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In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory
(KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties
of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256
cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical
atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is
crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace
spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using
eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts
of the procedure in RESCU, we delay the O(N3) scaling to large N , and our tests show that RESCU
scales consistently as O(N2.3) from a few hundred atoms to more than 5,000 atoms when using a
real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000
atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a
partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000
electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples
running on 16, 64 and/or 256 cores: a 5,832 Si atoms supercell; a 8,788 Al atoms supercell; a 5,324
Cu atoms supercell and a small DNA molecule submerged in 1,713 water molecules for a total 5,399
atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the
RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest
computer cluster.

PACS numbers: 31.15.E-, 71.15.-m, 02.70.Bf, 31.15.xr,

I. INTRODUCTION

Density functional theory (DFT)1 based numerical
programs are nowadays the standard tool for predicting
and understanding the structural and electronic proper-
ties of materials that involve many electrons. The idea of
treating complicated many-body interactions in real ma-
terials by a self-consistent mean field theory appeared in
the early days of quantum mechanics. In 1927, Thomas
and Fermi proposed a semiclassical model2,3 in which
electrons in an external potential are described using only
the electronic density. Subsequent calculations are sim-
plified since the complicated many-body wavefunction is
avoided. The Thomas-Fermi model was later improved
by Dirac who included an exchange energy functional4

and by von Weizsäcker who added a gradient correction
to the kinetic energy functional5. Nearly four decades
later, Hohenberg and Kohn (HK) put DFT on firm the-
oretical footing by proving that the ground-state expec-
tation values are functionals of the density and that the
ground-state density can be calculated by minimizing an
energy functional1. Certain assumptions of the original
HK theorems, such as the ground-state non-degeneracy,
were later relaxed or eliminated6. These theories proved
that the ground-state properties of any electronic sys-
tem can in principle be calculated - if not necessarily
understood - without using many-body wave functions.
For practical applications, Kohn and Sham (KS) demon-
strated that the problem of minimizing the total energy of
a system with respect to the electronic density could take
the form of a non-interacting electron problem7. In the

KS formulation, the kinetic energy is evaluated via single
particle wave functions which is more accurate than using
kinetic energy functionals that depend explicitly on the
density. KS-DFT allows one to analyze a variety of phys-
ical systems and performing a DFT calculation today is
all but synonymous to solving the KS equation7.

Various approaches for solving the KS equation have
emerged such as the full potential all-electron methods8,9

and the ab initio pseudopotential methods10–14. In
KS-DFT solvers, several bases have been used to ex-
press quantum mechanical operators including real space
Cartesian grids, finite elements, planewaves, wavelets,
numerical atomic orbitals (NAO), Gaussian orbitals,
muffin-tin orbitals and some others. The goal is to pre-
dict structural and electronic properties of real materi-
als reaching the required accuracy for the given research
topic and KS-DFT is playing a prominent role in mate-
rials physics and engineering.

At present, a major issue of practical DFT methods
is their limited capability of solving material problems
involving large number of atoms using a small computer
cluster (e.g. 16 to 256 cores). For instance, algorithms
implemented in state-of-the-art electronic packages such
as VASP12,13 and AbInit15 can comfortably solve systems
comprising of a few hundred atoms - but not many thou-
sands on such small computer clusters. With the widen-
ing accessibility of supercomputers and the developments
of advanced parallel computing algorithms, heroic KS-
DFT calculations at the level of 10,000 atoms became
possible in recent years, but at the expense of using thou-
sands or even tens of thousands of computing cores16–18.
Nevertheless, for practical material research and innova-
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tion, many small research groups in the world do not
have access, cannot afford or simply wish not to use su-
percomputers. An urgent and very important task is to
develop a KS-DFT method that can solve the KS equa-
tion without degrading the solution accuracy, at the level
of several thousand atoms or more on a small computer
cluster. It is the purpose of this work to report and de-
scribe such a KS-DFT solver and its associated software
implementation.

To see why it is still possible to gain computational
efficiency in traditional eigenvalue-based KS-DFT ap-
proaches, we note - as others had noted before us19,20

- that the solution process of the KS-DFT is a self-
consistent procedure where one numerically converges
the Hamiltonian step by step by solving the KS equa-
tion repeatedly and accurately. However, it appears un-
clear why one has to solve accurately the KS equation for
the not-yet-converged Hamiltonian in the intermediary
steps. Another observation is that, in the eigensolver-
based KS-DFT methods, different parts in the compu-
tation scale differently as a function of electron number
N , some O(N), others O(N2) and eventually these are
dominated by the O(N3) parts. If one is able to “delay”
the crossover to O(N3) scaling, larger systems can poten-
tially be solved using small computers. It turns out that
these computational gains can be realized as we present
below.

Our KS-DFT method combines NAO and the real
space finite-differences plus Chebyshev filtering (CF)
technique introduced by Zhou et al.19,20. We found it is
key to generate efficiently a proper initial subspace in the
Chebyshev filtering framework, and this is achieved by
the use a NAO basis. We advance efficient parallelization,
a partial Rayleigh-Ritz (pRR) method for the computa-
tion of the density matrix and careful optimization of the
solution process, and we have reached our goal of solving
solid state physics problems consisting of thousands of
atoms using 16 to 256 cores. Our code is called RESCU -
which stands for Real space Electronic Structure CalcU-
lator - and it is implemented in the technical computing
platform MATLAB. We use our own MPI and ScaLA-
PACK interfaces to harness efficiently the computational
power of the cores. As such, RESCU combines the vo-
cations of a prototyping code and a production code. In
particular, the pRR allows us to compute the single par-
ticle density matrix in problems involving an exceedingly
large number of electrons by taking advantage of the
quasi-minimal property of basis sets built from CF. In
the present paper, we will present the algorithmic and im-
plementation advancements achieved during the develop-
ment of RESCU. As practical examples, we demonstrate
the following KS-DFT calculations: we simulate 5,832 Si
atoms (23,328 electrons) on a real space grid, converging
the entire KS-DFT calculation using 256 cores for about
5.5 hours; we simulate 4,000 Al atoms (12,000 electrons)
on a real space grid, converging the entire KS-DFT cal-
culation using 64 cores for about 5.1 hours; we simulate a
supercell consisting of 13,824 Si atoms (55,296 electrons)

using a NAO basis, converging the entire calculation us-
ing 64 cores for about 6.4 hours; we simulate a supercell
consisting of 5,324 Cu atoms (58,564 electrons) using a
NAO basis, converging the entire calculation using 256
cores for about 12 hours. We also consider a disordered
system consisting of a small DNA molecule submerged in
1,713 water molecules, for a total of 5,399 atoms (14,596
electrons), and converge the entire KS-DFT run in 9.6
hours on 256 cores. These results are compiled in ta-
ble II which is found in section VII. The scaling of the
RESCU method is presented going from 16 cores to 256
cores for various tests. Finally, since RESCU is primar-
ily a real space implementation of KS-DFT, it does not
require periodicity when dealing with condensed phase
materials and can thus easily treat problems involving
interfaces, surfaces, defects, disordered materials, etc.

The paper is organized as follow. In section II, we
briefly state the fundamentals of DFT and introduce
the single particle density matrix theoretical framework
which is used throughout this article. In section III, we
review the state-of-the-art numerical methods for solving
the KS equations and recount their advantages and dis-
advantages. In section IV, we describe in some detail the
Chebyshev filtering method. In section V, we present a
computational complexity analysis of the Chebyshev fil-
tering method and introduce the partial Rayleigh-Ritz
algorithm. We explain how it takes advantage of the
Chebyshev filtered basis sets to improve on the standard
Rayleigh-Ritz algorithm. In section VI, we describe the
implementation of the Kohn-Sham DFT solver RESCU.
In section VII, we present different benchmarks of the
RESCU code. We provide evidence when the partial
Rayleigh-Ritz algorithm achieves significant gains over
the standard Rayleigh-Ritz algorithm. We show how to
generate a good quality initial subspace efficiently. Fi-
nally, we report simulations including thousands of atoms
with modest computer resources. Bottlenecks and future
direction will be discussion in section VIII and IX.

II. A BRIEF DISCUSSION OF DFT

Before delving into the details of the RESCU method,
we briefly discuss KS-DFT in general terms. As men-
tioned in the introduction, the founding result of DFT is
that the Hamiltonian of a system is uniquely determined
by its ground-state electronic density1,6. It follows that
the ground-state wave function and the associated ex-
pectation values are also determined by the ground-state
density, and there exists a universal energy functional
of the density which is minimized by the ground-state
density1,6.

In the KS-DFT, the problem of minimizing the en-
ergy with respect to the density is mapped to a non-
interacting electron problem7. The KS-DFT formulation
made it possible to develop reasonably accurate energy
functionals and it became the most successful and widely
applied flavor of DFT. In particular, accurate kinetic en-
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ergy functionals use the Kohn-Sham orbitals and not the
density per se. The Kohn-Sham equation is usually writ-
ten as the the following set of equations

λiψi =

(
−1

2
∇2 + Vext + VH + Vxc

)
ψi (1)

ρ(r) =

∞∑
i=1

nFD(λi, µ)ψ∗i (r)ψi(r) (2)

∇2VH = 4πρ (3)

Vxc =
δExc[ρ]

δρ
(4)

The density ρ is the sum of the squared norm of the
Kohn-Sham wave functions weighted by the Fermi-Dirac
distribution. At zero temperature, the only populated
states are the N lowest lying states where N is the num-
ber of electrons in the system. The Hartree potential
VH may be obtained by solving the Poisson equation,
the exchange-correlation potential Vxc is defined as the
functional derivative of the exchange-correlation energy
functional Exc with respect to the density, nFD denotes
the Fermi-Dirac distribution and the chemical potential
µ is set such that the number of electrons is N . The
equations are written in atomic units, we denote the
Hamiltonian H = − 1

2∇2 + Vext + VH + Vxc; its dimen-
sion, which corresponds to the number of real space grid
points or the number of k-space grid points, is M and
the eigenvalues are indexed from smallest to largest as
follows λ1 < λ2 < ...λM−1 < λM . Unlike the Schrödinger
equation, the KS equation is non-linear since the poten-
tial depends on the density which in turn depends on
the KS eigenstates. Consequently, the KS equation must
be solved by cycling through Eqs.(1) to (4) until a fixed
point ρ∗ is found although other convergence criteria may
be used.

