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Abstract

An arbitrary Lagrangian–Eulerian (ALE) finite element scheme for computations of soluble surfactant
droplet impingement on a horizontal surface is presented. The numerical scheme solves the time-dependent
Navier–Stokes equations for the fluid flow, scalar convection-diffusion equation for the surfactant transport
in the bulk phase, and simultaneously, surface evolution equations for the surfactants on the free surface
and on the liquid-solid interface. The effects of surfactants on the flow dynamics are included into the model
through the surfactant-dependent surface tension and dynamic contact angle. In particular, the dynamic
contact angle (θd) of the droplet is defined in terms of the surfactant concentration at the contact line and
the equilibrium contact angle (θ0e) of the clean surface using the nonlinear equation of state for surface
tension. Further, the surface forces are included in the model as the surface divergence of the surface stress
tensor that allows to incorporate the Marangoni effects without calculating the surface gradient of the sur-
factant concentration on the free surface. In addition to a mesh convergence study and validation of the
numerical results with experiments, the effects of adsorption and desorption surfactant coefficients on the
flow dynamics in wetting, partially wetting and non-wetting droplets are studied in detail. It is observed
that the effect of surfactants are more in wetting droplets than in the non-wetting droplets. Further, the
presence of surfactants at the contact line reduces the equilibrium contact angle further when θ0e is less than
90◦, and increases it further when θ0e is greater than 90◦. The presence of surfactants has no effect on the
contact angle, when θ0e = 90◦. The numerical study clearly demonstrates that the surfactant-dependent
contact angle has to be considered, in addition to the Marangoni effect, in order to study the flow dynamics
and the equilibrium states of surfactant droplet impingement accurately. The proposed numerical scheme
guarantees the conservation of fluid mass and of the surfactant mass well.

Key words: Impinging liquid droplets, Moving contact line, Soluble surfactant, Navier–Stokes equations,
Finite-elements, ALE approach

1. Introduction

Liquid droplets impinging on a solid substrate is encountered in many applications such as spray cooling,
spray forming, spray coating, ink-jet printing, fuel injecting, etc. Apart form these applications, compu-
tations of the impinging droplets are also of a scientific interest for many researches due to the challenges
associated with it. Main challenges associated in computations of impinging droplets are to prescribe the
boundary condition on the liquid-solid interface, especially at the moving contact line, and to incorporate
the wetting effects, in particular, the inclusion of the contact angle into the model equations. In addition to
these challenges, the presence of soluble surfactants in the droplet makes the model more complicate.
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Numerous studies on the choice of the boundary condition on the liquid-solid interface, especially in the
vicinity of moving contact line, have been reported in the literature [8, 10, 12, 32, 41, 52, 53, 60, 64, 71].
Using the usual no-slip boundary condition on the liquid-solid interface could induce an unbounded stress
singularity at the moving contact line. This singularity is also called kinematic paradox in the literature.
Different types of slip boundary conditions have been proposed in the literature [12, 41, 71] to alleviate this
singularity. Among all, the Navier-slip boundary condition is widely accepted, but it introduces the so-called
slip coefficient. This unknown slip coefficient is also called a momentum transfer coefficient [36]. Even though
a number of expressions have been proposed for the slip coefficient, it is often determined by comparing the
computationally obtained wetting diameter with their corresponding experimental results [17]. Based on
this approach, an expression for the slip coefficient has recently been proposed in [25] for computations of
impinging droplets.

Another challenge associated with the computations of the moving contact line flows is the inclusion
of the contact angle. This subject has also been studied by several researchers to a great extent, see
for example, [5, 26, 28, 31, 34, 36]. In the lubrication theory approximations, the contact angle has been
imposed as a boundary condition at the moving contact line, see for example [28, 33]. However, the inclusion
of the contact angle is not straight forward in discretization based numerical schemes for computations of
moving contact line flows [14, 16, 23, 54, 59, 69]. Moreover, the correct choice of the contact angle value in
discretization based numerical schemes has also been a topic of research, see for example [17].

One of the main components in a free surface flow solver is the interface capturing/tracking methods,
and these methods can be classified into Eulerian and Lagrangian methods. In the Eulerian methods such
as Volume-of-Fluid [29, 50, 54, 55, 56, 70], Level set [27, 48, 57, 61, 62, 72], Front Tracking [65, 67], etc,
the Navier–Stokes equations are solved in a fixed domain with variable material coefficients. Contrarily,
the Navier–Stokes equations are solved in each phase simultaneously with a deforming domain in the La-
grangian methods such as arbitrary Lagrangian–Eulerian [7, 20, 21, 30, 46, 47] and pure Lagrangian [14, 15]
approaches. Although, a number of numerical studies have been reported in the literature for free surface
and two-phase flows with insoluble surfactants [2, 13, 22, 37, 38, 40, 42, 43, 51, 55, 72, 74], the effects of
soluble surfactants have been considered only in a few recent studies [1, 3, 6, 24, 44, 45, 63, 76]. In all these
studies, numerical schemes have been developed for flows with surfactants in closed boundaries, that is, for
flows without moving contact lines.

Due to the challenges in handling the moving contact line, only a few works have been reported in
the literature for flows with surfactants and moving contact line. The effect of insoluble surfactants on a
droplet attached to a plane wall subjected to an over passing Stokes flow has been studied in [75] using a
boundary integral method. The authors used marker points to track the interface, and assumed that the
contact line remains circular and the interfaces having the shape of sections of a sphere. An immersed
boundary method using the Marker-and-Cell method has been proposed in [39] for computations of two-
dimensional (2D) semicircular droplet deformation with insoluble surfactants on a horizontal surface. The
authors assumed that the initial velocity in the droplet is zero, and incorporated the surfactant effects on the
contact angle as an unbalanced Young force [26]. Numerical studies for different equilibrium contact angles
and surfactant concentrations have been performed in [39]. Recently, a finite difference scheme using the
level-set for computations of 2D semicircular droplet deformation with insoluble surfactants on a horizontal
surface and for the detachment of a pendant droplet from a wall under gravity has been proposed in [73]. A
contact angle condition, which relates the unbalanced Young force and the slip velocity at the contact line,
has been used to include the effects of surfactants on wetting. One of the main challenges in the applications
of level-set method is the conservation of mass, and an additional mass correction step is needed inorder to
conserve the mass [73]. For an overview of moving contact line flows with insoluble surfactants, we refer
to [77].

In all the previous studies, a hemispherical/semicircular droplet subjected to an external or non-equilibrium
forces with insoluble surfactants has been considered. To the best of the authors knowledge, numerical
studies of impinging droplets with soluble surfactant have not been reported in the literature so far. In
particular, a sharp interface model, which is known for conserving the mass without additional correction
and suppressing spurious velocities when appropriate solution spaces are used [18], has not been reported
for computations of moving contact lines with soluble surfactants.
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Figure 1: Schematic view of a droplet: (a) during the deformation, and (b) the equilibrium shape of the droplet after impinge-
ment.

In this paper, we present a finite element scheme using the arbitrary Lagrangian–Eulerian approach for
computations of impinging droplets with soluble surfactants. Since the free surface is resolved by the moving
mesh in the ALE approach, the surface forces including Marangoni effects can accurately be incorporated
into the numerical scheme. Moreover, the surface evolution-equation is approximated on the discrete rep-
resentation of the free surface directly. In addition, the inclusion of the dynamic contact angle and the
adsorption/desorption balance condition for the surfactant mass transfer are straightforward in the consid-
ered sharp interface model. More importantly, an additional correction is not needed in order to conserve
the mass of the fluid and of the total surfactants.

The paper is organized as follows. In Section 2, the governing equations of the impinging droplet with
soluble surfactants are presented. The dynamic contact angle that depends on surfactants is described in
Section 3. The dimensionless form of the model equations, ALE approach, finite element formulations and
mesh handling techniques are presented in Section 4. The mesh convergence of the proposed numerical
scheme and the numerical results for an impinging droplet with soluble surfactants are given in Section 5
and 6. Finally, in Section 7 we summarize the key observations of this study.

2. Governing equations

We consider a surfactant liquid droplet impingement on a horizontal solid substrate. The computational
domain of the droplet is denoted by Ω(t), whereas ζ(t) denotes the moving contact line, Γ1 and Γ2 denote
the free surface and the liquid-solid interface, respectively. Moreover, Γ(t) := Γ1(t) ∪ Γ2(t) ∪ ζ(t) is the
boundary of Ω(t), and θd is the dynamic contact angle. The schematic view of the considered model is
shown in Figure 1. We assume that the liquid is incompressible and the effects of the surrounding gas on the
flow dynamics of the droplet are negligible. The computation starts immediately after the droplet impinges
on the solid surface, and it ends at a specified final time, I.

