q = Sr
e,k (the area of ∂Ωe,k). With these preliminaries, we can evaluated any volume

integral in Eq. (12) as: ∫
Ωe

f(x)dx =

∫
Ωr

e

|J (r)|f(x(r))dr =

Nq∑
v=1

|J (rv)|f(x(rv))wv . (50)

The surface integral of a scalar function on ∂Ωe,k can be written as:

∫
∂Ωe,k

f(x)dΓ =

∫
∂Ωr

e,k

f(x(gk))|J ∂k |dgk =

N∂
q,k∑
q=1

|J ∂k (gk,q)|f(x(gk,q))wk,q , (51)

and the surface integral of a vector-valued function is evaluated as:

∫
∂Ωe,k

f(x) · n̂dΓ =

∫
∂Ωr

e,k

f(x(gk)) · J ∂k dgk =

N∂
q,k∑
q=1

|J ∂k (gk,q)|f(x(gk,q)) · n̂(gk,q)wk,q , (52)

where J ∂k is the surface Jacobian, and n̂ refers to the unit vector J ∂k /|J ∂k |. Note that for a general element,

the quadrature expression might be subject to a tiny numerical error bounded by O(h2p+1), given the

accuracy requirement for integrating Eq. (12).

With the above notation, we are now able to define the set of quadrature points D for general curved

elements:

D =

N∂⋃
k=1

{gk,q, q = 1, . . . , N∂
q,k}

⋃
{rv, v = 1, . . . , Nq} , (53)

where N∂ is the number of element edges (which is equal to the number of neighbor elements). In this

context, it is noted that D includes all quadrature points that are involved in the integration. With this

specification of D, the limiting operator L, developed in Sec. 4.4, can be directly extended to arbitrary
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elements on multi-dimensional configurations. In the following, a CFLEB-constraint is derived that extends

the results of Lemma 3, thereby ensuring the existence of the general limiter L.

5.2. CFL-constraint

Following the same approach as for the one-dimensional derivation in Sec. 4.3, the element-averaged

solution of U∆t
e is evaluated as:

U
∆t

e = Ue −
∆t

Ve

N∂∑
k=1

∫
∂Ωe,k

F̂
(
U+
e , U

−
e , n̂

)
dΓ , (54a)

=

Nq∑
v=1

|J (rv)|wv
Ve

Ue(rv)−
N∂∑
k=1

N∂
q,k∑
q=1

∆t|J ∂k (gk,q)|wk,q
Ve

F̂
(
U+
e (r(gk,q)), U

−
e (r(gk,q)), n̂(gk,q)

)
,(54b)

=

Nq∑
v=1

θvUe(rv) +

N∂∑
k=1

N∂
q,k∑
q=1

[
θk,qU

+
e (r(gk,q))

−∆tζk,q

(
F̂
(
U+
e (r(gk,q)), U

−
e (r(gk,q)), n̂(gk,q)

)
+ F̂

(
U+
e (r(gk,q)), U

∗
e ,−n̂(gk,q)

))]
, (54c)

where

θv =
|J(rv)|wv

Ve
−

N∂∑
k=1

N∂
q,k∑
q=1

θk,qφv (r(gk,q)) (55)

is introduced to decompose the volumetric quadrature to obtain U+
e (r(gk,q)). For notational simplification,

we defined

ζk,q =
|J ∂k (gk,q)|wk,q

Ve
, (56)

so such that Se =
∑N∂

k=1

∑N∂
q,k

q=1 ζk,q is equal to the surface area of Ωe, and
∑N∂

k=1

∑N∂
q,k

q=1 ζk,qn̂(gk,q) = 0

since Ωe has a closed surface. To apply the results from the three-point system to the multi-dimensional

configuration, we introduce the auxiliary variable U∗e :

U∗e =

N∂∑
k=1

N∂
q,k∑
q=1

ζk,q
Se

[
U+
e (r(gk,q))−

1

λ∗
F (U+

e (r(gk,q))) · n̂(gk,q)

]
. (57)

It can be shown that U∗e is essentially the solution to the following equation:

N∂∑
k=1

N∂
q,k∑
q=1

ζk,qF̂
(
U+
e (r(gk,q)), U

∗
e ,−n̂(gk,q)