We introduce a more flexible framework in which
Eqs.(1) to (4) are expressed in terms of the single particle
density matrix defined as follows

ρ(r, r′) =

∞∑
i=1

nFD(λi, µ)ψ∗i (r)ψi(r
′) . (5)

Note that the density is simply the diagonal of the sin-
gle particle density matrix. The Fermi-Dirac distribu-
tion nFD(λ, µ) decays exponentially fast for λ > µ. It is
thus reasonable to set the occupation number to zero if
nFD(λi, µ) < ε where ε is some tolerance. Consequently,
the number of required Kohn-Sham states L is equal to
or slightly larger than the number of electrons N and it
is much smaller than the linear dimension of the Hamil-
tonian matrix M . In other words, the single particle
density matrix is a low rank matrix. It is convenient to
rewrite Eq.(5) using matrix notation. To that end, we
define the populated Kohn-Sham eigenspace as

Ψ = [ψ1ψ2...ψL−1ψL] (6)

where ψi satisfies Eq.(1). The density matrix is then
expressed as follows

P = ΨnFD(Λ, µ)Ψ† (7)

where Λij = λiδij . The Kohn-Sham eigenstates are ex-
pressed in terms of basis functions {φi} as done in the
following equation:

ψj =
∑
i

cijφi , (8)

which translates as follow in matrix notation:

Ψ = ΦC . (9)

Inserting (9) in (7) we obtain

P = ΦCnFD(Λ, µ)C†Φ† . (10)

The matrix C satisfies a generalized eigenvalue equation,

HC = SCΛ (11)

where H = Φ†HΦ, and S = Φ†Φ is the overlap ma-
trix. Since the overlap matrix is symmetric positive def-
inite, it is possible to calculate its Cholesky decomposi-

tion S = U
T
U. Eq.(11) is usually solved by reducing the

generalized eigenvalue problem to a standard eigenvalue
problem

ĤĈ = ĈΛ (12)

where Ĥ = U
−T

HU
−1

and Ĉ = UC. Plugging Eq.(12)
in (10) we obtain:

P = ΦU
−1
nFD(Ĥ, µ)U

−T
Φ† (13)

It appears that as long as Ψ is a subspace of Φ, the den-
sity matrix is unchanged and so is the electronic density.
Note that the chemical potential µ satisfies

N = Tr
[
nFD(Ĥ, µ)

]
. (14)

We shall refer to the quantity P, defined in Eq. (15)
below, as the projected density matrix even though P 6=
Φ†PΦ.

P = U
−1
nFD(Ĥ, µ)U

−T
. (15)

III. PRACTICAL ALGORITHMS FOR SOLVING
THE KS EQUATION

The purpose of this section is to review briefly practi-
cal algorithms used in state-of-the-art and recent DFT
solvers, with the focus on elucidating where and how
one may achieve speed-ups so that larger systems can
be solved by KS-DFT using a modest computer.
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Using the definitions introduced in section II, we now
reformulate the KS equation as described in the generic
Kohn-Sham solver Algorithm 1 below. Firstly, the elec-
tronic density is initialized and the dual Hamiltonian
generated. The density is often initialized using the iso-
lated atom densities but other choices, a uniform density
for example, are viable in certain systems. A subspace
Φk which spans approximately the occupied Kohn-Sham
subspace Ψ is generated. Then the Hamiltonian and
identity operators are projected onto the subspace Φk.
The projected density matrix is then evaluated, typically
by solving the matrix equation (11) or (12). Next, the
density is obtained from the diagonal of the real space
single particle density matrix and the Hamiltonian is up-
dated by solving the Poisson equation and evaluating
the exchange-correlation potential. This step is gener-
ally preceded by a mixing of the density or followed by a
mixing of the potential. Finally, the convergence of the
density and possibly other quantities are monitored.

Algorithm 1 Generic Kohn-Sham solver

procedure GenericSolver(δ)
Initialize ρ0, H[ρ0]
while ε > δ or k < kmax do

Compute a subspace Φk which spans Ψk

Compute the projected Hamiltonian H
k

and the

overlap matrix S
k

Compute the projected density matrix P
k

Compute the density ρk(r) = Pk(r, r)
Compute H = H[ρk]
Calculate ε = ‖ρk − ρk−1‖, ε = ‖H[ρk]−H[ρk−1]‖

return ρk

Many currently used DFT codes fit in the framework
established in Algorithm 1. They generally differ in
how to calculate the subspace Φk and how to compute

the projected density matrix P
k
: these are the foci of

the most recent algorithmic advancements and probably
those to come as we shall mention later. We now dis-
cuss how particular DFT methods translate in the above
picture.

The procedure executed by state-of-the-art DFT
solvers is summarized in Algorithm 2 below. The eigen-
vectors of the Kohn-Sham Hamiltonian are calculated di-
rectly which makes the rest of the procedure simple. The
Kohn-Sham states diagonalize the Hamiltonian such that

H
k

is diagonal and the overlap matrix is the identity I by
virtue of the orthogonality of the eigenvectors. Calculat-

ing the Fermi-Dirac operator nFD(Ĥ
k

, µ) = nFD(Λk, µ)
is then trivial. At zero temperature, N Kohn-Sham
states are required if there are N electrons in the system
(N/2 if there is spin degeneracy). When using thermal
smearing, more states are required since the states whose
energy is close to µ are fractionally occupied. As men-
tioned above, the density matrix has a low rank since
nFD(λ, µ) decays exponentially fast for λ > µ. It is thus
generally sufficient to compute L = N +Nbuf KS states

where Nbuf is a modest number. These L KS states
can be thought of as forming a KS basis that diago-
nalize the KS Hamiltonian, and this Kohn-Sham basis
is deemed quasi-minimal since L ' N . The number of
Kohn-Sham basis functions is typically smaller than the
dimensionality of the discretized Hamiltonian by a few
orders of magnitude and therefore it is advantageous to
use partial diagonalization methods such as the Arnoldi
algorithm or the Lanczos algorithm to compute the re-
quired eigenvectors. These algorithms are implemented
in established software libraries such as ARPACK21 and
TRLAN22 which are used by many DFT solvers.

Algorithm 2 Diagonalization Kohn-Sham solver

procedure DiagSolver(δ)
Initialize ρ0, H[ρ0]
while ε > δ or k < kmax do

Compute the occupied Kohn-Sham subspace Ψk

The projected Hamiltonian is Λk and the overlap
matrix I

The projected density matrix is nFD(Λk, µ)
Compute the density ρk+1(r) = Pk(r, r)
Compute H = H[ρk]
Calculate ε = ‖ρk − ρk−1‖, ε = ‖H[ρk]−H[ρk−1]‖

return ρk+1

Even sparse diagonalization techniques are very com-
putationally demanding if a lot of occupied states must
be computed. As already mentioned at the end of the
last section, the Kohn-Sham states are actually not nec-
essary and a subspace which approximately spans the oc-
cupied Kohn-Sham subspace may solve the KS equation.
For example, basis sets such as atomic orbitals14,23–25

and Gaussian orbitals26 have been used extensively in
the DFT community. The procedure using a predefined
basis set is summarized in Algorithm 3.

The main disadvantage of such methods is the diffi-
culty to systematically augment the basis to improve the
simulation accuracy or validate convergence. Many re-
search groups have put forward methods to generate ba-
sis sets that can achieve a systematic convergence for
most elements from H to Rn14,23,27–30. Well established
DFT codes using atom-centered basis functions such as
SIESTA14, FHI-AIMS23 or Gaussian26 provide tested ba-
sis sets and have been used extensively by researchers to
study physical systems with a variety of chemical en-
vironments. Nevertheless, some systems (e.g. certain
metals, dense structures, solids with large coordination
numbers) may require special treatment where new basis
functions must be generated and tested. This is in con-
trast with the procedure described in Algorithm 2 where
the Kohn-Sham states accuracy is only determined by the
underlying numerical grid, which makes the convergence
with respect to the basis set relatively more transparent
and straightforward.

On the other hand, predefined basis sets have many
computational advantages. In the scheme of Algorithm
3, the subspace needs not be updated at every step and
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hence it is generated ahead of the self-consistent loop.
Other quantities such as the projected kinetic energy ma-
trix, the projected non-local ionic potential matrix and
the overlap matrix are also computed ahead of the itera-
tive process. Only the diagonal part of the Hamiltonian
corresponding to the Hartree and exchange-correlation
potentials has to be updated and projected onto the sub-
space Φ. Among other advantages, predefined basis sets
are often localized by design and the projection of diag-
onal operators scales linearly with respect to system size
and has a relatively cheap computational cost. The basis
functions may also have spherical symmetry which makes
it possible to perform certain integrals analytically. The
main bottleneck is the computation of the projected den-
sity matrix which is usually obtained by diagonalizing the

reduced projected Hamiltonian Ĥ
k

. Whereas these ba-
sis sets are not minimal, their dimension is generally a
modest multiple of the number of electrons. For systems
with less than a thousand atoms or so, these methods are
competitive as the matrix H − λS is directly invertible
or diagonalizable. In larger systems, it becomes crucial
that the projected Hamiltonian matrix be made as small
as possible, and these methods become less competitive.

