
ar
X

iv
:1

50
6.

08
15

4v
2 

 [
qu

an
t-

ph
] 

 2
9 

Ju
n 

20
15

Semi-Spectral Method for the Wigner equation
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We propose a numerical method to solve the Wigner equation in quantum systems of spinless,
non-relativistic particles. The method uses a spectral decomposition into L2(Rd) basis functions
in momentum-space to obtain a system of first-order advection-reaction equations. The resulting
equations are solved by splitting the reaction and advection steps so as to allow the combination
of numerical techniques from quantum mechanics and computational fluid dynamics by identifying
the skew-hermitian reaction matrix as a generator of unitary rotations. The method is validated for
the case of particles subject to a one-dimensional (an-)harmonic potential using finite-differences for
the advection part. Thereby, we verify the second order of convergence and observe non-classical
behavior in the evolution of the Wigner function.

Keywords: Wigner equation, Spectral method, Reaction-advection

I. INTRODUCTION

The Wigner formalism, also known as quantum me-
chanics in phase space [1], provides an alternative but
equivalent description of quantum mechanics in trems
of a (quasi)-distribution function of the particle position
and momentum. It has proven to provide a helpful sup-
plement to operator methods in Hilbert space as well as
to path integral formulations, and has offered new in-
sights into the relation between quantum and classical
physics, as it does not discriminate between coordinate
and momentum space. For instance, it has been a fruitful
perspective for the study of quantum chaos. In addition,
it offers the opportunity to systematically consider quan-
tum corrections to the classical dynamics by expanding
the quantum Liouville equation around ~ ≈ 0. Nowadays,
it is also a valuable tool in the fields of quantum optics
as well as nuclear, plasma and semiconductor physics to
describe transport processes, for example, in open quan-
tum systems [1]. The Wigner function, introduced by
E. Wigner in Ref. [2], is the Weyl transformation of the
density matrix and a quasi-probability distribution that
can “intuitively” account for scattering and decoherence
effects in quantum systems [3, 4]. It differs from a classi-
cal probability distributions as it can change sign during
the evolution especially in regions where quantum inter-
ference effects become important.
Since the Wigner equation was introduced in 1932, it

has been tackled by various numerical approaches, such
as finite differences [5, 6], Fourier spectral collocation
[7, 8], deterministic particle [9, 10], and Monte-Carlo
[11, 12]. Here, we extend the technique described in
Refs. [7, 8] to arbitrary basis functions φn(~p) of L

2(Rd) in
momentum-space and reveal the underlying mathemati-
cal structure of the resulting infinite-dimensional set of
reaction-advection equations. By using this formulation
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we show that the action of the potential on the Wigner
function is a unitary rotation of its coefficient vector,
whereas the advection operation can be discretized by
various techniques used in computational fluid dynamics,
such as finite difference, finite volume or finite element,
cf. Ref. [13]. In that way, one is able to construct a
finite element simulation of the Wigner evolution. Em-
ploying a more general basis we assume that the higher
computational costs of our method, O(N2), compared to
O(N logN) for the spectral Fourier decomposition are
outweighed by a smaller number N of basis functions to
obtain the same order of accuracy through focusing the
computational effort to regions of interest, as for example
in the case of Wigner functions that are strongly local-
ized in momentum-space, such as particles in a periodic
potential, cf. Bloch’s theorem and Ref. [14]. In addition,
the “artificial” periodization of the Wigner function can
be avoided, which may mitigate the self-interaction of the
distribution at the domain boundaries of the simulation
that is present for the Fourier basis choice, cf. Ref. [15].

This article is organized as follows. First, we give
an introduction to the Wigner formalism and present
the properties of the Wigner equation, especially for
the pseudo-differential operator. In section III we show
the details of the numerical method to handle the ob-
tained multi-dimensional reaction-advection equation.
Thirdly, we validate the technique by simulating a one-
dimensional (an-)harmonic oscillator, which offers the
opportunity to compare with an analytical solution, cf.
Ref. [16], such that we can perform a convergence analy-
sis, and to observe quantum effects when the anharmonic
potential is used. To study tunneling phenomena, we
show the evolution of bounded states in the double well
potential and measure the spread as well as the covari-
ance of the Wigner function in phase space. In the last
section, we will highlight the strengths and weaknesses
of the approach.
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II. WIGNER FORMALISM

Our aim is to simulate the time-evolution of the
Wigner function w(τ, ~q, ~p) of a d-dimensional system of
non-relativistic spinless particles of mass m subject to
the potential U(τ, ~q), based on the Wigner equation

0 = ∂τw +
~p

m
· ~∇qw +Θ[U ]w , (1)

Θ[U ] ≡ ı

~

[

U(τ, ~q + ı~~∇p/2)− U(τ, ~q − ı~~∇p/2)
]

. (2)

The independent variables are time τ , space ~q and mo-
mentum ~p respectively. Hence, the Wigner function itself
has the dimension h−d, since it fulfills

∫

Rd

d~q

∫

Rd

d~p w(τ, ~q, ~p) = Np , (3)

where Np is the number of particles in the system. To
have an easier grasp on the equation, we make it dimen-
sionless. First of all, we measure the Wigner function
with respect to ~d, i.e. we introduce the dimension-
less Wigner function W (τ, ~q, ~p) ≡ ~dw(τ, ~q, ~p)/Np, and
we employ the following scaling relations

~x = ~q/l , t = τ/T , ~v =
T

lm
~p , V (t, ~x) = U(τ, ~q)/Ū ,

described in Ref. [17]. Thus, we obtain the dimensionless
Wigner equation

0 = ∂tW + ~v · ~∇xW +Θ[V ]W , (4)

Θ[V ] =
ıB

ǫ

[

V
(

t, ~x+
ıǫ

2
~∇v

)

− V
(

t, ~x− ıǫ

2
~∇v

)]

