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Abstract

In this paper, a new Navier–Stokes solver based on a finite difference approximation is proposed 

to solve incompressible flows on irregular domains with open, traction, and free boundary 

conditions, which can be applied to simulations of fluid structure interaction, implicit solvent 

model for biomolecular applications and other free boundary or interface problems. For some 

problems of this type, the projection method and the augmented immersed interface method (IIM) 

do not work well or does not work at all. The proposed new Navier–Stokes solver is based on the 

local pressure boundary method, and a semi-implicit augmented IIM. A fast Poisson solver can be 

used in our algorithm which gives us the potential for developing fast overall solvers in the future. 

The time discretization is based on a second order multi-step method. Numerical tests with exact 

solutions are presented to validate the accuracy of the method. Application to fluid structure 

interaction between an incompressible fluid and a compressible gas bubble is also presented.
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1. Introduction

One of our original motivations of this work is to develop new bio-molecular solvation 

methods for atomistic simulations. Efficient atomistic simulation of large and complex bio-

molecular systems is still one of the remaining challenges in computational molecular 

biology. One approach is to model the solvation energetics in a mean-field manner by 

treating the solvent molecules collectively as a continuum. To further improve the quality of 
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the continuum solvent models, we proposed to further model the solvent collective motion 

as that of an incompressible fluid governed by the Navier–Stokes equations (NSE) [48–50],

(1)

(2)

where G(x, y, t) is a body force that can include van der Waals and electrostatic forces (due 

to the existence of biomolecules), R is the computation domain (often rectangular), u = (u, 

v) is the fluid velocity, p is the pressure, and Ω ⊂ R is an inclusion, such as a biomolecule or 

a gas bubble to begin with, see Fig. 1 for an illustration. ρ and μ are the fluid density and 

viscosity, respectively. Other boundary conditions such as Neumann or mixed boundary 

condition can also be prescribed along the outer boundary ∂R.

Along the interior boundary ∂Ω, if the boundary condition is given by

(3)

it is then called an open (or pseudo-traction) boundary condition. If the boundary condition 

is given by

(4)

it is then called a traction boundary condition, see [35,38]. The traction boundary condition 

which reflects the force balance is more physical than the open boundary condition. In the 

case that Ω represents a gas bubble, we use the traction boundary condition in the normal 

and tangential directions, respectively,

(5)

The boundary condition above is also called the free boundary condition. Note that, the 

boundary condition in the normal direction differs by a factor of 2 for the open and traction 

boundary conditions; while the boundary condition in the tangential direction is different. 

We refer the reader to [18,35] and the references therein for the well-posedness of the 

problem. The velocity is not necessarily zero along boundaries ∂Ω and ∂R, but it is 

consistent with the incompressibility condition for the fluid, i.e., ∫∂Ω u · nds + ∫∂R u · nds = 

0. In Section 3, we give an example of how to enforce this consistency condition.

We will consider both the fixed domain and the free boundary problem. For the free 

boundary problem, the evolution of equation for the boundary problem ∂Ω is
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(6)

Numerically we use the level set method to capture the free boundary ∂Ω.

While there are many papers in the literature about numerical methods for free boundary 

problems, flow problems on irregular domains, not many deal with open or traction 

boundary conditions, even fewer deal with arbitrary boundaries using finite difference 

methods. In [27], the authors proposed a technique on a moving orthogonal curvilinear 

coordinate system, which is constructed numerically and adjusted to fit the boundary shape 

at any time for an axisymmetric unsteady bubble deformation problem. The NSE solver is 

based on the backward Euler’s method for streamfunction and the vorticity. In [9], the 

authors studied numerical simulation of free surface incompressible liquid flows surrounded 

by compressible gas, which is opposite to our situation (a bubble surrounded by a fluid). The 

volume of fluid (VOF) is used to track the moving interface between the bubble and the gas. 

