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Abstract

The paper [1] by Crouseilles, Einkemmer, and Faou used an incorrect Poisson
bracket for the Vlasov-Maxwell equations. If the correct Poisson bracket is
used, the solution of one of the subsystems cannot be computed exactly
in general. As a result, one cannot construct a symplectic scheme for the
Vlasov-Maxwell equations using the splitting Hamiltonian method proposed
in Ref. [1].
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In a recent paper [1] by Crouseilles, Einkemmer, and Faou, a new sym-
plectic splitting method for the Vlasov-Maxwell equations is proposed. In
comparison with previous splitting methods, the exciting new feature of the
proposed method is that it is designed to preserve the symplectic structure
of the Vlasov-Maxwell system, and thus enjoys the benefits of symplectic in-
tegration, such as the global bound on energy error and long-term accuracy
and fidelity.

Crouseilles, Einkemmer, and Faou developed an innovative technique to
achieve this goal. A non-canonical Poisson bracket for the Vlasov-Maxwell
system as an infinite-dimensional Hamiltonian system is employed. The sys-
tem is split into three subsystems by splitting the Hamiltonian functional
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into three parts. It turns out that the solution for each subsystem can be
computed exactly and therefore preserves exactly the symplectic structure
corresponding to the Poisson bracket. As a consequence, the combined al-
gorithm according to the splitting scheme preserves the symplectic structure
as well. In addition, higher order methods can be constructed using various
familiar composition methods.

The Poisson bracket adopted by Ref. [1] is the bracket discovered by Mor-
rison in 1980 [2],

[F,G](E,B, f) =

ˆ

f

{

δF

δf
,
δG

δf

}

xv

dxdv

+

ˆ
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·

(

▽×
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)
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δE
·

(
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)]
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+

ˆ

(

δF

δE
·
∂f

∂v

δG

δf
−

δG

δE
·
∂f

∂v

δF

δf

)

dxdv

+

ˆ

[

δF

δB
·

(

∂f
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)

δG

δf
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δG

δB
·

(

∂f
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× v

)

δF

δf

]

dxdv, (1)

for functionals F and G of E, B, and f. Here {h, g}xv is the canonical Poisson
bracket in the (x, v) space. The Hamiltonian for the system is

H(f, E,B) =
1

2

ˆ

v2fdxdv +
1

2

ˆ

(

E2 +B2
)

dx. (2)

This Hamiltonian can be split into three parts [1] as follows,

H = Hf +HE +HB, (3)

Hf =
1

2

ˆ

v2fdxdv, (4)

HE =
1

2

ˆ

E2dx, (5)

HB =
1

2

ˆ

B2dx. (6)

The scheme developed in Ref. [1] is based on the observation that solutions
of the subsystems corresponding to Hf , HE , and HB can all be computed
exactly.

Unfortunately, this Poisson bracket (1) is known to be incorrect, because
it does not satisfy the Jacobi identity. This error had been discovered and
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corrected [3, 4] shortly after its publication [2]. The correct Poisson bracket
[3, 4] is

[F,G](E,B, f) =

ˆ

f

{

δF

δf
,
δG

δf

}

dxdv

+

ˆ
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δF

δE
·
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(
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)]
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+

ˆ

(
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∂v
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δf
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)
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+

ˆ

fB

(

∂

∂v

δF

δf
×

∂

∂v

δG

δf

)

dxdv. (7)

Following Ref. [5], we will call this bracket the Morrison-Marsden-Weinstein
(MMW) bracket. Integrating the third term on the right-hand side of Eq. (7)
and considering the fact that

∂

∂v

(

δF

δE

)

=
∂

∂v

(

δG

δE

)

= 0, (8)

we can recast the MMW bracket as

[F,G](E,B, f) =

ˆ

f

{

δF

δf
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δG

δf

}

dxdv

+

ˆ
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·
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−
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·

(
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+
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∂v
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·
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+
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(

∂
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δf
×

∂

∂v

δG
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)

dxdv. (9)

In Ref. [6], the MMW bracket in the form of Eq. (7) is used, and in Refs. [7,
8], the equivalent form of Eq. (9) is used. We emphasize that in order for
the MMW bracket in the form of Eq. (7) or Eq. (9) to satisfy the Jacobi
identity, some constraints in terms of B and/or E are necessary. Marsden
and Weinstein [4] restricted the solution space to be Mv = {(f, E,B) |
∇ ·B = 0, ∇·E =

´

fdv}. Morrison [7] pointed out that it is only necessary
to require ∇ · B = 0 for the MMW bracket in the form of Eq. (7) or Eq. (9)
to satisfy the Jacobi identity. Of course, a solution of the Vlasov-Maxwell
equations is always in Mv, if it is initially in Mv.
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If we use this correct Poisson bracket instead, in the form of either Eq. (7)
or Eq. (9), and apply the same splitting scheme as in Eq. (3), it is very disap-
pointing to find out that the solution for the subsystem corresponding to Hf

can not be computed exactly, whereas the solutions for the subsystems cor-
responding to HE and HB can. Specifically, the subsystem associated with
Hf is

∂f

∂t
+ v ·

∂f

∂x
+ (v ×B) ·

∂f

∂v
= 0, (10)

∂E

∂t
= −

ˆ

vfdv, (11)

∂B

∂t
= 0. (12)

This subsystem is more complicated than its counterpart obtained using the
incorrect Poisson bracket (1). Unless the magnetic field B is uniform in space
or vanishes, its solution cannot be computed exactly. As a result, for systems
with general magnetic field, one cannot construct a symplectic scheme for the
Vlasov-Maxwell equations using the splitting Hamiltonian method proposed
in Ref. [1].

If a symplectic integration method to a desired order for Eqs. (10)-(12)
can be found, then we can apply this splitting method to obtain a symplectic
scheme. However, such a symplectic method for Eqs. (10)-(12) is not available
yet. Further investigation is needed.

As a final note, it is necessary to mention the following bracket proposed
by Chandre et al. [8] to remove the ∇ · B = 0 constraint for the MMW
bracket for the Vlasov-Maxwell equations,

[F,G](E,B, f) =

ˆ

f
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δF

δf
,
δG

δf

}
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+

ˆ
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·

(
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δB

)
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·

(

▽×
δF
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+

ˆ

f

(

δG

δE
·
∂

∂v

δF

δf
−

δF

δE
·
∂

∂v
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δf

)

dxdv

+

ˆ

f(B −∇△−1∇ · B)

(

∂

∂v

δF

δf
×

∂

∂v

δG

δf

)

dxdv. (13)

Here, B − ∇△−1∇ · B is the projection of B that “removes” the non-
divergence-free part of B. It is straightforward to verify that the Jacobi
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identity is unconditionally satisfied [8]. For this bracket given by Eq. (13),
the splitting Hamiltonian method proposed in Ref. [1] generates identical
subsystems as for the MMW bracket given by Eq. (7) or Eq. (9), when the
∇·B = 0 constraint is satisfied initially. Therefore, the splitting Hamiltonian
method proposed in Ref. [1] is not valid for the bracket given by Eq. (13) as
well.
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