, (5)

where we have introduced the dimensionless constants

ǫ ≡ ~T

l2m
, B ≡ ŪT 2

l2m
, (6)

which we call effective Planck’s constant and potential
strength, respectively. The names are not arbitrary and
reflect the natural occurrence of these numbers in the
dimensionless formulation of the dynamics. For instance,
Eq. (3) directly translates into

ǫ−d

∫

Rd

d~x

∫

Rd

d~v W (t, ~x,~v) = 1 , (7)

where we have replaced Planck’s constant by its scaled
counterpart; the Wigner transform of a pure state Ψ be-
comes

W =

∫

Rd

d~y Ψ∗
(

t, ~x+
~y

2

)

Ψ

(

t, ~x− ~y

2

)

eı~v·~y/ǫ

(2π)d
, (8)

where Ψ(t, ~x) ≡ ld/2ψ(τ, ~q) is the dimensionless wave
function in position space; the dimensionless time-
dependent Schrödinger equation reads

ıǫ∂tΨ =
[

|~̂v|2/2 +BV̂ (t, ~x)
]

Ψ , (9)

and the canonical commutation relation is written as

[x̂j , v̂k] = ıǫδj,k . (10)

The symbol Θ[V ] stands for the pseudo-differential oper-
ator, whose action on W can be written as an integral

Θ[V ]W =
ıB

ǫ

∫

Rd

d~η δV (t, ~x, ~η)Ŵ (t, ~x, ~η)e−ı~η·~v , (11)

δV (t, ~x, ~η) ≡ V
(

t, ~x+
ǫ

2
~η
)

− V
(

t, ~x− ǫ

2
~η
)

, (12)

Ŵ (t, ~x, ~η) =
1

(2π)d

∫

Rd

d~p W (t, ~x, ~p)eı~η·~p . (13)

If the potential is locally well-approximated by a Taylor
series around ǫ ≈ 0 we can write

V (t, ~x+ ǫ~η/2) ≈
∞
∑

|λ|=0

(ǫ/2)
|λ| D

λ
xV (t, ~x)

λ!
~ηλ , (14)

where λ is a multi-index of dimension d, i.e. |λ| ≡
∑d

i=1 λi, λ! =
∏d

i=1 λi!, and ~ηλ ≡
∏d

j=1 η
λj

j . There-
fore, the action of the pseudo-differential operator on the
Wigner function reads

Θ[V ]W = −B
∑

|λ|∈Nodd

(ıǫ/2)|λ|−1 1

λ!

(

Dλ
xV
) (

Dλ
vW

)

.

(15)
Nodd stands for strictly positive odd integers, such that
the sum is always real. For this treatment, the potential
needs to be an analytic function defined on an open set
D ⊂ R

d×R, i.e. explicit dependence on time is possible.
This implies two important properties for us. Firstly, the
function is locally given by a convergent power or Taylor
series. Secondly, one can find an upper bound for all
derivatives of the function, since for every compact set
K ⊂ D, for all (t, ~x) ∈ K, and for all |λ| ∈ N0 there
exists a constant C such that

|Dλ
xV | ≤ C|λ|+1λ! . (16)

Hence, by choosing the right time and length scale (T, l)
for the problem one can find a convergent power series
representation of the pseudo-differential operator. The
correct choice means

lim
|λ|→∞

(

Cǫ

2

)|λ|
= 0 , (17)

such that the series in Eq. (15) converges (locally) uni-
formly under the assumption that Dλ

vW is bounded.

A. General properties

Expanding the Wigner function in momentum-space
into a set of orthonormal basis functions {φk}k∈N of
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L2(Rd) with the inner product

〈φi, φj〉2 ≡
∫

Rd

d~v φ∗i (~v)φj(~v) = δi,j , (18)

meaning that

W (t, ~x,~v) =
∑

k∈N

ak(t, ~x) φk(~v) , (19)

we can rewrite the Wigner equation, Eq. (4), into an infi-
nite system of linear, first-order partial differential equa-
tions (PDEs) for the coefficients ak(t, ~x) ∈ C. The system
can be derived by using the orthonormality property of
the basis functions, Eq. (18). Depending on the choice
of the basis we will find different sets of PDEs. In gen-
eral, all the sets can be written as a multi-dimensional
reaction-advection equation

∂t~a+

d
∑

i=1

A(i)∂xi
~a+MV (t, ~x)~a = ~0 , (20)

where A(i),MV (t, ~x) are square matrices and ~a =
(a1, a2, a3, . . . ) is the coefficient vector. Independent of
the basis choice, the matrix MV (t, ~x) is skew-hermitian,
which can be demonstrated employing Eq. (15) or Eq.
(11). When using formula (15) we have to assume that
the basis functions are C∞(Rd). Under this condition we
can shift the uneven derivatives, |λ| ∈ Nodd, which ap-
pear as summands in the pseudo-differential operator, to
show the skew-hermiticity. Demonstrating this property
for a general set of basis functions of L2(Rd), i.e. even
non-differentiable, we use Eq. (11) to write

(MV ~a)k =

∫

Rd

d~v φ∗k(~v) (Θ[V ]W ) (t, ~x,~v) (21)

=
ıB

ǫ

∫

Rd

d~η δV (t, ~x, ~η)Ŵ (t, ~x, ~η)

×
∫

Rd

d~v φ∗k(~v)e
−ı~v·~η , (22)

from which we conclude

(MV )k,l =
ıB

(2π)dǫ

∫

Rd

d~η δV (t, ~x, ~η)

×
∫

Rd×Rd

d~vd~p φ∗k(~v)e
−ı~v·~ηφl(~p)e

ı~p·~η . (23)

This equation confirms the skew-hermiticity of the ma-
trix representation of the pseudo-differential operator,
which is an important property for the stability of the
proposed algorithm as we will see in the next section.
An example of this matrix representation is shown in ap-
pendix A. The entries of the matrix A(i) are given by

(

A(i)
)

k,l
=

∫

Rd

d~v φ∗k(~v)viφl(~v) , (24)

which shows that it is hermitian.