2.1. Navier–Stokes equations

The fluid flow in the droplet is described by the time-dependent incompressible Navier–Stokes equations

∇ · u = 0,
∂u

∂t
+ (u · ∇)u− 1

ρ
∇ · (S(u, p)) = ge in Ω(t)× (0, I), (1)

where the set Ω(t) × (0, I) has to be understood as {(x, t) ∈ R
4 : x ∈ Ω(t), t ∈ (0, I)}. Here, u is the

velocity, p is the pressure, ρ is the density of the fluid, g is the gravitational constant, t is the time, e is an
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unit vector in the opposite direction of the gravitational force. We assume that the droplet impinges on the
solid surface perpendicularly with the impact velocity

u(·, 0) = (0, 0,−uimp) in Ω(0), (2)

where uimp is the impact speed of the droplet. Furthermore, S(u, p) is the stress tensor, and for the
considered Newtonian incompressible fluid, it is defined as

S(u, p) := 2µD(u)− pI, D(u)i,j =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)

, i, j = 1, 2, 3,

where µ is the dynamic viscosity, D(u) is the velocity deformation tensor and I is the identity tensor. The
Navier-Stokes equations (1) are closed with the kinematic and force balancing conditions

u · ν1 = w · ν1, S(u, p) · ν1 = ∇Γ1
· SΓ1

on Γ1(t), (3)

and the Navier-slip boundary condition

u · ν2 = 0, βǫ(τ i,2 · S(u, p) · ν2) = −u · τ i,2, i = 1, 2, on Γ2(t).

Here, w is the velocity of the computational domain Ω(t) and βǫ is a given slip coefficient. Further,
ν1(n1, n2, n3) and ν2 denote the unit outer normal vector on Γ1(t) and Γ2(t), respectively. Moreover, τ 1,2

is the scaled projection of ν1 onto the plane Γ2(t), and τ 2,2 is perpendicular to τ 1,2 and ν2 defined by

τ 1,2 :=
ν1 − (ν1 · ν2)ν2

‖ν1 − (ν1 · ν2)ν2‖
, τ 2,2 =

τ 1,2 × ν2

‖τ 1,2 × ν2‖
. (4)

The surface gradient, ∇Γ1
(·), of a scalar function Ψ, and the surface divergence, ∇Γ1

· (·), of a vector u on
the surface Γ1(t) are defined by

∇Γ1
Ψ = Pν1

∇Ψ, ∇Γ1
· u = tr (Pν1

∇u) ,

where Pν1
= I − ν1 ⊗ ν1 is the projection onto the tangential plane. The surface stress tensor, SΓ1

, in the
force balance condition (3) is modeled by

SΓ1
= σ(CΓ1

)Pν1
,

which is a special case of the Boussinesq-Scriven model

SΓ1
= [σ + (λΓ1

− µΓ1
)∇Γ1

· u]Pν1
+ µΓ1

DΓ1
(u)

with λΓ1
= 0 and µΓ1

= 0. Moreover,

∇Γ1
· SΓ1

= tr (∇Γ1
(σPν1

)) = Pν1
∇Γ1

σ + σ tr (∇Γ1
Pν1

) .

Since the surface gradient is in the tangential plane, we have Pν1
∇Γ1

σ = ∇Γ1
σ. Further, for 1 ≤ nj ≤ 3,

tr (∇Γ1
Pν1

) =

3∑

i=1

∂

∂xi
(δi,j − ninj)−

3∑

i,k=1

∂

∂xk
(δi,j − ninj)nkni

= −
3∑

i=1

nj

∂ni

∂xi
−

3∑

i=1

ni

∂nj

∂xi
+

3∑

k=1

nk

∂nj

∂xk

3∑

i=1

n2
i

︸ ︷︷ ︸

=1

+
1

2

3∑

k=1

njnk

∂

∂xk

(
3∑

i=1

n2
i

)

︸ ︷︷ ︸

=1

= −Kν1,

where K is the sum of the principle curvatures. Hence, we have

∇Γ1
· SΓ1

= ∇Γ1
· (σ(CΓ1

)Pν1
) = ∇Γ1

σ(CΓ1
)− σ(CΓ1

)Kν1,
4



which is the standard form used in the literature to include the Marangoni effects. However, we prefer the
surface divergence form, and the advantage is that it avoids the calculation of ∇Γ1

σ(CΓ1
) and the handling

of K in the variational form, see (31). Next, the surfactant-dependent surface tension, σ(CΓ1
) > 0, can be

defined using the Henry linear equation of state

σ(CΓ1
) = σref +RT (cΓref − CΓ1

), (5)

where σref is the reference surface tension corresponds to the surfactant concentration cΓref , see for example

[37, 51]. For instance, if cΓref = 0 then σref = σ0, the surface tension coefficient of the surfactant free (clean)
free surface. Further, R is the ideal gas constant, T is the absolute temperature. The linear equation of
state is valid only for a small variation of the surfactant around their reference value. Moreover, a non-linear
Langmuir equation of state

σ(CΓ1
) = σ0 +RTC∞

Γ ln(1− CΓ1
/C∞

Γ ), (6)

is also used, see for example [13, 38, 51]. Here, C∞

Γ is the maximum surface packing surfactant concentration.

2.2. Surfactant transport equations

In a soluble surfactant model, surfactant transports in the bulk phase (inside the droplet) and on the
boundaries of the droplet, that is, on the free surface and on the liquid-solid interface have to be modeled
by scalar transport equations. The exchange of surfactants between the bulk phase and the boundaries is
modeled by a source term that contains adsorption and desorption coefficients. The transport of surfactant
concentration in the liquid droplet is described [24] by the scalar convection-diffusion equation

∂C

∂t
+ u · ∇C = ∇ · (Dc∇C) in Ω(t)× (0, I) (7)

with the initial and boundary conditions

C(·, 0) = c0 in Ω(0)

−νk · (Dc∇C) = S(CΓk
, C) on Γk(t)

for k = 1, 2. Here, C is the surfactant concentration in the bulk phase, CΓ1
is the surfactant concentration

on the free surface, CΓ2
is the surfactant concentration on the liquid-solid interface, Dc is the diffusive

coefficient of the surfactant in the bulk phase and c0 is the initial concentration of surfactants in the bulk
phase. The source term S(CΓk

, C) is given by

S(CΓk
, C) = Ka

kC (C∞

Γ − CΓk
)−Kd

kCΓk
, (8)

where Ka
k and Kd

k are adsorption and desorption coefficients, respectively, on Γk(t), k = 1, 2. The surfactant
transport on the moving boundaries Γk(t) is described [22] by the surface transport equation

∂
Γ

CΓk

∂t
+ Uτ · ∇Γk

CΓk
+ CΓk

∇Γk
·w = ∇Γk

· (Dk∇Γk
CΓk

) + S(CΓk
, C) on Γk(t), (9)

for k = 1, 2, together with the initial and the continuity condition on the moving contact line, ζ(t)

CΓk
(·, 0) = CΓk,0

in Γk(0) (10)

CΓ1
= CΓ2

, −νζ · (D1∇Γ1
CΓ1

) = τ 1,2 · (D2∇Γ2
CΓ2

) on ζ(t) (11)

Here, D1, and D2 are the surface diffusive coefficients of CΓ1
and CΓ2

, respectively, Uτ is the tangential
velocity of the free surface/interface, CΓk,0

, initial concentrations on Γk. Further, the time derivative in (9) is
the normal time derivative of CΓk

following the motion of the free surface along its normal trajectories [11, 49].
In the continuity condition (11) at the moving contact line, νζ is the co-normal vector that is normal to ζ(t)
and tangent to Γ1(t), see Figure 1.
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3. Dynamic contact angle at the moving contact line

3.1. Equilibrium contact angle

In thermal, mechanical, and chemical equilibrium state, the equilibrium contact angle, θ0e , of a liquid
droplet on a clean, homogeneous, and smooth surface satisfies the Young-Dupre equation

θ0e = cos−1

(
σsg
0 − σls

0

σ0

)

, (12)

where σsg
0 and σls

0 are interfacial tension of the clean (surfactant free) solid-gas and liquid-solid interfaces,
respectively. In general, the contact angle and the surface tension are measured experimentally, and used in
computations to describe the wetting behavior. However, the experimental measurements of σsg

0 and σls
0 are

seldom available. The contact angle θ0e in (12) is also referred to as the static contact angle, and is unique for
the considered gas, liquid and solid material phases at the equilibrium state. Nevertheless, the contact angle
deviates from the equilibrium value when the contact line moves, and the difference between the advancing
contact angle and the receding contact angle is referred to as a contact angle hysteresis. In general, the
contact angle that incorporates the hysteresis is called the dynamic contact angle θd. Surface roughness,
contamination on surfaces, thermal effects are also some of the reasons for the dynamic behavior of the
contact angle. The evidence for the dynamic behavior of the contact angle can be found in experiments, see
for example, [9, 35]. The measurement of the contact angle in experiments depends on the resolution of the
microscope, and the contact angle is measured a certain distance away from the contact line. Hence, the
experimentally measured angle is referred as an apparent or macroscopic contact angle.

