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Abstract

This paper presents the development of an Adaptive Algebraic Multiscale Solver for
Compressible flow (C-AMS) in heterogeneous porous media. Similar to the recently
developed AMS for incompressible (linear) flows [Wang et al., JCP, 2014], C-AMS
operates by defining primal and dual-coarse blocks on top of the fine-scale grid.
These coarse grids facilitate the construction of a conservative (finite volume) coarse-
scale system and the computation of local basis functions, respectively. However,
unlike the incompressible (elliptic) case, the choice of equations to solve for basis
functions in compressible problems is not trivial. Therefore, several basis function
formulations (incompressible and compressible, with and without accumulation)
are considered in order to construct an efficient multiscale prolongation operator.
As for the restriction operator, C-AMS allows for both multiscale finite volume
(MSFV) and finite element (MSFE) methods. Finally, in order to resolve high-
frequency errors, fine-scale (pre- and post-) smoother stages are employed. In order
to reduce computational expense, the C-AMS operators (prolongation, restriction,
and smoothers) are updated adaptively. In addition to this, the linear system in the
Newton-Raphson loop is infrequently updated. Systematic numerical experiments
are performed to determine the effect of the various options, outlined above, on the
C-AMS convergence behaviour. An efficient C-AMS strategy for heterogeneous 3D
compressible problems is developed based on overall CPU times. Finally, C-AMS is
compared against an industrial-grade Algebraic MultiGrid (AMG) solver. Results
of this comparison illustrate that the C-AMS is quite efficient as a nonlinear solver,
even when iterated to machine accuracy.

Key words: multiscale methods, compressible flows, heterogeneous porous media,
scalable linear solvers, multiscale finite volume method, multiscale finite element
method, iterative multiscale methods, algebraic multiscale methods.
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1 Introduction

Accurate and efficient simulation of multiphase flow in large-scale heteroge-
neous natural formations is crucial for a wide range of applications, including
hydrocarbon production optimization, risk management of Carbon Capture
and Storage, water resource utilizations and geothermal power extractions.
Unfortunately, considering the size of the domain along with the high reso-
lution heterogeneity of the geological properties, such numerical simulation
is often beyond the computational capacity of traditional reservoir simula-
tors. Therefore, Multiscale Finite Element (MSFE) [1, 2, 3, 4, 5] and Finite
Volume (MSFV) [6, 7] methods and their extensions have been developed to
resolve this challenge. A comparison of different multiscale methods, based on
their original descriptions, has been studied in the literature [8]. MSFV and
MSFE methods map a discrete fine-scale system to a much coarser space. In
MultiGrid (MG) terminology [9], this map is considered as a special prolon-
gation operator, represented by locally-supported (and adaptively updated)
basis functions [10]. The restriction operator is then defined based on either a
Finite Element (MSFE), Finite Volume (MSFV), or a combination of both.

MSFV has been applied to a wide range of applications (see, e.g., [10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21]), thus recommending multiscale as a very
promising framework for the next-generation reservoir simulators. However,
most of these developments, including the state-of-the-art algebraic multi-
scale formulation (AMS) [19], have focused on the incompressible (linear) flow
equations.

When compressibility effects are considered, the pressure equation becomes
nonlinear, and its solution requires an iterative procedure involving a parabolic-
type linear system of equations [22]. Therefore, the development of an efficient
and general algebraic formulation for compressible nonlinear flows is crucial in
order to advance the applicability of multiscale methods towards more realistic
problems.

The present study introduces the first algebraic multiscale iterative solver
for compressible flows in heterogeneous porous media (C-AMS), along with a
thorough study of its computational efficiency (CPU time) and convergence
behaviour (number of iterations).

In contrast to cases with incompressible flows, the construction of basis func-
tions for compressible flow problems is not straightforward. In the past, incom-
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pressible elliptic [23], compressible elliptic [10, 24], and pressure-independent
parabolic [25] basis functions have been considered. However, the literature
lacks a systematic study to reveal the benefit of using one option over the
other, especially when combined with a fine-scale smoother stage. Moreover,
no study of the overall efficiency of the multiscale methods (based on the CPU
time measurements) has been done so far for compressible three-dimensional
problems.

In order to develop an efficient prolongation operator, in this work, several
formulations for basis functions are considered. These basis functions differ
from each other in the amount of compressibility involved in their formula-
tion, ranging from incompressible elliptic to compressible parabolic types. In
terms of the restriction operator, both MSFE and MSFV are considered, along
with the possibility of mixing iterations of the former with those of the lat-
ter, allowing C-AMS to benefit from the Symmetric Positive Definite (SPD)
property of MSFE and the conservative physically correct solutions of MSFV.