The discretization is focused on the gas part. In [43,45], the authors proposed coupled level 

set methods and the volume of fluid (VOF) method for free surface problems. The 

implementation of VOF is non-trivial since one needs to consider quite a few geometric 

configurations and high order reconstructions of the boundary. Our method proposed in this 

paper provides an alternative method that a fast Poisson solver can be utilized. Other related 

research on deforming boundary problems in multiple dimensions and higher order 

treatment of jump conditions can be found in [7,17,19–21,40].

For small to medium Reynolds numbers, the projection method, for example [5,8,14], is one 

of the most popular methods to solve the NSE because its stability and accuracy. The NSE 

can be solved by solving several Helmholtz/Poisson equations. Nevertheless, the projection 

method is based on Helmholtz–Hodge decomposition. The projection method may not work 

well for open or traction boundary conditions, see for example [18].

Another type of methods are called local pressure boundary conditions [25,26]. There are 

similarities between local pressure boundary conditions and the local vorticity boundary 

conditions. The simplicity of the local pressure boundary condition approach and its easy 

application to more general flow settings make the resulting scheme an attractive alternative 

to the projection type methods for solving incompressible Navier–Stokes equations in the 

velocity–pressure formulation. This approach is also implemented using a finite element 

formulation [35]. The key idea in the local pressure boundary condition approach is to solve 

the pressure from the momentum equation. A Neumann or Dirichlet boundary condition and 

the incompressibility condition are used to evaluate the pressure boundary condition for the 

pressure, which is the key to the stability. In the original local pressure boundary method 

[25,26], the Neumann boundary condition is derived while in this paper, a Dirichlet 

boundary condition is used. Note that the original local pressure boundary method [25,26] 

does not directly apply to traction boundary conditions for which derivatives of the velocity 

and the pressure are coupled together. A direct interpolation of the velocity to get the 

Laplacian from the previous step is likely unstable. Note that most of the methods using 

finite difference discretization are based on rectangular domains. The same treatments are 

often quite sensitive to curved boundaries.
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Another challenging is how to solve NSE on irregular domain efficiently. In [24], the authors 

proposed the augmented immersed interface method (AIIM) for NSE on irregular domain. 

The most important advantage of AIIM is that we can treat the irregular domain problem on 

a rectangular domain so that fast solvers for Poisson/Helmholtz equations or Navier–Stokes 

equations can be applied after we introduce a co-dimension one quantity along the irregular 

boundary. The question here is how to combine the AIIM with the new local pressure 

boundary condition approach. In this paper, we use the AIIM for solving the velocity, then 

use our existing fast Poisson solver (also based on AIIM) for irregular domains to solve the 

pressure. Note that, the AIIM framework is based on efficient solvers for elliptic interface 

problems. Thus some recent work on efficient solvers for elliptic interface problems [3,4,12] 

can be substituted for the IIM solver in this paper.

In our previous work on AIIM for Navier–Stokes equations, we were using the traditional 

projection method that is based on Crank–Nicholson (trapezoidal) type of scheme for the 

prediction step. The augmented variable is also split in two time steps. One of obvious 

advantage of this approach is that the method can be second order both in space and time 

with only two step quantities and it is relatively simple to implement. However, it is known 

that the Crank-Nicholson type discretization is marginal stable which may not be ideal for 

non-linear problems or curved boundaries. Thus it is more stable if we can use a fully 

implicit discretization for the diffusion term. This is why we called our discretization as a 

semi-implicit method since other terms in the Navier–Stokes equations are still discretized 

explicitly.

For fluid structure interaction with a gas bubble, our model uses different governing 

equations for fluid and gas separately. Note that, another model is to treat the problem using 

a two-phase model in which the governing equations are the same, see for example 

[2,6,10,11,13,15,16,36,37,39,41,42,44,46,47]. There are advantages and limitations for each 

model. Our method distinguishes from others in several aspects. Our method is a Cartesian 

based finite difference method. The discretization of the jump conditions is second order 

accurate. A fast Poisson solver can be used in our algorithm which gives us the potential for 

developing fast overall solvers in the future.