III. NUMERICAL METHOD

For the numerical treatment, the expansion in Eq.
(19), is cut at the index N , i.e. we assume all higher
coefficients to be zero. The problem is hence shifted to
the time-evolution of the N -dimensional coefficient vec-
tor with the initial condition

~a(t0, ~x) =

∫

Rd

d~v W (t0, ~x, ~v)~φ(~v) , (25)

where ~φ = (φ1, φ2, . . . , φN ). Therefore, we work with a fi-
nite set of N balance equations (PDEs) in the form of Eq.
(20). It is important to note that, thanks to the Cauchy-
Kowaleski theorem, see Ref. [18], we know that the sys-
tem will locally have a unique analytical solution if the
coefficient matrix MV is an analytic function. This con-
dition is sufficient, since the matrices A(i) are constant.
In addition, we would like to mention that this does not
necessarily apply if MV belongs to the larger group of
smooth functions, see Levy’s argument in Ref. [18].

A. Operator-splitting

To proceed with the problem we use an operator-
splitting technique (“divide-and-conquer”), i.e. we sepa-
rate the action of the “streaming”,

S~a ≡ −
d
∑

i=1

A(i)∂xi
~a , (26)

and “forcing”,

Ft~a ≡ −MV (t, ~x)~a , (27)

operators to apply them sequentially. First, we discretize
the time interval from zero to t in Nt periods of duration
δt. Then we can write the approximated solution to Eq.
(20) as

~a(t, ~x) ≈
←−−
Nt−1
∏

k=0

exp






Sδt+

(k+1)δt
∫

kδt

dt′ Ft′






~a0(~x),

≈
←−−
Nt−1
∏

k=0

eSδt exp







(k+1)δt
∫

kδt

dt′ Ft′






~a0(~x) ,

≈
←−−
Nt−1
∏

k=0

eSδteFkδtδt~a0(~x) +O(δt) , (28)

where in the first step we have used the third-order ac-
curate Fer expansion [19]; in the second step, simple op-
erator splitting; and the numerical integration procedure

(k+1)δt
∫

kδt

dt′ Ft′ ≈ Fkδtδt+O(δt2) , (29)
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in the third step. It is important to apply the operators in
a time-ordered product series, which is indicated by the
arrow above the product sign. The obtained method will
be first-order accurate if it is stable and the numerical
procedure for each operator (streaming and forcing) is at
least second-order accurate. The total error arises since
the matrices A(i)∂xi

and MV are in general not commut-
ing and because of the second-order accurate integration
procedure. For a second-order accurate method we write

~a∗(t, ~x) ≈
←−−
Nt−1
∏

k=0

eSδt exp







(k+1)δt
∫

kδt

dt′ Ft′






~a∗0(~x), (30)

~a∗(t, ~x) ≡ e− 1
2Ftδt~a(t, ~x) ,

where we have used the Strang-splitting [20]. To achieve
the demanded accuracy we have to use a third-order
accurate integration formula for the forcing operation,
whereas second-order accuracy in the definition of a∗ is
sufficient, because it acts only twice during the evolution.
If the potential has an explicit time-dependence one can
use the midpoint rule,

(k+1)δt
∫

kδt

dt′ Ft′ ≈ F(k+ 1
2 )δt

δt+O(δt3) . (31)

For the Wigner-Poisson problem [21] where one needs
to determine the self-consistent electro-static potential,
∆V = eρ(t, ~x), at every time-step, we make use of the
fact that the forcing operation does not change the den-
sity and hence the electro-static potential. Taking Eq.
(15) and integrating by parts we can show

∫

Rd

d~v (∂tW +Θ[V ]W ) = ∂tρ = 0 . (32)

Consequently, if the numerical procedure in this step con-
serves the density up to O(δt3), it will be sufficient to re-
calculate the forcing operator after each streaming, which
coincides with our time-step definition in Eq. (30). The
questions that remain to be solved are how to compute
approximations of the operators’ actions eSδt~a (“stream-
ing”) and eFkδt~a (“forcing”) such that the resulting al-
gorithm is stable, computationally efficient, and of the
desired accuracy (first- or second-order).

B. Forcing

As it was mentioned in section IIA, the matrix MV

is skew-hermitian, which means that it belongs to the
Lie algebra of the group of unitary matrices. Depending
on the basis choice we might also find the subgroups of
special unitary or special orthogonal matrices if MV is
a traceless, skew-Hermitian, complex matrix or a real,
skew-symmetric one. Hence, the action of the forcing

operator is a unitary rotation of the coefficient vector,
whose matrix form can in general be calculated before
starting the simulation. For a skew-symmetric matrix
one could use the method described in Ref. [22] or a
Padé approximation [23]

eFkδtδt ≈
[

1+
δt

2
MV (kδt, ~x)

]−1 [

1− δt

2
MV (kδt, ~x)

]

.

For the case of the Wigner-Poisson problem one needs
to compute the product of matrix times vector at ev-
ery time-step, which for instance can be efficiently done
with the ”Expokit” software package [24] or using a pre-
calculated explicit formula.
One might be tempted to use explicit schemes, such as

Euler or Runge-Kutta, to approximate the forcing. How-
ever, these methods can become unstable for strongly
changing potentials and poor temporal and spatial res-
olution, which we will show for two examples by evalu-
ating the amplification factor g in von Neumann’s sta-
bility analysis [25]. Consider a time-independent one-
dimensional anharmonic potential and the Euler as well
as the fourth-order Runge-Kutta method (RK4) as ap-
proximations of the forcing, whose amplification factors
are given by

gEuler = |1− δtMV (x)|2 , (33)

gRK4 = |1+

4
∑

j=1

[−δtMV (x)]
j

j!
|2 , (34)

where | . . . |2 stands for the 2- or spectral-norm, such that
Parseval’s identity is applicable. The plots for both meth-
ods are shown in Fig. 1. One observes the big amplifica-
tion factor at the domain boundary, caused by the strong
potential variation in this area, cf. Fig. 2, which may
eventually trigger a numerical instability.

