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Abstract

The lattice Boltzmann method has become a standard for efficiently solving problems in
fluid dynamics. While unstructured grids allow for a more efficient geometrical representation
of complex boundaries, the lattice Boltzmann methods is often implemented using regular
grids. Here we analyze two implementations of the lattice Boltzmann method on unstructured
grids, the standard forward Euler method and the operator splitting method. We derive the
evolution of the macroscopic variables by means of the Chapman-Enskog expansion, and we
prove that it yields the Navier-Stokes equation and is first order accurate in terms of the
temporal discretization and second order in terms of the spatial discretization. Relations
between the kinetic viscosity and the integration time step are derived for both the Euler
method and the operator splitting method. Finally we suggest an improved version of the
bounce-back boundary condition. We test our implementations in both standard benchmark
geometries and in the pore network of a real sample of a porous rock.

Keywords: Lattice Boltzmann method, unstructured grids, flow in porous media,
Chapman-Enskog expansion analysis

1. Introduction

Based on the Boltzmann equation, lattice Boltzmann (LB) schemes have become a powerful
tool for simulating complex flows in two- and three-dimensional systems. In the standard LB
schemes based on uniform, regular grids, the discretization of the computational domain and
the discretization of particles’ velocities are coupled since the spatial grid is aligned with
the characteristic directions of the velocity set. Such coupled discretization poses a severe
limitation when aiming at simulating flows in complex geometries, which are encountered in
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several engineering problems (porous flows, aerodynamics, acoustics). This is primarily due to
the fact, that in order to obtain an accurate boundary representation, a high resolution grid is
required, increasing the overall size of the system (the boundary representation’s accuracy is on
the order of O(h), while the volumetric grid’s size scales like h−2 in 2D and h−3 in 3D, where h
is the grid spacing). In the recent years, various types of off-lattice Boltzmann methods have
been developed in order to allow for enhanced geometric flexibility of such schemes, which
might challenge the standard LB methods (see for instance Ubertini et al. (2003), Rossi et al.
(2005), Ubertini et al. (2006), Bardow et al. (2008) and references therein).

Our focus here is on the finite volume schemes developed in Ubertini et al. (2003) and
Rossi et al. (2005). A prominent feature of these schemes is the independence of the velocity
and space discretizations. Ubertini et al. (2003) show, using the numerical dispersion relation,
that their scheme does not exhibit any dispersion effects up to the third order in wave-vector
space. Also, by analysing the dispersion relation, they find that the kinematic viscosity is
given by ν = c2

sτ , indicating that numerical viscosity effects are absent (with the exception
of the numerical diffusion proportional to the square of the grid spacing). This fact, as
pointed out in Rossi et al. (2005), requires a more careful theoretical examination. We have
addressed this standing problem by means of the Chapman-Enskog expansion. Our results,
as demonstrated later, corroborate those findings for the forward Euler time integration. As
stated in Rossi et al. (2005) lack of numerical viscosity implies no mesh limitations on the
highest Reynolds number that can be simulated, nonetheless, small viscosities can only be
achieved with vanishingly small relaxation times. These, together with the Courant-Friedrichs-
Lewy (CFL) stability condition, δt < 2τ , would imply prohibitively small time step size.
However, we emphasize that this result is valid only for the forward Euler time integration and
might not hold for different time integration schemes. Our analysis of the operator splitting
based time integration, introduced in Rossi et al. (2005), show that the kinematic viscosity is
proportional to the difference between the relaxation time and the time step ν = c2

s(τ − δt),
resembling the results for the finite difference LB methods on regular grids. This interesting
result might have far reaching consequences since it overcomes the constraint on the relaxation
and the time step to obtain very low viscosities.

The paper is divided in five sections and an extended appendix with details on the deriva-
tions in the main sections. In Section 2, we introduce for completeness the basic equations
for the lattice Boltzmann method. In Section 3, we provide an overview of the implementa-
tion of the LB equation on unstructured grids and perform an analysis of the forward Euler
and operator splitting temporal discretization schemes. We furthermore consider an improved
version of the bounce-back boundary condition. In Section 4, we test our implementation of
the LB method on a couple of benchmark systems and in the pore structure of a porous rock.
The pore space of rocks is an example where the unstructured grids can provide a very effi-
cient geometrical representation relative to the regular grids. Porous structures are in general
characterized by complex channel geometries, posing a significant challenge for most of fluid
simulation software, while at the same time there is a significant industrial interest in efficient
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simulations of porous flow due to the relevance in groundwater flow, pollutant transport and
oil recovery. In Section 5, we make a few concluding remarks. In the appendix, details can
be found on the properties of the numerical scheme that we introduce as well as detail on the
Chapman-Enskog expansion.

2. Lattice Boltzmann methods

The majority of lattice Boltzmann methods aim at solving the lattice Boltzmann equation

∂fi
∂t

+ ci · ∇fi = Ω̄i, for i = 0, 1, . . . , N, (1)

which is a discrete formulation of the Boltzmann equation, discretized in velocity domain. Here
ci, i = 0, 1, . . . , N is the discrete set of admissible particle velocities and fi(x, t) ≡ f(x, ci, t)
is the probability density function for finding a particle in a state (x, ci, t); this function can
be used to recover the macroscopic variables of the flow, such as mass (ρ) or momentum (ρu)
density

ρ =
N∑
i=0

fi, (2)

ρu =
N∑
i=0

cifi. (3)

The term ci · ∇fi is responsible for advection of particles, and is often referred to as the
streaming term. The right-hand side of Eq. (1), Ω̄i, is the discrete collision operator. A
popular choice is the single-relaxation Bhatnagar-Gross-Krook (BGK) operator, Bhatnagar
et al. (1954)

Ω̄BGK
i = −1

τ
(fi − feqi ) , (4)

where τ is the relaxation time (related to the fluid’s kinematic viscosity), and feqi is the
local equilibrium distribution, typically in a form of the second order expansion (third order
accurate with respect to the Mach number)

feqi = wiρ

(
1 +

ci · u
c2
s

+
(ci · u)2

2c4
s

− u2

2c2
s

)
, (5)

where wi, i = 0, 1, . . . , N are the weights associated with the velocities ci, and cs is the lattice
speed of sound. Like most authors, we use cs = 1/

√
3. It has be shown by Benzi et al. (1992),

by means of the Chapman-Enskog expansion, that the macroscopic variables derived from
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Eq. (1) yield the weakly compressible Navier-Stokes, as long as the discrete velocity layout
ci=0,1,...,N and the collision operator (4)-(5) fulfill the mass and moment conservation rules∑

i

Ω̄i = 0, (6)∑
i

ciΩ̄i = 0. (7)

In this paper we present an unstructured (tetrahedral) grid based, finite volume implemen-
tation of the lattice Boltzmann method. Our work builds on previous works by Ubertini et al.
(2003, 2004); Rossi et al. (2005). We expand on their approach by introducing new solid,
inlet and outlet boundary condition, which enable efficient simulations of flows in complex
geometric domains, such as porous structures. Furthermore we study two different time dis-
cretization schemes, and perform the full multiscale analysis of the numerical scheme, which
yield kinematic viscosities of c2

sτ for the forward Euler method and c2
s(τ − δt) for the operator

splitting method.

3. Numerical method

3.1. Spatial discretization of the lattice Boltzmann equation

The lattice Boltzmann equation with the collision term modeled by BGK approximation
is typically discretized in the velocity domain as

∂fi (x, t)

∂t
+ ci · ∇fi (x, t) = −1

τ
(fi (x, t)− feqi (x, t)) , i = 0, 1, . . . , N, (8)

where fi(x, t) is the probability distribution function, feqi (x, t) is the equilibrium probability
distribution, τ is the relaxation time, and {ci}i=0,1,...,N is the discrete set of admissible particle
velocities. For the latter, we use the popular D3Q19 layout (see Fig. 1).

The computational domain is approximated with an unstructured, tetrahedral mesh, con-
forming to the solid boundary. We discretize Eq. (8) using a linear, vertex-centered, unstruc-
tured finite volume method, following Ubertini et al. (2003, 2004); Rossi et al. (2005). This
means that the probability distribution functions are defined at the vertices of the mesh

fi(v
j , t) = f ji (t) (9)

and are linearly interpolated elsewhere

fi(x, t) =
∑
j

f ji (t)φj(x), (10)
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Figure 1: The discrete set of admissible particle velocities in the D3Q19 layout. This set also includes c0 =
(0, 0, 0).
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Figure 2: To the left: the control volume Ωj centered at the vertex vj in a two-dimensional, unstructured grid.
The control volume is constructed by connecting the barycenters Ok of each triangle adjacent to vj with the
barycenters (midpoints) Ek of the edges adjacent to vj . To the right: a contribution Ωjm to the control volume
Ωj from tetrahedron Tm. Ωjm is the convex hull of vj , the barycenter Om of Tm and the barycenters of all
the edges (Eα,β,γ) and faces (Fα,β,γ) of Tm.
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where φj(x) is the linear interpolant function associated with vertex vj (or the barycentric
coordinate function, when restricted to a single element); φj(vj) = 1, φj(vk) = 0 for k 6= j,
and φj is linear over each tetrahedron.