3.2. Contact angle in computations

Several models have been proposed in the literature for the choice of the contact angle in computations of
flows with moving contact lines, see [17] for a recent comparative study of different contact angle models in
computations of droplet impingement. In general, the contact angle, irrespective of the contact angle model,
is incorporated as a surface force at the contact line in discretization based numerical schemes. Further, the
equilibrium contact angle has been preferred in computations when a sharp interface model is used [17]. In
an equilibrium state, the Young-Dupré equation satisfies

σ0 cos θ
0
e = σsg

0 − σls
0 .

However, an unbalanced Young force [26]

FY = σsg
0 − σls

0 − σ0 cos θd = σ0(cos θ
0
e − cos θd)

is induced at the contact line during the droplet deformation since θd 6= θe, see Figure 1. Moreover, we have

σ0 cos θd = σ0 cos θ
0
e + FY .

We now impose FY = 0 in the model, and it results in

θd = θ0e , (13)

in the numerical scheme (32). Thus, the surface force at the contact line becomes unbalanced for the
geometry with θd, see Figure 1. The imbalance in the surface force induces a non-zero slip velocity, that is,
the surface force is translated into a kinetic energy. Consequently, the slip velocity drives the contact line
into the equilibrium position. Moreover, the dynamic contact angle will attain the prescribed equilibrium
value when the contact line attains its equilibrium position. To incorporate this phenomenon, it is necessary
to allow the liquid to slip in the vicinity of the contact line. Further, the calculated value of θd varies when
the contact line moves, see Figure 1. Thus, the slip velocity directly influences the dynamics of the contact
angle in sharp interface models. Therefore, it is necessary to use an “appropriate slip” in computations of
moving contact line flows when a sharp interface model is used.

6



Several boundary conditions for the fluid velocity on the liquid-solid interface have been proposed in the
literature for moving the contact line problems, see [12] for an overview. Among all, the Navier-slip boundary
condition is widely accepted. However, an appropriate choice of the slip length (friction coefficient) in the
Navier-slip boundary condition is a main challenge. The experimental evidences show that the slip length
varies for different flows at different configurations. Although, a number of expressions have been proposed
for the slip length [5, 8, 32], an exact mathematical expression is missing. A more complicate non-linear
form of the slip length has been proposed for a Newtonian liquid in molecular length scale [64]. Recently,
an expression for the numerical slip as a function of Re and We has been proposed in [25] for impinging
droplets, and it is used in this paper.

3.3. Surfactant-dependent contact angle

Suppose that the interfaces are clean, then we have the balanced Young-Dupré equation (12). However,
a nonuniform distribution of surfactants on interfaces induces an unbalanced Young force

FY = σsg(CΓ3
)− σls(CΓ2

)− σ(CΓ1
) cos θd

at the contact line. Here, CΓ3
denotes the surfactant concentration on the solid-gas interface. It is impractical

to use the above relation since the values of σsg(CΓ3
) and σls(CΓ2

) are still needed in computations, and
are seldom available. However, using the nonlinear equation of state (6) for σsg(CΓ3

) and σls(CΓ2
) in the

above relation, we get

FY = σ0 cos(θ
0
e) + RTC∞

Γ ln(M)− σ(CΓ1
) cos(θd), M =

C∞

Γ − CΓ3

C∞

Γ − CΓ2

. (14)

As before, we impose FY = 0 in the model, and it results in

θd = cos−1

(
σ0 cos(θ

0
e) +RTC∞

Γ ln(M)

σCΓ1

)

. (15)

Contrary to the clean case (13), the dynamic contact angle (15) will not attain the equilibrium value θ0e when
the contact line attains its equilibrium position. The equilibrium value of (15) depends on the surfactant
concentrations, CΓk

, k = 1, 2, 3.
An increase in CΓ1

reduces θd when θ0e is less than 90◦, and increases θd when θ0e is greater than 90◦.
Furthermore, the θd decreases further when CΓ2

is greater than CΓ3
and increases when CΓ2

is less than
CΓ3

even for θ0e = 90◦. For instant, the surfactant concentration on the liquid-solid interface CΓ2
may vary

in droplets with soluble surfactants, and it will not be equal to the surfactant concentration on the solid-gas
interface. It has been observed in experiments [4], where the measured equilibrium contact angle for pure
water on a clean stainless steel was 90◦, and adding 100 and 1000 ppm surfactants reduced the equilibrium
contact angle to 55 and 20◦, respectively.

Suppose that the solid-gas interface is clean, that is, CΓ3
= 0, then we have

θd = cos−1

(
σ0 cos(θ

0
e)−RTC∞

Γ ln(1− CΓ2
/C∞

Γ )

σ(CΓ1
)

)

. (16)

It has to be used in computations when the effects of CΓ2
are taken into considerations. Nevertheless, the

relation (15) can further be simplified to

θd = cos−1

(
σ0 cos(θ

0
e)

σ(CΓ1
)

)

= θe(CΓ1
) (17)

by assuming CΓ3
= CΓ2

. Since the continuity condition (11) is imposed at the contact line, it is sufficient
to use the relation (17) in computations. Note that the above relation (17) is independent of CΓ3

and CΓ2

provided that these concentrations are equal at the contact line. It is interesting to note that the surfactant
concentration CΓ1

has no influence on the dynamic contact angle when θ0e = 90◦ and CΓ3
= CΓ2

. A similar
relation can also be derived, when the linear equilibrium of state (5) is used.
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4. Numerical scheme

We transform the model equations into an arbitrary Lagrangian-Eulerian form after writing it in a
dimensionless form. We then derive variational forms of the Navier–Stokes equations and the surfactant
concentration equations. In particular, we derive one-field formulation for the surfactant concentration
equations on the interfaces using the continuity condition of surfactants at the moving contact line. After
that, we briefly present the spatial and the temporal discretizations of the model equations. Finally, the
mesh moving technique is presented briefly, and for a detailed description of the mesh handling, we refer
to [22, 24].

4.1. Dimensionless form

Let the characteristic length and velocity be L and U , respectively. Define the dimensionless variables

x̃ =
x

L
, ũ =

u

U
, w̃ =

w

U
, t̃ =

tU

L
, Ĩ =

IU

L
, p̃ =

p

ρU2
, C̃ =

C

c∞
C̃k

Γ =
CΓk

C∞

Γ

.

Applying these variables in the Navier–Stokes equations (1) in the usual way, and omitting the tilde after-
wards, we get the dimensionless form of the Navier–Stokes problem as

∇ · u = 0,
∂u

∂t
+ (u · ∇)u−∇ · S(u, p) = 1

Fr
e in Ω(t)× (0, I), (18)

u · ν1 = w · ν1, S(u, p) · ν1 =
1

We
∇Γ1

· (σ̂(CΓ1
)Pν1

) on Γ1(t)× (0, I) (19)

u · ν2 = 0, τ i,S · S(u, p) · ν2 = −β u · τ i,S on Γ2(t)× (0, I), (20)

u(·, 0) = u0/U in Ω(0), (21)

with the dimensionless numbers (Reynolds, Weber, Froude and slip, respectively)

Re =
ρUL

µ
, We =

ρU2L

σ0
, Fr =

U2

Lg
, β =

1

βǫρU
,

and the dimensionless stress tensor S(u, p)

S(u, p) =
2

Re
D(u)− pI.

Here, the scaled surfactant-dependent surface tension in the case of linear equation of state (5) becomes

σ̂(CΓ1
) =

σref
σ0

+ E

(
Cref

C∞

Γ

− CΓ1

)

, (22)

where E is the surfactant elasticity defined as E = RTC∞

Γ /σ0, and in the case of nonlinear equation of
state (6) becomes

σ̂(CΓ1
) = 1 + E ln(1− CΓ1

). (23)

Using the dimensionless variables in Eq. (7), we get the dimensionless form of the surfactant transport
problem in bulk phase as

∂C

∂t
+ u · ∇C = ∇ ·

(
1

Pec
∇C

)

in Ω(t)× (0, I), (24)

C(·, 0) = c0
c∞

in Ω(0),

−ν1 ·
(

1

Pec
∇C

)

= Sc(CΓk
, C) on Γk(t)× (0, I),

8



for k = 1, 2, where the non-dimensional form of the source term becomes

Sc(CΓk
, C) = αk C (1− CΓk

)− BikDaCΓk
.

Similarly, the dimensionless form of the surface transport equations become

∂
Γ

CΓk

∂t
+ U · ∇Γk

CΓk
+ CΓk

∇Γk
·w = ∇Γk

·
(

1

Pek
∇Γk

CΓk

)

+ SΓ(CΓk
, C) on Γk(t)× (0, I), (25)

CΓk
(·, 0) = CΓk,0

C∞

Γ

in ∂ΩF (0)

CΓ1
= CΓ2

, −νζ ·
(

1

Pe1
∇Γ1

CΓ1

)

= τ 1,2 ·
(

1

Pe2
∇Γ2

CΓ2

)

on ζ(t),

where
SΓ(CΓk

, C) =
αk

Da
C (1− CΓk

)−Bik CΓk
, k = 1, 2.