C. Streaming

The streaming can in general be achieved by meth-
ods handling (non-)linear hyperbolic systems of conser-
vation laws, often used in computational fluid dynam-
ics, such as finite difference, volume, elements or lat-
tice Boltzmann [26]. Using, for example, in d = 1 a
flux vector splitting [27], we first diagonalize the matrix
A(1) = TDAT

−1. Then we define the new coefficient
vector ~b(t, ~x) ≡ T−1~a(t, ~x) and the modified forcing term

M̃V ≡ T−1MV T , such that the new system of partial
differential equations can be written as

∂t~b+DA∂x~b+ M̃V (t, ~x)~b = ~0 . (35)

To simulate the action of the streaming operator, one
can now employ the first-order accurate upwind or the
second-order accurate Lax-Wendroff scheme [13], since
A(1) only has real eigenvalues, i.e. DA is a real diagonal
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FIG. 2. Dimensionless anharmonic potential for K = 0 (solid)
and K = 0.5 (dashed).

matrix. The drawbacks of the explicit methods are that
the Courant-Friedrichs-Levy condition

|λ|maxδt

δx
≤ 1 , (36)

needs to be fulfilled for a stable simulation (conditional
stability) and that they introduce a considerable amount
of dissipation, especially if structures with large gradients
are streamed [13]. If we are employing Hermite functions
we could - in the spirit of the lattice Boltzmann method
[28–30] - use an “exact” streaming operation, which will
mitigate the dissipative effects. For this we perform a
discrete Hermite transform in ~v-space[31] from the coef-
ficient vector to the Wigner function, stream, and trans-

form back to the coefficient vector. However, a more
detailed analysis and implementation will be the topic of
a subsequent article.

D. Stability

The proposed method for evolving the Wigner func-
tion will be stable if the operations streaming and forc-
ing are both stable. Since the action of the forcing can
be described as a unitary rotation one should make sure
that the numerical technique conserves this property and
hence has an amplification factor of unity. In that re-
spect, the skew-hermiticity of MV , the matrix represen-
tation of Θ[V ], is a crucial property for the stability of
such algorithms, which we will demonstrate in appendix
B for an asymmetric Hermite basis. This may require a
very accurate result for the rotation matrix or the usage
of Clifford algebras [32] to perform the rotation. How-
ever, the least computationally expensive operation is the
direct matrix-vector multiplication O(N2), whereas the
use of the algebra will need slightly more operations (al-
though the scaling is the same). For the streaming, one
can use any stable method that handles linear advection
equations, such as flux vector splitting [27], Godunov,
finite volume or finite element [13]. The resulting time-
evolution of the Wigner function will hence be stable.

IV. SIMULATION

For the validation of our numerical procedure we sim-
ulate the time-evolution of an (an-)harmonic oscillator.
The advantages of these examples are that, on one hand,
we can compare with the analytical Wigner function of
a harmonic oscillator, which is calculated as described in
Ref. [16]. On the other hand, we can observe the effects
of quantum corrections to the classical dynamics for an

anharmonic potential Uanh(~q) = 1
2mω|~q|2 + m2ω3K

~
|~q|4

[2]. In the case of the double well potential Umh(~q) =

cmω|~q|2 + m2ω3K
~
|~q|4 we can observe the tunneling phe-

nomenon in the Wigner formalism, since for certain pa-
rameter ranges c < 0 and K > 0 the system has states
with eigenenergies below 0 which would not allow classi-
cal particles to travel from one potential minimum to the
other. As we have described in the introduction to the
Wigner formalism, see section II, we use a dimensionless
form of the Schrödinger and Wigner equations. For our

examples, we take l ≡
√

~

mω , T ≡ 1
ω and Ū ≡ ~ω as

length, time, and potential scales, respectively, to find
ǫ = 1 and B = 1. The dimensionless time-dependent
Schrödinger equation reads

ı∂tΨ =

(

|~̂v|2
2

+ c|~̂x|2 +K|~̂x|4
)

Ψ , (37)

such that the eigenfunctions and -values of the dimen-
sionless Hamilton operator at K = 0 and c = 1/2 are
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given by

Ψ|n|
n (~x) =

e−|~x|2/2
√
πd/22|n|n!

H |n|
n (~x) , (38)

En = |n|+ d/2 , (39)

where n = (n1, . . . , nd) is a multi-index and

H |n|
n (~x) = (−1)|n|e|~x|2

(

Dke−|~x|2
)

, (40)

the d-dimensional Hermite polynomial, according to Ref.
[33]. The dimensionless Wigner equation in differential
form becomes

∂tW + ~v · ~∇xW − 2(c+2K|~x|2)~x · ~∇vW +Θc[K]W = 0 ,
(41)

where

Θc[K]W ≡ K

4

∑

|λ|=3

Dλ
x |~x|4
λ!

Dλ
vW (42)

is the quantum correction to the “classical” dynamics of
the particle.

A. Basis of Hermite functions

In our simulation, we choose Hermite functions as or-
thonormal basis set in momentum-space, i.e.

φ
|k|
k (~v) =

e−|~v|2/2
√
πd/22|k|k!

H
|k|
k (~v) , (43)

where k is a multi-index of dimension d. Hence, Eq. (19)
changes to

W (t, ~x,~v) =
N
∑

|k|=0

a
|k|
k (t, ~x) φ

|k|
k (~v) . (44)

The number of basis functions that is needed to simulate
the evolution of a given state will in general depend on
how wide the spread of the corresponding Wigner func-
tion is in momentum space. However, by scaling the Her-
mite functions, cf. Ref. [34], one can significantly reduce
N to simulate eigenstates with higher energy. In order
to find the necessary number of basis functions for a cho-
sen accuracy one needs to take a look at the variation of
the resulting Wigner function with respect to changes in
N . In order to find the initial coefficients, ~a(t0, ~x), we
use the property of the Hermite polynomials or Hermite
functions, defined by Eq. (43), that they diagonalize the
Fourier transform operator,

∫

Rd

d~v eı~y·~v/ǫφ|k|k (~v) = (
√
2π)dı|k|φ|k|k (~y) . (45)

The proof is given in Ref. [16]. Using the Wigner trans-
form, defined by Eq. (8), we can write

a
|k|
k (t0, ~x) =

∫

Rd

d~v W (t0, ~x, ~v)φ
|k|
k (~v) ,

=

∫

Rd

d~y Ψ∗
(

t0, ~x+
ǫ~y

2

)

Ψ

(

t0, ~x−
ǫ~y

2

)

φ
|k|
k (~y)

× ǫdı|k|

(2π)
d
2

.