For each mesh vertex vj we define the control volumes Ωj as the polyhedra spanned by the
barycenters of the tetrahedra, faces and edges neighbouring vj (see Fig. 2). By integrating
Eq. (8) over Ωj we obtain∫

Ωj

∂fi(x, t)

∂t
dΩ = −

∫
Ωj

ci · ∇fi (x, t) dΩ− 1

τ

∫
Ωj

(fi (x, t)− feqi (x, t)) dΩ. (11)

We approximate the left-hand side∫
Ωj

∂fi(x, t)

∂t
dΩ ≈ ∂fi(v

j , t)

∂t
V j , (12)

where V j is the volume of Ωj . Since ci ·∇fi(x, t) = ∇· (cifi(x, t)) we can apply the divergence
theorem to the first (streaming) term on the right-hand side of (11) which yields∫

Ωj
ci · ∇fi (x, t) dΩ =

∮
∂Ωj

(ci · n) fi (x, t) dS. (13)

Now Eq. (11) reads

∂fi(v
j , t)

∂t
≈ − 1

V j

(∮
∂Ωj

(ci · n) fi (x, t) dS +
1

τ

∫
Ωj

[fi (x, t)− feqi (x, t)] dΩ

)
. (14)

We can split the streaming term into a sum of integrals over sub-surfaces ∂Ωjm = ∂Ωj ∩ Tm
contained in each tetrahedron Tm adjacent to vj

1

V j

∮
∂Ωj

(ci · n) fi (x, t) dS =
∑
m

1

V j

∮
∂Ωjm

(ci · n) fi (x, t) dS. (15)

As shown in Fig. 2, ∂Ωjm is the union of three quadrilaterals Qγ = OmFαEγF β, Qα =
OmF βEαF γ and Qβ = OmF γEβFα and it is easy to show that each of these quadrilaterals
is planar. Hence, the integrals on the left hand side of Eq. (16) can be simplified further as

1

V j

∮
∂Ωjm

(ci · n) fi (x, t) dS =
1

V j

∑
l=α,β,γ

(
ci · nl

)∮
Ql
fi (x, t) dS. (16)

Recall that fi is linear within Tm; then, the remaining integral can be evaluated analytically
and written as a linear combination of the values of fi at vj , vα, vβ and vγ . That means, we
can write the whole streaming term as a linear combination of values of fi at vj and its direct
neighbors:

1

V j

∮
∂Ωj

(ci · n) fi (x, t) dS =
∑

vk∈N j
Sjki fi

(
vk, t

)
, (17)
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where N j is the set containing vj and all mesh vertices connected to vj by a single edge,
and the coefficients Sjki depend only on the local mesh geometry. Notice that Sjki 6= 0 only if
vertices j and k share an edge (are in each other’s direct neighborhood). Then, by substituting
a constant function fi(x, t) = 1 we obtain the following sum rule∑

k

Sjki =
1

V j

∮
∂Ωj

(ci · n) dS = 0. (18)

Similarly, we split the collision term into a sum over all Tm adjacent to vj

1

V j

∫
Ωj

1

τ
(fi (x, t)− feqi (x, t)) dΩ =

1

τ

∑
m

1

V j

∫
Ωjm

(fi (x, t)− feqi (x, t)) dΩ, (19)

where Ωjm = Ωj ∩Tm (as shown in Fig. 2). We can replace the last integral with the product
of the volume V jm of Ωjm and the value of gi ≡ fi − feqi evaluated at the center of mass of
Ωjm, which can be written as a linear combination of the values of gi at the vertices of Tm.
Note that we additionally assume here that feqi is also linear over Tm. Finally, we can write
the collision term as

1

V j

∫
Ωj

gi (x, t)

τ
dΩ =

1

τ

∑
vk∈N j

Cjkgi

(
vk, t

)
, (20)

where the coefficients Cjk can be evaluated analytically and depend only on the local mesh
geometry, and do not depend on i; i.e. the relation (20) holds for any piecewise linear function
gi. In particular, it holds for a constant function gi(x, t) = τ , which gives us the following
sum rule ∑

k

Cjk =
1

V j

∫
Ωj
dΩ = 1. (21)

In the end, we obtain the spatial discretization of the form

∂fi
(
vj , t

)
∂t

= −
∑

vk∈N j
Sjki fi

(
vk, t

)
− 1

τ

∑
vk∈N j

Cjk
(
fi

(
vk, t

)
− feqi

(
vk, t

))
. (22)

3.2. Temporal discretization

The only term left to discretized in Eq. (22) is the time derivative ∂tfi
(
vj , t

)
. In this paper

we examine two first-order, explicit time integration schemes: the forward Euler method and

the operator splitting method. For the sake of brevity we use the notation f
(n)
i (vj) ≡ fi(vj , tn),

where tn = t0 + n δt, t0 is the time at the beginning of the simulation and δt is the constant
time step size.
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The forward Euler method is commonly used for time integration of lattice Boltzmann
equation, both in regular and unstructured grid based implementations. It is stable as long as
the time step size fulfils the CFL condition δt < 2τ . It yields the following numerical scheme

f
(n+1)
i

(
vj
)

= f
(n)
i

(
vj
)
− δt

∑
k

Sjki f
(n)
i

(
vk
)
− δt

τ

∑
k

Cjk
(
f

(n)
i

(
vk
)
− feqi

(n)
(
vk
))

. (23)

Another time integration scheme investigated in this paper is the explicit operator splitting
method suggested by Rossi et al. (2005). In this approach, the streaming and the collision
terms in Eq. (22) are integrated separately using the forward Euler method, which yields the
following numerical scheme

f
(n+ 1

2)
i

(
vj
)

= f
(n)
i

(
vj
)
− δt

∑
k

Sjki f
(n)
i

(
vk
)
, (24)

f
(n+1)
i

(
vj
)

= f
(n+ 1

2)
i

(
vj
)
− δt

τ

∑
k

Cjk
(
f

(n+ 1
2)

i

(
vk
)
− feqi (n+ 1

2)
(
vk
))

, (25)

where the equilibrium distribution feqi
(n+ 1

2) is evaluated using the values f
(n+ 1

2)
i .

One of the main findings of this paper is that in an unstructured grid based setting, the
kinematic viscosity of the simulated fluid depends on the choice of the time integration method,
as has been previously demonstrated for regular grid based finite volume LBMs, Siboni et al.
(2014). In particular we have rigorously proven (using the Chapman-Enskog expansion) and
confirmed in the experiments that both schemes yield the weakly-compressible Navier-Stokes
equation (up to the second order terms); scheme (23) with kinematic viscosity

νFE = c2
sτ, (26)

and scheme (24) with kinematic viscosity

νOS = c2
s (τ − δt) . (27)

The latter value stands in contrast to the value νOS = c2
sτ reported by Rossi et al. (2005)1.

Note that this puts an additional constraint on the time step, which now reads δt < τ .
Since, to the authors’ knowledge, there is no prior, published work on the numerical analysis

of unstructured grid based lattice Boltzmann methods using Chapman-Enskog expansion, we
present the full proof in Appendix B.

3.3. Solid boundary conditions

The spatial discretization of the lattice Boltzmann equation derived in Section 3.1 only
considered bulk vertices. In this section we will discuss the solid boundary conditions and how
they are included the numerical scheme.

1In this work the time step δt = τ/20 was sufficiently low to safely neglect the δt-shift.
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Figure 3: To the left: the control volume Ωj corresponding to the vertex vj on the solid boundary. In order
to evaluate streaming over a closed surface, the boundary ∂Ωj is augmented by two solid boundary segments
Ek−1vj and vjEk+2. To the right: a contribution Ωjm to the control volume Ωj from tetrahedron Tm, whose
face vαvβvj lies on the solid boundary. The control volume boundary contribution ∂Ωjm = ∂Ωj ∩ Tm now
also contains the quadrilateral vjEαFγEβ . In both cases nj refers to the normal vector to the solid boundary
at vj .
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Accurate treatment of complex boundary conditions is non-trivial in regular grid based ap-
proaches, and while the popular bounce-back method is preferred due to its mass conservation
and simple enforcement of the no-slip conditions, it typically has to be augmented with some
variation of the immersed boundary method to avoid staircase artefacts, Pan et al. (2006). In
contrast, using unstructured meshes allows us to locate the vertices of the computational grid
precisely at the physical boundary of the domain, providing us with an accurate representation
of the boundary, both in terms of its geometry and topology. The adaptiveness property of
unstructured meshes enables a faithful representation of the fine details of the boundary (e.g.
bumps, roughness) without blowing up the overall size of the volumetric mesh.

Like the earlier works on unstructured grid based lattice Boltzmann methods: Ubertini
et al. (2003, 2004); Rossi et al. (2005); Chew et al. (2002), we incorporate the solid boundary
into the finite volume integration scheme via the half-covolume method. This way, the dis-
cretization of the collision term remains essentially unchanged, however, in order to properly
integrate the streaming flux through a control volume Ωj corresponding to a boundary vertex
vj , we have to ensure that we integrate fici over a closed volume. We can do that by aug-
menting the surface ∂Ωj constructed in the Section 3.1 with appropriate subsets (segments in
2D, quadrilaterals in 3D) of the boundary elements, as shown in the Fig. 3. In other words,
we compute the streaming flux through the full topological boundary of Ωj . Notice that this
preserves the sum rules (18) and (21).