The dimensionless numbers (Peclet, Biot, Damköhler and αk) in Eqs. (24), and (25) are given by

Pec =
UL

Dc

, Pek =
UL

Dk

, Bik =
Kd

kL

U
, Da =

Γ∞

LC∞

, αk =
Ka

kC
∞

Γ

U
.

4.2. ALE formulation

The time-dependent domain is handled by the arbitrary Lagrangian-Eulerian approach using moving
meshes, which resolve the free surface and the liquid-solid interface. Let Ω̂ be a reference domain of Ω(t).
Define a family of ALE mappings

At : Ω̂ → Ω(t), At(Y) = X(Y, t), t ∈ (0, I),

where X and Y are termed as Eulerian and ALE coordinates, respectively. To derive the ALE form of the
model equations, we assume that the mapping At for all t ∈ (0, I) is homeomorphic, that is, At is bijective,
continuous and its inverse A−1

t is also continuous. Further, assume that the mappings are differentiable
almost everywhere in (0, I). Consequently, these assumptions impose that the topology of the domain
should remains same. For the surfactant concentration C : Ω(t) × (0, I) → R, which is defined on the
Eulerian frame, define their corresponding Ĉ and its time derivative ∂C

∂t

∣
∣
Ω̂
on the ALE frame by

Ĉ : Ω̂× (0, I) → R, (Y, t) 7→ C(X(Y, t), t) = C(At(Y), t)

∂C

∂t

∣
∣
∣
∣
Ω̂

: Ω(t)× (0, I) → R, (X, t) 7→ ∂Ĉ

∂t
(A−1

t (X), t),

Furthermore, the domain velocity on the ALE frame is defined by

w(X, t) =
∂X

∂t

∣
∣
∣
∣
Ω̂

(A−1
t (X), t), X ∈ Ω(t).

Applying the chain rule to the time derivative of C in the ALE frame, we get

∂C

∂t

∣
∣
∣
∣
Ω̂

=
∂C

∂t
+
∂C

∂X

∂X

∂t

∣
∣
∣
∣
Ω̂

(A−1
t (X), t) =

∂C

∂t
+w · ∇C. (26)

The time derivatives of a vector valued functions on the Eulerian frame can also be transformed to the ALE
frame component-wise. Note that the time derivative in the ALE form will become a material derivative
when the convective velocity u and the domain velocity w are same, which is the Lagrangian description
of the equations. After rewriting the time derivatives in the soluble surfactant droplet impingement model
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equations using (26), the Navier–Stokes equations (18), the bulk surfactant concentration equation (24),
and the surfactant concentration equation on the interface (25) become

∇ · u = 0,
∂u

∂t

∣
∣
∣
∣
Ω̂

+ ((u−w) · ∇)u = ∇ · S(u, p) + 1

Fr
e in Ω(t)× (0, I) (27)

∂C

∂t

∣
∣
∣
∣
Ω̂

+ (u−w) · ∇C = ∇ ·
(

1

Pec
∇C

)

in Ω(t)× (0, I), (28)

DCΓk

Dt

∣
∣
∣
∣
Γ̂k

+ CΓk
∇Γk

·w = ∇Γk
·
(

1

Pek
∇Γk

CΓk

)

+ SΓ(CΓk
, C) on Γk(t)× (0, I), (29)

for k = 1, 2. Note that the free surface and the liquid-solid interface move with the liquid velocity, and
therefore the surface transport equations (29) are written in the Lagrangian description.

4.3. Variational formulation

Let L2(Ω(t)), H1(Ω(t)) be the Sobolev spaces, and (·, ·)Ω be the inner product in L2(Ω) and its vector-
valued versions, respectively. Define the functional spaces for the velocity and pressure as

V (Ω(t)) := {v ∈ H1(Ω(t))3 : v · ν2 = 0 on Γ2(t)}, Q(Ω(t)) := L2(Ω(t)),

where the no penetration boundary condition on liquid-solid interface is incorporated in the velocity space.
To derive the variational form of the Navier–Stokes equations, we multiply the mass and momentum balance
equations (27) by test functions q ∈ Q and v ∈ V , respectively, and integrate over Ω(t). Applying integration
by parts to the stress tensor, we get

−
∫

Ω(t)

∇ · S(u, p) · v dx =
2

Re

∫

Ω(t)

D(u) : D(v) dx−
∫

Ω(t)

p∇ · v dx −
∫

Γ(t)

v · S(u, p) · ν dγ.

Rewriting the boundary integral into integral over Γ1(t) and Γ2(t), decomposing the test function v into

v = (v · ν2)ν2 + (v · τ 1,2)τ 1,2 + (v · τ 2,2)τ 2,2, (30)

and after applying the Navier-slip condition, the liquid-solid interface integral becomes

∫

Γ2(t)

v · S(u, p)·ν2 dγ = −β
2∑

i=1

∫

Γ2(t)

(u · τ i,2)(v · τ i,2) dγ.

This integral term will be added on the left hand side of the system, and it improves the stability of the
system. Similarly, the free surface integrate, after incorporating the force balancing condition, will become

−
∫

Γ1(t)

v · S(u, p) · νF dγ = − 1

We

∫

Γ1(t)

v · ∇Γ · (σ̂(CΓ1
)Pν1

) dγ

=
1

We

∫

Γ1(t)

σ̂(CΓ1
)Pν1

: ∇Γv dγ − 1

We

∫

ζ(t)

σ̂(CΓ1
)νζ · v dζ.

Again using the decomposition (30) of v in the last integral term, we obtain

−
∫

Γ1(t)

v · S(u, p) · νF dγ =
1

We

∫

Γ1(t)

σ̂(CΓ1
)Pν1

: ∇Γv dγ − 1

We

∫

ζ(t)

σ̂(CΓ1
) cos(θd)v · τ 1,2 dζ, (31)

since v · ν2 = 0, νζ · τ 2,2 = 0 and νζ · τ 1,2 = cos(θd), see Figure 1 for a geometrical description. Note that
the Marangoni effects induced by the nonuniform surfactant concentration are included into the numerical
scheme without evaluating the surface gradient of the surface tension, which is different from the Laplace-
Beltrami operator technique used in [19, 22, 24]. Now, using the relation (17), the variational form of the
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Navier–Stokes equations read:

For given u(0), CΓ1
(t), θd = σ0 cos(θ

0
e)/σ(CΓ1

) and Ω(0), find (u, p) ∈ V ×Q such that
(
∂u

∂t
,v

)

Ω̂

+ a(u−w;u,v)− b(p,v) + b(q,u) = f(v) (32)

for all (v, q) ∈ V ×Q, where

a(û;u,v) =
2

Re

∫

Ω(t)

D(u) : D(v) + (û · ∇)u · v dx + β

∫

Γ2(t)

2∑

i=1

(u · τ i,2)(v · τ i,2) dγ,

b(q,v) =

∫

Ω(t)

q∇ · v dx,

f(v) =
1

Fr

∫

Ω(t)

e · v dx− 1

We

∫

Γ1(t)

σ̂(CΓ1
(t))Pν1

: ∇Γ1
v dγ +

1

We

∫

ζ(t)

σ̂(CΓ1
(t)) cos(θd) v · τ 1,2 dζ.

Note that the choice of θd = σ0 cos(θ
0
e)/σ(CΓ1

) induce an unbalanced Young force at the contact line, which
drives the contact line to the equilibrium position, see sections 3.2 and 3.3.

Next, the variational forms of the surfactant concentration equation (28) is obtained in the usual way.
Let G(Ω(t)) := H1(Ω(t)) and M(Γ(t)) := H1(Γ(t)) be the usual Sobolev spaces. Further, in order to write
the surfactant concentration equations on the free surface and on the liquid-solid interface in a one-field
formulation, we define

CΓ(x, t) =

{
CΓ1

(x, t) if x ∈ Γ1(t),
CΓ2

(x, t) if x ∈ Γ2(t),
PeΓ(x) =

{
Pe1 if x ∈ Γ1(t),
Pe2 if x ∈ Γ2(t).

Bi(x) =

{
Bi1(x, t) if x ∈ Γ1(t),
Bi2(x, t) if x ∈ Γ2(t),

α(x) =

{
α1 if x ∈ Γ1(t),
α2 if x ∈ Γ2(t).