One can see that the obtained coefficients are real due
to the symmetry properties of the Hermite functions

φ
|k|
k (−~y) = (−1)|k|φ|k|k (~y). In addition, we can simplify

Eq. (23) by using the same property to obtain

(MV )k,l =
B

ǫ
ı|k|−|l|−1

∫

Rd

d~η δV (t, ~x, ~η)φ
|k|
k (~η)φ

|l|
l (~η) .

(46)
Looking at this result, one can realize that MV is a real,
skew-symmetric matrix. The matrices A(i) are real, sym-
metric and sparse for this basis choice. They are sparse,
because, regardless how the basis functions are ordered at
most two entries per row or column are non-zero due to
the recursion relation of the d-dimensional Hermite poly-
nomials [33]. For further explanations on the conserva-
tion and convergence properties for this basis choice, we
refer the reader to Ref. [34], where the authors treat the
Vlasov equation, which can be considered as the classical
limit, ǫ→ 0, of the Wigner equation.

B. Harmonic oscillator

We run a simulation of an one-dimensional harmonic
oscillator with the second order accurate method, using a
Lax-Wendroff scheme for the streaming, a spatial resolu-
tion of δx = 1/50, and periodic boundaries at x = ±3.5.
The resulting matrices for the reaction-advection system
can be calculated using formula (A1) in appendix A. As
initial state Ψ we choose a superposition between ground
and first excited state Ψ0+Ψ1√

2
, since the Wigner func-

tion of a single eigenstate is time-independent. Thus, we
can observe the evolution for a system whose probability
density changes in time. In Fig. 3, we show a compar-
ison between the analytical spatial probability density
ρΨ(t, x) ≡ |Ψ(t, x)|2 and the probability density calcu-
lated from the Wigner function with

ρW (t, x) ≡
∫

R

dv W (t, x, v) =

N
∑

k=0

ak(t, x)

∫

R

dv φk(v) .

The comparison shows very good agreement. However,
the actual results for the Wigner function are more in-
sightful, since they contain additional information. They
are shown in Figs. 4-8 together with the contour lines
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at W = 0 and W = ±0.025. One observes a “rigid” ro-
tation of the Wigner function in phase space, which is
typical for the harmonic oscillator. This can be seen by
using the method of characteristics for solving Eq. (41)
atK = 0 and c = 0.5 which leads to solving the Hamilton
equations

ẋ = v , v̇ = −x . (47)

The period for one revolution is T = 2π(E1 − E0) = 2π,
which is also confirmed by the simulation in terms of the
temporal error margin. The contour line at W = 0 close
to the boundaries shows patterns which are not present in
the analytical solution. They are caused by the numerical
error fluctuations, see Fig. 9, since the magnitude of the
Wigner function in that region becomes comparable to
the numerical error.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−3 −2 −1 0 1 2 3

ρ

x

t = 0
t = 0.63
t = 1.25
t = 1.88
t = 2.51
t = 3.13

FIG. 3. Temporal evolution of the probability density for the
harmonic potential (c = 0.5, K = 0), ρΨ (solid lines) and ρW
(points) for Ψ = (Ψ0 + Ψ1)/

√
2 using N = 16 Hermite basis

functions.

C. Convergence

Based on the work in Ref. [16], one can calculate the
exact Wigner transformWex of any wave function Ψ(t, ~x)
expanded in Hermite functions. We will use this for-
mula to calculate the Wigner transform for an eigenstate
Ψn(t, x) of the harmonic oscillator and compare our re-
sults for different numbers of basis functions N and spa-
tial resolutions 1/δx. It is important to note that the ex-
act Wigner function of an eigenstate for K = 0, c = 0.5
and d = 1 is given by Laguerre polynomials through

Wn(x, v) =
(−1)n
π

Ln[2(x
2 + v2)]e−x2−v2

, (48)

Ln(y) ≡
1

n!

(

d

dx
− 1

)n

xn , (49)
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W -0.2
-0.1
0
0.1
0.2
0.3

FIG. 4. Wigner function for the harmonic potential (c = 0.5,
K = 0) at t = 0 for the superposition Ψ = (Ψ0 + Ψ1)/

√
2

using N = 16 Hermite basis functions; contour lines at W = 0
(white) and W = ±0.025 (black/gray).
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-3
-2
-1
0
1
2
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-0.1
0

0.1
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0.3
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v

W -0.2
-0.1
0
0.1
0.2
0.3

FIG. 5. Wigner function for the harmonic potential (c = 0.5,
K = 0) at t = 1.25 for the superposition Ψ = (Ψ0 +Ψ1)/

√
2

using N = 16 Hermite basis functions; contour lines at W = 0
(white) and W = ±0.025 (black/gray).

which does not give a finite expansion into Hermite func-
tions in v. The deviation of our results from the ana-
lytical solution after one period is shown in Fig. 9. We
observe that the error is of the order of 10−4 and its mag-
nitude is rather homogeneously distributed. In Fig. 10
we show the convergence of the second order accurate
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FIG. 6. Wigner function for the harmonic potential (c = 0.5,
K = 0) at t = 2.51 for the superposition Ψ = (Ψ0 +Ψ1)/