The half-covolume method is not sufficient to enforce the appropriate solid boundary con-
ditions (typically, the no-slip boundary conditions), since it does not provide the correct values
of fi for the directions pointing from the exterior into the bulk (fluid), as pointed out in Lev-
eque (2002); Chew et al. (2002). Rossi et al. (2005) augment it with setting the equilibrium
distribution function feqi corresponding to velocity u = 0 at the boundary nodes. However,
this solution does not ensure mass conservation and in our earlier experiments it destabilized
the method when applied to complex solid boundaries. Chew et al. (2002), in their 2D fi-
nite volume LBM, combine the half-covolume method with the bounce-back method, which
ensures both no-slip boundary conditions and mass conservation. They utilize an analytical
description of the solid boundary to determine which values of fi are unknown. However, in
many cases (e.g. porous geometries obtained from x-ray tomography of real samples) such de-
scription is not readily available. Here we describe a completely general way of combining the
bounce-back rule with half-covolume method for arbitrary, 3D solid boundaries represented
by unstructured meshes.

Firstly, in the pre-processing step, we evaluate the normal vectors at all boundary vertices.
Each normal vector nj is approximated with an area-weighted sum of the outside-pointing
normals to all boundary faces adjacent to vj . If these faces are nearly co-planar, the normal
nj is sufficient to determine which directions are unknown. We can then apply the bounce-back
rule on the non-equilibrium distributions by testing whether c2k−1 ·nj < 0 for k = 1, . . . , 9. If
that is the case, then f2k−1 is the unknown value and since c2n · nj = −c2k−1 · nj > 0, so we
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nj

vj -ci
ci

nk

Figure 4: In order to determine whether the value of fi given by the half-covolume method at a boundary
vertex vj is known, we test whether the vector −ci is contained within the cone spanned by the boundary
faces and edges adjacent to vj . Firstly we find out onto which boundary face −ci projects; the simplest way of
determining that is by projecting −ci, and the local neighbourhood of vj onto a plane orthogonal to the normal
vector nj . Having found such face Fk, we evaluate the dot product ci · nk, where nk is the outward-pointing
normal vector to Fk. If that dot product is positive, then −ci is contained within the cone, and the value fi is
known; otherwise – it is unknown.

can perform the substitution

f2k−1(vj , tn) = f2k(v
j , tn). (28)

Alternatively if c2k · nj < 0, then c2k−1 · nj > 0 and we perform the substitution

f2k(v
j , tn) = f2k−1(vj , tn). (29)

However, such test is only sufficient if the solid boundary is smooth. In the general case,
when the solid boundary contains sharp, non-smooth details, a more refined procedure has to
be applied to determine whether a value fi is unknown. This is the case if the vector −ci is
not contained in the cone delimited by the boundary faces and edges adjacent to a boundary
vertex vj (see Fig. 4 for details). Notice that for every boundary vertex and every direction
this test has to be performed only once per simulation. In our implementation it is performed
in the pre-processing step, hence it does not affect the overall performance of the method,
except for a slight memory overhead related to storing 18 binary flags per each boundary
vertex, which indicate whether fi, i = 1, . . . , 18 is known or unknown at that vertex. Then,
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the bounce-back rule can be applied to the non-equilibrium distributions via the following
substitutions

f2k−1(vj , tn) = f2k(v
j , tn) if f2k−1 is unknown and f2k is known, (30)

f2k(v
j , tn) = f2k−1(vj , tn) if f2k is unknown and f2k−1 is known, (31)

for k = 1, . . . , 9. If both f2k−1 and f2k are unknown, instead we substitute

f2k−1(vj , tn), f2k(v
j , tn) =

1

2

(
f2k−1(vj , tn) + f2k(v

j , tn)
)
. (32)

This rule proved sufficiently good in our experiments, but it could be further improved. Partic-
ularly appealing is the method proposed by Chikatamarla and Karlin (2013), used in turbulent
flow simulations, where they approximate the populations in the unknown directions (which
we can identify as described above) using the target values of density and velocity at the
boundary node, ρtarget and utarget respectively. While their method has been developed for
regular grids, its generalization to unstructured grids is straightforward.

3.4. Inlet and outlet boundary conditions

We enforce the pressure values at the inlet and outlet by applying bounce-back to the
non-equilibrium parts of the unknown distributions after streaming, after Zou and He (1997).
However, in 3D this approach, together with the closure relations for mass and momentum
conservation, leads to excess momentum in the two dimensions that span the plane of the inlet
or outlet. Following Zou and He (1997), we get rid of this excess momentum by redistributing
it among the unknowns fi pointing into the fluid. The nodes at the boundaries of the inlet
and outlet are treated as all other solid boundary nodes.

Following Rossi et al. (2005), we augment all our meshes with a certain number N of
additional, identical buffer layers of elements at the inlet and outlet. The purpose of these two
buffers is to increase the stability of the method, as they ensure that the control volumes at
the inlet and outlet nodes close up. After streaming, colliding and applying pressure boundary
conditions, the values of fi at each inlet and outlet node are copied to the corresponding N
buffer nodes in order to enforce complete hydrodynamic equilibrium in these regions.

3.5. Meshing considerations

It is a well-established fact, recognized by both computational fluid dynamics and com-
putational mechanics communities, that the stability and accuracy of an unstructured grid
based simulation strongly depends on the quality of the grid. Several quality measures for
tetrahedral meshes have been proposed, and in isotropic case, they all tend penalize tetra-
hedra which significantly differ from the regular tetrahedron, for an in-depth comparison see
Shewchuk (2002).
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The most relevant observation to our method is that elements with large dihedral angles
(close to π) cause significant interpolation errors, manifesting themselves as gradient artefacts
and thus should be avoided, Shewchuk (2002). In order to ensure that the computational do-
main does not contain such degenerate elements, we apply a local mesh improvement method,
similar to that described by Klingner and Shewchuk (2007).

Proper treatment of the solid boundary conditions sets another restriction on the mesh
structure. Our method for handling such boundary conditions in Section 3.3 hinges on the fact
that the half-covolume method produces correct values of the particle distribution function
fi at a boundary vertex vj in the directions pointing away from the fluid, and our method
for identifying the unknown directions considers only the local boundary patch (i.e. the
boundary faces containing given vj). However, if the other vertices, connected to vj by a
single, non-boundary edge, also lie on the solid boundary (which can be the case if the mesh
is under-resolved in narrow channels), then the half-covolume method can produce erroneous
values in the directions identified as known. Hence special care has to be taken when designing
or optimizing the computational mesh in order to avoid such configurations.

Finally, as shown in Appendix B, the linear terms contributing to numerical diffusion are
on the form ∑

k

Cjkrjk, (33)

where rjk = vk − vj . By definition of the collision matrix (20) we have∑
k

Cjkζ(vk) =
1

V j

∫
Ωj
ζ(x) dΩ, (34)

where Ωj is the control volume associated with vertex vj , and ζ(x) is an arbitrary, continuous
function, linear over each element. In particular, Eq. (34) holds for ζ(x) = rj(x) ≡ x − vj .
Hence ∑

k

Cjkrjk =
1

V j

∫
Ωj

(x− vj) dΩ. (35)

It is evident that the term on the right-hand side becomes zero, if vj lies in the geometric
center of the control volume Ωj , i.e. when

vj =
1

V j

∫
Ωj

x dΩ. (36)

This implies that it is possible to remove the first-order numerical diffusion originating from
spatial discretization, by designing or optimizing the mesh in a way that places each vertex at
the geometric center of the control volume associated with this vertex. In practice, this can
be done by designing an iterative mesh smoothing procedure, i.e. a procedure for displacing
mesh vertices without changing their connectivity, which aims at satisfying criterion (36).
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Figure 5: Cross sections of the cube meshes M1 (left, 9273 tetrahedra) and M2 (right, 235447 tetrahedra)
used in the freely decaying shear wave experiments, taken at z = 0.

4. Experiments and results

In this section we benchmark the LBM by applying it to a freely decaying shear wave in
a periodic box and to Poiseuille flow using both forward Euler and operator splitting time
integration. In addition we will use these geometries to verify the derived expressions for the
viscosities in both time integration schemes, (26) and (27) and estimate their accuracy as a
function of grid resolution.

4.1. Freely decaying shear waves

We first consider a freely decaying shear wave in a periodic box, which allows us to avoid
the use of boundary conditions, which shall be analysed below by considering a Poiseuille flow.

We set initially a velocity profile equal to

vy(x, t = 0) = v0
y sin(kxx), (37)

in which vy denotes the velocity along the y axis and kx – the wave number. For zero pressure
gradient and relatively low Reynolds numbers the Navier-Stokes equation has an analytical
solution given by

vy(x, t) = v0
y sin(kxx) e−νk

2
xt, (38)
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from which we have

− 1

k2
xt

ln

(
vy(x, t)

v0
y sin(kxx)

)
= ν. (39)

Then, from the measurement of the time series of the velocity at a certain point we can
obtain the viscosity of the simulated fluid. Specifically, if we select a point xo such that
sin(kxxo) = 1 we can obtain the viscosity from the following formula

− 1

k2
xt

ln

(
vy(xo, t)

v0
y

)
= ν. (40)

The simulations presented here were performed on two meshes (see Fig. 5) whose charac-
teristic grid spacing (measured as the mean edge length) are 0.1 and 0.036 measured in LB
units. We shall refer to these meshes asM1 andM2, respectively. The chosen velocity ampli-
tude is v0

y = 0.05, which corresponds to Ma ≈ 3 · 10−2. We performed a series of simulations
changing the relaxation time for both forward Euler and operator splitting schemes in order
to measure the viscosity and compare it with the closed form solutions given by (26) and (27),
respectively.

In Fig. 6 we present the time series of the velocity vy(xo, t)/vy(xo, 0) versus t k2
x ν resulting

from the simulation with the forward Euler scheme inM2, and compare it against the analytic
solution. The relaxation time and time step used were equal to 0.08 and 0.05, respectively,
corresponding to the Reynolds number of Re ≈ 12. From the relaxation of the y-coordinate of
the velocity we obtain the kinematic viscosity ν = 0.02637, which deviates by approximately
1% from the theoretical value given by the relation (26).