Algorithm 3 Orbital Kohn-Sham Solver

procedure OrbitalSolver(δ)
Initialize ρ0, H[ρ0]
while ε > δ or k < kmax do

The subspace Φ is constant

Compute the projected Hamiltonian H
k
; the overlap

matrix S is constant
Compute the projected density matrix P

k

Compute the density ρk+1(r) = Pk(r, r)
Compute H = H[ρk]
Calculate ε = ‖ρk − ρk−1‖, ε = ‖H[ρk]−H[ρk−1]‖

return ρk+1

A way around this issue is to use polynomial approx-
imations of the Fermi-Dirac operator or other opera-
tors simulating its effect. Goedecker and Colombo have
used polynomial approximations of the Fermi operator31;
Goedecker and Teter have used Chebyshev polynomial
approximations of the complementary error function32 to
simulate the action of the Fermi operator; Jay et al. used
Chebyshev-Jackson polynomial expansions of the Heav-
iside function33; etc. These techniques are free of diag-
onalization but have bottlenecks and limitations of their
own. Polynomial approximations work only at finite tem-
perature since the Fermi-Dirac distribution is discontin-
uous at T = 0. Another disadvantage is that the degree
of the polynomial must scale as O(βσ), where β is the
inverse temperature and σ is the valence spectral width,
to achieve a given accuracy. The occupied part of the en-
ergy spectrum usually spans many eV and even tens of
eV whereas room temperature corresponds to an energy
of 0.025 eV - these very different energy scales demand
very high order expansions.

It is also possible to compute the density matrix from

single particle Green’s function using the following for-
mula:

P =
1

2πi

µ∫
−∞

dλG(λ) (16)

where G = (λ−H)
−1

, as proposed by Baroni and P.
Giannozzi34. Like polynomial expansions, rational ap-
proximations generally require a lot of terms to achieve
a decent accuracy. The issue has been addressed by
Lin and coworkers who developed a multipole expan-
sion method which scales as O log(βσ) log(log(βσ))35,36.
Their method was combined with the parallel selective
inversion algorithm developed by Lin et al.37,38 to per-
form electronic structure calculations of systems compris-
ing thousands of atoms39,40. The rational expansion of
the Fermi-Dirac operator leads to an inverse intensive
method which has some disadvantages compared with
diagonalization techniques. It is usually more difficult to
achieve a good load balance and memory distribution in
inverse algorithms. Moreover, the complexity worsens as
the dimensionality of the system increases from one di-
mension (1D) to three dimensions (3D). This is due to
the filling of the matrix factors which becomes problem-
atic in 3D problems from both memory and processing
perspectives. If the inverse is available, spectrum slicing
and shift-and-invert eigensolvers may also be used to find
a large number of eigenvectors efficiently41.

Having briefly reviewed the various algorithms in prac-
tical KS-DFT implementations, we present a method
which focuses on building a quasi-minimal basis set
in the following subsection. The adaptive basis
set is constructed via the Chebyshev filtering tech-
nique first applied by Zhou, Chelikowsky, Saad and
coworkers19,20,42,43. The workflow is presented in Algo-
rithm 4. First, the basis set from the previous iteration
is refined using Chebyshev filtering. A Chebyshev filter
is an operator which is expressed as a first kind Cheby-
shev polynomial of the Hamiltonian matrix. It is eas-
ily evaluated as it only requires matrix-vector products.
The size of the subspace is usually comparable to N and
is thus significantly smaller than the size of fixed basis
sets (e.g. Gaussian orbitals or atomic orbitals). It can
also be systematically refined and its accuracy is only
limited by the underlying grid resolution. The down-
side is naturally that its computation comes at a cost
and the resulting subspace is generally dense such that
the memory requirement scales as O(N2). The scheme
is generally more costly than DFT calculations using or-
bital bases but much lighter than the plain diagonaliza-
tion schemes. RESCU implements both Algorithms 3 for
atomic orbitals and Algorithm 4 for real space grids.

IV. CHEBYSHEV FILTERING

In this section, we describe the Chebyshev filter-
ing procedure introduced by Zhou et al. for KS-DFT
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Algorithm 4 CFSI Kohn-Sham Solver

procedure CFSISolver(δ)
Initialize ρ0, H[ρ0]
while ε > δ or k < kmax do

Compute a subspace Φk = Tn(H)Φk−1 using the
Chebyshev filtering

Compute the projected Hamiltonian H
k

and the

overlap matrix S
k

Compute the projected density matrix P
k

Compute the density ρk+1(r) = Pk(r, r)
Compute H = H[ρk]
Calculate ε = ‖ρk − ρk−1‖, ε = ‖H[ρk]−H[ρk−1]‖

return ρk+1

calculations19 and its application in the RESCU method.
Already in 2006, the simulation of a Si9041H1860 nan-
ocluster was reported in Ref.20 using this method plus
computational acceleration by symmetry considerations.
The technique concentrates on building a subspace Φ
which spans Ψ as defined in Eq.(6). A suitable approxi-
mation for Ψ is generated and thereafter rotated toward
Ψ only using Hamiltonian-subspace products. We de-
note the subspace at the kth self-consistent iteration Φk.
To illustrate how this works, we shall refer to Fig.1. The
dimension of Φk is L = Noc+Nfr, where Noc is the num-
ber of fully occupied states (nFD > 1− ε) and Nfr is the
number of fractionally occupied states (1−ε ≥ nFD ≥ 0).

Consider a vector φ ∈ RM . Since the Kohn-Sham
eigenvector basis is complete we can write

φ =
∑

aiψi . (17)

If we apply a spectral filter Tn(H) to φ, we change the
composition of the vector φ in the following way:

Tn(H)φ =
∑

aiTn(H)ψi (18)

=
∑

aiTn(λi)ψi . (19)

Suppose that Tn(λi) � Tn(λj) for i ∈ {1, ..., L} and
j ∈ {L+ 1, ...,M}, then Tn(H)φ has a much larger over-
lap with Ψ than φ. Applying such a filter to a whole
subspace Φk will result in a steering of Φk toward Ψ.
For reasons evoked previously, we would like to avoid di-
agonalization and inversion of the Hamiltonian so that
polynomial filters are an evident choice. We seek a poly-
nomial that assumes large values in the interval [λ1, λL]
and small values in the interval [λL+1, λM ]. Many poly-
nomials satisfy this property but the Chebyshev polyno-
mials of the first kind (denoted Tn where n is the degree)
have the minimal ∞-norm on the interval [−1, 1] among
monic polynomials, and they grow exponentially in the
degree n outside [−1, 1] making them the ideal candidate.
The 8th order Chebyshev polynomial of the first kind T8

is plotted on a logarithmic scale in Fig. 1. The polyno-
mial ∞-norm is bounded by 1 in the interval [−1, 1] and
strictly greater than 1 outside the interval [−1, 1].

−2 −1 0 1 2
10−2

10−1

100
101
102
103
104

n
F
D

'
1

n
F
D
<

1 nFD = 0

x

T
8
(x
)

FIG. 1: 8th degree Chebyshev polynomial of the first kind
T8(x) as a function of x. The y axis is logarithmic. The green
region is mapped to fully occupied Kohn-Sham states. The
yellow region is mapped to the fractionally occupied states
(mostly unoccupied states). The [-1,1] interval is mapped to
the unoccupied Kohn-Sham states. |T8(x)| ≤ 1 in the interval
[-1,1] and hence applications of the Chebyshev filter suppress
the unoccupied components. The interval [1,∞] is mapped
above the spectrum and hence do not contribute.

In general, the unoccupied energies do not correspond
to the interval [−1, 1]. In order to use Tn as a filter, we
must apply an affine transformation which maps the in-
terval [−∞,−1] to [−∞, λL] and [−1, 1] to [λL+1, λM ].
In this way, the components of the occupied spectrum
are assuredly magnified with respect to the components
of the unoccupied spectrum. This requires the knowledge
of the lower and upper bounds λL and λM . The lower
bound of the unoccupied spectrum λL can be estimated
from the largest Ritz value of Φk which is easily obtain-
able. The upper bound of the spectrum can be estimated
from a few step of the Lanczos algorithm. Estimates for
the eigenvalue errors are derived in Templates for the so-
lution of algebraic eigenvalue problems44 and Zhou has
studied the accuracy and robustness of a few estimators
for the upper bound of the spectrum45.

Now, consider a system of N electrons at zero tem-
perature such that Noc = N . The rate of convergence is
roughly Tn(λN ) since |Tn(λi)| ≥ |Tn(λN )| ≥ 1 ≥ |Tn(λj)|
for i ∈ {1, ..., N} and j ∈ {L + 1, ...,M}. The occu-
pied part of the spectrum is thus magnified by at least
Tn(λN ) at every filter application with respect to the
unoccupied spectrum. However, if λN ' λL+1 then
|Tn(λN )| & 1 & |Tn(λN+1)| and the convergence rate
Tn(λN ) ' 1 is disappointing. It is thus crucial to include
enough fractionally occupied states in the subspace to
separate the occupied part of the spectrum and the un-
occupied part of the spectrum. The fractionally occupied
Kohn-Sham states converge slowly but it does not matter
since they contribute little if at all to the electronic den-
sity. The occupied, fractionally occupied and unoccupied
sections of the spectrum are represented by the green,
yellow and red region respectively in Fig.1. The white
region does not map to any state since the largest eigen-
value is mapped below 1. A pseudocode detailing the
application of a Chebyshev filter is found in Algorithm
5. There, we take advantage of the fact that Chebyshev
polynomials of the first kind obey the recursive relation
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Tn+1(x) = 2xTn(x) − Tn−1(x). Alternatively, the co-
efficients can be directly computed using the following
formula46

Tn(x) = n
2

bn
2 c∑

k=0

(
−1

4

)k
2n

(n− k − 1)!

k!(n− 2k)!
xn−2k (20)

which allows the filtering implementation to use one less
temporary vector.