√
2

using N = 16 Hermite basis functions; contour lines at W = 0
(white) and W = ±0.025 (black/gray).
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FIG. 7. Wigner function for the harmonic potential (c = 0.5,
K = 0) at t = 3.76 for the superposition Ψ = (Ψ0 +Ψ1)/

√
2

using N = 16 Hermite basis functions; contour lines at W = 0
(white) and W = ±0.025 (black/gray).

method by looking at the error

∆ ≡
√

1

NxNv

∑

i,j

|∆W (xi, vj , t)|2 , (50)

∆W (xi, vj , t) ≡W (xi, vj , t)−Wex(xi, vj , t) , (51)

for periodic boundary conditions in real-space and a do-
main size x ∈ [−5, 5]. The error is evaluated by choos-
ing the same momentum- and space-grid. The domain
size is chosen such that boundary effects do not signif-
icantly influence the error in the convergence analysis,

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

-0.1
0

0.1
0.2
0.3

W

x

v

W -0.2
-0.1
0
0.1
0.2
0.3

FIG. 8. Wigner function for the harmonic potential (c = 0.5,
K = 0) at t = 5.01 for the superposition Ψ = (Ψ0 +Ψ1)/

√
2

using N = 16 Hermite basis functions; contour lines at W = 0
(white) and W = ±0.025 (black/gray).

sinceW (t,±5, v) ∼ O(10−10). Looking at Fig. 10, we ob-
serve that the second order convergence can only be veri-
fied for sufficiently many basis functions (here: N = 32).
This behavior is caused by a total error that is composed
by the discretization of time and real-space as well as the
approximation of the Wigner function with a finite num-
ber of basis functions in momentum-space. Therefore,
we expect ∆ to saturate for a fixed resolution and an
increasing number of basis functions, or in the opposite
scenario, which can be deduced from Fig. 10 for N = 16.

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

−3 · 10−4
−2 · 10−4
−1 · 10−4

0 · 100
1 · 10−4
2 · 10−4
3 · 10−4

∆W

x

v

∆W

−3 · 10−4
−2 · 10−4
−1 · 10−4
0 · 100
1 · 10−4
2 · 10−4

FIG. 9. Error of the Wigner function for the harmonic po-
tential (c = 0.5, K = 0.5) at t = 6.28 for the superposition
Ψ = (Ψ0 +Ψ1)/

√
2 with N = 16, δx = 1/50.
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1e-06

1e-05

0.0001

0.001

100

∆

1/δx

N = 8
N = 16
N = 32
0.03δx2

FIG. 10. Convergence analysis of the harmonic Wigner func-
tion after t = 2π with respect to δx and Nb.

D. Anharmonic oscillator

For an anharmonic potential c = 0.5 and K > 0 we

approximate the eigenstates Ψ
(an)
n by a superposition of

Nb harmonic eigenstates, i.e.

Ψ(an)
n (t, x) ≈ e−ıtE(an)

n

Nb
∑

k=0

c
(n)
k Ψk(x) . (52)

Then we determine the coefficient vector ~c(n) by diag-
onalizing the matrix representation of the anharmonic
Hamilton operator. This works very well for moderate
anharmonicities, but becomes very costly for K > 10−3,
as can be seen in Figs. 11 and 12. In addition, one also
observes that, as expected, the ground state converges
faster than the first excited state.

The simulation is run with the second order accurate
method for periodic boundary conditions at x = ±3.5
with a spatial resolution of 1/δx = 50. The result for the
spatial probability evolution is shown in Fig. 13, where
we observe a good agreement with the wave function dy-
namics. In Figs. 14-18 we show the Wigner function
evolution together with the contour lines at W = 0 and
W = ±0.025. They depict a “rotation” with a smaller

period Tan = 2π/(E(an)1 − E(an)0 ) < 2π. In this case it
is not a rigid rotation, since the Wigner function gets
compressed in position- and broadened in momentum-
space due to the larger potential and the particle num-
ber conservation. The contour line at W = 0 close to the
boundaries shows again the numerical error fluctuations,
since in this region the magnitude of the Wigner function
becomes comparable to the error, which is O(10−4). It
was estimated by comparing the initial and final Wigner
function of one revolution.

-16

-14

-12

-10

-8

-6

-4

-2

2 4 6 8 10 12 14 16 18 20

lo
g
1
0
|~c N

b
+
2
−
~c N

b
|

Nb

~c(0)

~c(1)

FIG. 11. Convergence of eigenstate coefficient vector for
ground and first excited states of the anharmonic potential
(c = 0.5, K = 0.001) up to double precision.

-16
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g
1
0
|~c N

b
+
2
−
~c N

b
|

Nb

~c(0)

~c(1)

FIG. 12. Convergence of eigenstate coefficient vector for
ground and first excited states of the anharmonic potential
(c = 0.5, K = 0.5) up to double precision.

E. Double well potential

To study tunneling effects, we simulate the time-
evolution of the Wigner function for “bounded” states
of a one-dimensional double well potential V (x) = cx2 +
Kx4, cf. Fig. 19, with the second order accurate method,
periodic boundary conditions at x = ±4 and spatial reso-
lution 1/δx = 50. We call a state bounded if its eigenen-
ergy is smaller than zero and hence below the potential
barrier around x = 0. Taking again the Hermite basis
to approximate the ground and first excited state as in
Eq. (52), we show in Fig. 20 the evolution of the prob-
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FIG. 13. Temporal evolution of the probability density for
the anharmonic potential (c = 0.5, K = 0.5), ρΨ (solid lines)

and ρW (points) for Ψ = (Ψ
(an)
0 +Ψ

(an)
1 )/

√
2 using Nb = 150,

and N = 16 Hermite basis functions.
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FIG. 14. Wigner function for the anharmonic potential
(c = 0.5, K = 0.5) at t = 0 for the superposition Ψ =

(Ψ
(an)
0 +Ψ

(an)
1 )/

√
2 using Nb = 150, and N = 16 Hermite ba-

sis functions; contour lines at W = 0 (white) andW = ±0.025
(black/gray).