The low-frequency errors are resolved in the global (multiscale) stage of C-
AMS, while high-frequency errors are tackled using a second-stage smoother at
fine-scale. In this paper, we consider two options for the smoothing stage: the
widely used local correction functions with different types of compressibility
involved (i.e., more general than the specific pressure-independent operator
[25]), as well as ILU(0) [26]. The best C-AMS procedure is determined among
these various strategies, on the basis of the CPU time for 3D heterogeneous
problems. It is important to note that the setup and linear system population
are measured alongside the solve time - a study which has so far not appeared
in the previously published compressible multiscale works.

Though C-AMS is a conservative method (i.e., only a few iterations are enough
in order to obtain a high-quality approximation of the fine-scale solution), in
the benchmark studies of this work, it is iterated until machine accuracy is
reached. And, thus, its performance as an exact solver is compared against an
industrial-grade Algebraic MultiGrid (AMG) method, SAMG [27]. This com-
parative study for compressible problems is the first of its kind, and is made
possible through the presented algebraic formulation, which allows for easy
integration of C-AMS in existing advanced simulation platforms. Numerical
results, presented for a wide range of heterogeneous 3D domains, illustrate
that the C-AMS is quite efficient for simulation of nonlinear compressible flow
problems.

The paper is structured as follows. First, the Compressible Algebraic Multi-
scale Solver (C-AMS) is presented, where several options for the prolongation,
restriction operators as well as the second-stage solver are considered. Then
the adaptive updating of the C-AMS operators are studied, along with the
possibility of infrequent linear system updates in the Newton-Raphson loop.
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Numerical results are subsequently presented for a wide range of 3D hetero-
geneous test cases, aimed at determining the optimum strategy. Finally, the
C-AMS is compared with an Algebraic MultiGrid Solver (i.e., SAMG) both
in terms of the number of iterations and overall CPU time.

2 Compressible Flow in Heterogeneous Porous Media

Single phase compressible flow in porous media, using Darcy’s law (without
gravity and capillary effects), can be stated as:

∂

∂t
(φρ)−∇ .

(
ρ λ · ∇p

)
= ρq, (1)

where φ, ρ, and q are the porosity, density, and the source terms, respectively.
Moreover, λ = K/µ is the fluid mobility with positive-definite permeability
tensor, K, while µ is the fluid viscosity.

The semi-discrete form of this nonlinear flow equation using implicit (Euler-
backward) time integration reads

φn+1

∆t
− φnρn

∆tρn+1
− 1

ρn+1
∇ .

(
ρn+1λ · ∇pn+1

)
= q, (2)

which is linearized as

cν(pν+1 − pν)− 1

ρν
∇ . (ρνλ · ∇pν+1) = bν , (3)

where

cν =
1

∆t

[
∂φ

∂p


ν

− φn ∂
∂p

(
1

ρ

)
ν

ρn
]

(4)

and

bν = − φ
ν

∆t
+
φn ρn

∆t ρν
+ q. (5)

The superscripts (ν) and (ν + 1) denote the old and new Newton-Raphson
iteration levels, respectively. Note that, as (ν →∞), Eq. (3) converges to the

nonlinear Eq. (2), and
(
pν+1 − pν

)
→ 0. Therefore, the coefficient c, which is

a by-product of the linearization lemma, plays a role only during iterations.
This fact opens up the possibility to alter c by computing it based on either pν

(resulting in cν) or pn (corresponding to cn) -the pressure at the previous time-
step. Each choice can potentially lead to a different convergence behaviour and,
thus, computational efficiency.
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Algebraically, Eq. (3) can be written for the unknown pressure vector p as(
Cν + Ãν

)
pν+1 ≡ Aνpν+1 = f ν ≡ bν +Cνpν , (6)

whereCν is a diagonal matrix having (cνi dVi) at cell i in its i-th diagonal entry,
where dVi is the volume of cell i. Also, Ã is the convective compressible flow
matrix, having fine-scale transmissibilities computed on the basis of a finite-
volume scheme as entries. Moreover, the vector bν contains the integrated
source terms in the fine-scale volumes, i.e., (qi dVi). The total Right-Hand-
Side (RHS) terms are denoted by the vector f ν .