The rest of papers are organized as follows. In the next section, we outline the main steps of 

our algorithm and explain the new ideas of our method and the rationality. In Section 3, we 

validate our method using examples that have exact solutions. Then we present some 

numerical simulations of fluid structure interaction of a fluid with a gas bubble. We conclude 

in the last section.

2. The AIIM using local pressure boundary condition

As mentioned before, we assume that the domain R is a rectangle [a, b] × [c, d] with a gas 

bubble inclusion Ω. The spatial spacing is chosen as hx = (b − a)/M, hy = (d − c)/N, where M 
and N are the number of grid lines in the x and y directions, respectively. Let the time step 

size be Δt. We use a standard uniform Cartesian grid for simplicity. Here we emphasize the 

spatial discretization. The time discretization is based on a multi-step method.
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From one time step tk to the next time level tk+1, our proposed new algorithm has the 

following steps:

Step 1: Solve the velocity with a fixed free boundary using the AIIM.

(7)

(8)

(9)

(10)

where

(11)

(12)

(13)

κ is the curvature of the free boundary ∂Ω, and γ is the coefficient of the surface tension.

Note that this step is to approximate the velocity at time step k + 1. It is obvious that the 

discretization of the momentum equations is second order accurate both in space and time at 

least for fixed boundaries. The convergence of the stability of the scheme is given in [18]. 

Certainly it is viable to use a second or higher order Runge–Kutta discretization in time, 

nevertheless, the proof of the stability of the scheme is still open problem for open or 

traction boundary conditions. If the boundary moves across a grid line, that is, (xi, yj) is in 

inside and outside of the domain at different time levels, a simple correction term can be 

added as explained in [23]. The momentum equation is extended to the entire rectangular 

domain so that a fast Helmholtz solver, say from [1] can be applied. The equivalent 

Helmholtz can be written as
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The pressure p̃k+1 is extrapolated from the pressure at previous two steps and so is the non-

linear term (u · ∇u)k+1. The augmented variable qk+1 which is the jump in the normal 

derivative of the velocity is chosen such that the velocity uk+1 satisfy the traction condition 

(5) with an approximated pk+1. We refer the readers to [24,28,30,31] for the AIIM for 

Navier–Stokes equations. Note that, here we use the backward Euler’s method instead of the 

Crank-Nicholson type discretization for the stability consideration as we explained in the 

Introduction section. This seems to be important for the stability of the algorithm for open or 

traction boundary conditions.

Since we are only interested in the quantities outside of Ω (the gas bubbles), p̃k+1 and (u · 

∇u)k+1 can be moved to the right hand side as a source term for the Helmholtz equation of 

uk+1. The quantities of p̃k+1 and (u · ∇u)k+1 are approximated use standard second order 

central finite difference schemes if they are two grid distance away from the boundary. At 

grid points near or on the boundary, they can be approximated using a first order 

approximation without affecting second order accuracy, see for example [30]. We will see 

that the coefficient matrix for the augmented variable qk+1 is well-conditioned with almost 

O(1) condition number.

Step 2: Solve the pressure from the equation obtained after applying the gradient operator to 

the momentum equation,

(14)

(15)

where the boundary condition is satisfied from the pressure outside of the air bubble. This is 

a Poisson equation defined on an exterior irregular domain. We simply call the IIM packages 

for Poisson equations on irregular domain [29], see also [22,30,34] for more technical 

details.

2.1. Some discretization details

In the AIIM, the key step is to obtain the matrix-vector multiplication for the linear system 

of equations for the augmented variable. It contains two major steps. One step is to solve the 

Navier–Stokes equation given the augmented variable; The second step is to evaluate the 

residual of the boundary condition, we refer the readers for Chapter 6 of the book [30] for 

the detail.