Algorithm 5 Chebyshev Filtering

procedure ChebFilter(n, λM , λL, ψ0, H)
Compute the affine transformation parameters e =

(λM − λL)/2 and c = (λM + λL)/2.
ψ1 = (Hψ0 − cψ0)/e
for i = 2, ..., n do

ψ2 = 2(Hψ1 − cψ1)/e− ψ0

ψ0 = ψ1, ψ1 = ψ2

return ψ2

If Nfr was equal to 0, we would only need to orthonor-
malize the subspace Φk and the projected density matrix
P could be assumed to be the identity and therefore the
density would then be trivial to evaluate. This is because
the density is invariant under unitary transformations of
the occupied Kohn-Sham subspace. However, using ex-
tra Kohn-Sham states is generally necessary to obtain
a robust convergence for reasons we just mentioned and
the density must not include the contribution from the
unoccupied states. For very large systems comprising
tens of thousands of electrons, certain quantities such as
the total energy may not be affected significantly by in-
cluding a few unoccupied states in the density. Whether
this is true depends on the problem and the precision
target but in general Chebyshev filtering is followed by
the Rayleigh-Ritz procedure in order populate the Kohn-
Sham states correctly. The Rayleigh-Ritz procedure is
summarized in Algorithm 6. It is essentially a procedure
that orthonormalizes the subspace Ψk and computes the
projected density matrix. It scales as O(N3) and it is
the main bottleneck in large scale computations in the
Chebyshev filtering scheme. Note that it is possible to
first orthonormalize Φk and then solve a standard eigen-
value problem or use the non-orthonormal Φk and solve
a generalized eigenvalue problem. We have observed that
the latter is generally slightly faster overall.

The Chebyshev filtering technique introduced above
can be used with orthonormal discretization schemes
such as finite-differencing and plane-waves. It may also
be used on the projected Hamiltonian even in the case
where the overlap matrix is not the identity. Implementa-
tions using Chebyshev filtering with non-orthonormal ba-
sis sets such as finite-elements47,48, projector-augmented
waves (PAW)18 and full-potential linearized augmented
planewaves (FLAPW)49 have been reported in the litera-
ture. We will describe how the technique also benefits ba-
sis sets methods such as NAO. As mentioned above, the
NAO basis is static and localized. This leads to a sparse

Algorithm 6 Rayleigh-Ritz procedure

procedure RayleighRitz(H,Φ)
Compute H = Φ†HΦ
if Φ†Φ 6= I then

Compute S = Φ†Φ
else

S = I
Diagonalize HC = SCΛ
Compute Φ = ΦC
Compute P = nFD(Λ, µ)
return Φ,P

representation for H and S but their size is not mini-
mal such that the eigenvalue problem of the Rayleigh-
Ritz procedure is rather large. The Chebyshev filtering
technique can construct and maintain an eigensubspace
Ck which satisfies, to a good approximation, Eq.(11).
The matrix pencil H − λS cannot be used directly so
that one must transform the generalized problem to a
standard one. It is crucial to preserve to a point the
sparsity of the matrix pencil since otherwise the required
matrix operations do not have a significant advantage
over dense diagonalization algorithm which are based on
QR-decompositions. One option is to rewrite Eq.(11) as
follows:

S
−1

HC = CΛ (21)

and to apply a filter Tn(S
−1

H). The operator S
−1

H is
no more Hermitian but in principle Eqs.(11) and (21)
are equivalent and this should pose no problem. One is-

sue is that S
−1

is generally dense and hence the matrix-
vector products are computationally costly. In quasi-1D
or quasi-2D systems, the Cholesky factor U may still be
relatively sparse depending on the system and the or-
dering of the overlap matrix. In this case, we suggest
considering Eq.(12) instead. The reduced Hamiltonian

Ĥ = U
−T

HU
−1

can be used in the filter to compute Ĉk

which yields Ck. Each product then necessitates solv-
ing two triangular systems of equations and one sym-
metric matrix product. In conclusion, the efficiency of
the Chebyshev filtering method vitally depends on the
capacity to invert the overlap matrix in the context of
NAO. There is so far no versatile and effective method
to solve this issue.

V. THE PARTIAL RAYLEIGH-RITZ
PROCEDURE

We begin this section by analyzing the computational
complexity of the different operations performed during
the self-consistent procedure in KS-DFT.

Applying a Chebyshev filter consists essentially in ma-
trix products and the procedure scales as O(MN +N2)
where M is the size of the discrete Hamiltonian H
(i.e. the number of grid points) and N is the num-
ber of occupied Kohn-Sham states (recall L ' N).
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Procedure Scaling
Compute Φ := Tn(H)Φ O(MN)
Orthonormalize Φ O(MN2)
Compute H and S O(MN2)
Solve HC = SCΛ O(N3)
Compute Φ := ΦC O(MN2)

TABLE I: List of the most computationally expensive proce-
dures in solving the Kohn-Sham equations and the associated
computational complexities. M is the size of the Hamiltonian
matrix and N is the number of occupied Kohn-Sham states.

The O(MN) scaling comes from applying the Lapla-
cian and the O(N2) term comes from applying the
Kleinman-Bylander projectors in dealing with the nonlo-
cal pseudopotentials50.

Next, the Rayleigh-Ritz procedure scales as O(MN2 +
N3) but its computational cost does not dominate until
quite large system sizes as we shall demonstrate in Sec-
tion VII. We further decompose the complexity of the
Rayleigh-Ritz procedure in the following four operations:
subspace orthonormalization, Hamiltonian (and identity)
projection, eigenvalue solution and computation of the
Ritz vectors. The scaling of the most computationally
expensive steps in solving the Kohn-Sham equations is
displayed in Table I. The non-orthonormality of Φ fol-
lowing the Chebyshev filtering procedure can be taken
into account by the Rayleigh-Ritz procedure, and there-
fore the cost of orthonormalization can be absorbed in
the diagonalization cost. The complexity for computing
H and S, and computing Φ := ΦC is O(MN2). The
former is more computationally expensive since it is a
(N ×M) × (M × N) matrix product (where M � N)
whereas the latter is a (M×N)×(N×N) matrix product.
We identify the computation of H and S, the eigenvalue
problem HC = SCΛ and the computation of the Ritz
vectors as the three principal bottlenecks in a large scale
KS-DFT computation.

The obvious way to address the first and third bottle-
necks in Table I is to construct a localized basis for Φk

which leads to a sparse matrix representation. In atomic
orbital methods, Φk is sparse but has known limitations
in accuracy due to the inflexible nature of the basis set.
In addition, even if Φk−1 is localized, Φk is not sparse in
general since the Chebyshev filtering procedure fills in the
matrix. In Ref.48, Motamarri et al. use the localization
technique introduced by Cervera51 to build a localized
basis for the Chebyshev filtered subspace and the effi-
ciency relies on the possibility to maintain a sparse basis.
Their work shows that finite-elements are most appropri-
ate to exploit the advantages of both Chebyshev filtering
and basis localization. This is not possible if high-order
finite-differences or plane waves are employed to compute
the derivatives. When using high-order finite-differences,
the density of the subspace matrix increases rapidly with
the degree of the Chebyshev filter due to the far reaching
high-order stencils.

Here, we address the second bottleneck in Table I by

showing that it is unnecessary to fully diagonalize Ĥ in
order to populate the Kohn-Sham states correctly. Sup-
pose that Noc Kohn-Sham states are fully occupied and
that Nfr are fractionally occupied. We claim that only

the Nfr largest eigenpairs of Ĥ are actually required
for the KS-DFT, and this method is named the partial
Rayleigh-Ritz (pRR) procedure. To see this, consider

Ĉ =
[
ĈocĈfr

]
(22)

Λ =

[
Λoc 0
0 Λfr

]
(23)

where Ĉ is the matrix of eigenvectors of Ĥ. Then

nFD(Λ) =

[
Ioc 0
0 nFD(Λfr)

]
(24)

= I +

[
0 0
0 nFD(Λfr)− Ifrac

]
(25)

where Ioc/fr is a Noc/frac×Noc/fr identity matrix. Using

the last equation and the fact that Ĉ is unitary, Eq.(15)
can be transformed into

P = U
−1
(
I + Ĉfr [nFD(Λfr)− Ifr] Ĉ

†
fr

)
U
−T

(26)

=
[
S
−1

+ Cfr (nFD(Λfr)− Ifr) C†fr

]
. (27)

From the last equation, it appears that only the Nfr
largest Ritz-values are required to evaluate the Fermi-
Dirac operator. The density matrix is the inverse of
the overlap matrix plus a rank-Nfr correction in which

the largest eigenvectors of Ĥ appear. In a large sys-
tem, Nfr is generally much smaller than Noc and is more
of less constant with respect to the system size. For
example, our tests show that Nfr ∼ 8 − 32 whereas
Noc ∼ 8, 000 − 12, 000. Since only a few eigenvectors
are required, iterative eigensolvers can be used to com-
pute Cfr. Like the Rayleigh-Ritz algorithm, this partial
Rayleigh-Ritz procedure works whether the subspace Φ
is orthonormal to begin with or not. It is generally faster
to orthonormalize it inside the Rayleigh-Ritz procedure
and not ahead of it. The partial Rayleigh-Ritz procedure
is summarized in Algorithm 7.

Algorithm 7 Partial Rayleigh-Ritz procedure

procedure PartialRayleighRitz(H,Φ)
Compute H = Φ†HΦ
if Φ†Φ 6= I then

Compute S = Φ†Φ
else

S = I
Diagonalize ĤĈfr = ĈfrΛfr

Compute Φ = ΦU
−1

Compute P = I + Ĉfr (nFD(Λfr)− Ifr) Ĉ†fr
return Φ,P

To close, the partial Rayleigh-Ritz algorithm differs
from the traditional Rayleigh-Ritz algorithm in two
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ways from a computational perspective. Firstly, in the
Rayleigh-Ritz algorithm, the current Chebyshev filtered
subspace is multiplied by the eigenvectors of the pro-
jected eigenvalue problems, a general matrix. In the
partial Rayleigh-Ritz algorithm, the current Chebyshev
filtered subspace is multiplied by the inverse of the
Cholesky factor of the overlap matrix, a triangular ma-
trix. In the case where the Chebyshev filtered subspace
is already orthonormal, nothing needs to be done. This
halves the computational cost associated with updating
the subspace. In exact arithmetic, this could even be
avoided altogether, but in practice the basis vectors of
the subspace Φk become linearly dependent and they
must be periodically orthonormalized. Whether this is
necessary can be monitored by looking at the condition
number of the overlap matrix. Another distinction is
that only a few eigenvalues and eigenvectors of the pro-
jected eigenvalue problem are necessary to build the one-
particle density matrix and obtain the electronic density
for the KS-DFT. This reduces the computational com-
plexity associated with the diagonalization from O(N3)
to ∼ O(N2).