)
= 0 , (58)

subject to a preselected dissipation coefficient λ∗, so that the equality in Eq. (54c) holds true. Here, we

evaluate λ∗ from the following relation:

λ∗ = τ max
{
ν(U) | U ∈ {U+

e (r(gk,q))}
}
, τ = max

{√
Nd,

√
2 + γ(γ − 1)

}
(59)

and the rationale for this selection is provided later in Remark 4. To prove that U
∆t

e is entropy bounded,

we present the following lemma.
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Lemma 4 U∗e in Eq. (57) satisfies s(U∗e ) ≥ min {s(U) | U ∈ {U+
e (r(gk,q))}}.

Proof: For notational simplification, we combine the indices k and q into a single index j, and we denote the

total number of surface quadrature points on ∂Ωe by Ntot, Ntot =
∑N∂

k=1N
∂
q,k. Considering

∑Ntot

j=1 ζj n̂
(d)
j = 0

and ζj > 0, the dth components of the surface-normal vectors have different signs. To denote each component,

we introduce the superscript (d). By sorting n̂
(d)
j so that the first N>

tot vector components are positive. The

following statement is true for any d:

N>
tot∑

j=1

ζj n̂
(d)
j = −

Ntot∑
j=N>

tot+1

ζj n̂
(d)
j =

Npar∑
n=1

ln , (60)

where ln introduces a partition as illustrated in Fig. 2 and Npar is the dimension of this partition. With

this, we are able introduce a variable mapping,

Us+n = U+
e (rj), if

j−1∑
i=1

ζin̂
(d)
i <

n∑
i=1

li ≤
j∑
i=1

ζin̂
(d)
i ,

Us−n = U+
e (rj), if −

j−1∑
i=N>

tot+1

ζin̂
(d)
i <

n∑
i=1

li ≤ −
j∑

i=N>
tot+1

ζin̂
(d)
i .

With this, Eq. (57) is equivalent to:

U∗e =
1

Se

Ntot∑
j=1

ζjU
+
e (rj)−

Ntot∑
j=1

ζj
λ∗
F (U+

e (rj)) · n̂j

 ,

=

Ntot∑
j=1

ζj
Se

(
1−

Nd∑
d=1

|n̂(d)
j |√
Nd

)
U+
e (rj) +

Nd∑
d=1

Ntot∑
j=1

1

Se

(
ζj |n̂(d)

j |√
Nd

U+
e (rj)−

ζj n̂
(d)
j

λ∗
F (d)(U+

e (rj))

)
,

=

Ntot∑
j=1

ζj
Se

(
1−

Nd∑
d=1

|n̂(d)
j |√
Nd

)
U+
e (rj) +

Nd∑
d=1

1

Se

 2√
Nd

Npar∑
n=1

lnU
∗∗
d,n

 ,

where we introduce

U∗∗d,n =
1

2
(Us+n + Us−n )−

√
Nd

2λ∗

(
F (d)(Us+n )− F (d)(Us−n )

)
,

which takes the same form as the left-hand-side of Eq. (34). Note that U∗∗d,n is essentially expressed in a

one-dimensional setting along x(d). Therefore, one can follow the same argument used for Eq. (34) in

Lemma 3 to verify that

s(U∗∗d,n) ≥ min
{
s(Us±n )

}
≥ min

{
s(U) | U ∈ {U+

e (rj)}, j = 1, . . . , Ntot

}
,

with the given form of λ∗ in Eq. (59). As given above, U∗e is a convex combination; by using the quasi-

concavity of entropy [11], we conclude that

s(U∗e ) > min
{
s(U) | U ∈ {U+

e (rj)}, j = 1, . . . , Ntot

}
.
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Figure 2: Illustration of the partition introduced in Lemma 4.

Remark 4 Note that the maximum characteristic speed of U∗∗d,n is bounded, ν(U∗∗d,n) ≤ ν(U+
e (r)). According

to the combination law given in Appendix A, we have ν(U∗e ) ≤
√

2 + γ(γ − 1) max {ν(U+
e (r))} ≤ λ∗. With

this, we are now able to show that the maximum characteristic speed of U∗e is bounded by the chosen value

of λ∗, so that the Lax-Friedrichs flux F̂ (U+
e (r), U∗e ,−n̂) in Eq. (54) is valid according to the definition of

Eq. (16).