Multiplying Eqs. (28) and (29) by test functions φ ∈ G and ψ ∈M , integrating over Ω(t) and Γk(t), respec-
tively, incorporating the boundary and continuity conditions, we obtain the coupled problem for the soluble
surfactant concentration:

For given (CΓ,0,u,w), find (C,CΓ) ∈ G×M such that for all (φ, ψ) ∈ G×M
(
∂C

∂t
, φ

)

Ω̂

+ ac(u−w;C, φ) + bc(C,CΓ, φ) = sc(CΓ, φ), (33)

(
DCΓ

Dt
, ψ

)

Γ̂

+ aΓ(w, CΓ, ψ) + bΓ(CΓ, C, ψ) = sΓ(C,ψ), (34)

where

ac(v;C, φ) =
1

Pec

∫

Ω(t)

∇C · ∇φ dx+

∫

Ω(t)

(v · ∇)Cφ dx,

bc(CΓ, C, φ) =

∫

Γ(t)

α(1− CΓ)C φ dγ,

sc(CΓ, φ) = Da

∫

Γ(t)

BiCΓφ dγ,

aΓ(w, CΓ, ψ) =

∫

Γ(t)

1

PeΓ
∇ΓCΓ · ∇Γψ dγ +

∫

Γ(t)

CΓ ∇Γ ·w ψ dγ,

bΓ(C,CΓ, ψ) =
1

Da

∫

Γ(t)

αC CΓ ψ dγ +

∫

Γ(t)

BiCΓ ψ dγ,

sΓ(C, φ) =
1

Da

∫

Γ(t)

αC ψ dγ.

11



4.4. Discrete problem

We first present the temporal discretization of the coupled system (32)-(34), in particular, the application
of the fractional-step-θ scheme is discussed. Further, a fixed point type iteration for the nonlinear convective
term in the Navier–Stokes equations (32) and a Gauss-Seidel type iteration for the coupled surfactant
equations are presented. The choice of finite elements for the spatial discretization of the system (32)-(34)
is also discussed.

4.4.1. Temporal discretization

Let 0 = t0 < t1 < · · · < tN = I be a decomposition of the considered time interval [0, I] and δt = tn+1−tn,
n = 0, . . . , N − 1, be the uniform time step. Also, we use short notations Ωn := Ω(tn) and un = u(x, tn)
to denote the computational domain and the function value, respectively at time tn. We use the fractional-
step-θ scheme, which is strongly A-stable and of second-order convergent on fixed domains [66], for temporal
discretization of the coupled system. The fractional-step-θ scheme consists three sub-steps in a given time
interval (tn, tn+1). Let

ϑ = 1−
√
2

2
, ϑ̃ = 1− 2ϑ, η =

ϑ̃

1− ϑ
, η̃ = 1− η.

The three fractional-steps of (tn, tn+1) are (tn, tk1), (tk1 , tk2) and (tk2 , tn+1), where tk1 = tn + ϑ δt, and
tk2 = tn+1 − ϑ δt. Applying the fractional-step-θ scheme to the coupled system (32)-(34), the first sub-step
of the three fractional-steps of the coupled system reads:

Step 1: For given Ω̂ := Ωn, u
n, wn, Cn, Cn

Γ and θd = σ0 cos(θ
0
e)/σ(C

n
Γ1
), find (uk1 , pk1) ∈ V (Ωk1

)×Q(Ωk1
),

wk1 ∈ H1(Ωk1
), Ck1 ∈ G1(Ωk1

) and Ck1

Γ ∈ M(Γk1
) such that for all (v, q) ∈ V (Ωk1

) × Q(Ωk1
) and

φ ∈ G1(Ωk1
) and ψ ∈M(Γk1

)

(
uk1 − un

ϑ δt
,v

)

Ω̂

+ η a(uk1 −wk1 ;uk1 ,v) − b(pk1 ,v)

+ b(q,uk1) = η fk1(v) + η̃ fn(v)− η̃ a(un −wn;un,v), (35)
(
Ck1 − Cn

ϑ δt
, φ

)

Ω̂

+ η ac(u
k1 −wk1 ;Ck1 , φ) + η bc(C

k1 , Ck1

Γ , φ)

= η sc(C
k1

Γ , φ) + η̃ sc(C
n
Γ , φ)− η̃ ac(u

n −wn;Cn, φ)− η̃ bc(C
n, Cn

Γ , φ), (36)
(

Ck1

Γ − Cn
Γ

ϑ δt
, ψ

)

Γ̂

+ η aΓ(w
k1 , Ck1

Γ , ψ) + η bΓ(C
k1

Γ , Ck1 , ψ)

= η sΓ(C
k1 , ψ) + η̃ sΓ(C

n, ψ)− η̃ aΓ(w
n, Cn

Γ , ψ)− η̃ bΓ(C
n
Γ , C

n, ψ). (37)

The second and third sub-steps of the fractional-step-θ scheme are obtained in a similar way [66].

4.4.2. Solution of the nonlinear system

We discuss the solution procedure for the coupled system in the first sub-step of the fractional-step-
θ scheme, and the same procedure is followed in other two sub-steps. In addition to the nonlinear convection
term in the Navier–Stokes equations (35), the unknown computational domain, the domain velocity and the
surfactant-dependent surface tension make the computation more challenging. Since the computational
domain, Ωk1

, is part of the Navier–Stokes solution, the Navier–Stokes equations (35) are solved in the
previous time-step domain, Ωn. Further the surfactant-dependent surface tension also treated explicitly,
that is, Cn

Γ is used in the source term fk1(v), and it decouples the Navier–Stokes equations (35) from the
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surfactant concentration equation (37). Moreover, the curvature term in fk1(v) of (35) is treated semi-
implicitly, that is,

− 1

We

∫

Γn
1

σ̂(Cn
Γ1
)P

ν

k1
1

: ∇Γv dγ = − 1

We

∫

Γn
1

σ̂(Cn
Γ1
)
[
Pν

n
1
+ ϑ δtuk1

]
: ∇Γ1

v dγ

= − 1

We

∫

Γn
1

σ̂(Cn
Γ1
)Pν

n
1
: ∇Γ1

v dγ − 1

We

∫

Γn
1

σ̂(Cn
Γ1
)ϑ δtuk1 : ∇Γ1

v dγ. (38)

The second integral in (38) is symmetric, and it is added to the left hand side of (35) that gives additional
stability to the system. The nonlinear convection term in (35) is handled by a fixed point iteration as in [21].
Let uk1

0 := un, wk1

0 := wn, and replace the form a(uk1 −wk1 ;uk1 ,v) by a(uk1

i−1−wk1

i−1;u
k1

i ,v), i = 1, 2, . . . ,
and iterate until the residual of the Navier–Stokes equations (35) becomes less than 10−8. The unknown
domain velocity wk1

i , i = 1, 2, . . . , is calculated in each iteration by solving the linear elasticity problem for

a given displacement virtually obtained using uk1

i .
At the end of the fixed point iteration, we move the domain with the domain velocity wk1 to obtain Ωk1

.
We then solve the coupled surfactant equations (36) and (37) in Ωk1

and Γk1
, respectively, by a Gauss-Seidel

type fixed point iteration as follows. Let Ck1

Γ,0 = Cn
Γ , C

k1

0 = Cn, be the initial iterative values. Further,

replace bc(C
k1 , Ck1

Γ , φ), sc(C
k1

Γ , φ) by bc(C
k1

i , Ck1

Γ,i−1, φ), sc(C
k1

Γ,i−1, φ) and bΓ(C
k1

Γ , Ck1 , ψ), sΓ(C
k1 , ψ) by

bΓ(C
k1

Γ,i, C
k1

i−1, ψ), sΓ(C
k1

i−1, ψ) in (36) and (37), respectively, and iterate until the residual of (36) becomes

less than 10−12.
In computations, the fixed point iteration of the Navier–Stokes satisfies the stopping criteria within two

or three iterations for δt=5× 10−4, and the number of iterations increase when δt is increased. In addition
to the dependency on the time step, the number of Gauss-Seidel type iteration of (36) and (37) depends on
α and Bi.

4.4.3. Finite element discretization

We assume that the droplet impingement is 3D-axisymmetric, and we rewrite the volume and surface
integrals in (32)-(34) into area and line integrals using the cylindrical coordinates as described in [21]. It
allows to use two-dimensional finite elements for approximating the velocity, pressure and bulk surfactant
concentration on the cross-section and a one-dimensional finite elements for approximating surfactant con-
centration on free surface and liquid-solid interface. We triangulate the cross-section with triangles, and
use the inf-sup stable isoparametric Taylor-Hood finite elements, that is, continuous piecewise quadratic
polynomials and continuous piecewise linear polynomials for the appropriation of the velocity components
and pressure, respectively. Moreover, we use the continuous piecewise quadratic polynomials for the approx-
imation of the surfactant concentrations in the bulk and on the interfaces.