3 Compressible Algebraic Multiscale Solver (C-AMS)

The C-AMS relies on the primal- and dual-coarse grids, which are superim-
posed on the fine-scale grid (See Fig. 1). There are Np and Nd coarse and
dual-coarse grid cells in a domain with Nf fine-grid cells.

xk

Dual-Coarse Cell Coarse Cell

⌦̃j ⌦̆k

Fig. 1. Multiscale grids imposed on the given fine grid. A primal- and a dual-coarse
block are highlighted on the right and left sides, respectively.

The transfer operators between fine-scale and coarse-scale are defined as the
multiscale Restriction (R) and Prolongation (P ). The former is defined based
on either Finite Element (MSFE), i.e., RFE = P T , or Finite Volume (MSFV),
for which RFV corresponds to the integral over primal-coarse blocks, i.e.,

RFV (i, j) =

1 , if fine-cell j is contained in primal-coarse block i

0 , otherwise.
(7)

The columns of P are the basis functions, which are computed on dual-coarse
cells (see Fig. 1), subject to simplified boundary conditions (the localization
assumption).
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In contrast to the (incompressible) AMS, C-AMS can be formulated based on
different choices of the basis functions, depending on the level of compressibil-
ity involved. The first two types read

cνΦν+1
k,h −

1

ρν
∇(ρνλ · ∇Φν+1

k,h ) = 0 (8)

and

− 1

ρν
∇ · (ρνλ · ∇Φν+1

k,h ) = 0, (9)

both being pressure dependent (through c and ρ), but different in the sense
of the consideration of the accumulation term, c. Alternatively, one can also
formulate basis functions using

cnΦk,h −∇ · (λ · ∇Φk,h) = 0, (10)

or

−∇ · (λ · ∇Φk,h) = 0 (11)

which are both pressure independent (since c is now based on the pressure from
the previous time step). All of these equations are subject to reduced-problem
boundary conditions along dual-coarse cell boundaries ∂Ω̃h [19]. One can also
obtain the equations for the corresponding four types of local correction func-
tions, Ψh, by substituting the corresponding RHS term in Eqs. (8)-(11). As
mentioned before, in this work, systematic studies on the basis of the CPU
time as well as the number of iterations are performed in order to find the
optimum formulation for basis function (i.e., prolongation operator).

The basis functions Φk are assembled over dual-coarse cells Ω̃h,∀h ∈ {1, ..., Nd},
i.e., Φk =

⋃Nd
h=1 Φk,h, and, if used, the correction functions are also assembled

as Ψ =
⋃Nd
h=1 Ψν

h. Fig. 2 illustrates that the basis functions do not form a par-
tition of unity when compressibility effects are included, which is the intrinsic
nature of the parabolic compressible equation.

The choices formulated above affect computational efficiency of constructing
and updating the multiscale operators. More precisely, while basis functions of
Eqs. (8) and (9) depend on pressure (hence, updated adaptively when pressure
changes), Eqs. (10) and (11) are pressure independent; thus, they only need
to be computed once for single-phase problems (for multi-phase flows, they
need to be adaptively updated when local transmissibility changes beyond
a prescribed threshold value). While the basis and correction functions from
Eq. (10) were previously used [25], the other options are, as of yet, have not
been studied.
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(a): cνΦν+1 − 1
ρν
∇ . (ρνλ · ∇Φν+1) = 0

0
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1

0

0.5

1

(b): −∇ . (λ · ∇Φ) = 0

Fig. 2. Two choices of multiscale basis functions in a reference dual-coarse block
(left column), Summation of the basis functions over the dual-coarse block (right
column), i.e., partition of unity check.

The C-AMS approximates the fine-scale solution pν by p′ν using the Prolon-
gation operator P , which is a matrix of size Nf×Nc, having basis function Φk

in its k − th column. The map between the coarse (p̆) and fine-scale solution
(p′) reads

p′ = P p̆. (12)

The coarse-scale system is obtained using the restriction operator, R, as

Ăνp̆ν+1 ≡ (RAνP )p̆ν+1 = Rf ν , (13)

and its solution is prolonged to the fine-scale using Eq. (12), i.e.,

p′ν+1 = P (RAνP )−1Rf ν . (14)

In residual form, it reads

δp′ν+1 = P (RAνP )−1Rrν . (15)

Here p′ν+1 = (pν + δp′ν+1), while rν = (f ν −Aνpν) is the fine-scale residual.
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Note that all the different options for basis functions can be considered in
construction of the prolongation operator.