Furthermore, we argue that the partial Rayleigh-Ritz
algorithm is easier to parallelize than the Rayleigh-Ritz
algorithm. Parallelizing the eigenvalue problem Eq.(11)
is tantamount to re-implementing ScaLAPACK routines
or some other linear algebra library for distributed mem-
ory computers, a daunting task physicists wish to avoid.
In contrast, in pRR it suffices to parallelize matrix prod-

ucts of the type Ĥu to parallelize the eigenvalue problem
in Algorithm 7. The parallel matrix-vector routine can
then be used in a partial diagonalization algorithm such
as LOBPCG52.

VI. THE RESCU IMPLEMENTATION

In this section, we report the implementation of the
KS-DFT solver RESCU. The code is written in MAT-
LAB and includes interfaces to MPI libraries, ScaLA-
PACK, CUDA, cuSPARSE and LibXC written in C and
compiled into MEX-files.

The Kohn-Sham equation is discretized on a uniform
Cartesian grid. High-order finite-differencing is used to
discretize the differential operators. We generally use
O(h16) stencils (49-point stencils) where h is the grid
resolution. Beyond that the Vandermonde system of
equations determining the stencil coefficients becomes ill-
conditioned. Moreover, the entries delimiting the stencil
become negligibly small and there is no gain in trying to
increase the accuracy further. Matrix representations of
the first and second order differential operators are gen-
erated for each coordinate. Differencing matrix-vector
products take the following form

∂(n)

∂x
(n)
1

f(xi1, x
j
2, x

k
3) =

∑
l

(D
(n)
1 )i,lf(xl1, x

j
2, x

k
3) (28)

Here, the derivative is taken with respect to the first

coordinate. More generally, D
(n)
j is a nth order discrete

differential operator operating along the jth coordinate
and xji is the ith grid point along the jth coordinate. Such
products can be implemented as matrix-matrix products
by making the array f into a matrix in which the first
dimension runs over the differentiated coordinate and the
second dimension the other coordinates. N -dimensional
finite-difference operators are Kronecker products of the
form

∂(n)

∂x
(n)
j

=

j−1⊗
i=1

Ii ⊗D
(n)
j

N⊗
i=j+1

Ii (29)

where Ii is the identity operator along the ith dimen-
sion. The matrix representation of the operator defined
in Eq.(29) need not be built explicitly. It suffices to per-
form certain manipulations on the function array, array
dimension permutation and transposition for instance, to
make equation 28 into a matrix product. We implement
gradients and Laplacians applications as these particular
Kronecker products as we found this was most efficient.
We have compared it against using the multi-dimensional
(sparse) Laplacian, using the stencils directly and using
Fourier transforms among others. For large systems it
may be advantageous to put the differencing matrices

D
(n)
j in a sparse format. A sparsity of roughly 0.05 was

observed to be the turning point. For example, for an
O(h16) stencil it would be advantageous to use sparse
differential operators if the number of points along a di-
mension is larger than 300.

We use a pseudopotential set generated from the
Troullier-Martins scheme53,54 and use the Kleinman-
Bylander representation50 to model the atomic cores. A
core correction is added as prescribed in Ref. 55 for ele-
ments in which the core shells overlap significantly with
the valence shell. The set was developed for the NAO
quantum transport package Nanodcal54 and it includes
double-zeta polarized atomic orbitals. The Hartree po-
tential of the spherically symmetric valence atomic or-
bital charge is added to the pseudopotentials, and hence
screens long range Coulomb tails. Corrections to the
Hartree potential are calculated by solving the Poisson
equation for the deviation from the neutral atom density.
Fourier transforms are used in periodic systems and sine
transforms are used to diagonalize the finite-difference
Laplacian in Dirichlet problems.

Our software implements the time-saving double-grid
technique of Tomoya and Kikuji56,57. It is used to com-
pute certain integrals, such as the projection of the
Kohn-Sham states onto the Kleinman-Bylander projec-
tors, at a lower cost. The Kohn-Sham states are typi-
cally smoother than the pseudopotentials. The idea is to
express the Kohn-Sham states on a coarse grid and inter-
polate them on a finer grid used for the pseudopotenials
when needed, saving memory and time as a result. A few
exchange-correlation functionals have been implemented
in MATLAB: PW9258 (LDA), PBE59 (GGA) and MBJ60
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(mGGA). More exchange and correlation functionals are
available from LibXC61. The interface from MATLAB
to LibXC is written in C and allows us to use most LDA,
GGA and meta-GGA functionals implemented in the li-
brary.

The Chebyshev filtering technique originally proposed
by Zhou et al. is significantly impeded by the initial
subspace generation which requires solving for all Kohn-
Sham eigenstates. In a recent paper, the authors show
that starting from a random subspace and performing a
few filtering steps is sufficient to obtain a suitable initial
subspace62. In our implementation, yet another option
is available: a single- or double-zeta atomic orbital basis
is used as an initial subspace. The lowest energy levels
of that subspace are found by partly diagonalizing the
projected Hamiltonian and then a quasi-minimal initial
subspace is constructed. Moreover, it is possible to reach
convergence to a prescribed accuracy in the NAO basis
before transposing the calculation to real space. This
provides a more robust and quick convergence and alle-
viate significant computational cost. Our tests show that
even using a single-zeta atomic orbital basis can generally
give a good initial subspace.

Certain elements with d and f electrons have hard
pseudopotentials and the resolution of the grid must be
increased accordingly. It is generally easier to perform
calculations at a low resolution since the convergence
rate of non-linear accelerators generally deteriorates with
respect to system size as shown by Lin and coworkers
in Ref.63. We have implemented a “multi-grid” Kohn-
Sham solver: it solves the equation on a coarse grid first
and gradually refines the grid until some target resolu-
tion is reached. After completing the calculation at a
given resolution, the code interpolates the pseudopoten-
tials and neutral atom electronic density and interpolates
the current approximation of the Kohn-Sham subspace
on the refined grid. The density is then updated and a
new self-consistent cycle is initiated. We implemented a
few mixing schemes to accelerate the convergence of the
density or the effective potential. In particular, we im-
plemented Broyden mixing as proposed by Srivastava in
Ref.64 and Johnson mixing65 as presented by Kresse and
Furthmüller in Ref. 12.

The parallelization is done with MPI and ScaLA-
PACK. MATLAB also naturally takes advantage of In-
tel’s MKL threading capabilities. The MPI-only imple-
mentation is based on the MPI+ScaLAPACK implemen-
tation, and hence we refer to ScaLAPACK in the descrip-
tion that follows. Our implementation uses a 2D block
cyclic distribution to scatter the arrays across many pro-
cesses. This is a quite general distribution scheme as far
as matrices are concerned. The distribution depends on
four parameters: two specifying the size of the blocks,
two specifying the size of the process grid. Some ex-
amples of a 60 × 10 matrix shared between 4 processes
are shown in Fig. 2. Fig. 2(a) shows a matrix split
in 10 × 10 blocks distributed on a 4 × 1 process grid,
which we refer to as a tall process grid. In contrast, a

2
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3

2

1

(a) Tall
process
grid

1

4

3

2

1

(b) Flat
process
grid

1 2 1
3 4 3
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1 2 1
3 4 3
1 2 1
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(c) Square
process
grid

FIG. 2: The 2D block cyclic distribution is a general scheme
used to distribute arrays in RESCU. The array distribution
for different block sizes and process grids is depicted. The
numbers indicate the rank of the process holding the subma-
trices.

flat process grid is distributed as shown in Fig. 2(b),
where the blocks are 60 × 2 submatrices. Finally, a ma-
trix distributed on a square process grid is depicted Fig.
2(c), where the blocks are 4× 4 submatrices. The block
size must be chosen large enough to limit communication
between processes but small enough to yield a good load
balance. The performance is not that sensitive to block
size in our experience; a block size between 16 and 256
is usually efficient on an InfiniBand network. It is much
more sensitive to the shape of the process grid however.
For certain operations, the computational time can vary
as much as 100%. It is more often than not favorable
to take the time to redistribute optimally an array using
PDGEMR2D before performing an operation. In the fol-
lowing description, we indicate which one of a tall, flat or
square process grid is likely to yield the best performance.

The load associated with interpolating spatial vari-
ables such as potentials, densities and atomic orbitals
is distributed according to a spatial partitioning which
corresponds to a tall process grid (Fig. 2(a)). A good
load balance is achieved since the number of real space
grid points is always by far superior to the number of
processes and the communication cost is negligible since
interpolation is a local operation.

A significant computational cost is associated with
Hamiltonian-wavefunction products. Such products oc-
cur in the Lanczos solver which is used to compute the
eigenspectrum upper bound (see Section IV). The cost
associated with the Lanczos solver is marginal but it can
be parallelized by using ScaLAPACK with a few (e.g.
four) processes or by threading the operations. Filtering
the Kohn-Sham subspace is computationally expensive in
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comparison. We found that parallelizing over the Kohn-
Sham states is often the most efficient approach since
the processes do not need to communicate during the fil-
tering procedure. We thus distribute the subspace Φk

array using a flat process grid (Fig.2(b)) prior to that
operation. This is adequate as long as the number of
electrons in the simulated system is larger than the num-
ber of processes. It is more difficult to achieve a good
load balance in large systems with relatively few elec-
trons such as ‘hollow’ molecules and 2D crystals. In this
case, a parallelization scheme as described in Ref.20 will
likely perform better. One other option is to use less pro-
cesses but use threading to parallelize the Hamiltonian-
wavefunction products.