4.5. Mesh handling

The mesh velocity needs to be computed in each fixed point iteration step of the Navier–Stokes equations,
see Section 4.4.2. To compute the mesh velocity, we first obtain the displacement of the boundary using
w = u on the free surface that satisfies the kinematic condition u · ν1 = w · ν1 given in (3). We then solve
the linear elasticity equation for the displacement of the inner mesh points with the obtained boundary
displacement as boundary value. For instance, to calculate the mesh velocity wn+1, let the boundary
displacement obtained from the Navier–Stokes equations be Υn+1, then the displacement Ψn+1 is calculate
by solving

∇ · T(Ψn+1) = 0 in Ω(tn)

Ψn+1 = Υn+1 on Γ1 ∪ Γ2

(39)

where T(φ) = λ1(∇·φ)I+2λ2D(φ), In computations, the Lame constants λ1 and λ2 are chosen as one. Fur-
ther, continuous piecewise linear polynomials are used to approximate each component of the displacement
vector.
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During the mesh movement, vertices on the free surface may accumulate at some part of the boundary due
to the tangential movement induced by the Marangoni convection. To avoid remeshing, we verify the ratio
of the minimum and maximum edge size on the free surface, and redistribute the vertices using interpolated
cubic spline. To incorporate the redistribution, we add the tangential displacement vector that requires to
redistribute the vertices in the mesh velocity calculation during the nonlinear iteration of the Navier–Stokes
equations. This approach will automatically redistribute the vertices on the free surface during the mesh
update. However, the free surface vertices may become a part of the liquid-solid interface due to rolling
motion. In this case, the free surface boundary condition has to be replaced with the slip with friction
boundary condition, and the free surface vertex become the wetting point. Consequently, the finite element
spaces have to be reconstructed. Also, the surface meshes of Γ1 and Γ2 change during this process, and
need new finite element spaces. The entire process is handled automatically by mapping the old solution
to the new finite element spaces without remeshing, as the number of finite element degrees of freedom
(unknown solution coefficients) do not change during the change in boundary description. Moreover, the
minimum angle of the triangular mesh is calculated at every time step, and a remeshing will be done when
the minimum angle of the mesh is less than 10◦. During the remeshing, the old solutions are interpolated
to the new mesh. To minimize the interpolation error, the Navier–Stokes equations are solved with the
interpolated velocity as an initial guess and w = 0 before advancing to the next time step. Note that the
remeshing is not necessary at every time step, as the inner mesh points are moved using the elastic mesh
update.

5. Validation

Simulations of impinging droplets without surfactants (clean droplets) using the proposed ALE finite
element method have been compared with the experimental results in our previous studies [16, 17, 19].
Further, the numerical scheme for transport of surfactants in bulk and on the interface/free surface has been
validated with analytical solutions in [22, 24]. Numerical studies of surfactant droplet impingement using
the proposed numerical scheme with the surfactant-dependent contact angle model are carried out here.
We first perform a mesh convergence study using the impinging droplet configuration, in particular, with
surfactant-dependent contact angle. Computational results of the clean droplets are also compared with the
experimental results. Moreover the effects of adsorption and desorption coefficients on the flow dynamics of
wetting and non-wetting droplets are studied. In these numerical studies, the relative mass fluctuation of
the droplet over time is given by

δV (t) =
|Ω(t)| − |Ω(0)|

|Ω(0)| , |Ω(t)| =
∫

Φ(t)

r dr dz,

where r, z are radial and axial coordinates in axisymmetric domain, and Φ(t) is the axisymmetric meridian
domain of Ω(t). The above integrals are evaluated in the axisymmetric configurations [21]. Further, the
relative fluctuation of the total surfactant mass is computed by

δΓc (t) =
M(t)−M(0)

M(0)
, M(t) =

∫

Φ(t)

C r dr dz + Da

∫

Γ1(t)∪Γ2(t)

CΓ r ds.

In addition, the sphericity of the droplet is calculated using

sphericity =
surface area of the volume-equivalent sphere

surface area of the droplet
.

It implies that the sphericity will be one when the droplet is in spherical shape, and the sphericity will be less
than one when the droplet deforms. The sphericity gives a quantitative measure of the droplet deformation.
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Figure 2: Wetting diameter (left) and the sphericity (right) of the droplet in different mesh levels of the mesh convergence
study. Re=1522, We=25, Fr=110, α1 = 0, Bi1 = 0, Pe1 = 1 and θ

0
e
=110◦.

Further, the kinetic energy in the droplet is calculated using

kinetic energy =

∫

Φ(t)

r u · u dr dz

∫

Φ(t)

r dr dz

.

Note that the dimensionless velocity is used in the above definition, and it has to be multiplied with U2 in
order to get the kinematic energy in the dimensional form.

5.1. Mesh convergence

A mesh convergence study is performed for the numerical scheme presented in the previous section.
We consider a hemispherical droplet of diameter d0=1.29 × 10−3 m on a horizontal surface. The initial
surfactant concentration on the free surface is assumed to be uniform, that is, CΓ1

(·, 0) = 0.5, and the no
flux is imposed at the moving contact line. Further, the liquid-solid interface is assumed to be clean, that is,
CΓ2

= 0, and remains clean during computations due to the no flux condition at the contact line. Moreover,
we assume that C = 0 and there is no transport of surfactants between the free surface and the bulk phase,
that is, no adsorption or desorption of surfactants, α1 = 0 and Bi1 = 0. Using L=d0 and U=1.18 m/s as
characteristic values, we get Re=1522, We=25 and Fr=110. Further, we used Pe1 = 1, δt = 0.00025 and
β = 0.55/hE, where hE is the edge size of the liquid-solid interface. The imposed contact angle of the clean
free surface, θ0e = 110◦. Since θ0e is more than 90◦, the presence of surfactant on the free surface will increase
the equilibrium contact angle further, see (17). The initial mesh level (L0) contains 25 vertices on the free
surface with hE = 0.06282152, and the successive mesh levels are obtained by uniformly refining the initial
mesh, that is, L1, L2 and L3 meshes contain 50, 100 and 200 vertices on the free surface, respectively.

Initially, the dynamic contact angle and the wetting diameter are not in the equilibrium state for the
chosen parameters, and thus the droplet starts to deform and attains its equilibrium state after a sequence
of recoiling and spreading. Figure 2 shows the wetting diameter (also the position of the contact line, since
d/d0 = r/r0) and the sphericity of the droplet till the droplet attains its equilibrium state. The values
obtained with different meshes are almost identical, and it shows that the free surface with the L0 mesh
is enough to obtain a mesh independent wetting diameter and sphericity. However, a close view in the
sub-figures shows the convergence behavior clearly, and the solution obtained with L2 and L3 are very
similar. The dynamics of the kinetic energy and the contact angle of the droplet during the sequence of
recoiling and spreading are presented in Figure 3 for all mesh levels. The dynamic phenomenon observed
in computations of dynamic contact angle supports the earlier discussion, see sections 3.2 and 3.3. The
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Figure 3: Kinetic energy (left) and the dynamic contact angle (right) of the droplet in different mesh levels of the mesh
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Figure 4: Relative mass loss of droplet (left) and the relative mass loss of surfactants (right) in different mesh levels of the
mesh convergence study. Re=1522, We=25, Fr=110 Bi = 0, Pe1 = 1 and θ0

e
=110◦.

initial dynamic contact angle is 90◦, which is different from the equilibrium value for the given droplet
configuration. The computationally obtained dynamic contact angle increases initially to a maximum value
(≃ 118◦), and oscillates around its equilibrium value before attaining it. Further, the kinetic energy attains
a maximum value when the dynamic contact angle differs from its equilibrium value, see Figure 3. The
dynamic contact angle value obtained with L0 mesh is different from the values obtained with other meshes.
It clearly shows that a mesh with at least hE = 0.03141076 (L1 mesh) on free surface is needed for a mesh
independent solution, see the sub-figures in Figure 3. Finally, the observed relative mass fluctuation of the
liquid droplet and of the surfactants during the computations are presented in Figure 4 for all mesh levels.
Except the L0 mesh, the mass fluctuations in all other mesh levels are similar and very less. Further, we
can observe the convergence behavior clearly. Based on this mesh convergence study, we use the L2 mesh
with hE = 0.01570538 on the free surface in all computations of droplet impingement.

6. Computational examples of soluble surfactant droplet impingement

Effects of soluble surfactants on the flow dynamics of impinging droplets are studied in this section. In
particular, numerical studies on the influence of adsorption and desorption coefficients on the flow dynamics
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Figure 5: Pressure contours and shapes of the impinging droplet at dimensionless time t=0.1, 0.215, 0.625, 1.25, 3.75 and 25.
Re=1522, We=25, Fr=110, Pec = 2, PeΓ = 2, Bi = 0, Da = 775, α = 100 and θ

0
e
=46◦.

of wetting, partially wetting and non-wetting droplets are performed.