In Tables 1 and 2 we present the results for the simulations with the OS time integration
in both meshes for several relaxation times and time steps. We can observe a remarkable
agreement between the viscosity values determined by these numerical experiments and the
theoretical values given by (27). Moreover, if we compare the fractional deviation in viscosity
δν = |νe−νtνt

| in both meshes, for a given τ and dt, we can see that δν is approximately 4 times
lower forM2, indicating that the error scales approximately as the square of the grid spacing
r2, as suggested by our Chapman-Enskog analysis.

We have thus provided numerical evidence for the theoretical finding that the kinematic
viscosity in the operator splitting scheme does depend on the time step size.

4.2. Poiseuille flow

We consider flow in a cylindrical pipe, driven by a constant volumetric force acting along
the symmetry axis, with no-slip boundary conditions employed at the outer edge and periodic
boundary conditions at the inlet and outlet. As illustrated in Fig. 7 and 8, the unstructured
grid accurately represents the curved boundary. This geometry is particularly interesting to
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τ δt νt νe δν

0.08 0.04 0.0133 0.0132 0.95%
0.08 0.06 0.00667 0.00684 2.55%
0.04 0.02 0.00667 0.00661 0.9%
0.04 0.03 0.00333 0.00342 2.7%
0.01 0.005 0.001667 0.001668 0.1%

Table 1: Comparison between the numerical estimate of kinematic viscosity νe and the theoretical value νt =
c2s(τ − δt) for several relaxation times and time step sizes. We can see from the fractional deviation in viscosity
(see text for definition) a remarkable agreement between νt and νe. The simulations were performed on the
coarser mesh M1.

τ δt νt νe δν

0.08 0.04 0.01333 0.01328 0.3%
0.04 0.02 0.00667 0.00665 0.28%
0.04 0.03 0.00333 0.00336 0.67%
0.01 0.005 0.001667 0.001664 0.1%

Table 2: Comparison between the numerical estimate of kinematic viscosity νe and the theoretical value νt =
c2s(τ − δt) for several relaxation times and time step. We can see from the fractional deviation in viscosity a
remarkable agreement between νt and νe. The simulations were performed on the finer mesh M2.

benchmark since it readily serves as a platform for investigating turbulent flows, e.g. by adding
roughness to the boundaries.

We drive the flow to a maximum speed Ma = 2 ·10−3 with τ = 8 ·10−2 and δt = 10−2, and
with the pipe’s radius R = 6.7 this corresponds to Re = 0.2. The radial velocity profile u(r, t)
as a function of the radius r and time t can be analytically obtained from the Navier-Stokes
equations by utilizing the symmetry and is given by

u(r, t) =
(
1− r2

)
− 8

∞∑
n=1

λ−3
n

J0(λnr)

J1(λn)
e−λ

2
nt/Re, 0 ≤ (u, r) ≤ 1, (41)

where Jn is the nth order Bessel function of first kind, λn the nth positive root of J0. In the
above equation the velocity and radial coordinate are measured in units of the velocity at the
center of the pipe and the radius, respectively. In Fig. 9 we illustrate the velocity profiles
obtained numerically for increasing times, showing good agreement with the corresponding
analytic profiles.

We now look at the decay of a given radial velocity profile f(r), which has the closed form
solution

u(r, t) =

∞∑
n=1

(
2

J2
1 (λn)

∫ 1

0
r′f(r′)J0(λnr

′)dr′
)
J0(λnr) e−λ

2
nt/Re. (42)
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Figure 6: The time evolution of normalized velocity along the y axis compared against the analytic solution.
In the figure the time has been rescaled by to =

(
k2xν

)−1
. The spatial grid contains 235447 elements. The

relaxation time and time step used were 0.08 and 0.05, respectively. From the relaxation of the velocity along the
y axis we obtain the kinematic viscosity ν = 0.02637, which deviates by approximately 1% from the theoretical
value according to the relation ν = c2sτ . The corresponding Reynolds number Re = 12.

Due to time-reversal symmetry the decay profiles are identical to those in Fig. 9. However,
by taking as initial profile f(r′) = umax(0)J0(λ1r

′) we are able to find an explicit expression
for the kinematic viscosity of our simulated hydrodynamics for times t > 0

ν = −R
2 ln(umax(t)/umax(0))

λ2
1t

. (43)

We can validate the derived expressions for the viscosity by measuring the steady-state value
(43) in our system. Our results are summarized in Table 3 for both the FE and OS schemes,
showing the fractional error in the simulated viscosity. The results are within a few percent
of the analytical solution and, as mentioned in Ubertini et al. (2003), the second-order effect
due to numerical diffusion is found to scale inversely with the number of elements.

4.3. Flow in a porous sample

Accurate calculation of single phase flow permeability through complex pore networks in
porous media is important for many industrial and scientific applications. Therefore, we have
tested our finite volume implementation of the LBM on a subvolume of the real natural porous
material of an outcrop of bryozoan chalk from Rødvig, Denmark. The digital 3D image was
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Figure 7: Cross sections of the cylindrical pipe meshes used in the Poiseuille flow experiments, taken at z = 0,
showing their internal structures. The coarse model (top) contains 32166 tetrahedra, and the fine model
(bottom) contains 156749 tetrahedra.
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Figure 8: The inlet of the fine pipe used to model Poiseuille flow. The grid contains 217 nodes.

obtained by X-ray nanotomography Cloetens et al. (1999) measured at beamline ID22 at the
European Synchrotron Radiation Facility, France. The reconstructed volume had a voxel size
of 25 nm and an optical resolution about 150 nm. Details about the data collection and
reconstruction can be found in Müter et al. (2014). The reconstructed images were corrected
for ring artefacts before segmentation by a dual filtering and Otsu thresholding procedure
Müter et al. (2012). For the LBM calculations we used a subvolume of 1003 voxels, which
gives a side length of 2.5 microns (Fig. 10).
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Figure 9: Convergence of the radial velocity profile towards the theoretical parabolic shape of the Poiseuille
flow. The grid contains 31117 nodes and each data point is an average along the entire pipe.

# nodes τ δt νt νe δν TS

7857 0.08 0.04 0.0267 0.0238 11.846% FE
0.08 0.02 0.0267 0.0241 10.465% FE
0.04 0.02 0.0133 0.0121 10.106% FE

31117 0.08 0.04 0.0267 0.0262 1.589% FE
0.08 0.02 0.0267 0.0262 1.621% FE
0.04 0.02 0.0133 0.0131 1.549% FE

7857 0.08 0.04 0.0133 0.0128 4.544% OS
0.08 0.02 0.0200 0.0185 8.356% OS
0.04 0.02 0.0067 0.0064 4.195% OS

31117 0.08 0.04 0.0133 0.0132 0.658% OS
0.08 0.02 0.0200 0.0197 1.321% OS
0.04 0.02 0.0067 0.0066 0.732% OS

Table 3: Fractional deviation in viscosity δν for two different meshes and two different time-stepping (TS)
schemes. The maximum velocity umax(t) is obtained by averaging around the symmetry axis throughout the
whole pipe.

In addition to the benchmarks in the previous subsections, we further test our finite vol-
ume implementation of the LBM in the pore space of a limestone sample. The pore space
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Figure 10: The porous sample used in the experiment together with cross sections taken at 75%, 50% and 25%
of the sample’s depth, showing the internal mesh structure. The tetrahedral mesh contains 621818 elements.
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is obtained by a computed tomography with a 25 nanometer voxel size resolution and the
total linear size of the sample is approximately 3 microns. In many industrial and scientific
settings, it is important to determine the single phase flow permeability. The unstructured
grid, considered here, allows for a relatively simple geometrical representation of the complex
pore space and therefore reduces the number of computational elements needed relative to the
LBM formulated on regular grids.

In order to drive the fluid in the sample, we impose a pressure difference between the inlet
and outlet planes. The inlet and outlet conditions were implemented as described in Zou and
He (1997). In our calculations, we introduce a flow in the direction perpendicular to the inlet
plane along the y-axis.

The permeability is determined from the empirical Darcy’s law, which states that under
steady-state flow conditions, the flow rate through a cross section Q is proportional to the
pressure drop ∆P that drives the fluid,

Q =

∫
u · dA = −kA

µ

∆P

L
, (44)

where k is the permeability, µ is the dynamic viscosity of the fluid, u the velocity, A the
cross-section of the medium and L is the distance between the inlet and outlet planes.

In principle, the permeability is a tensorial quanitity, since different flow permeabilities
might be achieved if different inlet planes are chosen. Here we have constructed the mesh such
that the rock is impermeable in the directions orthogonal to the outlet plane normal (i.e. there
is no net flux in the x and z directions) and we therefore only determine the component kyy.
The other permeability components are easily achieved by a simple change of the inlet and
outlet planes.

For a given time step δt, relaxation time τ and inlet (outlet) pressure ρI (ρO), we determine
the steady-state flow rate by averaging over the faces i lying on the outlet, Q ≈ ∑i 〈vi〉Ai.
For consistency we check that QO = QI .