Another computational bottleneck comes from or-
thonormalizing the Kohn-Sham subspace. Cholesky or-
thonormalization can be used, but it is performed by
the more robust QR factorization routines PDGEQRF
and PDORGQR if required. We have observed that ma-
trix decomposition and diagonalization routines gener-
ally perform best on arrays split in square blocks and
distributed on a square process grid (Fig.2(c)). Conse-
quently, we redistribute the subspace as it yields a good
performance in our tests. A significant cost is associ-
ated with calculating the projected Hamiltonian and the
overlap matrix. A tall process grid offers the best per-
formance for this operation when using MPI or ScaLA-
PACK. The Rayleigh-Ritz procedure is completed by
calling PDSYEV or PDSYGVX depending on whether
an orthonormalization of the subspace has taken place
before. In the Rayleigh-Ritz procedure, PDSYGVX finds
all the eigenvectors. If the partial Rayleigh-Ritz proce-
dure is used, then PDSYEVX or PDSYGVX is invoked
to find the few required eigenvectors. We have also mod-
ified the ARPACK21 interface provided with MATLAB
and Knyazev’s MATLAB implementation of LOBPCG52

to use the parallel matrix-vector products mentioned at
the end of section V.

VII. NUMERICAL TESTS

Our numerical tests are performed at McGill Univer-
sity’s Centre for High Performance Computing (HPC).
We use nodes that consist of two Intel E5-2670 processors
(8-core, 2.6 GHz, 20MB Cache) and 128 GB of DDR3
memory. The internode communication link is Infini-
Band QDR. We use OpenMPI 1.8.3 and ScaLAPACK
2.0.2. In our tests, we set the number of processes equal
to the number of cores and turn off threading. The tim-
ings reported below are wallclock times. The results for
some of the largest systems are compiled in table II.

A. Real Space RESCU

1. Partial Rayleigh-Ritz

As mentioned earlier, the partial Rayleigh-Ritz algo-
rithm is most competitive when the cost of the diagonal-
ization taking place in the Rayleigh-Ritz procedure be-
comes significant. We evaluate the potential gain associ-
ated with diagonalization by benchmarking the ScaLA-
PACK routines PDSYEV, PDSYEVX and our parallel
version of ARPACK, which we call “ScaARPACK” here.
We seek the 16 largest eigenvalues of random matrices of
varying sizes. This is a typical number of buffer states re-
quired in the partial Rayleigh-Ritz algorithm in the sim-
ulation of gapped systems (e.g. Si). The time is averaged
over 10 randomly generated symmetric matrices for each
size. The ScaLAPACK routines use an 8×8 process grid
and 32×32 blocks. ScaARPACK uses a homemade func-
tion that carries out the parallel matrix-vector products.
The matrix is scattered according to a 64 × 1 process
grid and 16 × 16 blocks. We have diagonalized matrices
up to linear size 16,384, 32,768 or 65,536 with PDSYEV,
PDSYEVX or ScaARPACK respectively. The results are
plotted in Fig. 3. The scaling is O(N2.7) for the ScaLA-
PACK routines and almost linear for ScaARPACK. This
is better than theoretical asymptotic scaling in all cases.
This reflects the importance of the communication cost in
the case of ScaLAPACK and the large overhead of our im-
plementation in the case of ScaARPACK. Both ScaLA-
PACK routines share roughly the same scaling but the
routine PDSYEVX is about an order of magnitude faster
than PDSYEV since it stops when the wanted eigen-
pairs have been found. ScaARPACK starts winning over
PDSYEVX when the matrix to be diagonalized is larger
than 8, 000 × 8, 000. The speed-up for the diagonaliza-
tion becomes substantial when the number of electrons
is equal to or greater than 32,000 (after accounting for
spin degeneracy).

2. Subspace Initialization

Next, we demonstrate the importance of the quality of
the initial subspace on convergence when using Cheby-
shev filtering in lieu of an eigensolver. In Ref. 20, the
authors suggest starting from a relatively accurate set of
eigenvectors of the Hamiltonian. It was later demon-
strated that using a few Chebyshev accelerated steps
of the power method on a random initial subspace was
sufficient to simulate many systems more efficiently62.
We thus compare the atomic orbital (NAO) initialization
against the Chebyshev filtering initialization as described
in Ref.62. Single-zeta atomic orbitals are interpolated on
the real space grid and the Rayleigh-Ritz procedure is
performed using the resulting subspace to obtain the ini-
tial subspace. In that sense, we are performing a one shot
NAO calculation and then we project the result on the
real space grid. For the Chebyshev filtering initialization,
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System # of atoms (e−) Nx Ny Nz Subspace (L) Method # cores Time (hrs)
Si 5,832 (23,328) 140 140 140 11,672 RS 256 5.52
Al 4,000 (12,000) 110 110 110 8,044 RS 64 5.09
Al 8,788 (26,364) 141 141 141 17,596 RS 256 23.88
Cu 1,372 (15,092) 156 156 156 8,058 RS 256 9.12

DNA-H2O 5,399 (14,596) 170 168 148 7,314 RS 256 9.62
Si 13,824 (55,296) 247 247 247 55,296 AO 64 6.43
Cu 5,324 (58,564) 267 267 267 95,832 AO 256 13.42

TABLE II: Some of the largest physical systems solved by KS-DFT with RESCU. The number of electrons in the system is
indicated in the parentheses beside the number of atoms. The vector [Nx, Ny, Nz] gives the numbers of points used along each
dimension. For the AO method, [Nx, Ny, Nz] is the size of the real space grid used to project the orbitals and calculate the
density. It is also the grid by which the Poisson equation is solved for the Hartree potentials. The subspace dimension L
corresponds to the linear dimension of the eigenvalue problem. In the method column, RS stands for real space and AO for
numerical atomic orbital. The time is the total wall-clock time to converge the entire KS-DFT computation. More details
about the computation are found in section VII.
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FIG. 3: Time as a function of matrix size for full and par-
tial diagonalization (16 eigenpairs). The timings for the
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Rayleigh-Ritz and partial Rayleigh-Ritz algorithms, are rep-
resented by the circles and crossed circles respectively. The
timings for the parallelized ARPACK function (ScaARPACK)
are denoted by the squares.

4 Chebyshev filtering steps are used.

In order to compare the methods, the density of a
unit cell comprising 216 silicon atoms is calculated. The
number of iterations to convergence as a function of
the Chebyshev filter degree (CFSCF) used in the self-
consistent loop is plotted in Fig. 4. We use 16 buffer
states, Broyden acceleration with a mixing fraction of

0.3 and the convergence criteria are ‖ρk−ρk−1‖
N < 10−5,

‖Ek−Ek−1‖
‖Ek+Ek−1‖ < 5× 10−6. The number of iterations to con-

verge the density for CF0 = 16 and CFSCF = 8 is missing
as the density did not converged within 100 iterations.
CFSCF = 8 also yields the worst performance for all ini-
tialization methods. This illustrates that the robustness
is partly determined by the degree of the Chebyshev fil-
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FIG. 4: Number of iterations to converge the density of a unit
cell containing 216 Si atoms as a function of self-consistent
Chebyshev filter degree for different initialization techniques.
CF0 stands for the degree of the Chebyshev filter used in the
initialization of the subspace Φk (4 filtering steps are used).
NAO stands for initialization from the solution of a single-zeta
atomic orbital basis. The total number of Hamiltonian-wave
function products is written by the data points. The circle,
“plus” circle and “times” circle marks are for CF0 = 8, CF0

= 16 and CF0 = 24 respectively. The square marks are the
the NAO initialization.

ter. NAO initialization leads to a faster convergence for
all values of CFSCF except for CFSCF = 8 in which case
the CF0 = 24 initialization leads to the smallest iteration
count. However, the number of Hamiltonian-subspace
products remains superior to the NAO case as indicated
beside the marks in Fig. 4. Otherwise, the degree of
the filter in the initialization step does not seem to im-
pact convergence much in the present test. For CFSCF

larger than 12, the number of self-consistent steps to con-
verge stagnates and the number of Hamiltonian-subspace
products increases more of less linearly accordingly. Us-
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FIG. 5: Time per self-consistent step as a function of the
number of Si atoms. The scaling with respect to the number
of atoms is approximately O(N2.3). The triangles, squares
and circles represent data points for calculations performed by
16, 64 and 256 cores respectively. The solid and dashed lines
are for the Rayleigh-Ritz algorithm and the partial Rayleigh-
Ritz algorithm. For the 256-core results, the numbers by the
data points (red open circles) are the total wall-clock time for
converging the entire KS-DFT run.

ing NAO initialization, the inflation of the number of
Hamiltonian-subspace products is not as important be-
cause the number of self-consistent steps keeps decreasing
although not enough to compensate the cost of a high-
degree filter. The optimal filter degree remains 12 for
all methods for this system. We thus recommend using
NAO initialization as it may converge faster and it is ap-
preciably cheaper than Chebyshev filtering initialization
in large systems by virtue of the localized character of
the atomic orbitals (see Fig. 5 and Fig. 8). The initial
subspace can also be improved by using a multiple-zeta
basis.