To enforce the entropy boundedness, the decomposition of U
∆t

e in Eq. (54) is required to be convex. This

can be satisfied under the following condition:θv ≥ 0 , ∀v = 1, . . . , Nq,

θk,q > 0 , ∀(k, q), q = 1, . . . , N∂
k , k = 1, . . . , N∂ ,

(61)

With this, the entropy boundedness of U
∆t

e is shown by the following lemma.

Lemma 5 For a general DG element, the element-averaged solution is entropy bounded,

s(U
∆t

e ) ≥ s0
e(t) = min{s (U(y)) | y ∈ Ωe ∪ ∂Ω−e }, (62)

under the condition that Eq. (61) holds and that the following constraint is fulfilled:

∆tλ ≤ 1

2
min

{
θk,q
ζk,q

}
, ∀(k, q), q = 1, · · · , N∂

k , k = 1, · · · , N∂ , (63)

where λ ≥ max{ν(U) | U ∈ {U±e (r(gk,q))} and λ ≥ λ∗.

Proof: The proof follows Lemma 3, utilizing Lemma 2 and the quasi-concavity of entropy.

Note that Lemma 5 does not rely on any assumption regarding the dimensionality or shape of the finite

element, and is therefore general. Another observation is that Eq. (63) essentially provides an estimate for

CFLEB that is only a function of the geometry of the element. For practical applications, we require the
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right-hand-side of Eq. (63) to be as large as possible so that larger time steps can be taken. This can be

achieved by solving a convex optimization problem:

maximize

(
min

{
θk,q
ζk,q

})
, (64)

subject to Eq. (61)

where θk,q, ζk,q are properties of the geometry alone. This problem can be solved for each individual element

as a pre-processing step prior to the simulation. Another way to interpret the expression is to identity a

length scale from the right-hand-side of Eq. (63), for which the CFLEB number can be explicitly defined.

For this, Le = minVe/|J ∂k (gk,q)| is used as a characteristic length for Ωe. Hence,

min

{
θk,q
ζk,q

}
≥ Le min

{
θk,q
wk,q

}
and an alternative expression to Eq. (64) is

maximize min

{
θk,q
wk,q

}
, (65)

subject to Eq. (61) ,

where the optimal solution is the value of CFLEB. With this, the CFL-constraint can be written as

∆tλ

Le
≤ 1

2
CFLEB , (66)

which is used in the following numerical tests. The factor of 1/2 is a consequence of the Riemann flux

formulation. For some of the most relevant element types with regular shapes, the value of CFLEB has been

calculated and listed in Table 1 for different polynomial orders. In practice, we found that the bound in

Eq. (66) leads to a conservative estimate for the time step. Considering the computation of efficiency and

the constraint for the linear stability by [21], this condition is relaxed and we consider 0.8CFLEB for the

following numerical experiments.

6. Evaluation of entropy bound

In this section, we propose an approach for evaluating the entropy bound s0
e(t) to answer the fourth

implementation problem listed in Sec. 4.2. Obviously, the most accurate way for evaluating a lower bound

of entropy is to use Newton’s method. However, this approach can significantly impair the efficiency, since

searching the minimum on a multi-dimensional high-order element is intractable in terms of computational

cost. To overcome this issue, we propose the following two approaches:

• User-defined global bound . The first strategy is to let the user specify a global entropy bound, which

is then kept constant and used everywhere in the computational domain. Although this approach is
20



Table 1: Summary of quadrature orders and optimal CFL numbers for different types of elements. Quadrature rule (QR) ap-

plied: Line, Quadrilateral and Brick: tensor-product Gauss-Legendre; Triangle: Dunavant [22]; Tetrahedron: Zhang, et al. [23].

(note that Dunavant’s triangle rule includes negative weights for 3rd-and 7th-order quadrature, therefore, only quadrature rules

with positive weights are used with one extra order.)