The C-AMS employs Eq. (14) as the global solver (for resolving low-frequency
errors). In addition to the coarse-scale solver, an efficient convergent multiscale
solver needs to include a second-stage smoother at fine scale. The smoother
accounts for the high-frequency errors, arising from simplified localization con-
ditions, the nonlinearity of the operator, and the complex RHS term. Among
the choices for this smoother (block-, line-, or point-wise solvers), the cor-
rection functions (CF) and ILU(0) are considered in this work. The C-AMS
procedure is finally summarized in Table 1.

Do until convergence (‖ε‖ν2 < e) achieved (See Eq. (19)) {

1. Initialize: update linear system components, Aν and fν , based on pν

2. Update residual: rν = fν −Aνpν

3. Adaptively compute Basis Functions: use either of Eqs. (8)-(11)

4. Pre-smoothing Stage: only if CF is used, apply CF on rν and update residual

5. Multiscale Stage: Solve (15) for δp′ν+1/2

6. Post-smoothing Stage: smooth δp′ν+1/2 for ns times using a fine-scale iterative

solver (here, ILU(0) is used), obtaining δp′ν+1

7. Update solution: pν+1 = (pν + δp′ν+1/2 + δp′ν+1)

8. Update error: compute εν , and assign pν ← pν+1

}
Table 1
C-AMS iteration procedure, converging to pn+1 with tolerance e.

In the next section, numerical results for 3D heterogeneous test cases are
presented, in order to provide a thorough assessment of the applicability of
C-AMS to large-scale problems.

4 Numerical Results

The numerical experiments presented in this section are divided into: (1) find-
ing a proper iterative procedure and multi-stage multiscale components for
efficiently capturing the nonlinearity within the flow equation, and (2) system-
atic performance study by comparing against a commercial algebraic multigrid
solver, i.e., SAMG [27]. Note that the second aspect is mainly to provide the
computational physics community with an accurate assessment of the con-
vergence properties of the state-of-the-art compressible multiscale solver (i.e.,
C-AMS). As an advantage over many advanced linear solvers, C-AMS allows
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for construction of locally conservative velocity after any MSFV stage. There-
fore, for multiphase flow scenarios, only a few C-AMS iterations are necessary
to obtain accurate solutions [16].

For the studied numerical experiments of this paper, sets of log-normally dis-
tributed permeability fields with spherical variograms are generated by using
sequential Gaussian simulations [28]. The variance and mean of natural loga-
rithm of the permeability, i.e., ln(k), for all test cases are 4 and -1, respectively,
unless otherwise is mentioned. Furthermore, the fine-scale grid size and dimen-
sionless correlation lengths in the principle directions, i.e., ψ1, ψ2 and ψ3, are
provided in Table 2. Each set has 20 statistically-equivalent realizations. The
sets with orientation angle of 15◦ are referred to as the layered fields. Also,
the grid aspect ratio α is 1, i.e., ∆x/α = ∆y = ∆z = 1 m, unless otherwise is
specified.

Permeability Set 1 2 3 4 5 6

Fine-scale grid 643 1283 2563 643 1283 2563

ψ1 0.125 0.125 0.125 0.5 0.5 0.5

ψ2 0.125 0.125 0.125 0.03 0.03 0.03

ψ3 0.125 0.125 0.125 0.01 0.06 0.01

Angle between ψ1 and y direction patchy 15◦

Variance of ln(k) 4

Mean of ln(k) -1

Table 2
Permeability sets (each with 20 statistically-equivalent realizations) used for nu-
merical experiments of this paper. Layered fields refer to the sets 4-6, in which the
orientation angle between ψ1 and y direction is 15◦.

Phase properties and simulation time are described as non-domensional num-
bers. The non-dimensional pressure and density are introduced as

p∗ =
p− peast

pwest − peast
, (16)

and
ρ∗ =

ρ

ρ0
= 1 + η p∗, (17)

respectively, where the coefficient η is set to 1 for all subsequent test cases in
this paper.

The pwest and peast values of 106 and 0 Pa, relative to the Standard (Atmo-
spheric) condition, are considered. These correspond to non-dimensional pres-
sure values of 1 and 0, which are set as Dirichlet conditions at the west and
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east boundaries, respectively, for all the cases unless otherwise is mentioned.
Also, all the other surfaces are subject to no-flow Neumann conditions.

The non-dimensional time is introduced as t∗ = t/τ , where

τ =
µφL2

K̄(pwest − peast)
. (18)

Here, K̄ is the average permeability, and L is a length scale of the domain.
With the values of 106 Pa pressure difference, in-situ viscosity of 2×10−6 Pa.s,
∆x = 1 m, φ = 0.1, and K̄ value of 10−12 m2 for homogeneous cases, the τ
will be 128 s for problem size of L = 64 m in SI units.