Given a value of the augmented variable, here is the jump of normal derivative of the 

velocity across the air bubble boundary. We briefly explain how to discretize the Helmholtz 

and Poisson equations. Consider a grid point (xi, yj), if the boundary does not cut the 

centered five-point finite difference stencil, then we use the standard second order central 

finite difference scheme to discretize the Helmholtz and Poisson equations. Those grid 

points are call regular. Otherwise a grid point (xi, yj) is called irregular at which the 
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boundary ∂Ω cuts through the centered five-point stencil. At an irregular grid point (xi, yj), 

assume that the boundary ∂Ω cuts the grid line at , −1 ≤ α ≤ 1, then the 

second order partial derivative in x can be approximated by

(16)

where

(17)

see Lemma 1 in [32]. From , we can get  as described below. For simplicity 

of notation, we have dropped the index k + 1.

Let (X, Y) be a point on the interface ∂Ω which is a smooth closed interface. Let the unit 

outward normal direction be n = (cosθ, sinθ), where θ is the angle between the outward 

normal direction and the x-axis, see Fig. 1. We define the local coordinates at (X, Y) as

(18)

Then ∂Ω can be represented by ξ = χ(η) in the neighborhood of (ξ, η) = (0,0), which satisfies 

χ(0) = 0, χ′(0) = 0, and χ″(0) = κ, the curvature of ∂Ω at (0, 0). The following interface 

relations at (X, Y) can be derived from the NSE and the interface conditions.

(19)

Once we have the jump relations in the local coordinate system, then it is easy to transform 

them back in the original coordinate system and get the following relations:

(20)

With these jump condition, we can approximate ux, uy, uxx, uxy according to (16)–(17) to get 

the finite difference equations for the Helmholtz and Poisson equations.

2.2. Pressure boundary condition along outer boundary

We need a boundary condition along outer boundary ∂R for the Poisson equation for the 

pressure. Often it is an approximate normal derivative condition. However, with a prescribed 
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velocity, the incompressibility condition, and the NSE equations, we can use the techniques 

described in [26,33] to get more accurate normal derivative boundary condition for the 

pressure. We use the side x = a to explain the process. For simplicity and preciseness, we 

will ignore the time index. Since we know the velocity u = (u, v) along x = a which is a 

function of y, we also know uy and vy. From the incompressibility condition ux + vy = 0, we 

also know ux which is −vy along x = a. Thus along x = a, we have

(21)

which is known quantity. The key part is how to approximate the Laplacian of u · n = uxx + 

uyy. Since we know u along x = a, we just need to approximate uxx. Note that

from which we get an approximation for uxx in terms of the values of u at the grid point

(22)

The normal derivative of the pressure along x = a can be approximated by

(23)

where G1 is the x-component of the external force G.

3. Numerical examples

As a first numerical test for our proposed method, we consider an example in a stationary 

irregular domain in which the exact solution is known analytically. We use it as an accuracy 

check. The analytic solution is

(24)

(25)

(26)
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The domain of the interest is the domain bounded by x2 + y2 ≥ 1/4 and −1 ≤ x, y ≤ 1. The 

source term G is derived directly from the exact solution. The Dirichlet boundary condition 

is prescribed also using the exact solution along the rectangular boundary.

In Table 1, we show the grid refinement analysis to check the order of the accuracy of our 

method. In the test, we take T = 5, w(t) = 1 − e−t. Since we are interested in the computed 

solutions in the domain Ω, we set

to be the error in the velocity and the pressure at time T. The number order is the 

approximated order of accuracy from the two consecutive errors,

(27)

Second order accuracy is clearly seen for both the velocity and the pressure.

It is interesting to note that the convergence seems to be independent of the initial data for 

long time computations. If we start with u0 = u(x, 0)/2.5, u−1 = u(x, −Δt)/2.5, p0 = 0, p−1 = 

0, we still get almost the exact same results if the final time is large enough.

In Table 2, we show the grid refinement result for w(t) = sint. In this test, there is no steady 

state solution since the source term depends on time t all the time. We still see clean second 

order accuracy in the infinity norm.