Element Order QR on ∂Ωe QR on Ωe CFLEB

(1, 0)(0, 0)

p = 1 / 3 0.5

p = 2 / 5 0.167

p = 3 / 7 0.123

p = 4 / 9 0.073

(0, 1)

(0, 0)

(1, 1)

(1, 0)

p = 1 3 3 0.25

p = 2 5 5 0.083

p = 3 7 7 0.062

p = 4 9 9 0.036

(0, 1)

(0, 0)

(1, 0)

p = 1 3 4 0.135

p = 2 5 5 0.067

p = 3 7 8 0.058

p = 4 9 9 0.033

(1,1,1)(0,1,1)

(1,0,1)
(0,0,1)

(1,1,0)

(0,1,0)

(1,0,0)

(0,0,0)

p = 1 3 3 0.167

p = 2 5 5 0.056

p = 3 7 7 0.041

p = 4 9 9 0.024

(1,0,0)

(0,1,0)

(0,0,0)

(0,0,1)

p = 1 4 3 0.066

p = 2 5 5 0.035

p = 3 8 7 0.015

p = 4 9 9 0.013

simple and robust, it is not optimal. It is suitable for certain problems with a well-defined entropy

bound. As example, for a supersonic flow over an airfoil, the free stream entropy can be used to

impose this bound. However, for more complex cases with multiple discontinuities that include several

entropy jumps, such a constant bound is not able to enforce the constraint for all elements. Note that

this approach recovers the positivity constraint of Zhang and Shu [9, 10] in the limit of s0
e(t)→ −∞.

• Estimate of local entropy bound . This strategy imposes an entropy bound for each element and

dynamically updates s0
e(t) during the simulation. Instead of relying on a sophisticated search algorithm,

s0
e(t) can be approximately evaluated by reusing available information on quadrature points. According
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to the definition of s0
e(t), Eq. (30), we also need to consider the set of quadrature points on ∂Ω−e ,

denoted as D−. Therefore, the estimation for s0
e(t) is obtained according to the following formulation,

Es0
e(t) = min

 min
x∈D−

s(U(x)), sm −
min

x∈D,x 6=xm

{|xm − x|}

|xm − xn|
(
sn − sm

) (67)

where we introduce xm and xn to denote the locations of the minimum and maximum entropy values,

respectively,

sm = s(Ue(xm)) = min
x∈D

s(Ue(x)) ,

sn = s(Ue(xn)) = max
x∈D

s(Ue(x)) .

Although this estimate is simple and inexpensive, one has to realize that any extrapolation in the

vicinity of discontinuities becomes dangerous due to the spurious behavior of the sub-cell solution.

However, it can be resolved by referring to the entropy bounds around Ωe at the last time step,

s0
e(t) = max

{
Es0
e(t), min

k∈Ne∪{e}
s0
k(t−∆t)

}
, (68)

where Ne refers to the set of the indices of all neighbor elements of Ωe that share a common edge.

For practical tests, we found that the above strategy can be applied in a combined way. Specifically, Eq.

(67) is used for initializing the simulation, and Eq. (68) is then applied during the subsequent simulation.
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7. Algorithmic implementation

Algorithm 1 provides a description of the implementation details of the EBDG scheme.

Algorithm 1: Implementation of EBDG scheme.

Pre-computation of CFL condition: For each element, solve Eq. (64); alternatively, take CFLEB

from Table 1 and compute Le(recommended for simplicity)

Initialization: Initialize solution vector U(x, 0) = U0

while t ≤ tend do

for each element do

Estimate entropy bound s0
e(t) according to Eqs. (67) and (68)

Find λ and estimate time step size ∆t according to Eq. (63)

end

Find the minimum permissible time step ∆tmin over all elements;

for each stage k of a Runge-Kutta integration scheme do

for each element do

step 1: Update solution vector Uk+1 = Uk + ∆tminR
k (R refers to the residual)

step 2: Apply L on Uk+1 with s0
e(t) according to Eqs. (42) and (44)

end

end

Advance time t = t+ ∆tmin

end

8. Results and numerical test cases

In the following, EBDG is applied to a series of test cases to demonstrate the performance of this method.

We begin by considering one-dimensional configurations to confirm the high-order accuracy and essential

convergence properties. This is followed by two- and three-dimensional cases with specific emphasis on

applications to unstructured meshes and general curved elements.