In our model, we define the dimensionless permeability as

k∗ =
k

A
, (45)

which is, consequently, only a function of the Reynolds number and independent of the system
of units we use to measure it. Substitution of (45) in (44) yields

Q = −k
∗A2

µ

∆P

L
, (46)

We determine the value of k∗ from (46) expressing all the magnitudes in LB units. From this,
we can obtain the value of the permeability in any arbitrary system of units ks according to
the relation

ks = k∗As (47)
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For the Poiseuille flow we have k∗ = π
8 , a result that was readily benchmarked in our pipe

flow simulations.
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Figure 11: The outlet flow rate Q versus pressure difference for our porous medium, displaying a linear re-
lationship in accordance with Darcy’s law. The presented data is in LB-units. From these measurements we
estimated the permeability as kP = 6.5 mD.

4.3.1. Multiple relaxation time LBM

The single-relaxation BGK model introduced in Section 3 suffers from viscosity-dependent
flow as the fluid-solid location depends on the relaxation τ when bounce-back is employed, Pan
et al. (2006). To circumvent this issue we employed the multi-relaxation model, d’Humieres
et al. (2002). We start by generalizing Eq. (8) to vector form by replacing the single-relaxation
BGK collision term − 1

τ (fi (x, t)− feqi (x, t)) with a general collision matrix Σ ∈ R19×19,

R19 3 Ω̄MRT ≡ |Ω̄MRT〉 = −Σ (|f(x, t)〉 − |feq(x, t)〉) , (48)

where Σ = ωI, ω ≡ τ−1 for the BGK collision operator. In the MRT/LBM model the collision
operator relaxes the various kinetic modes individually, thus increasing the stability as the
relaxation time of a mode can be adjusted to its characteristic time. This is accomplished by
transforming the usual velocity-space distribution function fi to moment-space by a transfor-
mation matrix M, |m(x, t)〉 = M|f(x, t)〉. Following d’Humieres et al. (2002); Narvez et al.
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(2010), we define m0 to be the fluid density, m2 the energy, {m3,m5,m7} the momentum flux
and {m9,m11,m13,m14,m15} components of the symmetric traceless viscous stress tensor. As
density and momentum flux are conserved during collision, the moments {m0,m3,m5,m7} are
identical to their equilibrium values and the remaining non-conserved equilibrium moments
are written as functions of these d’Humieres et al. (2002).

With this transformation the collision operator becomes

|Ω̄MRT〉 = −M−1Σ̂ (meq(x, t)−m(x, t)) , (49)

where the transformation matrix M is constructed such that the relaxation matrix Σ̂ =
MΣM−1 = diag(s0, s1, s2, . . . , s18) is diagonal in moment space and specifies the relaxation
time of moment mi, d’Humieres et al. (2002).

As the corresponding moments are conserved, s0 = s3 = s5 = s7 = 0. Utilizing the values
of the two relaxation time (TRT) model in Pan et al. (2006), we fix the remaining diagonal
elements of Σ̂ to the values

s1 = s2 = s9−15 = ω; (50)

s4 = s6 = s8 = s16−18 = 8
2− ω
8− ω . (51)

We note that the bounce-back method for handling solid boundary conditions, described in
Section 3.3, is still applicable in the MRT model.

In Fig. 11 we present the results of our MRT-LBM simulations on the porous sample.
The relation between the flow rate and the pressure difference is clearly linear, as expected
from Darcy’s law. All experiments were performed with the Reynolds numbers on the order
of unity.

5. Conclusions

The developments of lattice Boltzmann schemes on unstructured grids are highly promis-
ing since the fact that the velocity and space discretizations are independent can be exploited
to enhance the geometric flexibility and accuracy when simulating complex flows. As we have
proven in this paper, the unstructured LBM is capable of accurately simulating flows in com-
plex, three-dimensional domains (such as pore spaces in porous rocks) at low Reynolds number
using significantly fewer elements than the regular grid based approaches, such as Ramstad
et al. (2010), Pazdniakou and Adler (2013). However, regular grid based LBMs are likely
to remain the most widely applied variant of the method, as they are simpler to implement
and analyse, as well as more readily and massively parallelizable than the unstructured LBM,
Tolke and Krafczyk (2008), Rinaldi et al. (2012), Januszewski and Kostur (2014).

Recent works on the lattice Boltzmann models suggest several strategies to further improve
on the unstructured lattice Boltzmann method. Patil and Lakshmisha (2009) present an
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alternative approach to solving the lattice Boltzmann equation on 2D unstructured meshes.
Instead of using vertex-centred finite volume method, they choose the elements (triangles) as
their control volumes, which is beneficial for the implementation and the performance, as it
greatly simplifies the structure of the streaming and collision matrices, as well as the solid
boundary conditions. Furthermore, using a total-variation diminishing limiter allows them to
increase the stability of the method and to reduce the effects of numerical diffusion.

Of particular interest is the use of Hermite multi-speed models based on the general
characteristic-based algorithm for off-lattice Boltzmann simulations, Bardow et al. (2008),
which led to full freedom in the selection of the velocity model, independently from the spatial
and temporal discretizations. Using this scheme, the simulations of a 2D Taylor-Green vortex
flow were run up to Re = 5000 with time step size δt = 500τ , which is a clear evidence that the
time step restriction was overcome. As indicated by Bardow et al. (2008), this method could
be further improved by incorporating lattice Boltzmann H-theorem. Considering that, the en-
tropic lattice Boltzmann method has emerged as a robust tool for simulations of high Reynolds
number flows, see e.g.: Keating et al. (2007), Chikatamarla et al. (2010). With the addition
of novel boundary conditions, Chikatamarla and Karlin (2013) developed a robust method for
sub-grid simulations of wall bounded turbulent flows flows without further modelling. The
latter combined together with the geometric flexibility provided by off-lattice schemes could
be useful to shed light on the interplay between surface geometry (roughness) and turbulent
structures in realistic high Reynolds number flows in various engineering applications.
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Appendix A. Remarks on notation

In this chapter we give an overview of the mathematical notation used throughout the
document. We refer to scalar variables using italicized, lower case characters, such as fi, uα,
t etc.; and to three-dimensional vectors using bold-face, lower case characters, e.g.: u, ci,
rjk. Tensors and matrices are represented with bold-face, upper case characters: D, Σ, etc.
and their scalar entries are italicized, e.g.: Dαβ, Cjk. The dot product between two vectors
a,b ∈ R3 is denoted as a · b, and the tensor (outer) product of these vectors is referred to as
ab, for brevity. We denote tensor contraction using “:” symbol, for example

rr : ∇∇f (A.1)
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refers to the contraction of the outer product of vector r with itself, and the Hessian tensor
of a scalar function f , i.e.

rr : ∇∇f ≡
∑

α=x,y,z

∑
β=x,y,z

rαrβ ∂α∂βf. (A.2)

Appendix A.1. Indices and summation convention

We use three types of indices in this document. Lower index i is used exclusively to denote
the variables related to the discrete velocity set, in our case, D3Q19. Hence, index i can
take values 0, 1, . . . 18. Other lower indices (typically α, β, γ) refer to coordinates of vectors
from R3 and tensors from R3×3. Upper indices (usually j, k) are used to denote the values
of discretized variables and refer to the sites at which the given variable is sampled, i.e. f ji
means the value of function fi taken at a site (vertex) j.

In several places throughout the Appendix B we switch from vector notation to coordinate-
based notation, for the reader’s convenience. As a consequence of our index convention, we
abuse Einstein’s notation in the following way. Repeated lower indices referring to coordinates
(i.e. all lower indices except for i) in each product refer to the sum over all admissible values
of these indices, in practice x, y, z; for example

rjkα r
jk
β ∂α∂βf ≡

∑
α

∑
β

rjkα r
jk
β ∂α∂βf, (A.3)

however
cifi 6=

∑
i

cifi. (A.4)

For all other types of sums, we explicitly use the
∑

symbol.

Appendix B. Numerical analysis of the unstructured LBM

For the purpose of analysing the properties of the schemes introduced in Section 3 we shall
write them in the general form

fi
(
vj , t+ δt

)
= fi

(
vj , t

)
− δt

∑
k

Sjki fi

(
vk, t

)
+ Ω̄j

i , (B.1)

where Ω̄j
i is the collision operator, defined as

Ω̄j,FE
i = −δt

τ

∑
k

Cjk
(
fi

(
vk, t

)
− feqi

(
vk, t

))
(B.2)

26



for the forward Euler time integration, and

Ω̄j,OS
i = −δt

τ

∑
k

Cjk
(
f̃i

(
vk, t+ δt

)
− f̃eqi

(
vk, t+ δt

))
(B.3)

for the operator splitting scheme, where

f̃i

(
vk, t+ δt

)
= fi

(
vk, t

)
− δt

∑
k′∈N k

Skk
′

i fi

(
vk
′
, t
)

(B.4)

and f̃eqi is evaluated using the values of f̃i. In order to derive the Navier-Stokes equation from
Eq. (B.1) we perform the Chapman-Enskog expansion. For the sake of clarity, we shall first
consider the streaming operator alone and then analyse the collision operators.