6.1. Influence of adsorption in wetting droplets (θ0e = 46◦)

We first study the influence of the adsorption coefficient on the flow dynamics of a soluble surfactant
droplet impingement. We consider a spherical water droplet of diameter d0=1.29× 10−3 m impinging with
the pre-impact speed uimp =1.18 m/s, and initial surfactant concentrations, c0 = 2000 and CΓ(x, 0) = 0. An
equilibrium contact angle θ0e=46◦ has been observed in the experimental study [58] for a clean water droplet
on a polished silicon surface, and it is used here. Using L=d0 and U=1.18 m/s as characteristic values, we
get Re=1522, We=25 and Fr=110. In this example, we consider the following three variants: (1) α = 1,
(2) α = 10 and (3) α = 100. The computations of all variants are performed with Pec = 2, PeΓ = 2, Bi = 0,
Da = 775, δt = 0.00025 and β = 1.476776/2hE. Even though the initial surfactant concentration on the
liquid-solid interface is zero, it increases due to the adsorption of surfactants from the bulk phase and the
transport of surfactant from the free surface. The transport of surfactants from the free surface into the
liquid-solid interface may occur due to the imposed continuity condition at the contact line (11) and the
rolling motion of the droplet during spreading. Nevertheless, the effects of CΓ2

will only be on the dynamic
contact angle (15). Since the condition, CΓ1

= CΓ2
, is imposed at the contact line, the dynamic contact

angle (15) will further simplified to the form (17).
The pressure contours and shapes of the impinging droplet at different instances (dimensionless time)

t=0.1, 0.215, 0.625, 1.25, 3.75 and 25 are depicted in Fig. 5 for the variant α = 100. Initially, the pressure
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Figure 6: Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and
the dynamic contact angle (d) of an impinging droplet with Re=1522, We=25, Fr=110, Bi = 0 and θ0

e
=46◦. Var 1: α = 1,

Var 2: α = 10 and Var 3: α = 100.

variation is large in the vicinity of the contact line, and becomes almost uniform when the droplet attains
its equilibrium state, see the last snapshot. During the deformation, the pressure variation induces a
capillary wave over the free surface, and it can clearly be seen in second and third snapshots. Further,
the arrows in the snapshots show the flow directions in the droplet. The computationally obtained wetting
diameter, sphericity, kinetic energy and dynamic contact angle for all considered surfactant variants and
for the clean droplet case (c0 = 0 and CΓ(x, 0) = 0) are presented in Figure 6. The wetting diameters
of different variants are compared with the experimentally observed wetting diameter in Fig. 6 (a), and
the clean droplet case matches very well, both qualitatively and quantitatively, with the experiment results
presented in [58]. Since θ0e is less than 90◦ in this example, the surfactant-dependent dynamic contact angle
model (17) reduces the equilibrium contact angle further when the concentration of surfactant increases.
Consequently, the maximum wetting diameter and the equilibrium wetting diameter of the droplet also
increase, see Fig. 6 (a). The increase in the wetting diameter reduces the sphericity of the droplet, see
Fig. 6 (b). These observations show that the surfactant-dependent dynamic contact angle is incorporated
into the numerical scheme precisely. Initially, the kinetic energy is very high due to the pre-impact velocity
and non-equilibrium surface force, and it approaches to zero when the droplet attains the equilibrium state.
The effects of surfactants on the kinetic energy of the droplet is negligible, Fig. 6 (c). Initially, say until
t̃ = 2, the computationally obtained dynamic contact angle in both surfactant and clean cases are similar,
since CΓ(x, 0) = 0. However, the dynamic contact angle of the surfactant droplets becomes small when the
surfactants are transported to the free surface from the bulk phase, say after t̃ = 2. Though the effects
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Table 1: Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered
in section 6.1 with I=25.

Variants max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δΓc (t)| max
t∈(0,I]

d(t)

d0
sphericity

at t=I
kinetic energy

at t=I
θd(CΓ1

)
at t=I

Clean 0.0141 - 2.1109 0.4418 2.19 ×10−6 45.83
Var. 1 0.0151 0.0127 2.1361 0.4170 6.09 ×10−7 41.85
Var. 2 0.0151 0.0101 2.1385 0.4169 6.06 ×10−7 41.82
Var. 3 0.0144 0.0089 2.1430 0.4169 5.90 ×10−7 41.87

Table 2: Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered
in section 6.2 with I=25.

Variants max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δΓc (t)| max
t∈(0,I]

d(t)

d0
sphericity

at t=I
kinetic energy

at t=I
θd(CΓ1

)
at t=I

Clean 0.0141 - 2.1109 0.4418 2.19×10−6 45.83
Var. 1 0.0147 0.0061 2.1176 0.4418 2.52×10−6 45.82
Var. 2 0.0153 0.0096 2.1056 0.4418 2.15×10−6 45.82
Var. 3 0.0146 0.0092 2.1082 0.4418 1.99×10−6 45.83

of surfactants on the flow dynamics of the droplet are clearly observed, the influence of the adsorption
coefficient is negligible for the considered surfactant droplet configuration.

To compare different flow and geometric parameters of the droplet impingement simulations quantita-
tively, the sphericity, the kinetic energy, and the dynamic contact angle of the droplet are given in Table 1.
Further, the maximum mass fluctuations and the maximum wetting diameter obtained in all variants are
also presented in the table. The dynamic contact angle, as expected, is less in surfactant droplets in com-
parison with the clean droplet case, and it will attain its equilibrium value when the kinetic energy becomes
zero. The maximum fluctuations in the droplet’s volume and in the surfactant mass are less than 1.52%
and 1.3%, respectively, see Table 1.

6.2. Influence of desorption in wetting droplets (θ0e = 46◦)

To study the influence of desorption of surfactants on the flow dynamics of the droplet impingement,
we consider the same droplet configurations and flow parameters as in the previous section. However, we
take α = 0, the initial surfactant concentrations, c0 = 0 and CΓ(x, 0) = 0.5 in this numerical test. Further,
the following three variants, (1) Bi = 1, (2) Bi = 5 and (3) Bi = 10, are considered. The computations are
performed until the dimensionless time I= 25.

The wetting diameter, sphericity, kinetic energy and dynamic contact angle obtained in computations
of all variants are presented in Fig. 7. Since the Biot number is nonzero in all variants, the surfactants
on the interfaces are transported into the bulk phase, and eventually the free surface and the liquid-solid
interface become clean after some time. Further, we observed that the influence of surfactants on the flow
dynamics is negligible, as effects of the Marangoni convection and the surfactant-dependent dynamic contact
angle become negligible when the interface becomes clean. These observations can be seen in each picture
of Fig. 7, where the curves of different variants are almost identical. It shows that the impurities do not
affect the flow dynamics of the droplet much, when the impurities are transported into the bulk phase. To
support this observation quantitatively, the parameters obtained in all variants are given in Table 2. The
tabulated values are almost identical in all variants. Moreover, the maximum fluctuations in the droplet’s
volume and in the surfactant mass are less than 1.53% and 1%, respectively.

19



0 10 20
0

1

2

tU/L

d/
d 0

 

 

clean
var 1
var 2
var 3
exp

0 10 20

0.4

0.6

0.8

tU/L

sp
he

ric
ity

 

 

clean
var 1
var 2
var 3

0 10 20
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

tU/L

ki
ne

tic
 e

ne
rg

y

 

 

clean
var 1
var 2
var 3

0 10 20
0

60

120

180

tU/L

θ d

 

 

clean
var 1
var 2
var 3

(a) (b)

(c) (d)

Figure 7: Effects of surfactant desorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and
the dynamic contact angle (d) of an impinging droplet with Re=1522, We=25, Fr=110, α = 0 and θ0

e
=46◦. Var 1: Bi = 1,

Var 2: Bi = 5 and Var 3: Bi = 10.

Since the influence of surfactants in the desorption case is negligible on the flow dynamics of the droplet
impingement, only the adsorption cases are studied in the subsequent sections.

6.3. Influence of adsorption in non-wetting droplets (θ0e = 100◦)

We now consider an impinging water droplet of diameter d0=2.7 × 10−3 m impinging with the pre-
impact speed uimp =1.56 m/s and the equilibrium contact angle θ0e = 100◦. The experimental results of
the considered clean droplet case are presented in [68]. The resulting dimensionless numbers are Re=4212,
We=90 and Fr=92. Further, Pec = 2, PeΓ = 2, Bi = 0, Da = 370, δt = 0.00025 and β = 0.75/2hE are used
in computations. In general, the non-wetting droplets with surfactants are more interesting to study, as the
presence of surfactants on the interface increases the Weber number by reducing the surface tension that
eventually increase the wetting diameter. Contrarily, the capillary effect reduces the wetting diameter when
the dynamic contact angle increases due to an increase in the surfactant concentration. Since the We has
no influence at the equilibrium state, the wetting diameter will be less and the contact angle will be more in
the surfactant droplet when compared to the clean droplet. To study this behavior in detail, the following
three variants, (1) α = 1, (2) α = 10 and (3) α = 100, are considered.