8.1. One-dimensional smooth solution

The first case considers a one-dimensional periodic domain x ∈ [0, 1] with smooth initial conditions:

ρ(x, 0) = 1 + 0.1 sin(2πx) ,

u(x, 0) = 1 ,

p(x, 0) = 1 .

The accuracy is examined by considering different spatial resolutions and polynomial orders. For each

polynomial order, the CFL number is assigned to 0.8CFLEB, in which CFLEB is taken from Table 1.
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Initially, s0 is set to 0.874, corresponding to the minimum entropy value of the initial condition. The

SSPRK33 time-integration scheme [24] is used, and the convergence rate is given in Table 2. Although the

EBDG-scheme remains stable, it can be seen that the solutions do not reach the optimal rates for DGP3

and DGP4. The reason for this is that the stability region is not sufficiently large for both cases. To

demonstrate this, we switch the time-integration scheme to a standard RK45. As can be seen from Table 3,

the optimal convergence rates for all cases are achieved, demonstrating that the optimal convergence for

smooth solutions is preserved by the EBDG-scheme. In the following, the standard RK45 is used for all

other cases.

h
DGP1 DGP2 DGP3 DGP4

L2-error rate L2-error rate L2-error rate L2-error rate

1/10 3.074e-3 - 1.274e-4 - 4.716e-6 - 2.036e-7 -

1/20 6.508e-4 2.240 1.513e-5 3.073 3.073e-7 3.940 1.980e-8 3.362

1/40 1.535e-4 2.084 1.891e-6 3.000 2.182e-8 3.816 2.454e-9 3.013

1/80 3.775e-5 2.024 2.364e-7 3.000 1.880e-9 3.537 3.130e-10 2.971

1/160 9.398e-6 2.006 2.955e-8 3.000 2.001e-10 3.232 3.924e-11 2.995

1/320 2.347e-6 2.002 3.694e-9 3.000 2.401e-11 3.059 4.922e-12 2.995

Table 2: Convergence test of 1D advection with SSPRK33, showing degradation of convergence order for DGP3 and DGP4

(here we use density to evaluate the error).

h
DGP1 DGP2 DGP3 DGP4

L2-error rate L2-error rate L2-error rate L2-error rate

1/10 3.494e-3 - 2.140e-4 - 4.650e-6 - 1.438e-7 -

1/20 7.231e-4 2.273 1.513e-5 3.823 2.920e-7 3.993 4.517e-9 4.992

1/40 1.630e-4 2.150 1.891e-6 3.000 1.826e-8 3.999 1.419e-10 4.992

1/80 3.790e-5 2.105 2.364e-7 3.000 1.141e-9 4.000 4.444e-12 4.997

1/160 9.398e-6 2.012 2.955e-8 3.000 7.134e-11 4.000 1.497e-13 4.892

1/320 2.347e-6 2.002 3.694e-9 3.000 4.463e-12 3.999 8.930e-14 7.453e-1

Table 3: Convergence test of 1D advection with standard RK45 (here we use density to evaluate the error).

8.2. One-dimensional moving shock wave

A moving shock-wave in a one-dimensional domain is considered as a test-case for evaluating the robust-

ness and performance of EBDG for shock-capturing. A domain with x ∈ [−0.1, 1.1] is considered, in which
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the initial shock front is located at x = 0. The domain is initialized in x < 0 with the following pre-shock

state:

ρ = 1.4 ,

u = 0 ,

p = 1 .

Shocks are specified with different Mach numbers (Ma = us/c), and Ma = {2, 5, 100} are considered in this

case. For all cases considered, the initial value for the entropy, s0, is set to a value of 0.620, corresponding

of the minimum value in the initial condition. The simulation ends when the exact solution of the shock

front reaches the location at x = 1. Results are illustrated in Fig. 3, showing that the entropy bounded-

ness guarantees the robustness and consistent performance over a wide range of shock strengths. Entropy

bounding (ε 6= 0) is only activated in elements that are occupied by flow discontinuities. Compared to

the positivity-preserving method, entropy bounding entirely avoids unphysical undershoots in pressure, and

provides an improved suppression of oscillations in the post-shock region. Compared to limiting, the entropy

bounding shows better robustness in describing shocks at different conditions, introducing lower dissipation

in the vicinity of discontinuities.