ability density in comparison to the evolution according
to Schrödinger’s equation. The agreement is very good.
In Figs. 21-25 one can see the evolution of the Wigner
function for the tunneling of the state through the po-
tential barrier together with contour lines at W = 0
and W = ±0.025. The error during the revolution is
at most O(10−4), as can be seen in Fig. 26. In ad-
dition, one observes by looking at the contour line for
W = −0.025 the appearance of ripples and valleys in the
front and the back of the positive quasi-probability den-
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0.3

W

x

v

W -0.2
-0.1
0
0.1
0.2
0.3

FIG. 15. Wigner function for the anharmonic potential
(c = 0.5, K = 0.5) at t = 0.77 for the superposition

Ψ = (Ψ
(an)
0 + Ψ

(an)
1 )/

√
2 using Nb = 150, and N = 16 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).
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FIG. 16. Wigner function for the anharmonic potential
(c = 0.5, K = 0.5) at t = 1.54 for the superposition

Ψ = (Ψ
(an)
0 + Ψ

(an)
1 )/

√
2 using Nb = 150, and N = 16 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).

sity during the tunneling process of the particle through
the potential barrier, which indicate the non-classical
behavior in the corresponding coordinate space. The
contour line at W = 0 close to the boundaries shows
again the numerical error fluctuations in regions where
the magnitude of the Wigner function becomes compa-
rable to the numerical error. The period of the revolution

Tmh = 2π/(E(mh)
1 −E(mh)

0 )≫ 2π is much larger than the
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FIG. 17. Wigner function for the anharmonic potential
(c = 0.5, K = 0.5) at t = 2.23 for the superposition

Ψ = (Ψ
(an)
0 + Ψ

(an)
1 )/

√
2 using Nb = 150, and N = 16 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).
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FIG. 18. Wigner function for the anharmonic potential
(c = 0.5, K = 0.5) at t = 3.09 for the superposition

Ψ = (Ψ
(an)
0 + Ψ

(an)
1 )/

√
2 using Nb = 150, and N = 16 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).

one for a harmonic oscillator. In addition to the proba-
bility density and the Wigner function, we have also an-
alyzed the spread of the Wigner function in phase space

by measuring the expectation values

(∆x2)(∆v2) ≡ 〈(x̂− 〈x̂〉)2〉〈(v̂ − 〈v〉)2〉 (53)

=
(

〈x2〉W − 〈x〉2W
) (

〈v2〉W − 〈v〉2W
)

, (54)

Cov(x, v) ≡
(

1

2
〈x̂v̂ + v̂x̂〉 − 〈x̂〉〈v̂〉

)

/(∆x∆v) (55)

=
〈xv〉W − 〈x〉W 〈v〉W

√

〈x2〉W − 〈x〉2W
√

〈v2〉W − 〈v〉2W
, (56)

where 〈f(x, v)〉W ≡
∫

dxdv f(x, v)W . The first quantity
measures the well-known standard deviation of a quan-
tum state in coordinate and momentum space that ful-
fills Heisenberg’s uncertainty principle ∆x∆v ≥ ǫ

2 . In
Fig. 27 we show the coordinate and momentum uncer-
tainty in the form of rectangles, i.e. the width, height
and aread correspond to ∆x, ∆v and ∆x∆v, respectively.
In that way, one can see that the standard deviation in
position measurements mainly contributes to the uncer-
tainty and its temporal change. The second quantity
Cov(x, v) is the covariance between the coordinate and
momentum variable in the corresponding Wigner func-
tion normalized with the standard deviations, such that
|Cov(x, v)| ≤ 1. The evolution of these expectaton values
is shown in Fig. 28. One observes a periodic behavior
with T = Tmh/2 and finds the maximum uncertainty
∆x∆v exactly when the peak of the spatial probability
density tunnels through the potential barrier in the mid-
dle of the double well potential. In contrast Cov(x, v)
behaves similar to the first temporal derivative of the
uncertainty.
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V (x)
ρΨ0(x)
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FIG. 19. Double well potential (c = −0.4, K = 0.05) and
probability density of ground and first excited states dis-

placed from 0 by E (mh)
0 = −0.310 (dashed horizontal line)

and E (mh)
1 = −0.173 (dotted horizontal line) for Nb = 86

Hermite basis functions.



12

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

−4 −3 −2 −1 0 1 2 3 4

ρ

x

t = 0
t = 4.58
t = 9.16
t = 13.7
t = 18.3
t = 22.9

FIG. 20. Temporal evolution of the probability density for
the double well potential (c = −0.4, K = 0.05), ρΨ (solid

lines) and ρW (points) for the superposition Ψ = (Ψ
(mh)
0 +

Ψ
(mh)
1 )/

√
2 using Nb = 86, and N = 32 Hermite basis func-

tions.
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FIG. 21. Wigner function for the double well potential
(c = −0.4, K = 0.05) at t = 0 for the superposition

Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and N = 32 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).

V. CONCLUSIONS

We have developed a semi-spectral simulation method
for the time-evolution of the Wigner quasi-probability
distribution that uses a spectral-decomposition of the
distribution into arbitrary basis functions of L2(Rd) in
momentum-space, which transforms the original partial
differential equation into an infinite-dimensional set of
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FIG. 22. Wigner function for the double well potential
(c = −0.4, K = 0.05) at t = 9.16 for the superposition

Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and N = 32 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).
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FIG. 23. Wigner function for the double well potential
(c = −0.4, K = 0.05) at t = 18.3 for the superposition

Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and N = 32 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).

advection-reaction equations.
For the numerical treatment, we introduce a cut-

off in the expansion, which makes the system finite-
dimensional, and split the operators for the reaction and
advection part so as to apply them sequentially to the
distribution function. We demonstrated that, due to the
skew-hermitian symmetry of the matrix representation
of the pseudo-differential operator (Lie algebra), the ac-
tion of the forcing or reaction operator (Lie group) is
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FIG. 24. Wigner function for the double well potential
(c = −0.4, K = 0.05) at t = 27.5 for the superposition

Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and N = 32 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).