3. Bulk Silicon Supercells

Having tested various mathematical procedures, we
now turn to physical systems of interest. Unit cells of sil-
icon of varying size are simulated to test the performance
of RESCU, the partial Rayleigh-Ritz algorithm and the
Rayleigh-Ritz algorithm. The states are assumed to be
spin-degenerate and 8 buffer states are included to sep-
arate the occupied and unoccupied spectra as explained
in Section IV. Kleinmann-Bylander projectors up to an-
gular momentum L = 1 are used. The grid spacing lower
bound is set to 0.66 Bohr which corresponds to an energy
cutoff of 300 eV. The differential operators are generated
using 16th order stencils. The exchange-correlation terms
are computed using Perdew and Wang’s version of LDA58

as implemented in LibXC. We use 15 steps of the Lanczos
algorithm to calculate the eigenspectrum upper bound
and a Chebyshev filter of degree 16. Broyden mixing with
a mixing fraction of 0.3 and a history of 20 is employed
to accelerate convergence. The convergence criteria are

again ‖ρk−ρk−1‖
N < 10−5, ‖Ek−Ek−1‖

‖Ek+Ek−1‖ < 5× 10−6. For the

partial Rayleigh-Ritz benchmark, we use the partial di-
agonalization capabilities of ScaLAPACK (PDSYGVX)
and we find 12 hole eigenvalues (i.e. 8 buffer states plus
4 occupied states). Many of these parameters can be
optimized further to yield a better performance: the pa-
rameters used here are by no means optimal - we sim-
ply used sensible values based on experience - but they
already give impressive performance. Although this is
suboptimal, we also keep the parameters constant while
varying the number of processes to get a consistent and
fair comparison.

In Fig. 5, the time per self-consistent step is plotted as
a function of the number of atoms. The calculations were
carried out using 16, 64 and 256 cores. We could go up to
5,832 Si atoms before running out of memory (the next
cubic Si supercell contains 8,000 Si atoms). The total
time to convergence (in seconds) for the 256-core runs is
written by the data points in Fig.5. We observe that, at
to those sizes, the partial Rayleigh-Ritz algorithm leads
to marginal gains. There are many reasons to this. Most
importantly, the pRR gains are masked by the large cost
of projecting the Hamiltonian into the filtered subspace
and computing the overlap matrix. Hence, even though
pRR is always faster (see Fig.3), it gives marginal gains
for this particular test. We shall discuss this issue in
more details in section VIII. We stress that pRR is mea-
sured against the highly efficient parallel linear algebra
library ScaLAPACK. In the case where no such library is
available, pRR provides a convenient way to parallelize
the computation of the projected density matrix and can
lead to substantial time savings in smaller physical sys-
tems. Finally, we note that the computational time scales
consistently as O(N2.3) for all processor counts. We also
highlight that the parallelization efficiency approaches
100% as the number of atoms in the system increases.

4. Bulk Aluminium Supercells

We now turn to a metallic system for our second test:
aluminium supercells. Again, we perform the calcula-
tions using 16, 64 and 256 cores. The number of valence
electrons per atom is 3 and the system is assumed to
be spin-degenerate. The spatial resolution is 0.7 a.u.
and the differential operator accuracy is O(h16). We
compute the states occupancies using the Fermi-Dirac
distribution with a temperature of 1,000K. The compu-
tation is performed within the LDA using the routines
XC LDA X and XC LDA C PW from LibXC as in the
previous benchmark. We chose a Chebyshev filter of de-
gree 16. The number of buffer states varies with respect
to system size. This is necessary to open a sizeable gap
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FIG. 6: Time per self-consistent step as a function of the
number of Al atoms. The scaling with respect to the number
of atoms is approximately O(N2). For the 256-core results,
the numbers by the data points (red open circles) are the total
wall-clock time for converging the entire KS-DFT run.

between the occupied and unoccupied states as explained
in section IV. In the present test, we set the number of
extra states to 10%-30% the number of ions. Finally,
we used Johnson-Kerker mixing with a mixing fraction
of 0.5 and a minimal mixing fraction of 0.05. The time
per self-consistent step as a function of the number of
Al atoms is displayed in Fig. 6. The computational
cost per self-consistent step scales almost quadratically
(O(N2.2)) with respect to the number of atoms. With
64 cores, the largest supercell simulated contained 4,000
Al atoms and the density and total energy where con-
verged to one part in 105 in slightly over 18,000 seconds
using 256 cores. A supercell containing 8,788 Al atoms is
handled with 256 cores. After 29 iterations and almost
24 hours of computation, the residuals are the following:
‖ρk−ρk−1‖

N ' 10−4, ‖Ek−Ek−1‖
‖Ek+Ek−1‖ ' 5 × 10−8. The density

convergence criterion is not as restrictive as one used in
the other benchmarks. We note, however, that it is al-
ready constrained enough for band structure calculation
purposes as shown in Fig.9(c) below.

5. Bulk Copper Supercells

We briefly report input parameters and results for an-
other metal test: copper supercells. In this test we used
256 cores. The number of valence electrons per atom is
11 and the system is assumed to be spin-degenerate. The
spatial resolution is 0.3 a.u. and the differential operator
accuracy is O(h16). We compute the states occupancies
using the Fermi-Dirac distribution with a temperature
of 100K. The computation is performed within the LDA
using the routines XC LDA X and XC LDA C PW from

FIG. 7: DNA molecule solvated in 1,713 water molecules.

LibXC as in the previous benchmark. We chose a Cheby-
shev filter of degree 16. In the present test, we set the
number of extra states to 50% the number of ions. Fi-
nally, we used Johnson-Kerker mixing with a mixing frac-
tion of 0.25 and a minimal mixing fraction of 0.1. The
largest supercell simulated contained 1,372 Cu atoms and
the density and total energy where converged to one part
in 105 in 32,843 seconds using 256 cores as reported in
table II.

6. DNA molecule in water

As another example of testing on physical systems,
RESCU is applied to calculate the electronic structure
of a solvated DNA structure (5’-AAAA-3’) which is a
completely disordered system. The initial structure is
obtained from minimizing the structure with the molec-
ular modeling package AMBER 11. The DNA structure
is initially charge neutralized with counterions by 6 Na+

and solvated with 1,713 TIP3P water molecules66. The
system is depicted in Fig. 7. The tetragonal simulation

domain has dimensions 44.5×44.4×39.1Å
3

and periodic
boundary conditions. We use a resolution of 0.25 Bohr.
A total of 5,399 atoms (14,596 electrons) were simulated
using 256 cores in the setup described above. We use
the LibXC XC GGA X OPTPBE VDW exchange func-
tional and XC GGA C OP B88 correlation functional.
The Laplacian is discretized using O(h16) stencils. We
used a 16th order Chebyshev filter and 16 buffer states.

The convergence criterion is ‖ρk−ρk−1‖
N < 10−5 and we

mix the density using the Pulay method with a mixing
fraction of 0.1. We initialize the subspace using a single-
zeta atomic orbital basis set with an angular momentum
cutoff L = 1. The electronic density converged in 20
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FIG. 8: Time per self-consistent step as a function of the
number atoms. The circles are for the Cu benchmark which
is performed using a double-zeta atomic orbital basis with
angular momentum cutoff L = 2 and 256 cores, each having
8GB of DDR3 memory. The squares are for the Si benchmark
which is performed using a single-zeta atomic orbital basis
with angular momentum cutoff L = 1 and 64 cores, each
having 4GB of DDR3 memory. The scaling with respect to
the number of atoms is linear O(N1.04) for smaller systems
and gradually ramps up to cubic O(N2.82). The numbers by
each data point is the total wall-clock time for converging the
entire KS-DFT run.

steps which took a total of 34,638 seconds for an average
time of 1,732 seconds per self-consistent step. Finally, we
find that the gap between the highest occupied molecu-
lar orbital (HOMO) and the lowest unoccupied molecu-
lar orbital (LUMO) shrinks to 0.6eV - the gap for the
isolated DNA structure without water is 2.0eV - which
indicates that the solvent plays an important role in the
optical properties of wet DNA67. We shall present the
comparison in a forthcoming article68.

B. Atomic Orbital RESCU

To demonstrate the capabilities of the atomic orbital
method implementation in RESCU, we perform the same
benchmark as above (bulk Si supercells) using numerical
atomic orbitals. We use the same processors (E5-2670)
equipped with half the memory this time (4GB/core).
We perform the benchmark with 64 cores only. We also
use a real space resolution of 0.5 a.u. A single-zeta basis
with angular momentum cutoff L = 1 was used such that
there are 4 atomic orbitals per atom. The results are plot-
ted as blue squares in Fig. 8. The largest simulated Si
supercell comprises 13,824 Si atoms and the KS-DFT was
converged in 23,161 seconds. Even at that size, we did
not run into any memory issue since the atomic orbital
basis yields sparse matrices. For relatively modest su-

percells, RESCU scales linearly. The scaling deteriorates
as the supercell size grows since the eigenvalue problem
accounts for a larger and larger proportion of the compu-
tational cost. The scaling gradually becomes cubic since
we are treating the projected eigenvalue problem as a
dense eigenvalue problem. Many methods evoked in Sec-
tion III could improve the efficiency of NAO calculations
further. Since diagonalization performance is so impor-
tant in this test, we mention that a square processor grid
and 64×64 blocks are used in the block cyclic distribution
of the Hamiltonian and overlap matrices.

We have also performed NAO computations for bulk
copper supercells. For this benchmark, we use 256 cores
with 8GB of memory per core. We use a real space res-
olution of 0.25 a.u and a double-zeta basis with angular
momentum cutoff L = 2 (18 atomic orbitals per atom).
We have simulated supercells including up to 5,324 Cu
atoms (58,564 electrons). The density and total energy
were converged in roughly 12 hours (33 iterations). The
time per self-consistent step as a function of the num-
ber of Cu atoms is indicated by the red circles in Fig.
8. The number of atomic orbitals per atom is 4.5 times
larger than in the Si benchmark and the number of cores
4 times larger. Consequently, the time per step for the
Cu system is roughly an order of magnitude larger than
the time per step for the Si system. The time per itera-
tion scales similarly, i.e. it goes from linear in the 1,000
atom range to cubic in the 10,000 atoms range. The total
time scales worse here as larger (metallic) systems tend
to take more iterations to converge.