The implementation used to obtain the results presented in this paper con-
sists of a single-threaded object-oriented C++ code, and the CPU times were
measured on an Intel Xeon E5-1620 v2 quad-core system with 64GB RAM.

4.1 C-AMS: determining the most effective iterative procedure and multi-
stage multiscale components

The efficient capturing of the nonlinearity within the iterations is important
in designing an efficient multiscale strategy. For the purposes of a conclusive
result, in this section, a set of 20 statistically-equivalent patchy fields, i.e.,
permeability Set 1 from Table 2, is considered. One of the realizations and its
corresponding solution at t∗ = 0.4 are shown in Fig. 3.

Fig. 3. Natural-log of the permeability (left) and pressure solution after t∗ = 0.4
(right) corresponding to one of the realization of permeability Set 1 from Table 2.
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4.1.1 Nonlinear and linear level updates

In formulating a convergence criterion for the C-AMS, one can express the
error of the approximate solution at step ν on the basis of either the linear or
nonlinear expressions. According to Eq. (2), the nonlinear error in each grid
cell reads

εν = q − φn+1

∆t
+
φn

∆t

ρnSnα
ρn+1

+
1

ρn+1
∇ ·

(
ρn+1λ · ∇pn+1

)
, (19)

and is assembled in the vector εν , which allows the computation of the error
norm, ‖εν‖2. On the other hand, the linear-level error is based on the linearized
equation (3), which leads to the computation of the residual norm, ‖rν‖2.

In order to determine a suitable sequence of the linear and nonlinear stages,
the same patchy domain of 64× 64× 64 grid cells is considered (Fig. ??), for
which the pressure equation is solved using the following solution strategy:

Do until (‖ε‖2 < 10−6) is reached {

0. Update parameters, linear system matrix and RHS vector based on pν

1. Solve linear system using the Richardson iterative scheme, preconditioned

with one multigrid V-cycle until ‖r‖2 < 10−6

}
Table 3
Solution strategy used to determine a suitable stopping criterion

The error and residual norms were recorded after each iteration of the Richard-
son loop and are presented in Fig. 4. Note that the reduction of the residual
norm beyond the first few iterations does not contribute to the reduction in
the (nonlinear) error norm. Therefore, one could ideally speed up the solution
scheme by monitoring the error norm and updating the linear system after
its decrease starts to stagnate. However, the computational cost of evaluating
the nonlinear equation is roughly the same as that of a linear system update
and, thus, much more expensive than the evaluation of the residual norm.

Fig. 4(a) also reveals that the stagnation of the error norm happens roughly
after the residual norm has been approximately reduced by 1/10 of its ini-
tial value (i.e., immediately after the linear system update). Fig. 4(b) shows
the convergence behaviour after implementing this heuristic strategy, which
is deemed quite efficient, since the two norms are in agreement. Hence, in
the following experiments the same strategy is employed, i.e., for linear level,
‖ri‖2
‖r0‖2

< 10−1 after iteration i of the inner (linear) loop and, for nonlinear

level, ‖εν‖2 < 10−6 after iteration ν of the outer (nonlinear) loop are set (see
Table 3).
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Fig. 4. Error and residual norm histories for one of the realizations of permeability
Set 1 from Table 2 over a single time step of t∗ = 0.4. Shown on the left is the strategy
where at each nonlinear stage, the fully converged linear solution is obtained. Shown
on the right is the strategy where in each outer (nonlinear) loop the residual is
reduced only by one order of magnitude.

4.1.2 Adaptive updating of multiscale operators

The previous study described the first adaptive aspect considered in this work,
namely, updating the linear system only after the residual norm drops by
an order of magnitude. The C-AMS procedure can be further optimized by
employing adaptive updates of its multiscale components, i.e., the basis and
(if considered) the correction functions. To this end, one has to monitor the
changes in the entries of the transmissibility matrix A and RHS f between
the iteration steps. Fig. 5(c) shows that the adaptive update of the C-AMS
basis functions leads to a significant speed-up in terms of CPU time.

Furthermore, the two adaptivity methods (for linear system and local function
updates) are combined and shown in Fig. 5(d). Hence, C-AMS will perform
its iterations such that it exploits all adaptivity within the multiscale compo-
nents and the nonlinearity within the flow equation. Note that for this case,
the compressible variant from Eq. (8) was used for both basis and correction
functions. However, if the incompressible Eqs (10) and (11) are used, then the
basis functions do not require updates during iterations. Finally, for this and
all the following results (unless otherwise stated), the C-AMS coarsening ratio
was taken as 8× 8× 8 , because it was found efficient (see Subsection 4.1.6).