Surprisingly, we also got almost the same result if we do not use the exact initial data but 

with u0 = u(x, 0)/2.5, u−1 = u(x, −Δt)/2.5, p0 = 0, p−1 = 0.

3.1. An open boundary condition example

The proposed method in this paper is flexible in dealing with different boundary conditions. 

All we need to do is to modify the augmented equations accordingly. In Table 3, we show a 

grid refinement analysis against the exact the same solution for the ‘open boundary 

condition’ at a final time T = 1.5 with w(t) = sint. The right hand side g2 is determined from 

the true solution. Second order accuracy is confirmed for the problem with fixed boundary.

3.2. An example for fluid and air bubble interaction

Here we use a simple model to simulate fluid and air bubble interaction. The fluid is 

incompressible and is modeled by the NSE. The air bubble is compressible and is governed 

by ideal gas law pgas(t) = λ/Vγ (t), where pgas(t) is the pressure in the gas bubble, V(t) is the 

volume of the bubble, and λ is a constant. Again we first test our code for a steady state case 

with γ = 1 in which we have an analytic solution,
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(28)

(29)

(30)

(31)

outside the unit circle r = 1 but within the domain [−2, 2] × [−2, 2]. The Dirichlet boundary 

condition is prescribed using the exact solution along the rectangular boundary. Note that n · 

u ≠ 0 at the boundary r = 1 in this example. In Table 4, we show the grid refinement analysis 

at T = 1.5. We can see second order convergence for all the variables.

Now we show the test results for the dynamic case. To be more realistic, we now use γ = 1.4. 

We start with a circular boundary and set σ = 1, λ= π. The initial velocity and pressure are 

all set to zero. The initial boundary was set as the zero level set of a Lipschitz continuous 

function φ(x, t) at t = 0, often the signed distance function (or approximated) to the 

boundary ∂Ω. The level set is updated by the level set equation

(32)

along with a re-initialization process.

3.2.1. Enforce the consistent boundary condition—To ensure the consistent 

condition ∫∂R + ∫∂Ω u · nds = 0. We adjust the outer Dirichlet boundary condition at each 

time step. In many applications, the outer boundary often is a truncated one. Various 

approaches have been developed to approximate the boundary condition. Here we also 

propose a one for our problem. With an approximate Dirichlet boundary condition, we can 

solve the system to get the velocity. Then we compute the flux along the traction boundary 

∫∂Ω u · nds. It is reasonable to assume that problem is symmetric and fluid can freely get in 

and out only along the normal direction. Thus we can distribute the flux along four sides of 

the outer boundary. Assume that the rectangular domain is [a, b] × [c d]. We take the side x 
= a as example. We would set v = 0, u = C(d − y)(y − c). The constant is taken as 

. In this way, the velocity is continuous up to all the 

boundaries.

Due to the symmetry, if we start with a circular gas bubble, the bubble should remain 

circular. The pressure inside the gas bubble is pgas(t) = λ/V1.4(t), where V(t) is the volume of 

the gas bubble at time t. The driving force is due to the difference in the pressure
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(33)

If p0 = 0, the equilibrium Re is the solution of π/(πR2)1.4 = 1/R, which is Re = π−2/9 = 0.7753 

···. If we start with R(0) > Re, then the gas bubble will shrink, otherwise it will expand. In 

Fig. 2, we plot the radius R(t) versus time when μ = 2 or Re = 1 with the mesh size m = n = 

64 for the domain [−2, 2] × [−2, 2]. In this case, the boundary of the gas bubble converges to 

its equilibrium monotonically. The error of the equilibrium radius is of O (10−4) indicating 

second order convergence.

If we increase the Reynolds number by reducing μ to μ = 0.2, then the effect of the inertial 

term in the Navier–Stokes becomes more apparent, we can see larger overshoot and more 

oscillatory behavior of the radius around the equilibrium, see Fig. 3. The error in the radius 

when it approaches equilibrium is about 7.000 × 10−3 for the contracting case, and 1.900 × 

10−3 for the expanding case. Similar behaviors are also observed in [43].