8.3. Two-dimensional flow over a cylinder

In this section, we verify the convergence order of the EBDG-scheme for high-order curved elements by

considering a two-dimensional flow over a round cylinder. The radius of the cylinder is R = 1 and the

far-field boundary is a concentric circle with R = 20. The condition in the free stream is given as:

ρ∞ = 1.4 ,

u∞ = 5.32 ,

v∞ = 0.0 ,

p∞ = 1 .

The corresponding Mach number is 0.38 and characteristic boundary conditions are imposed at the far-

field. The entire domain is initialized with free-stream conditions and s0 = 0.620. We compare results on

quadrilateral and triangular meshes at three levels of refinement. High-order elements are generated using

cubic polynomials to accommodate the curvature of the geometry. The CFL number is set to the CFLEB

number from Table 2 for the corresponding shape and polynomial order, multiplied by a factor of 0.8.

A main issue in these simulations is the occurrence of numerical instabilities that are initiated at the

leading edge of the cylinder. As a result of this instability, DGP2 and DGP3 without any entropy-bounding

diverge (the code blows up) after few iterations. Previously, limiters have been used in this case for sta-

bilizing the transient solutions [8]. However, for high-order polynomials, it is difficult to develop limiters
25
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Figure 3: (Color online) DGP2 simulation of moving shock wave for different Mach numbers (Abbreviation: EB−entropy

bounding; PP−positivity preserving [9]; Limiter+PP−WENO limiter [7]) with positivity preserving [9].

to achieve the optimal convergence rate without a nontrivial implementation. In contrast, EBDG pro-

vides a considerably simpler implementation for enabling high-order simulations for such complex geometric

configurations.

Comparisons of the computational meshes, simulation results, and convergence properties are presented

in Figs. 4 and 5. It is evident that the solution is improved by increasing the mesh resolution. The

convergence history of the residual, provided in the last row of both figures, shows that entropy bounding is

mostly activated during the start-up phase of the simulation to suppress numerical oscillations and ensure

stability. It is interesting to note that the number of elements that require bounding is restricted to the

region near the stagnation point upstream of the cylinder, and is confined to less than 8% of the total

number of elements. As the solution converges to the steady-state condition, entropy-bounding remains

deactivated, retaining the high-order accuracy. Since the solution is smooth the physical entropy production

is zero. Therefore, the convergence rates are measured in terms of entropy error using the discrete L2-norm.
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Mesh
DGP1 DGP2 DGP3

L2-error rate L2-error rate L2-error rate

Quadrilateral Elements

Level 1 7.272e-2 - 1.694e-2 - 3.816e-3 -

Level 2 1.318e-2 2.464 7.219e-4 4.552 1.827e-4 4.384

Level 3 2.441e-3 2.433 6.029e-5 3.582 1.036e-5 4.141

Triangular Elements

Level 1 1.137e-1 - 2.590e-2 - 4.086e-3 -

Level 2 1.865e-2 2.608 8.899e-4 4.863 1.291e-4 4.984

Level 3 3.391e-3 2.459 7.222e-5 3.623 6.939e-6 4.217

Table 4: Comparisons of convergence rate for 2D flow over a cylinder (here we use entropy to evaluate the error).

A comparison of the convergence rates are presented in Table 4, confirming that the optimal convergence

rate is preserved even for complex geometries with curved elements.

8.4. Two-dimensional double Mach reflection

This test case is designed to assess the performance of EBDG for simulation of flows with strong shocks

and wave structures. The numerical setup follows this of Woodward and Colella [25], representing a Mach

10 shock over a 30◦-wedge. All quantities are non-dimensionalized, and the computational domain is [0, 4]×

[0, 1]. In the present study, we consider two different mesh-discretizations, consisting of a Cartesian mesh

with quadratic elements (Le = h = 0.02) and a mesh with triangular elements (Le ≈ 0.02). The pre-shock

state is the same as that in Sec. 8.2 and hence s0 is set to 0.620. The CFL number is prescribed from Table

2 using a safety factor of 0.8.