4.1.3 C-AMS global stage: choice of basis functions

The aim of this study is to determine an optimum choice for the type of
basis functions for the C-AMS algorithm. The correction function is computed
based on Eq. (8) in all cases (and, hence, updated adaptively with pressure),
20 iterations of ILU(0) are used for smoothing and all possibilities for the
basis functions, i.e., Eqs. (8)-(11), are considered. Finally, there is a single

12



0 5 10 15 20 25
0

5

10

15

20

25

Iteration

C
P

U
 t
im

e
 (

s
e
c
)

515.8598 sec

0 5 10 15 20 25
0

5

10

15

20

25

Iteration

C
P

U
 t
im

e
 (

s
e
c
)

279.5869 sec

0 5 10 15 20 25
0

5

10

15

20

25

Iteration

C
P

U
 t
im

e
 (

s
e
c
)

83.1234 sec

0 5 10 15 20 25
0

5

10

15

20

25

Iteration

C
P

U
 t
im

e
 (

s
e
c
)

74.2812 sec

Multiscale solution Smoother solution Lin. sys. construction Basis functions Correction function

(a) (b)

(c) (d)

Fig. 5. Effect of different types of adaptivity on the C-AMS performance for the
permeability Set 1 from Table 2 after a time step of t∗ = 0.4: (a): No adaptivity, (b):
Linear system update adaptivity only, (c): Multiscale operator update adaptivity
only, (d): Fully adaptive, i.e in terms of both linear system and multiscale operator
updates.

time step in the simulation, which takes the initial solution at time 0 (p∗0 = 0
everywhere) to the solution at time t∗ = 0.4.

The total CPU time spent in each stage of the solver, as well as the number of
iterations (given on top of each bar in Fig. 6), are measured. Also, the success
rate of convergence is given inside parentheses beside the average number of
iterations.

The results show that including compressibility in the basis functions does not
translate into faster convergence and, thus the additional CPU time required
to adaptively update them is not justified. In fact, it is more efficient to use
the incompressible (pressure independent) basis functions from Eqs. (10) and
(11). Also, the inclusion of the accumulation term and the type of Restriction
(MSFE or MSFV) does not play an important role for this patchy test case.
Note that none of the choices results in 100% successful convergence, even
though 20 ILU(0) smoothing iterations have been employed at each iteration.
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This can be attributed to the use of correction functions, as investigated in
the next paragraph.
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Fig. 6. Effect of the choice of basis function on the C-AMS performance for the
643 grid-cell problem after a time step of t∗ = 0.4. Results are averaged over 20
statistically-equivalent realizations. The number of iterations is shown on top of each
bar. The success percentage is also shown in parentheses. Note that all simulations
employ correction functions.

4.1.4 C-AMS smoothing stage: choice of correction function

Note that none of the results from the previous test case (Fig. 6) has a 100%
success rate. As described in [19], the CF can be seen as an independent
stage, the inclusion of which should be seen as an option and not a necessity
for convergence. Fig. 7 presents the results of rerunning the previous experi-
ment, this time varying the type of correction function. The plot confirms that
eliminating the CF altogether leads to an overall speed-up, and, in addition, a
convergence success rate of 100%. As described in [19], this can be explained by
the sensitivity of CF to the heterogeneity of the permeability field, which leads
to solver instability. Therefore, the CF should not be considered as candidate
for the pre-smoothing stage in an efficient C-AMS procedure. Instead, ILU(0)
is performed as post-smoother in order to resolve high-frequency errors.

4.1.5 C-AMS smoothing stage: number of smoother iterations

Another variable in the C-AMS framework is the number of smoothing steps
(here, ILU(0)) that should be applied in order to obtain the best trade-off
between convergence rate and CPU time. The results of several experiments
with the optimum choices (i.e., incompressible basis functions and no incor-
poration of CF) and various numbers of ILU applications are illustrated in
Fig. 8. It is clear that with this C-AMS setup, an optimum scenario would
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be found with 5-10 ILU iterations per second-stage call. Note that all C-AMS
runs (without correction functions) converged successfully.
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Fig. 8. Effect of the number of ILU smoothing steps on the C-AMS[FV] performance
for the permeability Set 1 from Table 2 (grid aspect ratio is 1) after a time step of
t∗ = 0.4. The number of iterations is shown on top of each bar, with convergence
success rate inside parentheses. Note that excluding CF leads to 100% success rate
for all scenarios.