The pressure contours and shapes of the impinging droplet at different instances (dimensionless time)
t=0.1, 0.215, 0.625, 1.25, 3.75 and 5 are depicted in Fig. 5 for the variant α = 10. As in the previous cases,
the pressure variation is large in the vicinity of the contact line initially. However, the wetting diameter is
large in this example due to a high Reynolds number. The arrows in the snapshots of the droplets indicate
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Figure 8: Pressure contours and shapes of the impinging droplet at dimensionless time t=0.1, 0.215, 0.625, 1.25, 3.75 and 5.
Re=4212, We=90, Fr=92, Pec = 2, PeΓ = 2, Bi = 0, Da = 370, α = 10 and θ

0
e
=100◦.

the flow directions. The obtained wetting diameter, sphericity, kinetic energy and dynamic contact angle
in computations of all variants are presented in Fig. 9. The obtained wetting diameter in computations
of all variants are compared in Fig. 9 (a) with the experimentally observed wetting diameter of the clean
droplet presented in [68]. The computational results of the clean droplet case are in good agreement with the
experiment result. Since the considered equilibrium contact angle is close to 90◦, the influence of surfactant-
dependent dynamic contact angle on the flow dynamics is less. Unlike the previous test case considered in
Section 6.1, a topological change (breaking/splashing) is observed in this example due to high Re=4212.
Since the topological changes are not modeled in the numerical scheme, the computations break down when
the distance between the interfaces and/or boundaries are less than the mesh size. The time at which
each variant of droplet breaks down (End time) is presented in Table 3. All other parameters such as the
mass fluctuations, maximum wetting diameter, sphericity, kinematic energy and the dynamic contact angle
obtained in all variants are comparable, see Table 3. Despite the strong deformation due to high Reynolds
number, the maximum fluctuations of the droplet’s volume and the surfactant mass are less than 3.6% and
2.4%, respectively, in all computations.

6.4. Influence of adsorption in an impinging droplet with θ0e = 90◦

We next consider a surfactant droplet impingement with θ0e = 90◦ in which the surfactants have no effect
on the dynamic contact angle when the model (17) is considered. However, the surfactants will increase the
Weber number by reducing the surface tension, and consequently the maximum wetting diameter will be
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Figure 9: Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c), and
the dynamic contact angle (d) of an impinging droplet with Re = 4212, We=90, Fr=92, Bi = 0, and θ0

e
=100◦. Var 1: α = 1,

Var 2: α = 10 and Var 3: α = 100.

increased. We consider the same flow properties and the droplet configurations as in Section 6.3 but with
θ0e = 90◦. The computed variants are (1) α = 1, (2) α = 10 and (3) α = 100. Computationally obtained
wetting diameters of these variants of surfactant droplets are compared with the clean droplet case. Note
that the given initial distribution of the surfactant on the interface is uniform and the surface Peclet number
is small, and therefore the effect of Marangoni convection will be negligible.

The numerical results, the wetting diameter, sphericity, kinetic energy and dynamic contact angle, of
these surfactant droplet variants and the clean droplet case are presented in Fig. 10. Even though the wetting
diameter cure of all variants are similar in (10) (a), a close-up view of the wetting diameter in (10) (a) reveals
the difference in the maximum wetting diameter. Further, to quantify the influence of surfactants, different
parameters are tabulated in Table 4. Also, the time at which each variant of droplet breaks down (End
time) is presented in Table 3. In comparison to the droplet with θ0e = 100◦ (Section 6.3), the topological
changes occur later, say around the dimensionless time t = 13.

6.5. Influence of adsorption in an impinging droplet with θ0e = 125◦

We next consider a non-wetting water droplet with θ0e = 125◦. The flow properties and the droplet
configurations are same as in Section 6.3, except θ0e = 125◦. Once again the computed variants are (1) α = 1,
(2) α = 10 and (3) α = 100. The numerical results (wetting diameter, sphericity, kinetic energy and dynamic
contact angle) of these variants and the clean droplet case are presented in Fig. 11. Since the equilibrium
contact angle is large in the high Reynolds number example, the droplet spreads, recoils and bounce very
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Table 3: Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered
in section 6.3.

Variants End time
(I)

max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δΓc (t)| max
t∈(0,I]

d(t)

d0
sphericity

at t=I
kinetic energy

at t=I
θd(CΓ1

)
at t=I

Clean 8.49 0.0344 - 3.039 0.5526 0.0592 93.53
Var. 1 8.03 0.0306 0.008 3.0641 0.5717 0.0670 92.41
Var. 2 8.65 0.0354 0.0239 3.0984 0.5501 0.0583 93.65
Var. 3 8.46 0.0353 0.0221 3.0632 0.5564 0.0606 93.50
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Figure 10: Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c),
and the dynamic contact angle (d) of an impinging droplet with Re = 4212, We=90, Fr=92, and θ0

e
=90◦. Var 1: α = 1, Var 2:

α = 10 and Var 3: α = 100.

quickly. In particular, the topological changes occur early in comparison with θ0e = 100◦ and θ0e = 90◦ cases
(Section 6.3 and 6.4). Further, an interesting observation is that the topological changes in the surfactant
droplet occurs early than the clean droplet, see Table 5. In the presence of surfactants, the surface tension
will be less and eventually the topological changes are expected early. Other than this effect, the surfactant
has almost no effects on the flow dynamics of the droplet, see Table 5, where the tabulated values are almost
identical.
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Table 4: Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered
in section 6.4.

Variants End time
(I)

max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δΓc (t)| max
t∈(0,I]

d(t)

d0
sphericity

at t=I
kinetic energy

at t=I
θd(CΓ1

)
at t=I

Clean 12.64 0.0502 - 3.0721 0.5592 0.0069 88.24
Var. 1 6.16 0.0461 0.0104 3.1041 0.4032 0.0627 62.69
Var. 2 13.18 0.0567 0.0350 3.1122 0.5573 0.0059 87.93
Var. 3 13.45 0.0469 0.0338 3.0849 0.5613 0.0053 88.59
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Figure 11: Effects of surfactant adsorption coefficient on the wetting diameter (a), the sphericity (b), the kinetic energy (c),
and the dynamic contact angle (d) of an impinging droplet with Re = 4212, We=90, Fr=92, and θ0

e
=125◦. Var 1: α = 1,

Var 2: α = 10 and Var 3: α = 100.

7. Summary and Observations

A finite element scheme using the arbitrary Lagrangian–Eulerian approach is presented for computations
of 3D-axisymmetric impinging droplets with soluble surfactants. The key ingredients of the scheme are the
inclusion of the Marangoni effects without calculating the surface gradient of surfactant concentration on
the free surface, a surfactant-dependent dynamic contact angle model, which is independent of numerical
parameters and velocity at the contact line, and an accurate inclusion of surface forces with isoparametric
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Table 5: Comparison of flow and geometric parameters of droplet impingement simulations for different examples considered
in section 6.5.

Variants End time
(I)

max
t∈(0,I]

|δV (t)| max
t∈(0,I]

|δΓc (t)| max
t∈(0,I]

d(t)

d0
sphericity

at t=I
kinetic energy

at t=I
θd(CΓ1

)
at t=I

Clean 6.40 0.0148 - 2.9563 0.5593 0.1651 114.79
Var. 1 4.91 0.0130 0.0246 2.9588 0.5735 0.1854 116.44
Var. 2 4.97 0.0140 0.0234 2.9528 0.5887 0.1881 116.10
Var. 3 4.90 0.0144 0.0164 2.9399 0.5746 0.1846 116.19

finite elements in a moving mesh. The numerical procedure includes the solution of the time-dependent
Navier–Stokes equations, the bulk surfactant concentration equation and the surface evaluation equations.
Since the free surface resolved moving meshes are used, the discrete representation of the free surface is used
as a computational mesh for the surface evaluation equations. Further, an iteration of Gauss-Seidel type is
employed for an implicit treatment of the adsorption/desorption balance condition for the surfactant mass
transfer. A mesh convergence study and comparisons of computationally obtained wetting diameter with
experimental results are performed to validate the scheme. An excellent conservation of the fluid mass and
of the total surfactant mass is obtained with the proposed scheme. A number of computations for impinging
droplets with soluble surfactants are performed, and the observations are summarized below.

• An increase in the surfactant concentration, decreases the contact angle, when the equilibrium contact
angle value of the corresponding clean droplet is less than 90◦. Contrarily, the contact angle increases
further when the equilibrium contact angle is greater than 90◦.

• The nonuniform surfactant concentration on the free surface induces the Marangoni effect.

• Apart from the Marangoni effect, the surfactant concentration decreases the surface tension force and
thus increases the We number. It eventually increases the maximum wetting diameter during the
deformation of the droplet.

• The effects of surfactants are more on the wetting droplet droplet in comparison with the non-wetting
droplets.

• The presence of surfactants at the contact line reduces the contact angle and increase the surface
force in wetting droplets. It eventually enforces the wetting droplet to spread faster. Contrarily, the
presence of surfactants at the contact line in non-wetting droplets increases the contact angle, and
therefore the spreading is not affected much even though the surface force increases.

• Due to the increase in the surface force, topological changes (breaking/splashing) occur early in sur-
factant droplets in comparison with the clean droplet.

• Surfactants alter the equilibrium contact angle and consequently surfactants change the equilibrium
wetting diameter.
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[68] S̆. S̆ikalo, M. Marengo, C. Tropea, E. Ganić, Analysis of impact of droplets on horizontal surfaces, Exp. Therm. Fluid Sci.
25 (7) (2002) 503–510.
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