Simulation results for density contours at time t = 0.25 are shown in Fig. 6. The proposed EBDG-method

captures all wave-features, and it is found that without enforcing the entropy constraint the solution diverges

in the first iteration for these strong shock conditions. For comparison, a reference solution obtained using

a fifth-order WENO-scheme is shown in Fig. 6(e), and results from a DGP2-simulation using a WENO-

limiter [7] are presented in Fig. 6(f). Comparisons between EBDGP1 and EBDGP2 results show the benefit

of the high-order scheme in providing improved representations of the shock-wave structure. At the same

degrees of freedom, the DGP2-solution provides comparable predictions to that of the fifth-order WENO

scheme, except for the small oscillations that cannot be removed by the linear scaling procedure. Compared

to the DG-simulation with WENO-limiter (Fig. 6(f)), EBDG effectively avoids introducing excessive nu-

merical dissipation since the solution is only entropy-constrained in regions in which the entropy condition

is violated.
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Figure 4: EBDG-solution of flow over a cylinder on curved quadrilateral meshes with three different refinement levels; top:

computational mesh in near-field of the cylinder; middle: Mach number; bottom: convergence history and activation of entropy

bounding as a function of iteration.

8.5. Three-dimensional supersonic flow over a sphere

This test case extends the evaluation of the EBDG-method to three-dimensional configurations with

complex geometries. Currently, robust approaches for capturing strong shocks in three-dimensional curved

elements are still subject to investigation. This test case considers a flow at a Mach number of 6.8 over

a sphere. The radius of the sphere is R = 1. Due to the geometric symmetry, the computational domain

considers only an eighth section of the domain, and it extends to 3R in radial direction. Symmetry boundary

conditions are imposed at the planes y = 0 and z = 0, and outflow boundary conditions are prescribed at
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Figure 5: DG-solution of flow over a cylinder on curved triangular meshes with three different refinement levels; top: compu-

tational mesh in the near-field of the cylinder; middle: Mach number; bottom: convergence history and activation of entropy

bounding as a function of iteration.

x = 0. Normal velocity inflow is prescribed at the outer shell with the following specification:

ρ∞ = 1.4 ,

u∞ = −6.80 ,

v∞ = 0.0 ,

w∞ = 0.0 ,

p∞ = 1 .
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Figure 6: (Color online) Simulation results of double Mach reflection over a 30o-wedge.
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Slip-wall conditions are imposed at the surface of the sphere. The computational domain is discretized

with quadratically curved hexahedron elements. For the initial mesh, the radial dimension is partitioned

with 14 elements with a linear stretching factor of 1.1 while the azimuthal dimension of the plane at x = 0

is partitioned using 12 elements. DGP2 is applied for this case and the CFL number is 0.8CFLEB with

CFLEB = 0.056.

Simulation results are illustrated in Fig. 7(a), showing the surface mesh and isocontours of the Mach

number. The bounding parameter ε can be utilized as a indicator for local mesh refinement. We sample the

elements with non-zero ε values over few iterations, and then locally refine these elements. Results using

one and two levels of refinement are shown in Figs. 7(b) and 7(c), respectively. This direct comparison

shows that the shock profiles become sharper with increasing resolution. Since the bounding parameter is

sharp, the mesh-refinement is confined to a narrow region in the vicinity of the shock. The flow-field solution

behind the shock is smooth, and no entropy bounding is applied in this region. To provide a quantitative

analysis, simulation results from the EBDG-method are compared against measurements by Billig [26] in

Fig. 7(d), showing good agreement between experiments and computations.

9. Conclusions

A regularization technique for the discontinuous Galerkin scheme was developed using the entropy prin-

ciple. Motivated by the FV entropy solution, the high-order DG-scheme is stabilized by constraining the

solution to obey the entropy condition. The implementation of the resulting entropy-bounding discontin-

uous Galerkin scheme relies on two key components, namely a limiting operator and a CFL-constraint.