4.1.6 C-AMS sensitivity to coarsening ratio: trade-off between size of coarse
system and local problem cost

The coarsening factors used in this paper were found to be optimal after a
careful study of the C-AMS sensitivity with the coarsening ratio. As for a
thorough study of the new C-AMS solver, it is important to illustrate also its
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sensitivity with change of coarse-scale system size (and thus the coarsening
ratio). This important fact is studied and shown in Figs. 9-11 for patchy
fields. Not that for the cases studied in this paper, the optimum overall CPU
times were obtained with coarse-grid cells with the size of (approximately) the
square-root of the domain length in each direction.
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Fig. 9. Patchy fields: Averaged CPU time (over 20 realizations) of C-AMS[FV] for
different coarsening ratios for the permeability Set 1 from Table 2. Results support
the use of coarsening ratio of 83. A similar behaviour was observed with the FE
restriction operator.
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4.2 C-AMS benchmark versus SAMG

On the basis of the previously presented studies, the optimal C-AMS strat-
egy includes a global multiscale stage using incompressible basis functions
(Eq. (11)), accompanied by 5 iterations of ILU for post-smoothing. In this
subsection, C-AMS is compared against SAMG for three sets of different test
cases: (1) the heterogeneous domains of different sizes from Table 2; (2): per-
meability Set 1 from Table 2 with stretched grids and line-source terms; and,
(3): permeability Set 1 from Table 2 with different ln(k) variances (i.e., per-
meability contrasts).

In all the presentd experiments, SAMG is called to perform a single V-cycle,
repeatedly in a Richardson loop. Its adaptivity is controlled manually, i.e., at
the beginning of each Newton-Raphson outer iteration, SAMG is allowed to
update its Galerkin operators. On the other hand, during linear iterations,
SAMG is instructed to reuse its previous grids and operators. For the test
cases considered here, this approach was found more efficient (by a factor in
excess of 2) than the automatic solver control described in [27], In all other
aspects, SAMG has been used as a black-box commercial solver.
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4.2.1 Test case 1: heterogeneous domains of different sizes from Table 2

In this subsection, C-AMS is compared against the SAMG algebraic multigrid
solver for both patchy and layered permeability fields of Table 2 over 3 con-
secutive time steps. The time-lapse pressure solution for one patchy and one
layered sample are shown in Fig. 12, illustrating the propagation of the signal
from the western face through the entire domain.

Figs. 13 and 14 show the number of iterations and CPU time at 3 consecutive
non-dimensional times for different problem Sets 1, 2, 4, and 5 from Table 2.
Note that C-AMS with FV-based restriction operator did not converge in some
of the test cases, while the FE-based variant achieved 100% success rate due
to its SPD property. Therefore, an ideal solution strategy would use MSFE
to converge to the desired level of accuracy and then employ a single MSFV
sweep, in order to ensure mass conservation [16].

In addition, Figs. 15 illustrate CPU time (vertical axis) and the total number
of iterations (on top of each column), for permeability Sets 3 and 6 from Table
2, with 83 and 163 coarsening ratios.

Note that, except for the first time-step, when all the basis functions are fully
computed, C-AMS has a slight edge over SAMG, mainly due to its adaptiv-
ity and relatively inexpensive iterations. The initialization cost of C-AMS is
particularly high in the 2563 case, due to the large number of linear systems
(solved with a direct solver) needed for the basis functions. It is clear from
Fig. 15 that with larger primal-coarse blocks C-AMS requires less setup time,
but more iterations to converge. Note that all performance studies presented
in this paper are for single-process computations.

Since reservoir simulators are typically run for many time-steps, the high ini-
tialization time of C-AMS is outweighed by the efficiency gained in subsequent
steps. Moreover, given the local support of the basis functions, this initializa-
tion can be greatly improved through parallel processing. Furthermore, only a
few multiscale iteration may prove necessary to obtain an accurate approxima-
tion of the pressure solution in each time step for multi-phase flow problems.
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Fig. 12. Pressure solution on one of the realizations of permeability Sets 1 (left) and
4 (right) from Table 2 at t∗ = 0.4, 1.0, and 2.0 from top to bottom, respectively.
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4.2.2 Test Case 2: stretched grids with line-source terms

To study the effect of anisotropic permeability fields along with radial injection
flow pattern, the permeability Set 1 from Table 2 is considered. The settings
are all the same as previous test cases, except the following items. Dirichlet
boundary conditions are set at the centers of two vertical sets of fine-scale grid
cells: one from (1,1,1) to (1,1,64) and the other from (64,64,1) to (64,64,64)
with the values of 1 and 0, respectively. In addition, grid aspect ratios of
α = 1, 5, and 10 are considered (Note that ∆x/α = ∆y = ∆z). The non-
dimensional time is calculated using αL as the characteristic length. Figure
16 illustrates the pressure solutions for one of the permeability realizations
after the first time step t∗ = 0.4.