Appendix B.1. Streaming operator

As the first step towards the Chapman-Enskog expansion, we consider the Taylor expansion
of Eq. (B.1) around

(
vj , t

)
, up to the second order terms. The Taylor expansion of the left-

hand side of (B.1) reads

fi
(
vj , t+ δt

)
= f ji + δt ∂tf

j
i +

1

2
δt2 ∂2

t f
j
i +O

(
δt3
)
, (B.5)

where we use a shorthand notation f ji ≡ fi
(
vj , t

)
. Similarly

fi

(
vk, t

)
= f ji + δrjk · ∇f ji +

1

2
rjkrjk : ∇∇f ji +O

(
δr3
)
, (B.6)

where rjk = vk−vj . By substituting (B.5) and (B.6) into (B.1) and subtracting f ji from both
sides we obtain

δt ∂tf
j
i +

1

2
δt2 ∂2

t f
j
i = −δt

∑
k

Sjki

(
f ji + rjk · ∇f ji +

1

2
rjkrjk : ∇∇f ji

)
+ Ω̄j

i . (B.7)

We can rewrite the sum on the right-hand side as

f ji
∑
k

Sjki +
∑
k

Sjki rjk · ∇f ji +
1

2

∑
k

Sjki rjkrjk : ∇∇f ji . (B.8)

Since ∀i,j
∑

k S
jk
i = 0, the first term in (B.8) vanishes. Using the index notation, we can

rewrite the remaining terms as

∑
k

Sjki r
jk
α ∂αf

j
i +

1

2

∑
k

Sjki r
jk
α r

jk
β ∂α∂βf

j
i = ∂αf

j
i

∑
k

Sjki r
jk
α +

∂α∂βf
j
i

2

∑
k

Sjki r
jk
α r

jk
β , (B.9)
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where α, β denote the coordinates. The definition of Sjki reads

1

V j

∮
∂Ωj

(ci · n) fi dS =
∑
k

Sjki f
k
i , (B.10)

where Ωj is the control volume associated with the node vj . Note that this equality holds for
an arbitrary, continuous function which is linear over each element. In particular, it remains
true if we replace fi with rj(x) = x− vj

1

V j

∮
∂Ωj

(ci · n) rj dS =
∑
k

Sjki rjk. (B.11)

Hence ∑
k

Sjki r
jk
α =

1

V j

∮
∂Ωj

(ci · n) rjα dS =
1

V j

∮
∂Ωj

(
rjαci

)
· n dS. (B.12)

We can now apply the divergence theorem, which yields∑
k

Sjki r
jk
α =

1

V j

∫
Ωj
∇ ·
(
rjαci

)
dΩ =

1

V j

∫
Ωj

ci · ∇rjα dΩ =
1

V j

∫
Ωj

ci · eαdΩ, (B.13)

where eα is the unit vector associated with coordinate α. Clearly ci · eα = ciα, which is a
constant. Thus we finally obtain∑

k

Sjki r
jk
α =

ciα
V j

∫
Ωj
dΩ = ciα. (B.14)

The second order term in (B.8) can be written as

1

2
∂α∂βf

j
i

∑
k

Sjki r
jk
α r

jk
β =

1

2
Dj
i αβ ∂α∂βf

j
i (B.15)

where Dj
i αβ =

∑
k S

jk
i r

jk
α r

jk
β is known as the numerical diffusion tensor, Ubertini et al. (2003).

By substituting (B.14) and (B.15) into (B.7) we finally obtain

δt ∂tf
j
i +

1

2
δt2 ∂2

t f
j
i = −δt ciα ∂αf ji −

δt

2
Dj
i αβ ∂α∂βf

j
i + Ω̄j

i . (B.16)

Appendix B.1.1. Numerical diffusion tensor

The definition of the numerical diffusion tensor as Dj
i αβ =

∑
k S

jk
i r

jk
α r

jk
β is not very conve-

nient for further analysis, due to dependence on i. In this section we will analyse it in greater
detail. Once again, we will apply the definition of the streaming operator Sjki

1

V j

∮
∂Ωj

(ci · n) ζjαβ(x) dS =
∑
k

Sjki ζ
jk
αβ, (B.17)
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where the function ζjαβ is constructed in a way that ζjkαβ = ζjαβ(vk) = rjkα r
jk
β and is linear in

each element containing vj

ζjαβ(x) =
∑
k

rjkα r
jk
β φ

k(x), (B.18)

where φk(x) is the linear interpolant (or hat function) associated with vertex vk (i.e. φk(vk) =
1, φk(vl) = 0, l 6= k and φk is linear over each element). Then, using the divergence theorem,
we obtain∑

k

Sjki ζ
jk
αβ =

1

V j

∮
∂Ωj

(
ζjαβci

)
· n dS =

1

V j

∫
Ωj
∇ ·
(
ζjαβci

)
dΩ = ci ·

(
1

V j

∫
Ωj
∇ζjαβdΩ

)
.

(B.19)

Notice that ∇ζjαβ =
∑

k r
jk
α r

jk
β ∇φk, and since φk is linear over each element, then ∇φk and,

in consequence, ∇ζjαβ is constant over each element. Let us denote

∆j
αβ =

1

V j

∫
Ωj
∇ζjαβdΩ. (B.20)

Such vector ∆j
αβ depends only on the geometry of the mesh. Then

Dj
i αβ =

∑
k

Sjki ζ
jk
αβ = ci ·∆j

αβ = ciγ∆j
αβγ , (B.21)

finally allowing us to rewrite equation (B.16) as

δt ∂tf
j
i +

1

2
δt2 ∂2

t f
j
i = −δt ciα ∂αf ji −

δt

2
∆j
αβγciγ ∂α∂βf

j
i + Ωj

i . (B.22)

Notice that the effects of numerical diffusion scale quadratically with the edge lengths r, and
therefore disappear for well-resolved meshes.

Appendix B.2. Collision operators

Appendix B.2.1. Forward Euler time integration

In contrast to the standard LB schemes developed on regular grids, we can see from
expression (B.2) that the collision operator in the present finite volume formulation is non-
local, i.e. the relaxation towards equilibrium at a specific grid point is a function of the
relaxation at the neighbouring points. Since the space-time dependence of the equilibrium
distribution is through the fluid quantities, namely the density and velocity, we can expect
that for sufficiently smooth flows the hydrodynamic fields do not vary significantly on the scales
of grid spacing and consequently non-local effects in evaluating the equilibrium distribution
function should be negligible. Let us determine the value of these quantities at a specific grid
point vk as a function of their values at the neighbouring points. We first perform a Taylor
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expansion of the particle distribution function around the neighbouring grid point vj , which
leads to

fi(v
k, t) ≈ fi(vj , t) + rjk · ∇fi +

1

2
rjkrjk : ∇∇fi. (B.23)

Inserting the above expansion into the definition of the density ρ =
∑

i fi we obtain

ρ(vk, t) =
∑
i

fi(v
k, t)

(
≈
∑
i

fi(v
j , t) + rjk · ∇fi +

1

2
rjkrjk : ∇∇fi

)
. (B.24)

Interchanging the sum operation with the spatial derivative in the above equation yields

ρ(vk, t) ≈ ρj
(

1 +
1

ρj
rjk · ∇ρj +

1

2ρj
rjkrjk : ∇∇ρj

)
, (B.25)

where we denote ρ(vj , t) ≡ ρj for brevity. Following the same procedure as for the density we
obtain for the momentum

ρ(vk, t)u(vk, t) =
∑
i

fi(v
k, t)ci ≈ ρjuj + (rjk · ∇)(ρjuj) +

1

2
rjkrjk : ∇∇(ρjuj) (B.26)

Here, uj ≡ u(vj , t). Now, by approximating

1

ρ(vk, t)
≈ 1

ρj

(
1− 1

ρj
rjk · ∇ρj − 1

2ρj
rjkrjk : ∇∇ρj

)
(B.27)

using the first order Taylor expansion, and by omitting the products of the derivatives of
density and momentum (see the discussion below), we obtain the velocity

u(vk, t) ≈ uj
(

1− 1

ρj
rjk · ∇ρj − 1

2ρj
rjkrjk : ∇∇ρj

)
+

1

ρj
(rjk·∇)(ρjuj)+

1

2ρj
rjkrjk : ∇∇(ρjuj)

(B.28)
For the sake of the simplicity of the notation let us write the above equations for the density
and velocity as

ρ(vk, t) ≈ ρj + ∆ρk, (B.29)

and
u(vk, t) ≈ uj + ∆uk, (B.30)

respectively. Substitution of Eqs. (B.29) and (B.30) into the equilibrium distribution function
yields

feqi (vk, t) ≈wi
(
ρj + ∆ρk

)(
1 +

ci · uj
c2
s

+
(ci · uj)2

2c4
s

− (uj)2

2c2
s

)
+wi

(
ρj + ∆ρk

)(ci ·∆uk

c2
s

+
(ci ·∆uk)2 + 2ci · uj(ci ·∆uk)

2c4
s

− (∆uk)2

2c2
s

− 2uj ·∆uk

2c2
s

)
(B.31)
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By neglecting all the quadratic terms that contain spatial derivatives of both the density and
momentum, contained in ∆ρk and ∆uk, we obtain that the equilibrium distribution can be
written to leading order as2

feqi (vk, t) ≈ feqi (vj , t)

(
1 +

∆ρk

ρj

)
+ wiρ

j

(
ci ·∆uk

c2
s

+
ci · uj(ci ·∆uk)

c4
s

− uj ·∆uk

c2
s

)
(B.32)

Further simplifications can be made by taking into account the explicit expressions for
∆ρk and ∆uk. The key point is that the linear terms in the Taylor expansion are of the
form rjk · ∇ and, as discussed in Section 3.5, the sum

∑
k C

jkrjk is very close to zero when
vj lies at the geometrical center of the control volume. Consequently, the only non-vanishing
contribution to the sum over the control volume will be given by the second order terms in
the Taylor expansions of ∆ρk and ∆uk. These considerations lead to the following relation

∑
k

Cjkfeqi (vk, t) ≈ feqi (vj , t)

(
1 +

∑
k

Cjk
rjkrjk : ∇∇ρj

2ρj

)