If we increase the Reynolds number further by reducing μ to μ = 0.15, we see the bubble 

oscillates around the equilibrium, see Fig. 4. Note that in the figure, the axis in time and the 

radius have very different scales. Over a short period of time, the change in the radius is 

rather smooth as in the bottom plots of Fig. 2 if the same scale is used. Note that, our 

simulation results agree with Fig. 10 in [27] qualitatively.

Now we start with an initial bubble with more complicated geometry

(34)

In Fig. 5, we present a few snap-shots of the bubble interface at several time instances with μ 
= 0.5. In this case, the surface tension force is more dominant and the bubble relaxes to the 

circular shape quickly before it converges to its equilibrium circular shape. It over-shoots a 

couple of times around the equilibrium before it stabilizes.

As a final example, we tested our code for a time dependent problem in which there is a 

source in the air bubble according to

(35)

The initial bubble shape is

(36)

In Fig. 6, we show the average of the radius R̄(t) versus the time. Again, the surface tension 

will bring the bubble to a circular shape. The bubble shrinks quickly and overshoots. Then 

the bubble oscillates around the mean equilibrium R = 0.7753··· as expected.
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3.3. A 3D simulation

Our method has been implemented in three dimensions. The main algorithms is similar but 

the implementation requires some substantial effort, and the computation cost is much more 

demanding. We show one example of an air bubble rising in a fluid due to the gravity. The 

air bubble is set as 1 cm initially. The parameters are chosen as follows: the surface tension σ 

= 38 N/m, the viscosity μ = 0.90 Pa s, and the gravity g = 9.8 m/s2. The box size is 4.8 cm × 

4.8 cm × 4.8 cm. Some snapshots at different time are shown in Fig. 7. The bubble moves 

2.2 cm in 0.15 s. Below are a sketch of the theoretical derivation for the simplified situation. 

Even so, the analysis roughly agrees with the experimental result.

The buoyancy force on the bubble in the relatively high viscous flow is Fb = 4πρg R3/3, 

where R is the radius of the initial bubble. The viscosity force is Fμ = 6πμRρv. Assume that 

the mass of the bubble is negligible, then it is accelerated immediately. The acceleration of 

the bubble is equivalent to a same bubble with water density but in the opposite direction. 

The motion of the bubble follows Newton’s second law with the force Fb − Fμ = 4πρgaR3/3, 

where a is the acceleration rate. Since we know Fb and Fμ, we get the acceleration rate a = g 
− 9μv/(2ρR2). Thus we can write down the motion equation of the bubble as

(37)

where η = 9μv/(2ρR2) = 40.5 s−1 in our simulation. This damped Newtonian equation has 

the analytical solution,

(38)

where C1 and C2 are two constants. Given x(0) = 0, ẋ(0) = 0, we then have

(39)

The expression above gives x(0.15 s) = 3 cm. It is roughly agree with the experiment (2.2 

cm). The difference is likely due to the ignored boundary condition and treating the air 

bubble as a sphere with a fixed volume, etc., in the analysis which is not exactly true in the 

simulation.

4. Conclusions

In this paper, we have developed an efficient and stable method for Navier–Stokes equations 

on irregular domain with open, traction, or free boundary conditions. The method is based 

on the AIIM for the velocity prediction, and a separate Poisson solver for the pressure on the 

irregular domain with an approximate Dirichlet boundary condition. Numerical examples 

have shown the robustness and stability of the proposed method.
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Fig. 1. 
A diagram of the set-up of the problem. The traction boundary condition is defined along the 

boundary ∂Ω; Dirichlet boundary conditions are defined along the boundary ∂R.
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Fig. 2. 
The radius versus time. The initial circle is R = 1.4 and R = 0.6 respectively. (a) μ = 2, the 

radius converges to its equilibrium monotonically. (b) μ = 0.5, the radius first converges to 

its equilibrium, then overshoots, then stabilizes around the equilibrium.
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Fig. 3. 
The radius versus time when μ = 0.2. The inertial of the gas bubble causes some oscillations 

around the equilibrium but eventually stabilized. The left plot, R(0) = 0.9; the right plot, 