C. Accuracy

To verify the accuracy of the electronic structures cal-
culated in our benchmark, we calculated the band struc-
tures of Al, Si and Cu using the VASP package (albeit us-
ing a primitive cell) and compared it with the band struc-
tures calculated from the density of the largest super-
cell simulated. The overlayed RESCU and VASP band
structures are displayed in Fig.9. The agreement is im-
pressive considering that these methods are different in
many respects. In particular, the PAW method is used
in VASP and pseudopotentials are used in RESCU. We
have also calculated band structures of compounds by
both RESCU and VASP, results for the semiconductor
GaAs and the insulator MgO are presented in Fig. 10.
Again, the agreement between the two methods is ex-
cellent. This demonstrates the precision of the RESCU
method for band structure calculations.

A systematic approach to comparing DFT codes has
been introduced by Lejaeghere et al.69 in 2014. Its
essence is to calculate the ∆-functional (see Eq.30 below)
for the total energy versus volume (E vs V) equation of
states (EOS) of elemental crystals. The equilibrium vol-
ume V0, the bulk modulus B0 and the derivative of the
bulk modulus B1 can be extracted from the EOS using
a third-order Birch-Murnaghan fit70. The value of ∆ is
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FIG. 9: Comparisons of band structures obtained by VASP
and RESCU. The band structures agree to a high accuracy
indicating that the resolution used in our benchmark was suf-
ficient for the purpose of band structure calculations.

thus a sensible measure of the agreement of the structural
and mechanical predictions of two DFT solvers. The ∆-
functional is defined as follows

∆(Ea, Eb) =
1

|Ω|

∫
Ω

dV
(
Ea(V )− Eb(V )

)
(30)

where Ω is an interval, Ea(V ) is the E vs V EOS for code
a and Eb(V ) is the E vs V EOS for code b. The interval
Ω is chosen as [0.94(V a0 + V b0 )/2, 1.06(V a0 + V b0 )/2].

We have calculated the value of
∆(ERESCU , EWIEN2k) for a number of elements,
where ERESCU is the EOS calculated by RESCU and
EWIEN2k is the EOS calculated by WIEN2k9. The
WIEN2k EOS are provided in the supplemental content
of Ref. 69. In RESCU, we used a grid spacing of
0.14 Bohr and 6750/N k-points for N -atoms unit cells.
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FIG. 10: Comparisons of the band structures of the GaAs
and MgO compounds obtained by VASP and RESCU.

The charge convergence criterion is 10−5e per valence
electron and the energy convergence criterion is 10−5

Hartree per valence electron. A Fermi-Dirac smearing
with a temperature of 800 K is used. The computa-
tion is performed within the GGA using the routines
XC GGA X PBE and XC GGA C PBE from LibXC.
Again, in the RESCU calculation the atomic cores are
modeled by Troullier-Martins pseudopotentials53,54.
The obtained ∆ values are listed in Table III and the
differences between the EOS are quite reasonable in all
cases. These ∆ values are comparable to those obtained
with the electronic structure package AbInit (using
the Troullier-Martins pseudopotential) and WIEN2k71.
Many codes include all elements from H to Rn ex-
cept those between lanthanum and ytterbium in their
test, but we leave such an exhaustive test to a future
opportunity.

We end this subsection by emphasizing that, while us-
ing a more efficient solution process to solve the KS-DFT
equation, there was no accuracy-degrading approxima-
tion in RESCU and the accuracy tests presented here
strongly demonstrate its quality.

VIII. FURTHER DISCUSSIONS

Having demonstrated the power of RESCU by solving
the KS equation for thousands of atoms - both insulat-
ing and metallic, both ordered and disordered, and on
a modest computer cluster - we now discuss the princi-
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Element ∆ (meV/atom) Element ∆ (meV/atom)
H 0.864 Ca 2.013
Be 7.080 Cu 7.758
Mg 1.392 Rh 18.627
Al 0.434 Pd 15.581
Si 3.608 Ag 11.286
P 7.291 Cs 1.082
S 6.830

TABLE III: The ∆(ERESCU , EWIEN2k) values for thirteen
elements.

pal bottlenecks of the real space method in RESCU. To
this end, we use the results of the Si benchmark in Sec-
tion VII for the discussion. We have plotted the time
taken by the computationally intensive operations of Ta-
ble I as a function of the number of atoms in Fig. 11:
they are the Chebyshev filtering, the Hamiltonian pro-
jection onto the filtered subspace, the diagonalization
of the projected pencil, the orthonormalization or/and
computation of the Ritz vectors, and we add to this list
the residual timing (ROC) which includes the remain-
ing time. The timings for one self-consistent step per-
formed by 256 cores are reported in Fig. 11. Both RR
and pRR algorithms yield similar timings in all parts
of the computation except for the orthonormalization.
In solving the generalized eigenvalue problem, the eigen-
solver computes the Cholesky factor of the overlap ma-
trix to reduce the generalized eigenvalue problem to a
standard form. In the partial Rayleigh-Ritz algorithm,
this factor is reused to orthonormalize the filtered sub-
space. In the standard Rayleigh-Ritz algorithm, there is
no point in doing so since the eigenvectors for the gener-
alized eigenvalue problem will directly provide the Ritz
vectors which are orthonormal by construction. But the
latter matrix is a general one whereas the former is tri-
angular, and hence the factor of two speed up observed
in Fig. 11. The diagonalization is faster in the partial
Rayleigh-Ritz procedure, but it is not too significant as
it is as large as the efficiency fluctuations observed in
our computation tests. There are a few explanations to
this. Firstly, according to the benchmark in Fig.3, direct
diagonalization is relatively cheap for matrices smaller
than 10, 000× 10, 000 which is about the size of the ma-
trices in our largest system. Secondly, in a relatively
simple system of bulk silicon, the projected matrix pencil
H̄−λS̄ is more easily diagonalizable than the random ma-
trices used in the benchmark described above since it is
closer to being diagonal. Moreover, it becomes closer and
closer to being “diagonal” as the electronic density - and
the Kohn-Sham invariant subspace - approaches its fixed
point. The scaling of the residual timing appears lin-
ear and that of the Chebyshev filtering is quadratic. The
main bottlenecks are the projection and the orthonormal-
ization which scale almost cubically. This originates from
the complexity of matrix-matrix multiplication which is
O(N3) or O(N2.8) depending on matrix size and imple-
mentation.
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FIG. 11: Time per self-consistent step as a function of the
number of Si atoms using 256 processors. The full line link
data points for the Rayleigh-Ritz algorithm and the dashed
lines link data points for the partial version.

The main bottleneck comes about because of the mas-
sive amount of data required to encode the subspace Φk.
In order to improve the method described in this work, it
is crucial to achieve some sort of subspace compression.
One way to address this issue is to calculate a localized
basis for the filtered subspace as done by Motamarri et al.
in Ref. 48, where the authors show that localizing the ba-
sis is key to achieving a subquadratic computational scal-
ing, in particular when evaluating the Hartree-Fock ex-
change functional. Tangentially, subspace compression is
crucially needed because the memory requirement scales
asO(N2). Indeed, the RESCU method is so far more lim-
ited by the memory requirement than the computational
requirement as evidenced in the Si benchmark. Unfortu-
nately, it appears that, for the reported tests, the sub-
space “resists” localization as it approaches convergence
and performing part of the computation with a dense
subspace is still required. In a similar spirit, RESCU can
use multiple-zeta numerical atomic orbital bases to solve
the Kohn-Sham equations. If the memory requirements
are not too severe, the NAO solutions are projected into
real space and the energy may be further minimized using
Chebyshev filtering. In summary, future research should
focus on the following points: a vector space spanning
the Kohn-Sham occupied subspace must be computed ef-
ficiently, storing such a vector space should require O(N)
memory (the data must be compressible somehow) and
the projected density matrix should be efficiently com-
putable. In any event, even with the existing bottlenecks,
RESCU has already achieved impressive computational
efficiency in solving the KS-DFT problem.
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IX. CONCLUSIONS

In this work, we have presented a powerful Kohn-Sham
DFT solver, RESCU. The goal of the RESCU method is
to predict electronic structure properties of systems com-
prising many thousands of atoms using moderate com-
puter resources. The computational efficiency is gained
by exploiting four routes. First, in real space, Cheby-
shev filtering is used to expedite the computation of an
invariant Kohn-Sham subspace in large systems. This ap-
proach essentially exploits the fact that when the Hamil-
tonian is not yet converged, one does not need to solve
the KS equation extremely accurately. Second, we devel-
oped a NAO-based method to efficiently generate a good
initial subspace which is necessary in the Chebyshev fil-
tering paradigm. Third, by judiciously analyzing various
parts of the KS-DFT solution procedure, RESCU gains
efficiency by delaying the O(N3) scaling to large N ; and
our tests showed that RESCU scales as O(N2.3) up to the
several thousand atoms level. Fourth, RESCU gains effi-
ciency by various numerical mathematics and, in partic-
ular, we introduced the partial Rayleigh-Ritz algorithm
and showed it leads to efficiency gains for systems com-
prising more than 10,000 electrons. The RESCU code is
implemented in MATLAB such that it provides a con-
venient prototyping and development environment. It
is also easily installed on many platforms and architec-
tures. Finally, we mention in passing that we have also
implemented total energy and force calculation methods
into RESCU, but we reserve the discussion of structural

relaxation using RESCU for the future.

We demonstrated that the RESCU method could per-
form large scale KS-DFT computations using computer
resources ranging from 16 to 256 cores. At the 5,000-
15,000 atoms level, there are many important material
physics problems to be investigated and we wish to report
them in the near future. From the method development
point of view, to deal with even larger systems, we find
it is essential to compress the Kohn-Sham subspace to
achieve better computational effectiveness and to relieve
computer memory requirements. Sparse matrix repre-
sentations can alleviate the problem to some extent but
do not solve it entirely. We think the solution may lie in
the hierarchical matrix approximations which are data-
sparse structures for dense matrices. We wish to present
these efforts in the future. Finally, it is tempting and
interesting to extrapolate the RESCU ability to much
larger systems - using current supercomputers. However,
we caution that a naive extrapolation may not work since
for much larger N , the computational burden shifts to-
ward the parts of the algorithm that scale as O(N3). We
believe these are important topics of future research.
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