-4 -3 -2 -1 0 1 2 3 4
-4
-3
-2
-1
0
1
2
3
4

-0.2
-0.1

0
0.1
0.2
0.3

W

x

v

W -0.2
-0.1
0
0.1
0.2
0.3

FIG. 25. Wigner function for the double well potential
(c = −0.4, K = 0.05) at t = 36.7 for the superposition

Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and N = 32 Her-

mite basis functions; contour lines at W = 0 (white) and
W = ±0.025 (black/gray).

a unitary rotation, which stabilizes the simulation even
for strongly varying potentials compared to other ex-
plicit methods, such as Euler or RK4. The advection
or streaming part can be handled by many numerical ap-
proaches from computational fluid dynamics. Here, we
have chosen a flux-vector splitting for the validation of
our method by simulating a single, non-relativistic, spin-
less particle subject to a one-dimensional (an-)harmonic
or double well potential with Hermite basis functions.
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FIG. 26. Error of the simulated Wigner function for the dou-
ble well potential (c = −0.4, K = 0.05) at t = 45.9 for the

superposition Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and

N = 32 Hermite basis functions.
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FIG. 27. Temporal evolution of the spread in the form of rect-
angles (width ≡ ∆x, height ≡ ∆v, area ≡ ∆x∆v) of the simu-
lated Wigner function for the double well potential (c = −0.4,

K = 0.05) for the superposition Ψ = (Ψ
(mh)
0 +Ψ

(mh)
1 )/

√
2 us-

ing Nb = 86, and N = 32 Hermite basis functions.

Having the exact Wigner function of the harmonic os-
cillator, we verified the second-order convergence of the
method and also demonstrated its applicability to non-
classical dynamics in the case of strong anharmonicities
and tunneling phenomena.
The disadvantage of an arbitary basis choice is

the higher computational cost of O(N2) compared
to O(N logN) for a Fourier basis, since the pseudo-
differential operator is diagonal for this basis choice, as
shown in Refs. [7, 8] . However, if one only considers
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FIG. 28. Temporal evolution of the uncertainty (solid) and
covariance (dashed) of the simulated Wigner function for the
double well potential (c = −0.4, K = 0.05) for the superpo-

sition Ψ = (Ψ
(mh)
0 + Ψ

(mh)
1 )/

√
2 using Nb = 86, and N = 32

Hermite basis functions.

momentum-derivatives up to order Nλ ≪ N and an ex-
plicit scheme such as fourth order Runge-Kutta is used,
the computational cost also scales like O(N) [34]. In
addition, the artificial periodization of the Wigner dis-

tribution in momentum-space, caused by the plane wave
approximation, lives in a different function space than
the original Wigner function, thus giving rise to unphysi-
cal self-interactions at the domain boundaries [15]. These
basis functions are also not well suited to the simulation
of structures that are strongly localized in momentum-
space, such as particles in periodic potentials, since this
would require a very large number of such functions.
The CPU time for the time evolution of one revolu-

tion for the harmonic Wigner function, using the second-
order accurate method with N = 32 Hermite basis func-
tions and a spatial resolution 1/δx = 100, i.e. 700 grid
points and 4558 time-steps, is approximately 7.92 s using
a single core of a 3 GHz Intel(R) Core(TM)2 Quad CPU
Q9650 processor.
As future work, we plan to study phase transitions in

open quantum systems, the effects of scattering (“quan-
tum Boltzmann equation”), for example in the case of
electrons and phonons in semiconductor devices, the ef-
fects of boundary conditions, cf. Ref. [5], and stochastic
perturbations. Furthermore, we plan to analyse the in-
fluence of decoherence on the topology of the Wigner
function in two dimensions, cf. Ref. [35].
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Appendix A: Matrix-representation of

pseudo-differential operator

For a one-dimensional, analytical potential and the
Hermite function basis the matrix-representation of the
pseudo-differential operator simplifies from Eq. (46) to

MV =
∞
∑

n=0

( ǫ

2

)2n

Mn∂
2n+1
x V (t, x) , (A1)

(Mn)k,l ≡ ık−l−1

∫

R

dη
η2n+1

(2n+ 1)!
φk(η)φl(η) .

Looking at this result one observes how the contributions
from odd higher order derivatives scale with the effective
Planck constant and the change in sign. The examples
for N = 5 shows the filling of higher order matrices with
more and more entries. In the case of N = 5, the matrix
MV is already filled for n = 2, i.e. considering the fifth
derivative of the potential. As soon as MV is completely
filled an explicit method, such as Euler or Runge-Kutta
will have a computational complexity ofO(N2), although
the prefactor will be smaller than for the method which
uses the corresponding rotation matrix.
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Appendix B: Example for unstable “basis” choice

Assuming we are dealing with a harmonic potential,
then the quantum corrections vanish and the Wigner and
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Vlasov equation are identical. Using an asymmetric Her-
mite basis, as described in [36], i.e.

W (t, x, v) =
e−v2

π1/4

N
∑

k=0

ak(t, x)
Hk(v)√
2nn!

, (B1)

the matrix representation of Θ[V ] will be lower triangu-
lar, which can be seen using formula (15) and integration
by parts. For N = 4 we find

MV (x) = −x
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0 0
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√
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which is not skew-hermitian or -symmetric anymore. Ex-
amining the resulting exact forcing action, we find

e−MV (x)δt =















1 0 0 0 0√
2xδt 1 0 0 0√
2x2δt2 2xδt 1 0 0
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3
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from which we conclude for the amplification factor

gAS =
∣

∣

∣e−MV (x)δt
∣

∣

∣

2
> 1 if δt > 0 , x 6= 0 .

This means that the method will become unstable at a
certain time in the evolution, as described in Ref. [34].
There are ways to tackle this problem by introducing a
collision operator, see Ref. [37], or a filtering technique,
further explained in Ref. [38].