R(0) = 0.6. In each case, the bottom plot is a zoom-in plot.
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Fig. 4. 
The radius versus time when μ = 0.15. The inertial of the gas bubble causes oscillations 

around the equilibrium. The left plot, R(0) = 0.9; the right plot, R(0) = 0.6.
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Fig. 5. 
(a) Snap-shots of the bubble at t = 0, t = 0.096798, t = 0.19306, and t = 13.740, respectively. 

(b) The averaged radius versus time when μ = 0.5.
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Fig. 6. 
The average of the radius when the air bubble has a source.
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Fig. 7. 
A 3D air bubble motion in a fluid with gravity g = 9.8 m/s2 at different time. (a) t = 0; (b) t = 

0.05 s; (c) t = 0.1 s; (d) t = 0.15 s.
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Table 1

A grid refinement analysis against the exact solution at a final time T = 5 with w(t) = 1 − e−t, where ||Eu||∞ is 

the sum of the maximal error in the velocity component u and v, order is the approximated convergence order 

computed from the two consecutive errors.

N ||Eu||∞ orderu ||Ep||∞ orderp

16 3.2956 × 10−2 3.0911 × 10−1

32 5.9132 × 10−3 2.4786 8.1862 × 10−2 1.9168

64 1.1330 × 10−3 2.3838 2.0834 × 10−2 1.9743

128 2.6351 × 10−4 2.1042 5.2709 × 10−3 1.9828

256 7.5585 × 10−5 1.8017 1.3087 × 10−3 2.0099

512 1.8711 × 10−5 2.0142 3.2783 × 10−4 1.9971
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Table 2

A grid refinement analysis against the exact solution at a final time T = 5 with w(t) = sint.

N ||Eu||∞ orderu ||Ep||∞ orderp

16 3.2727 × 10−1 3.0214 × 10−1

32 1.8534 × 10−2 4.1422 7.2537 × 10−2 2.0584

64 5.2028 × 10−3 1.8328 1.8357 × 10−2 1.9824

128 1.1859 × 10−3 2.1333 4.5648 × 10−3 2.0077

256 2.9045 × 10−4 2.0296 1.1103 × 10−3 2.0396

512 6.2627 × 10−5 2.2134 2.7829 × 10−4 1.9962
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Table 3

A grid refinement analysis against the exact solution for ‘Open Boundary Condition’ at a final time T = 1.5 

with w(t) = sint.

N ||Eu||∞ orderu ||Ep||∞ orderp

16 3.0692 × 10−2 4.9878 × 10−3

32 7.2849 × 10−3 2.0749 1.4994 × 10−3 1.7340

64 1.9398 × 10−3 1.9090 4.1105 × 10−4 1.8670

128 4.6722 × 10−4 2.0537 9.8679 × 10−5 2.0585

256 1.1839 × 10−4 1.9806 2.3234 × 10−5 2.0865

512 2.9746 × 10−5 1.9927 5.4167 × 10−6 2.1008
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Table 4

A grid refinement analysis against the exact solution for the fluid and air bubble interaction example at a final 

time T = 1.5.

N ||Eu||∞ orderu ||Ep||∞ orderp

16 4.844 × 10−2 5.0781 × 10−3

32 1.5468 × 10−2 1.6470 1.6917 × 10−3 1.5859

64 3.8509 × 10−3 2.0060 5.3791 × 10−4 1.6530

128 1.1232 × 10−3 1.7775 1.3885 × 10−4 1.9538

256 3.0374 × 10−4 1.8868 3.6570 × 10−5 1.9248

512 7.8641 × 10−5 1.9495 9.0872 × 10−6 2.0088
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