These essential components were derived by considering first a one-dimensional setting and the subsequent

extension to multi-dimensional configurations with arbitrary and curved elements. Specifically, utilizing the

interpolation basis we were able to extend the entropy bounding (also including positivity preserving) to

arbitrarily shaped elements independent of specific quadrature rules. The bounding procedure is obtained

from algebraic operations, resulting in a computationally efficient and simple implementation. A sufficient

CFL-condition was rigorously derived and proofed to ensure that the entropy constraint can be enforced

on different types and orders of elements. By considering different configurations, numerical tests were

conducted to examine accuracy and stability of the entropy-bounding DG-scheme. These test cases confirm

the efficacy in regularizing solutions in the vicinity of discontinuities, generated either by true flow physics

or during the transient solution update. The added benefit of the entropy bounding method is its utilization

as a refinement indicator.

Since the herein proposed entropy bounding scheme relies on a linear scaling operator, it is not capable

to remove shock-triggered oscillations of smaller magnitude, although it stabilizes the solution and prevents

the solver from diverging. As a final remark, the derivation that was presented in this study is general
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Figure 7: (Color online) Simulations of Mach 6.8 flow over a sphere showing the ε profile (y = 0 plane) and Mach-number

distribution (z = 0 plane) on (a) baseline mesh, and simulation results with local refinement with (b) one refinement level and

(c) two refinement levels. Comparisons of the shock location with measurements by Billig [26] are shown in (d).

and extendable to other discontinuous schemes with sub-cell solution representations, such as spectral finite

volume schemes [27] and the flux reconstruction scheme [28]. Therefore, entropy-bounding, as an idea, has

the potential to improve the robustness of shock-capturing for these emerging high-order numerical methods.
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A. Combination Rule

In this section, we derive an estimate for the maximum characteristic speed for convex state solution.

For this, we consider a state vector U of Eq. (2a), which is written in the following form:

U =
∑
k

βkUk , (69)

where βk > 0 and
∑
k βk = 1. The maximum characteristic speed of U is:

ν(U) = |u(U)|+ c(U) = |u(U)|+

√
γ(γ − 1)

(
e(U)− 1

2
|u(U)|2

)
,

in which u and E can be calculated according to Eq. (69) as

u(U) =
∑
k

αku(Uk), e(U) =
∑
k

αke(Uk) ,

and

αk =
βkρ(Uk)∑
k βkρ(Uk)

is a new set of coefficients that is introduced to convert from conservative to primitive variables. Furthermore,

because of

γ(γ − 1)e(U) =
∑
k

αk

(
c2(Uk) +

γ(γ − 1)

2
|u(Uk)|2

)
,

|u(U)| =

√
|
∑
k

αku(Uk)|2 ,

≤
√∑

k

αk|u(Uk)|2 ,
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we obtain

ν(U) = |u(U)|+

√√√√∑
k

αkc2(Uk) +
γ(γ − 1)

2

(∑
k

αk|u(Uk)|2 − |u(U)|2
)
,

≤
√∑

k

αk|u(Uk)|2 +

√∑
k

αkc2(Uk) +
γ(γ − 1)

2

∑
k

αk|u(Uk)|2 ,

≤
√

2
∑
k

αkc2(Uk) + (2 + γ(γ − 1))
∑
k

αk|u(Uk)|2 ,

≤
√

2 + γ(γ − 1)

√∑
k

αk(c2(Uk) + |u(Uk)|2) ,

≤
√

2 + γ(γ − 1)

√∑
k

αk(c(Uk) + |u(Uk)|)2 ,

≤
√

2 + γ(γ − 1) max
k
{c(Uk) + |u(Uk)|} .

We used this estimation for preselecting the dissipation coefficient λ∗ used in Lemma 4.

B. Formulation of J ∂
k

For a two-dimensional configuration, the curve of an edge is parameterized by gk ∈ R, and the surface Ja-

cobian is written as J ∂k =
[
∂x1

∂gk
, ∂x2

∂gk

]
; for a three-dimensional configuration, an edge surface is parameterized

by gk =
[
g

(1)
k , g

(2)
k

]T
∈ R2, and the Jacobian can be written as J ∂k =

[
∂x1

∂g
(1)
k

, ∂x2

∂g
(1)
k

, ∂x3

∂g
(1)
k

]
×
[
∂x1

∂g
(2)
k

, ∂x2

∂g
(2)
k

, ∂x3

∂g
(2)
k

]
.
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