Fig. 16. Converged pressure solution for one of the realizations of permeability Sets
1 with grid aspect ratio α = 1, 5, and 10, respectively from left to right, after one
time step t∗ = 0.4. Dirichlet boundary conditions are set at the centers of two
vertical sets of fine-scale grid cells: one from (1,1,1) to (1,1,64) and the other from
(64,64,1) to (64,64,64) with the values of 1 and 0, respectively.

The performance of C-AMS[FE] and SAMG are presented in Fig. 17. In con-
trast to C-AMS[FE], the C-AMS[FV] (not shown) did not lead to 100% con-
vergence success. However, for those C-AMS[FV] successful runs, similar CPU
times as in C-AMS[FE] were observed.

Results shown in Fig. 17 are obtained with the C-AMS coarsening ratios of
8×8×8, 2×8×8, and 2×8×8 for the cases of α = 1, 5, and 10, respectively.
Note that as shown in Fig. 16, the anisotropic transmissibility (caused by
stretched grid effect) would further motivate the use of enhanced coarse-grid
geometries for C-AMS. Such a strategy is well developed in algebraic multigrid
community, and is the subject of our future studies.
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Fig. 17. Performance of C-AMS (top) and SAMG (bottom) for permeability Set
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successive time steps. Pressure solutions for the first time step is shown for one of
the realizations in Fig. 16.

23



4.2.3 Test Case 3: effect of permeability contrast

To study the effect of permeability contrast, permeability Set 1 from Table 2 is
considered with different ln(k) variances of σ = 2, 4, and 8. Note that the so-far
studied cases were for variance 4, as described in Table 2. The settings are all
the same as the default test cases, i.e., Dirichlet conditions are set at the east
and west faces with no-flow condition everywhere else. Figure 18 illustrates
the performances of C-AMS[FE] and SAMG for this test case. Note that the
C-AMS requires more iterations when the permeability contrast is increased.
To improve its performance, one can consider enriched multiscale strategies
which are based on local spectral analysis [29], and modified permeability
field (with less contrast) for calculation of basis functions [30]. Note that the
success rates of C-AMS[FV] (not shown) were 90% (patchy, σ = 2), 95%
(patchy, σ = 8) and 40% (layered, σ = 8). For the successful runs, the CPU
times of C-AMS[FV] were comparable with C-AMS[FE].
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Fig. 18. Averaged CPU time comparison between C-AMS (top) and SAMG (bot-
tom) for permeability Set 1 from Table 2 for different ln(k) variances of σ = 2, 4
and 5.
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5 Conclusions

Algebraic Multiscale Solver for Compressible flows (C-AMS) in heterogeneous
porous media was introduced. Its algebraic formulation benefits from adaptiv-
ity, both in terms of the infrequent updating of the linearized system and from
the selective update of the basis functions used to construct the prolongation
operator.

Extensive numerical experiments on heterogeneous patchy and layered reser-
voirs revealed that the most efficient strategy is to use basis functions with
incompressible advection terms, paired with 5 iterations of ILU(0) for post-
smoothing.

Finally, several benchmark studies were presented, where the developed C-
AMS research similator was compared with an industrial-grade multigrid solver,
i.e., SAMG. The results show that C-AMS is a competitive solver, especially
in experiments that involve the simulation of a large number of time steps.
The only drawback is the relatively high initialization time, which can be re-
duced by choosing an appropriate coarsening strategy or by running the basis
function updates in parallel [31]. Moreover, due to its conservative property,
C-AMS requires only a few iterations per time step to obtain a good quality
approximation of the pressure solution for practical purposes. Systematic er-
ror estimate analyses for 3D multiphase simulations are a subject of ongoing
research and, in addition, the C-AMS performance can be further extended by
enrichment of the multiscale operators [29, 32, 20], and enriched coarse grid
geometries on the basis of the underlying fine-scale transmissibility. Both are
subjects of our future studies.
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