− wiρj
(

1 +
ci · uj
c2
s

)(
ci · uj
c2
s

∑
k

Cjk
1

2ρj
rjkrjk : ∇∇ρj +

ci
c2
s

·
∑
k

Cjk
1

2ρj
rjkrjk : ∇∇(ρjuj)

)

− wiρ
j

c2
s

uj ·
(

uj
∑
k

Cjk
1

2ρj
rjkrjk : ∇∇ρj +

∑
k

Cjk
1

2ρj
rjkrjk : ∇∇(ρjuj)

)
,

(B.33)

where we have used the sum rule
∑

k C
jk = 1. We can see that the terms containing the sums

of the second order terms of the Taylor expansion times the collision matrix are vanishingly
small for well resolved meshes and flows at low Mach and Reynolds numbers, as is in our case.
We therefore can safely neglect those terms and obtain∑

k

Cjkfeqi (vk, t) ≈ feqi (vj , t). (B.34)

With this result we can further analyse the collision operator by inserting the Taylor
expansion, Eq. (B.23), into the expression for the collision Eq. (B.2), which yields

Ω̄j,FE
i = −δt

τ

∑
k

Cjk
[
fi(v

j , t) + rjk · ∇fi +
1

2
rjkrjk : ∇∇fi − feqi

(
vj , t

)]
(B.35)

2 The quadratic terms containing the spatial derivatives of both the density and the momentum are vanish-
ingly small for well resolved meshes, as well as for flows at low Mach and Reynolds numbers.
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Using the relations
∑

k C
jk = 1 and

∑
k C

jkrjk = 0 we arrive to the following approximation
for the collision operator

Ω̄j,FE
i = −δt

τ

(
fi(v

j , t)− feqi
(
vj , t

))
− δt

τ
Dj : ∇∇fi, (B.36)

where the tensor Dj is defined as

Dj =
1

2

∑
k

Cjkrjkrjk. (B.37)

We see that in Eq. (B.36) the first term is the standard BGK relaxation and the second one
introduces numerical viscosity as we shall demonstrate below by doing a multi-scale analysis.
Therefore, the numerical viscosity effects due to collision are of second order in r for the
forward Euler integration.

We will now include the expression for the collision term Ω̄j
i for the forward Euler time-

stepping scheme. Using (B.22) and (B.36) the evolution equation yields

δt ∂tf
j
i +

δt2

2
∂2
t f

j
i = −δt ciα∂αf ji −

δt

2
∆αβγciγ∂α∂βf

j
i −

δt

τ
((f ji − f

j,eq
i ) +Dj

αβ∂α∂βf
j
i ). (B.38)

We will analyse this equation in the remainder of this section. We analyse it locally, hence
we drop the j-index. We start by multiplying both sides by ciα and summing over all i =
0, 1, . . . , 18, which yields

∂t(ρuα) +
δt

2
∂2
t (ρuα) = −∂βΠαβ, (B.39)

where we have introduced the momentum flux tensor Παβ =
∑

i ciαciβfi. For small deviation
around equilibrium we can write fi = feqi + fneqi , which yields

Παβ = ρuαuβ + ρc2
s + Πneq

αβ (B.40)

and substituting this into (B.39) yields

ρ∂tuα + ρuα∂αuβ = −∂αρc2
s −

δt

2
∂2
t ρuα − ∂βΠneq

αβ . (B.41)

This allows us to see that the viscous stresses are contained in the term
∑

i ciαciβf
neq
i . By

means of the Chapman-Enskog procedure we can express the viscous stress tensor in the
hydrodynamic limit as a function of the fluid quantities and therefore determine the fluid
viscosity.
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Appendix B.2.2. Chapman-Enskog expansion

Firstly, we introduce a multi-scale expansion of the distribution function around equilib-
rium in the small Knudsen number (ε) limit

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i +O(ε3). (B.42)

Similarly, we expand the time derivation operator, separating the time scale into fast (convec-
tive) t(1) and slow (diffusive) t(2) phenomena

∂t = ε ∂
(1)
t + ε2∂

(2)
t +O

(
ε3
)

(B.43)

while the spatial derivative expansion reads ∇ = ε∇(1).
Dividing all terms in (B.38) by δt and expanding in ε gives us the following equations in

the first two orders of ε

ε : ∂
(1)
t f

(0)
i = −ciα ∂(1)

α f
(0)
i −

1

τ
f

(1)
i , (B.44)

ε2 : ∂
(1)
t f

(1)
i + ∂

(2)
t f

(0)
i +

δt

2
∂2
t

(1)
f

(0)
i = −ciα ∂(1)

α f
(1)
i −

(
∆αβγ

2
ciγ +

Dαβ

τ

)
∂(1)
α ∂

(1)
β f

(0)
i −

1

τ
f

(2)
i(B.45)

The zeroth velocity moments of (B.44) and (B.45) are given by

ε : ∂
(1)
t ρ = −∂(1)

α (ρuα), (B.46)

ε2 :
δt

2
∂2
t

(1)
ρ+ ∂

(2)
t ρ = −

(
∆pqrcir

2
+
Dpq

τ

)
∂(1)
p ∂(1)

q ρ. (B.47)

The first velocity moments of (B.44) and (B.45) are given by

ε : ∂
(1)
t (ρuα) = −∂(1)

β Π
(0)
αβ , (B.48)

ε2 :
δt

2
∂2
t

(1)
(ρuα) + ∂

(2)
t (ρuα) = −∂(1)

β Π
(1)
αβ −

(
∆pqrcir

2
+
Dpq

τ

)
∂(1)
p ∂(1)

q (ρuα).(B.49)

By neglecting the effects of the spatial discretization, we obtain from the zeroth and first
velocity moments, respectively,

∂tρ+ ∂α(ρuα) = −δt
2
∂2
t ρ, (B.50)

∂t(ρuα) + ∂βΠαβ = −δt
2
∂2
t (ρuα). (B.51)

Therefore we can see that mass and momentum conservation are satisfied with an error on
the order of the time step. Furthermore, we remind that we have neglected all the terms of
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second order in the grid spacing so indicating that the errors in this ULBE scheme are linear
in δt and quadratic in r.

The physical viscous contribution to the hydrodynamics is governed by Π
(1)
αβ , so we will limit

our analysis to this O(ε1)-term only. Our expression for f
(1)
i is determined by (B.44), which

is the same expression as in regular grids. By neglecting the non-linear velocity components
in the low Mach number limit, we find

f
(1)
i ' −τwi

c2
s

(ciαciβρ ∂
(1)
α uβ − c2

sδαβρ ∂
(1)
α uβ), (B.52)

which yields

εΠ
(1)
αβ = −ρc2

sτ(∂αuβ + ∂βuα), (B.53)

proportional to the strain tensor. Taking the divergence of (B.53) and utilizing the assumption
of incompressibility results in

− ∂β
(
εΠ

(1)
αβ

)
= ρc2

sτ ∂β∂βuα, (B.54)

from which it follows that the kinematic viscosity in the forward Euler scheme νFE is

νFE = c2
sτ. (B.55)

Appendix B.2.3. Viscous stresses for the operator splitting

Our theoretical derivations in the above section could assessed the lack of numerical dif-
fusivity that was observed in Ubertini et al. (2003). Let us investigate how the expression for
the viscosity changes for the operator splitting time integration. The collision operator now
reads

Ω̄j,OS
i = −δt

τ

∑
k

Cjk
[
f̃ki (t+ δt)− f̃k,eqi (t+ δt)

]
, (B.56)

where
f̃ki (t+ δt) = fki (t)− δt

∑
k′

Skk
′

i fk
′

i (t) (B.57)

and f̃eqi is evaluated using the values of f̃i. As we have shown in the previous section, we can
rewrite the definition of f̃i as

f̃ki (t+ δt) = fki (t)− δt
[
ciα∂αf

k
i +

1

2
∆k
αβγciγ∂α∂βf

k
i

]
, (B.58)

to the second order of accuracy. In order to simplify analysis, we assume that the numerical
diffusion term is negligible

f̃ki (t+ δt) ≈ fki (t)− δtciα∂αfki = fki (t)− δt ci · ∇fki = fki (t)− δt∇ ·
(
fki ci

)
. (B.59)
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Now

f̃k,eqi (t+ δt) = wiρ̃
k

[
1 +

ci · ũk
c2
s

+

(
ci · ũk

)2
2c4
s

−
(
ũk
)2

2c2
s

]
, (B.60)

where

ρ̃k =
∑
i

f̃ki (t+ δt) ≈
∑
i

[
fki − δt∇ ·

(
fki ci

)]
= ρk − δt∇ ·

(
ρkuk

)
= ρk − δρk. (B.61)

where δρk = δt∇ ·
(
ρkuk

)
, and

ρ̃kũk =
∑
i

cif̃
k
i (t+ δt) =

∑
i

ci

[
fki − δt∇ ·

(
fki ci

)]
= ρkuk − δt∇ ·Πk. (B.62)

We can now rewrite Eq. (B.60) as

f̃k,eqi (t+ δt) = wi

[
ρ̃k +

ci ·
(
ρ̃kũk

)
c2
s

+

(
ci ·
(
ρ̃kũk

))2
2ρ̃kc4

s

−
(
ρ̃kũk

)2
2ρ̃kc2

s

]
, (B.63)

and, by substituting Eqs. (B.61), (B.62), and approximating

1

ρ̃k
=

1

ρk − δρk ≈
1

ρk
+

δρk

(ρk)
2 (B.64)

we finally obtain

f̃k,eqi (t+ δt) = fk,eqi (t)− δρk

ρk
fk,eqi (t)− wi δt

(
∇ ·Πk

)
· ci
c2
s

+O
(
Ma3

)
, (B.65)

which can be rewritten as

f̃k,eqi (t+ δt) ≈ fk,eqi (t)

(
1− δt ∂α(ρkukα)

ρk

)
− δtwi

c2
s

ciγ ∂α(Πk
γα) (B.66)

In the previous section we showed that the non-local effects in the collision term are of second
order in the mesh size. Since we are now concerned with the effects on the viscosity of this
time discretization, for the sake of simplicity, we shall not consider any of these terms since
they only depend on the spatial discretization, i.e. we approximate

Ω̄j,OS
i ≈ −δt

τ

[
f̃ ji (t+ δt)− f̃ j,eqi (t+ δt)

]
. (B.67)

Now the equation for the evolution of the one-particle distribution function can be written as

f ji (t+δt) = f ji (t)−δt cil ∂lf ji −
δt

t
(f ji −f

j,eq
i )+

(δt)2

τ

[
cil ∂lf

j
i −

1

ρj
feqi ∂l(ρ

jujl )− wi ∂l(Π
j
γl)

ciγ
c2
s

]
,

(B.68)
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where the tensor Πj
γl represent the stress tensor defined as

Πj
γl =

∑
m

cmγcmlf
j
m (B.69)

We now expand the left hand side in a Taylor series to the second order in δt, to obtain

f ji (t) + δt ∂tf
j
i +

(δt)2

2
∂2
t f

j
i = f ji (t)− δt cil ∂lf ji +

(δt)2

τ
cil ∂lf

j
i −

δt

τ
(f ji − f

j,eq
i )

− (δt)2

ρτ
f j,eqi ∂l(ρ

jujl )− wi
(δt)2

τ
∂l(Π

j
γl)
ciγ
c2
s

.

(B.70)

After simplification and dropping the j-index, the equation above can be written as

∂tfi +
δt

2
∂2
t fi = −cil ∂lfi +

δt

τ
cil ∂lfi −

1

τ
(fi − feqi )− δt

ρτ
feqi ∂l(ρul)−wi

δt

τ
∂l(Πγl)

ciγ
c2
s

, (B.71)

Let us find the moments of the equation above. Following from the earlier definitions we can
write down the following relations∑

i

cil ∂lfi = ∂l
∑
i

cilfi = ∂l(ρul) (B.72)

∑
i

1

τ
(fi − feqi ) = 0 (B.73)

∑
i

δt

ρτ
feqi ∂l(ρul) =

δt

τ
∂l(ρul) (B.74)

∑
i

wi
δt

c2
sτ
∂l(Πγl) ciγ =

δt

c2
sτ
∂l(Πγl)

∑
i

wiciγ = 0 (B.75)

Using the relations Eqs. (B.72-B.75) in Eq. (B.71) yields

∂tρ+∇ · (ρu) = −δt
2
∂2
t ρ (B.76)

In order to find the equation for the momentum conservation we multiply Eq. (B.71) by ciα
and sum over i. Again, we can note that the following relations hold∑

i

1

τ
ciα(fi − feqi ) = 0, (B.77)

∑
i

δt

ρτ
ciαf

eq
i ∂l(ρul) =

δt

τ
∂l(ρul)uα, (B.78)
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∑
i

wi
δt

c2
sτ
∂l(Πγl)ciγ =

δt

c2
sτ
∂l(Πγl)

∑
i

wiciγciα =
δt

τ
∂l(Πγl)δγα =

δt

τ
∂l(Παl). (B.79)

Then

∂t(ρuα) + ∂lΠαl = −δt
2
∂2
t (ρuα)− δt

τ
∂l(ρul)uα. (B.80)

We can see therefore that mass and momentum conservation are satisfied with an error of the
order of the time step. Furthermore, we remind that we have neglected all the terms of second
order in the grid spacing so indicating that the errors in this ULBE scheme are linear in δt
and quadratic in r.

Let us analyse more closely the momentum flux tensor Παl =
∑

i ciαcilfi. For small
deviations from equilibrium we can write the fis as

fi = feqi + fneqi (B.81)

Inserting this into the definition of the momentum flux tensor yields

Παl =
∑
i

ciαcil(f
eq
i + fneqi ) = ρuαul + ρc2

sδαl +
∑
i

ciαcilf
neq
i . (B.82)

Substituting Eq. (B.82) into Eq. (B.80) leads to

uα (∂tρ+ ∂l (ρul)) + ρ∂tuα + ρul∂luα = −∂α(ρc2
s)− ∂l

(∑
i

ciαcilf
neq
i

)

− δt

2
∂2
t (ρuα)− δt

τ
∂l(ρul)uα,

(B.83)

which, by using the mass conservation Eq. (B.76), can be further simplified to

ρ ∂tuα + ρul∂luα = −∂α(ρc2
s)− ∂l

(∑
i

ciαcilf
neq
i

)
− δt ∂tρ

(
∂tuα −

uα
τ

)
− δt

2
ρ ∂2

t uα. (B.84)

In the equation above the viscous stresses are contained in the term
∑

i ciαcilf
neq
i . By means of

the Chapman-Enskog expansion we can express the viscous stress tensor in the hydrodynamic
limit as a function of the fluid quantities and therefore determine the fluid viscosity.

As usual, we can expand fi formally in terms of powers of the Knudsen numbers around
the equilibrium distribution

fi = f
(0)
i + ε f

(1)
i + ε2 f

(2)
i . (B.85)

For the time and spatial derivatives we can write

∂t = ε ∂
(1)
t + ε2∂

(2)
t +O(ε3) (B.86)
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and
∂l = ε ∂

(1)
l , (B.87)

respectively. Substituting these expressions in Eq. (B.71) and collecting the terms of same
power in ε leads to

ε0 : f
(0)
i = feqi , (B.88)

ε1 : ∂
(1)
t f

(0)
i +

τ − δt
τ

∂
(1)
l

(
cilf

(0)
i

)
= −1

τ
f

(1)
i −

δt

ρτ
feqi ∂

(1)
l (ρul)− wi

δt

c2
sτ
∂

(1)
l (Π

(0)
γl )ciγ ,(B.89)

where Π
(0)
γl =

∑
m cmγcmlf

(0)
m . By comparing (B.88) and (B.85) we see that to the leading

order in ε we have
fneqi = εf

(1)
i , (B.90)

which allows us to identify the viscous stress tensor as

ε
∑
i

ciαcilf
(1)
i . (B.91)

From the system of equations (B.88)-(B.89) we can express f
(1)
i in terms of f

(0)
i (i.e. feqi ) in

the following way

f
(1)
i = −τ

[
∂

(1)
t f0

i +
τ − δt
τ

∂
(1)
l

(
cilf

(0)
i

)
+
δt

ρτ
f

(0)
i ∂

(1)
l (ρul) + wi

δt

c2
sτ
∂

(1)
l

(
Π

(0)
γl

)
ciγ

]
(B.92)

Substitution of Eq. (B.92) into Eq. (B.91) yields

εΠ(1)
ακ = ε

∑
i

ciαciκf
(1)
i = −ετ

[
∂

(1)
t

∑
i

ciαciκf
(0)
i +

τ − δt
τ

∂
(1)
l

(∑
i

ciαciκcilf
(0)
i

)]

− ετ
[
δt

ρτ
∂

(1)
l (ρul)

∑
i

ciαciκf
(0)
i +

δt

c2
sτ
∂

(1)
l Π

(0)
γl

∑
i

wiciαciκciγ

] (B.93)

By applying the following relations fulfilled by the velocity discretization∑
i

wiciαciκciγ = 0, (B.94)

∑
i

ciαciκcilf
(0)
i = ρc2

s (uαδκl + uκδαl + ulδακ) +O(u3), (B.95)
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after simplification, we obtain

εΠ(1)
ακ = −ετ

[
−τ − δt

τ
∂

(1)
l (ρul)

(
uαuκ + c2

sδακ
)

+ ρ ∂
(1)
t (uαuκ) +

τ − δt
τ

∂
(1)
l

(
ρc2
s (uαδκl + uκδαl)

)]
− ετ

[
τ − δt
τ

c2
s ∂

(1)
l (ρul) δακ

]
(B.96)

Note that the terms
(
ρ∂

(1)
l ul

)
uαuκ ∼ O(Ma3),

(
ul∂

(1)
l ρ

)
uαuκ ∼ O(Ma5) and ρuκ∂

(1)
t uα =

uκ∂l

(
Π

(0)
αl

)
∼ O(Ma3) can all be neglected in correspondence with the small velocity expansion

of fi. After further, straightforward simplifications we end up with the following expression

for Π
(1)
ακ .

εΠ(1)
ακ = −ρc2

s(τ − δt) (∂αuκ + ∂κuα) (B.97)

From the above expression we can see that the kinematic viscosity in the operator splitting
scheme is equal to

νOS = c2
s(τ − δt). (B.98)

Then we see that this time discretization introduces a shift in the viscosity, reminiscent to the
one in standard, regular grid based LBM schemes, in which ν = c2

s

(
τ − δt

2

)
. Hence, with this

choice of time stepping we can attain low viscosities without having to resort to prohibitively
small values of τ and dt. Nonetheless, we can see that in order to safely neglect the errors
introduced by the spatial discretization we need smooth flows on the grid spacing characteristic
scales. That would mean that in order to simulate turbulent flows the mesh size must be at
least of the order of the Kolmogorov scale.
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